
Journal of Computational Physics151,283–312 (1999)

Article ID jcph.1999.6201, available online at http://www.idealibrary.com on

NAMD2: Greater Scalability for Parallel
Molecular Dynamics

Laxmikant Kalé, Robert Skeel, Milind Bhandarkar, Robert Brunner,
Attila Gursoy, Neal Krawetz, James Phillips, Aritomo Shinozaki,

Krishnan Varadarajan, and Klaus Schulten

Theoretical Biophysics Group, Beckman Institute for Advanced Science and Technology,
University of Illinois at Urbana–Champaign, Urbana, Illinois 61801

E-mail: kale@ks.uiuc.edu

Received July 20, 1998; revised December 28, 1998

Molecular dynamics programs simulate the behavior of biomolecular systems,
leading to understanding of their functions. However, the computational complexity
of such simulations is enormous. Parallel machines provide the potential to meet this
computational challenge. To harness this potential, it is necessary to develop a scal-
able program. It is also necessary that the program be easily modified by application–
domain programmers. The NAMD2 program presented in this paper seeks to provide
these desirable features. It uses spatial decomposition combined with force decom-
position to enhance scalability. It uses intelligent periodic load balancing, so as to
maximally utilize the available compute power. It is modularly organized, and im-
plemented using Charm++, a parallel C++ dialect, so as to enhance its modifiability.
It uses a combination of numerical techniques and algorithms to ensure that energy
drifts are minimized, ensuring accuracy in long running calculations. NAMD2 uses
a portable run-time framework called Converse that also supports interoperability
among multiple parallel paradigms. As a result, different components of applica-
tions can be written in the most appropriate parallel paradigms. NAMD2 runs on
most parallel machines including workstation clusters and has yielded speedups in
excess of 180 on 220 processors. This paper also describes the performance obtained
on some benchmark applications.c© 1999 Academic Press

1. INTRODUCTION AND MOTIVATION

Molecular dynamics (MD) serves a pivotal role in inferring functions of biomolecules
from their structures. The number of structures obtained via X-ray crystallography and
other means has increased tremendously in the past several years. Researchers believe
that molecular dynamics simulations are critical in translating structure information into
mechanisms underlying biomolecular functions. Successful simulations of biomolecular

283

0021-9991/99 $30.00
Copyright c© 1999 by Academic Press

All rights of reproduction in any form reserved.

284 KAL É ET AL.

systems can lead to a deeper understanding of basic biological processes and provide new
insight to aid rational drug design.

A major hurdle to successful deployment of molecular dynamics for these purposes is
the sheer computational intensity of the required simulations. The biomolecular systems
of interest today consist of ten thousand to one hundred thousand atoms. Most often, the
dynamics of such systems must be studied over several nanoseconds to develop signifi-
cant understanding of the phenomena being studied. At the same time, the time scale of
atomic interactions requires that one simulate their behavior in time steps as small as 1 fs
(10−15 s). In spite of the dramatically increased speeds of individual processors, the num-
ber of computational steps required to complete relevant simulations is prohibitive on any
single-processor computer.

Parallel computing provides the potential for making the required large-scale simula-
tions feasible. Parallel machines with tens, hundreds, and even thousands of processors are
commercially available now. Such machines provide the potential to reduce the simulation
time from years to mere days, thus making it possible to investigate functional properties
of structures identified by contemporary scientific studies in a timely fashion.

To realize this potential of parallel computers, it is necessary to develop an efficient par-
allel molecular dynamics program. Such a program must be scalable, so that it can exploit
newer generations of parallel machines with thousands of processors efficiently. Although
the overall computational complexity of simulations is very large, the complexity results
from the large number of time steps required. Each time step itself is relatively small. Since
each time step must complete before the next one can begin, there is little opportunity to
parallelize across time steps, requiring extensive parallelization of computation within each
time step. For example, simulating a biomolecular system with 3762 atoms sequentially
required only about 1 s for a single time step in a particular simulation. To run this computa-
tion effectively on a large parallel machine implies that each time step must complete within
tens of milliseconds. Given the communication requirements of molecular dynamics, and
the relatively non-homogeneous nature of its computations, this becomes a challenging feat.

