
Efficient Ab initio Modeling of Random Multicomponent Alloys

Chao Jiang* and Blas P. Uberuaga†

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 26 November 2015; published 8 March 2016)

Wepresent in thisLetter a novel small set oforderedstructures (SSOS)method that allowsextremely efficient
ab initiomodeling of randommulticomponent alloys.Using inverse II-III spinel oxides and equiatomic quinary
bcc (so-calledhighentropy) alloys as examples,wedemonstrate that a SSOScanachieve the sameaccuracy as a
large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In
particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened,
leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method
developed here can be broadly useful for the rapid computational design of multicomponent materials,
especially those with a large number of alloying elements, a challenging problem for other approaches.
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Ab initio modeling based on density functional theory
(DFT) is a powerful tool that has greatly accelerated the
design and discovery of materials [1–5]. The recently
developed ab initio evolutionary methodology [6] further
enables crystal structure prediction without any experimental
input, making truly predictive materials design feasible.
Despite its great success, extending ab initio calculations
to multicomponent alloys exhibiting configurational disorder
remains a difficult problem. To date, the three most widely
used techniques formodeling disordered alloys are the single-
site coherent potential approximation (CPA) [7], the special
quasirandom structure (SQS) approach [8], and the “coarse-
graining” cluster expansion (CE) method [9].While CPA can
elegantly treat both chemical and magnetic disorder (e.g.,
paramagnetic state) in randomalloys at arbitrary composition,
its mean-field nature limits its application to systems where
local environmentally-dependent effects such as local dis-
placements of atomsaway from their ideal lattice positions are
insignificant. A SQS represents the best possible periodic
supercell that mimics the local pair and multisite correlation
functions of a random alloy under the constraint of a given
unit cell size N. Because of the OðN3Þ scaling of traditional
DFT methods, small-unit-cell SQSs are preferred for com-
putational efficiency. To date, SQSs with N ≤ 36 have been
successfully generated for random binary and ternary alloys
[8,10–14]. However, with increasing number of alloying
elements, it becomes increasingly difficult to find a small-
sized SQS that can still adequately mimic the statistics of a
random alloy due to the large number of correlation functions
that need to be reproduced (see Fig. 1). Finally, while a CE is
decidedly powerful and is capable of capturing short-range
order effects at finite temperatures when used as the basis for
canonical Monte Carlo simulations, the parametrization of a
multicomponent CE can be computationally very expensive.
To the best of our knowledge, no application of the CE
technique to quaternary, quinary, and higher-order alloy
systems has yet been reported in the literature.
In this Letter, motivated by the well-known Gaussian

quadrature rule for numerical integration that approximates

a definite integral as a weighted sum of function values at
specific points, we propose to calculate a physical property
f of a random alloy from a weighted average of the
properties of a small set of ordered structures (SSOS) as

hfiR ≈
Xn

i¼1

wifðσSSOSi Þ; ð1Þ

where n is the number of structures in the set. wi and
fðσSSOSi Þ denote the weight and property of the ith structure
in the SSOS, respectively. The weights should be positive
and satisfy the normalization condition

Pn
i¼1 wi ¼ 1.

To find the optimal SSOS and the corresponding weights
for a given random alloy, we resort to the multicomponent
CE technique [9]. For anM-component alloy containing N
lattice sites, we assign a pseudospin variable Si to each site,
which can take a value between 0 andM − 1, depending on

FIG. 1. Total number of correlation functions for a single cluster
in high-order multicomponent alloys. Results for the nearest-
neighbor pair, triplet, and quadruplet cluster in a fcc lattice are
shown as a function of the number of alloying elements. Unlike in
a binary alloy where the point function is unique, many distinct
decorations for a cluster exist in a multicomponent alloy. For
example, for an M-component alloy, there are MðM − 1Þ=2
different types of decorations for each pair cluster.
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which element occupies site i. The atomic arrangements on
an underlying parent lattice can thus be completely charac-
terized by the vector σ ¼ fS1; S2;…; SNg. We further define
a cluster α as a group of k lattice sites, where k ¼
1; 2; 3; 4;… indicates single-site, pair, triplet, and quadruplet
clusters, etc. Formally, the dependence of a scalar property f
on lattice configuration σ can be expanded as

fðσÞ ¼ J0 þ
X

α

X

s

Ds
αJsαΦ̄s

αðσÞ: ð2Þ

Here, the vector s is called a “decoration” that specifies the
type of point function associated with each site in cluster α.
Φ̄s

α, Jsα, andDs
α denote the correlation function (see Ref. [12]

for detailed definition), the effective cluster interaction
(ECI), and the degeneracy factor for cluster α with deco-
ration s, respectively. J0 is the ECI for the empty cluster. For
a truly random multicomponent alloy, the ensemble average
of its correlation function hΦ̄s