The program described in this paper, NAMD2, is one of the new parallel programs
aimed at utilizing large parallel machines in a scalable manner. The non-bonded force
computations, which constitute the dominant component of the overall computational cost,
require calculation of pairwise interactions between atoms. In most common methods, a
cutoff distance,RC is used. Non-bonded interactions between atoms beyond this cutoff
radius are either not calculated or calculated less often. This geometry-dependent nature of
the computation complicates parallelization strategies for molecular dynamics programs.
As described in Section 2, NAMD2 uses a unique decomposition strategy that combines the
advantages of spatial decomposition and force decomposition, which permits the program
to utilize a large number of processors.

In addition to speed, maintainability and extensibility are also required in a parallel molec-
ular dynamics program. Scientific studies of biomolecular systems often involve novel ap-
proaches. For example, one may be interested in steering small groups of atoms through
a molecular system to study the forces experienced by them. Studies of specific systems
may require periodic or non-periodic boundary conditions. Alternative numerical integra-
tors are employed for increased accuracy or speed. A well-motivated application–domain
programmer should be able to extend the parallel program to permit such experimentation.
This requires a highly modular organization for the program. Ensuring such modularity is
more difficult in a parallel program than in a sequential one, because the new algorithm

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 285

must correctly interleave the parallel communication logic. NAMD2 handles this problem
in part by providing the infrastructure (class hierarchy) that embodies commonly needed
molecular dynamics mechanisms. Parts of this infrastructure include generic force compu-
tation objects along withpatch(see Section 3.1.1) objects representing cubical regions of
space. A numerical integration scheme, for example, can be written solely from the point
of view of all the atoms within this cubical region, ignoring all other aspects of parallel
communication. A scheme for maintainingproxy patches on each processor ensures that
data communication is not visible to other components of the program. The generic force
computation objects make it easy to add new types of forces, such as those required in
steered molecular dynamics or free energy calculations (Sections 5.3.1 and 5.3.3). This
modular organization is further enhanced by using C++, a language that encourages mod-
ularity, and Converse, a portable parallel run-time framework that allows multiple parallel
paradigms to co-exist in the single application. As a result, each module can be written in
a parallel paradigm most appropriate to it. This extensibility-oriented design is elaborated
on in Section 3, which also further explains the parallelization strategy, and the specific
algorithms used in various components of NAMD2.

Although the parallelization strategy enables scalability, a good load balancing scheme
is necessary to achieve good performance. NAMD2 uses an adaptive measurement-based
periodic load balancing strategy that is effective in achieving good performance even for
difficult MD simulations (e.g., those involving non-periodic configurations with high varia-
tions in atom density). This strategy and the results of some performance evaluation studies
are discussed in Section 4. The extensibility of NAMD2 design is demonstrated in Section 5,
which discusses several new features added to NAMD2. Section 6 contains a brief sum-
mary of simulation applications carried out using NAMD2 so far, which is followed by
some concluding remarks.

2. PARALLELIZATION APPROACHES FOR MOLECULAR DYNAMICS

The molecular dynamics computation involves calculating forces on all atoms during
each time step, and “integration”—using these forces to update the positions and velocities
of atoms. The integration requires a comparatively small fraction of time, and is a com-
pletely local operation. The force computations can be broadly divided into two categories:
bonded force computations and non-bonded force computations. There are several cate-
gories of bonded forces, yet they all involve between two and four nearby (bonded) atoms.
Non-bonded forces are due to Lennard-Jones and electrostatic interactions between atoms.
Non-bonded forces decrease as the distance between atoms increases. Also, any given (suf-
ficiently large) region of space is likely to be charge-neutral, thus reducing its effect on
far-away atoms. As a result, many simulations use a cutoff radiusRC to save computation
time: non-bonded interactions between atoms beyond this distance are not considered. For
some simulations, the cumulative effect of far-away interactions cannot be ignored. Even in
such simulations, a cutoff distance can be used to reduce computation: Forces due to atoms
beyond the cutoff distance vary relatively slowly, and therefore can be computed less often.
It is therefore appropriate to focus our attention on cutoff-based simulations for the purpose
of discussing alternate decomposition strategies.

The non-bonded computations constitute between 80 and 95% of the overall compu-
tation, depending on the cutoff radius used. (When far-away interactions are not being
ignored, one can often use a cutoff radius as small as 8Å, compared with 12–18̊A used in

286 KAL É ET AL.

cutoff simulations.) Although the non-bonded force computations are dominant, one cannot
ignore the computational cost of bonded forces in designing the decomposition strategy.
For example, if one were to completely sequentialize their (say 5–20%) computations, the
overall speedup would be limited to at most 20. We aim at making the programscalableto
a larger number of processors.

Given a simulation of fixed size, there is naturally a limit to the number of processors one
can use to achieve higher performance; i.e., no algorithm is continuously scalable. Instead,
we use the following definition of scalability, based on [12, 15]. A parallel algorithm is said
to beisoefficiently scalableif one can increase the number of processors used by it (P), and
still retain its parallel efficiency by increasing the size of the problem being solved. (Thus,
using a scalable algorithm, we will be able to solve larger problems with a larger number
of processors.)

The parallel efficiencyη is defined through the equation

η = sequential time

P × parallel time
= Ts

P × TP
.

For solving a particular problem, when the number of processors is increased, the effi-
ciency will normally decrease (due to an increase in communication costs, for example).
But often when we increase the problem size, the ratio of communication to computation
decreases, leading to improved efficiency.

Note that the parallel execution timeTp is at least

Tp = Ts

P
+ Tcommunication= Ts

P
(1+ γ),

whereγ is the communication to computation ratio.
For an algorithm to be scalable, the following must be true: Assume that the algorithm

runs with efficiencyη while simulatingN atoms onP1 processors. Then, given a larger
number of processorsP2, one should be able to find a problem sizeN2, such that the
efficiency isη while simulatingN2 atoms onP2 processors.

From the above equations, we can conclude

Ts1

P1× Ts1
P1
(1+ γ1)

= Ts2

P2× Ts2
P2
(1+ γ2)

→ 1

(1+ γ1)
= 1

(1+ γ2)
→ γ1 = γ2.

Thus, for efficiency to remain the same while the number of processors is increased, we
must be able to find a larger problem size for whichγ , the communication-to-computation
ratio, remains the same. We next analyze several strategies for parallelizing molecular
dymamics computations from this viewpoint of scalability.1

1 In the following analyses, we focus on the volume of communication, i.e., the number of bytes of data sent
or received by each processor. However, the cost of each message includes a relatively large startup cost on
most current machines. This would argue in favor of counting thenumberof messages, rather than their volume.
However, two factors allow us to focus on the volume. First, several message combining techniques exist that
allow one to reduce the total number of messages. For example, if each processor is required to send a separate
message to all other processors, this may requireP messages in a straightforward implementation. But this can be
reduced to

√
P or even logP messages, using techniques such as dimensional exchange. Second, in many of the

algorithms analyzed here (especially the spatial decomposition variants), the number of messages is a constant,
thus obviating the need to consider it as a factor in asymptotic analysis.

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 287

One of the earliest strategies used for parallelizing MD computations was to replicate all
data (arrays containing attributes, coordinates, and forces of atoms) on each processor. The
force computations can then be evenly distributed across processors at will, as any processor
is capable of carrying out any particular force computation. If there areN atoms, andP
processors, theO(N) forces accumulated by each processor must be added up across all
processors. This requires communication time proportional toN log P. Assuming cutoff, the
amount of computation required is proportional toN (with a large proportionality constant),
leading toN/P computation per processor. As the parallel execution time of the program
is the sum of its computation and communication times, the parallel efficiency is affected
by the communication time. However, the ratio of communication to computation times
for replicated data (RD) isP log P, and is independent ofN. So, if we want to simulate a
system twice as large as the current one, we cannot hope to double the number of processors
to retain the same efficiency, because the fraction of time spent in communication will be
larger. Thus, RD is said to be nonscalable. However, in practice, RD works effectively for
tens of processors, and has the further advantage of being easier to implement, especially
for an existing serial program. As a result, this strategy is used by many production quality
MD programs, several of which are listed in Table I [5] [49].

A simple alternative to replicating data is atom decomposition (AD). The array containing
atoms is arbitrarily partitioned across processors. Atoms that are close by in space need not be
close by in the array. As a result, each processor may need data from all the other processors,
leading to anO(N) communication cost per processor, and loss of strict scalability.

Force decomposition (FD) is a technique that distributes the sparse force matrix in a block-
wise fashion across processors. Each processor’s share of theN× N force matrix is a block
of size(N/

√
P)× (N/√P). To compute this block the processor needs the coordinates of

2N/
√

P atoms, which come from
√

P different processors. The communication cost per
processor is thusO(N/

√
P), leading to the communication-to-computation ratio of

√
P.