αiR can be calculated analyti-
cally since there is no correlation in the occupation between
various sites. We search for a SSOS and associated weights
such that the weighted averages of their correlation functions
match hΦ̄s

αiR for as many clusters as possible. In the spirit of
the SQS approach [8,10–14], we make a fundamental
assumption that the relative importance of ECIs decreases
with increasing cluster size and focus on the physically most
relevant correlation functions between the first few nearest
neighbors.
To generate a SSOS-n × N set that contains n ordered

structures each containing N atoms per cell, we exhaus-
tively enumerate all possible combinations of n symmet-
rically distinct N-atom=cell structures based on an
underlying parent lattice using the ATAT code [15]. For
large N, a linearly scaling numeration algorithm recently
developed by Hart and Forcade [16] can be used to
overcome the combinatorial explosion and the associated
increase in computational time to enumerate the structures
associated with larger cells. Each structure in the SSOS
must have the same alloy composition as that of the alloy of
interest. For computational efficiency, both n and N should
be as small as possible. For each candidate set of structures,
we determine their optimal weights using least-squares
regression such that the periodicity error, which measures
the deviation from random correlation, is minimized for a
specified set of clusters under the normalization constraint:

X
α

X
s

!Xn

i¼1

wiΦ̄s
αðσSSOSi Þ − hΦ̄s

αiR
"2

¼ min : ð3Þ

Among all enumerated candidate sets, the best SSOS is
the one with the lowest periodicity error. The generation of
a SSOS is thus an intrinsically two-step optimization
process: the inner one is with respect to weights and the
outer one is with respect to structure selection among a pool
of small ordered structures. We note that such an opti-
mization process may be valuable for identifying reference
structures used in machine learning approaches as well.

To test the validity of the SSOS approach, we first apply it
to predict the relative stability of normal versus inverse
structures of MgAl2O4 and ZnAl2O4 spinel oxides [17]. In a
normal II-III AB2O4 spinel, A2þ cations occupy one-eighth
of the tetrahedral interstitial sites of the fcc oxygen sublattice,
and B3þ cations occupy half of the octahedral interstices.
When all theA cations exchange positionswith theB cations,
the spinel is referred to as “inverse.” To model the inverse
spinel structure in which A and B cations are randomly
distributed within the octahedral (B) sublattice, we have
developed a SSOS-2 × 28 [18] and various SQS-N struc-
tures (with N ¼ 28, 56, 84, and 168 atoms per unit cell).
Furthermore, we have constructed high-fidelity CEs using 17
pair, 16 triplet, and 2 quadruplet interactions by fitting to
DFT calculated total energies of 146 input structures. For
MgAl2O4 and ZnAl2O4, the leave-one-out cross-validation
score is only 3.4 and 4.7 meV per AB2O4 formula unit (f.u.),
respectively. The CE results are herein considered as bench-
marks against which the accuracy of SSOS can be judged.
For DFT calculations, we employ the all-electron projector
augmented wave method [19] within the local-density
approximation, as implemented in VASP [20]. To fully
consider the effects of local lattice relaxations, all structures
are fully relaxed with respect to both cell-internal and cell-
external degrees of freedom according to quantum mechani-
cal forces and stress tensors. More computational details can
be found in the Supplemental Material [18].
Figure 2 shows the disordering energies (defined as the

total energy difference between the inverse and normal
configurations) of MgAl2O4 and ZnAl2O4 calculated using
the SSOS, SQS, and CE methods. The ECIs of the CEs are
also shown. Remarkably, by performing DFT calculations on
only two 28-atom structures, our SSOS calculations give
results in excellent agreement with those from the CE and the
large 168-atom SQS, but with significantly lower computa-
tional cost. In contrast to metallic systems such as Nb-Mo
and Ta-W [11], the slow convergence of the SQS results with
respect to N observed for spinel oxides is a consequence of
the long-ranged pair interactions typical of Coulomb inter-
actions in these materials [see Figs. 2(a) and 2(b)]. It is worth
noting that, compared with SQS-28, calculations using
SSOS-2 × 28 lead to a greater than tenfold reduction in
computational error for disordering energy, but with only an
approximately twofold increase in computational effort.
Here, by collaboratively employing several supercells of
small size instead of a single large one to model the random
state, the convergence with respect to cell size has been
greatly accelerated, which can effectively overcome the
limitation imposed by the OðN3Þ scaling of DFT.
As our second example, we apply the SSOS method to

model the random quinary bcc alloy at the equiatomic
composition, the so-called high-entropy alloys (HEAs) that
have rapidly emerged as a new class of engineering
materials due to their excellent physical and mechanical
properties [21,22]. Remarkably, a SSOS-3 × 5 containing
only three 5-atom=cell structures [Figs. 3(a)–3(c)] can
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already perfectly match the 20 pair correlation functions of
the random alloy for the first- and second-nearest neighbors
[18]. To achieve the same level of accuracy in terms of the
range of perfectly matched correlations in a single super-
cell, we find it necessary to use a much larger 125-atom
SQS [Fig. 3(d)], which has been developed in this study
using the Monte Carlo simulated annealing technique [12].
Using both the SSOS and SQS methods, we have

performed DFT calculations on 12 random quinary bcc

alloys using VASP [20] with PAW-PBE pseudopotentials
[23]. A plane-wave cutoff energy of 341.5 eV and dense
Monkhorst-Pack k-point meshes are employed to guarantee
high numerical accuracy. As shown in Figs. 3(e) and 3(f),
even a SSOS-3 × 5 can already provide results in excellent
agreement with those obtained using a much larger 125-
atom bcc SQS. The SSOS approach agrees quantitatively
with SQS despite the significantly smaller computational
cost of the former: the root-mean-square deviation (RMSD)

FIG. 3. Modeling the random bcc A1B1C1D1E1 alloy using the SSOS and SQS approaches. The three 5-atom=cell structures σSSOS1 ,
σSSOS2 , and σSSOS3 in SSOS-3 × 5 are shown in (a)–(c), respectively. The 125-atom SQS structure is shown in (d). All structures are shown
in their ideal, unrelaxed forms. Comparisons between SSOS calculated and SQS calculated formation energies and equilibrium volumes
for 12 random bcc A1B1C1D1E1 alloys are shown in (e) and (f). Only volume relaxations have been performed for this comparison. The
green solid lines represent prefect agreement between the two methods.

FIG. 2. Comparisons of disordering energies (eV per f.u.) of spinel oxides calculated using SSOS, SQS, and CE methods. Fitted ECIs
for cation distribution in the octahedral sublattice in inverse MgAl2O4 and ZnAl2O4 are shown in (a) and (b), respectively. All figure
sizes are normalized with respect to that of the of the nearest-neighbor pair. The slow-decaying pair interactions and the weak many-
body (triplet and quadruplet) interactions are characteristic of Coulomb interactions. The calculated disordering energies for MgAl2O4

and ZnAl2O4 are shown in (c) and (d), respectively.

PRL 116, 105501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

11 MARCH 2016

105501-3



of the formation energy and equilibrium volume of the 12
alloys is only 4.8 meV=atom and 0.028 Å3=atom, respec-
tively. Here, we define formation energy as the total energy
difference between an alloy and the composition-weighted
average of its constituent pure elements in their respective
ground-state structures at T ¼ 0 K.
For the comparison shown in Fig. 3, we only allow the

unit cell volume to relax, with all atoms occupying their
ideal bcc lattice positions. In a multicomponent solid
solution, significant lattice distortion can occur due to
the large size mismatch between its many constituent
elements. Consequently, there can exist a large dispersion
of nearest-neighbor bond lengths, the average of which
corresponds to the average lattice. To further consider the
effects of local lattice relaxations, we fully relax all atoms
in a random bcc alloy from their ideal lattice sites into their
equilibrium positions. We find that the results predicted by
SSOS and SQS calculations remain in excellent agreement
with each other even after full atomic relaxations (see
Fig. S2 in Supplemental Material [18]). For obtaining the
atomically relaxed formation energy, we estimate that the
SSOS calculations are more than 40-fold faster than SQS
calculations, although the RMSD between the two calcu-
lations is only 9.5 meV=atom. This good agreement con-
firms the suitability of using the SSOS approach for
modeling local lattice relaxations in size-mismatched
multicomponent alloys and predicting properties of these
high-order alloys.
The combined accuracy and high computational effi-

ciency of the SSOS method make it possible to perform
high-throughput screening of the phase stability of a large
number of potential bcc HEA compositions with only
limited computing resources. As a demonstration of the
approach, we consider all possible equiatomic quinary
alloys that can be formed from the 13 elements Al, Cr,

Cu, Ir, Mo, Nb, Ni, Pd, Pt, Ta, Ti, V, and W. Furthermore,
all possible five combinations of the eight refractory metals
Hf, Mo, Nb, Ta, Ti, V, W, and Zr are also considered. Here,
we use “instability energy” [24] to measure the phase
stability of a bcc HEA defined as the total energy difference
between an alloy and the ground-state convex hull, which
can be estimated using the Open Quantum Materials
Database [25]. A large instability energy would indicate
a high tendency towards ordering and thus low chance of
obtaining a single-phase solid solution. Furthermore, the
bcc lattice should be energetically more favorable than
other competing crystal structures such as fcc. For this
screening, we consider the relative lattice stability between
fcc and bcc structures, each modeled using a SSOS-3 × 5
[18]. As shown in Fig. 4, our SSOS calculations correctly
predict the bcc structure to be more stable for the six
experimentally synthesized bcc HEAs: Mo1Nb1Ta1V1W1