TABLE I

Scalability of Decomposition Strategies with Examples of Programs That Use Them

Communication Theoretical
Method cost per node scalability Comment Programs

RD O(N log P) Not scalable Easy to parallelize CHARMM [5]
AMBER [49]
UHGromos
X-PLOR

AD O(N) Not scalable EGO (Early version)

FD O(N/
√

P) Not scalable Tolerable communi- LAMMPS [37]
cation costs CHARMM [19]

SD (N/P)2/3 Isoefficiently Possible load ddgmq [6] SIGMA
scalable imbalance

QSD O(N/P) Isoefficiently Possible load NAMD PMD [51]
scalable imbalance EulerGromos [8]

QSD+FD O(N/P) Isoefficiently Load balance NAMD2
scalable feasible

Note. SD is spatial decomposition with exactly one domain per processor. QSD stands forquantizedspatial
decomposition, where the size of boxes is fixed, independent of the number of processors.

288 KAL É ET AL.

While this is much better than RD, it is still not scalable according to our strict criteria: as
we increase the number of processors, the proportion of communication cost increases even
if we simulate a larger biomolecule. Research by Plimpton [38], Plimpton and Hendrickson
[37], and Hwanget al. [19] shows that this method provides a better speedup than RD, and
can be used with good speedups up to hundreds of processors. Results obtained by Hwang
et al. show that the proportion of communication cost goes from 6% of the computation
cost on 32 processors to 36% on 128 processors in their particular implementation.

As the force matrix is sparse, and the atoms that are next to each other in the array
are typically physically closer (note that the converse is false), one may get a nonuniform
distribution of work with FD. Plimpton and Hendrickson suggest randomly reordering
the atoms to eliminate all traces of spatial locality, and restore load balance. (To handle
symmetry arising out of Newton’s third law, they compute the interaction between atoms
i and j in one of the two possible blocks containingF [i, j] and F [j, i], respectively,
depending on whetheri + j is even.) Hwanget al.use a diametrically opposite technique:
they use recursive bisection to partition the atoms so that nearby atoms are assigned to the
same processor, and reorder the force matrix accordingly. The resultant load imbalance is
handled by assigning an irregular-shaped piece of force matrix to each processor. The effect
of this scheme has not been quantified formally. Empirically, the communication costs are
seen to be smaller than AD.

The idea of assigning nearby atoms to the same processor, called spatial decomposition
(SD), has been used and elaborated upon by several researchers. There are broadly three
ways of doing this:

• Partitioning space intoP boxes, one per processor.
• Partitioning space into fixed-size boxes, with dimension larger than the cutoff distance

RC, requiring communication only between neighboring boxes.
• Partitioning space into a large number of small boxes, requiring each box to commu-

nicate with a large number of boxes.

With the first option, with sufficiently largeN, the communication cost is proportional
to the surface of the box, while the computation cost is proportional to its volume. Thus,
this algorithm is highly scalable. However, the number of atoms is usually not as large as
to validate this approximation. Also, this method is hard to use if the number of processors
cannot be factored into three roughly equal factors.

With the second option, each box needs to communicate with a constant number (26) of
neighboring boxes. If multiple boxes happen to be mapped to each processor, each will have
to communicate with even fewer processors. Thus, the communication is proportional to
N/P, and the algorithm is scalable with linear isoefficiency: If the program is running with
a high parallel efficiency, and one doubles the size of the molecule as well as the number of
processors, one is assured that there will be the same number of boxes per processor and,
therefore, the same parallel efficiency. This method was used in the earlier version of our
program [29]. As other researchers have noted, load imbalance can be a severe problem
for SD, especially for simulating non-periodic systems. NAMD addressed this problem
by assigning the force computations corresponding to a pair of neighboring cubes (called
patches in NAMD) to the patch on a processor with a lower load. Although this strategy
improves the load balance somewhat, it is clearly limited: neighbors of low-load patches
(near the boundary) tend to be low-load as well. A second potential problem is that the
number of processors one can utilize is limited to the number of patches.