[26], Hf1Nb1Ta1Ti1Zr1 [27], Al1Nb1Ta1Ti1V1 [28],
Mo1Nb1Ti1V1Zr1 [29], Al1Mo1Nb1Ti1V1 [30], and
Hf1Nb1Ti1V1Zr1 [31]. Among the 1337 HEA candidates
screened, the top 2% most promising (having the lowest
instability energies) bcc HEA compositions are reported

FIG. 4. High-throughput screening of potential single-phase
bcc HEA compositions. Instability energy versus lattice stability
plot for 1337 HEA candidates is shown. The six experimentally
confirmed bcc HEA compositions are marked in red. For reasons
of efficiency, only volume relaxations have been performed for
this initial screening. For HEA candidates with relatively low
volume relaxed instability energies, we further allow all internal
atomic positions to relax in our SSOS calculations, and those
results are reported in Table I.

TABLE I. The top 2% most stable single-phase bcc HEA
compositions identified from the present high-throughput screen-
ing. Phase stability of HEAs is ranked according to their fully
relaxed instability energies. The four experimentally verified bcc
HEA compositions are shown in bold.

bcc HEAs Instability energy (eV=atom)

Mo1Nb1Ta1Ti1W1 0.046
Mo1Nb1Ti1V1W1 0.048
Mo1Nb1Ta1V1W1 [26] 0.068
Hf1Mo1Nb1Ti1Zr1 0.081
Mo1Ta1Ti1V1W1 0.081
Mo1Nb1Ta1Ti1V1 0.084
Hf1Mo1Nb1Ta1Ti1 0.086
Nb1Ta1Ti1V1W1 0.087
Hf1Nb1Ta1Ti1Zr1 [27] 0.089
Hf1Mo1Nb1Ti1V1 0.092
Hf1Nb1Ta1Ti1W1 0.096
Mo1Nb1Ta1Ti1Zr1 0.101
Cr1Mo1Ti1V1W1 0.102
Mo1Nb1Ti1V1Zr1 [29] 0.102
Cr1Mo1Nb1V1W1 0.104
Nb1Ta1Ti1W1Zr1 0.104
Hf1Mo1Nb1Ti1W1 0.113
Al1Mo1Ta1V1W1 0.114
Hf1Mo1Ta1Ti1Zr1 0.115
Cr1Mo1Nb1Ti1V1 0.115
Hf1Nb1Ti1V1Zr1 [31] 0.116
Cr1Mo1Ta1V1W1 0.117
Hf1Mo1Nb1Ta1Zr1 0.118
Cr1Nb1Ti1V1W1 0.118
Mo1Nb1Ti1W1Zr1 0.121
Cr1Mo1Nb1Ti1W1 0.123
Al1Cr1Mo1V1W1 0.123
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in Table I. Four of them (Mo1Nb1Ta1V1W1 [26],
Hf1Nb1Ta1Ti1Zr1 [27], Mo1Nb1Ti1V1Zr1 [29], and
Hf1Nb1Ti1V1Zr1 [31]) have already been experimentally
verified. The remaining 23 alloy compositions are thus new
predictions that await experimental confirmation.
In summary, here we propose a new method to predict the

properties of random multicomponent alloys using ab initio
calculations. Instead of relying on a single large supercell to
mimic the random state, we model a random alloy using a set
of small ordered structures, whose weight-averaged proper-
ties approximate those of the truly random alloy. Because of
theOðN3Þ scaling ofDFT, the SSOSmethod has a significant
advantage in terms of computational efficiency, particularly
for high-order alloy systems. Using inverse AB2O4 spinels
and random quinary bcc alloys as examples, we demonstrate
that the SSOSmethodcanpredict the energetics and structural
properties of random alloys in excellent agreementwith those
obtained using much larger supercells, even when the effects
of local lattice relaxations are accounted for. Since the SSOS
method relies on small cells, it allows for the possibility of
high-throughput DFT calculations of high-order multi-
component systems, such as high-entropy alloys, and is
ideally suited for use with more accurate but costly electronic
structure approaches, such as hybrid functionals [32] andGW
[33]. Finally, the SSOS approach can be used to calculate any
property that can be modeled by a short-range cluster
expansion, such as band gap, vibrational entropy, and bulk
modulus, and thus should become a valuable tool for
materials discovery of multicomponent systems.
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