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 289

The third strategy, implemented in EulerGromos by Clarket al.[8], involves using boxes
with sizes smaller than the cutoff distance, so that each box needs data from non-neighboring
boxes. Again, multiple boxes can be mapped to each processor. The large number of mes-
sages resulting from the scheme can be reduced (but not the volume of data transferred)
using a multi-stage communication scheme, first described in [36, 43] (called the “north–
south–east–west” exchange algorithm; also called the “shift algorithm” in [8]). A prototype
implementation of EulerGromos has demonstrated good speedups with the strategy. The pro-
grams UHGromos (with replicated data) and EulerGromos were written by the same team,
and a performance comparison showed that EulerGromos was faster if there are enough
processors, the crossover point in their experiment being 64 processors [8]. In our own
experimentation, we found that this “small boxes” strategy led to high overhead, possibly
due to the following reason: when multiple time stepping is used, the cutoff distances are
short (e.g., 8–9̊A). As a result, boxes with the width half of the cutoff distance are too small
(with about 12 atoms per box) to amortize the overhead.

In another variant of spatial decomposition, the FAMUSAMM algorithm implemented in
the latest versions of EGO [16] uses hierarchical decomposition of space, based on structural
features of biomolecules, to implement a structure-adapted multipole algorithm.

The strategy used in NAMD2 can be thought of as a synthesis of space decomposition
and force decomposition. NAMD2 decomposes atoms into boxes of size= RC +margin,
and distributes these boxes to processors as described above. (The margin parameter will
be explained in Section 3.1.1.) In addition, NAMD2 allows the computation of non-bonded
forces between each pair of neighboring boxes to be freely assigned to any processor. The
number of such pairs is 13 times the number of boxes. Thus, in principle, NAMD2 can utilize
a much larger number of processors than a purely spatially decomposed program (such as
the original NAMD). Furthermore, the ability to assign each pair to any arbitrary processor
allows fine-tuning via load balancing. This strategy, and its object oriented implementation,
are elaborated in Section 3.

2.1. Parallelization of Bonded Force Components

Parallelizing computation of bonded forces in the context of spatial decomposition is also
challenging. Bonded forces represent covalent chemical bonding, and are parameterized on
distances, angles between atom triplets (angles), and angles between planes formed by four
atoms (dihedrals and impropers). Here we will discuss the parallelization of angles.

We can assume that the three atoms involved in an angle are within a 2× 2× 2 box of
neighboring patches. This is valid as long as bond lengths are smaller than half of the patch
dimension. Assume that each patch is on a separate processor. The simple implementation
(used in the original version of NAMD) is to have each patch send atom coordinates to
each of the 26 neighboring patches. Each patch looks at the neighboring coordinates and
computes the forces on its atoms due to the angles associated with the neighboring patch
data. In this scheme these computations are duplicated for those angles involving atoms in
multiple patches.

A simple reorganization of the computation allows one to reduce the number of processors
to which each patch must deliver position data. Figure 1 illustrates the algorithm in a two-
dimensional decomposition. The older algorithm would require patch(1, 1) to send eight
position messages. The new algorithm uses the rule that the angle forces among three atoms
in patches(x1, y1, z1), (x2, y2, z2), and(x3, y3, z3) are computed on the processor owning
patch(min(x1, x2, x3),min(y1, y2, y3),min(z1, z2, z3)). Note that this may be a processor

290 KAL É ET AL.

FIG. 1. Neighboring patches in the two-dimensional downstream patch scheme.

where none of the three atoms reside. A patch(a1,a2,a3) sends its data only todownstream
patcheswith coordinates(b1, b2, b3) such thatai − 1≤ bi ≤ai . In the two-dimensional case
of Fig. 1, patch(1, 1) needs to send data to only three other processors,(1, 0), (0, 1), and
(0, 0). So now an angle composed of atoms in patches(1, 1), (2, 1), and(2, 0) is calculated
on the processor that owns patch(1, 0). In three dimensions, there are seven downstream
patches with which each patch communicates (instead of 26). In addition, this algorithm
avoids redundant computation by applying Newton’s third law, although this increases
the number of messages to 14 per patch to return the computed forces. Even when there
are multiple patches per processor, the new scheme still results in fewer messages than
the straightforward implementation. This method has similarities to work done by Brown
et al.[7], except that Brown’s method requires additional communication, including a global
reduction to guarantee that each angle is computed on exactly one processor. They also use
a staged communication strategy, also described by Clarket al. [8]. This strategy reduces
the number of messages from seven to three by combining messages, but the number of
bytes exchanged remains the same. Esselink and Hilbers [10] consider a similar scheme,
but opt in favor of one requiring communication from half of the neighbors within the cutoff
distance, citing the complexity involved in identifying the angle forces to be calculated on
a processor. Our scheme, along with the tuple search algorithm described in Section 3.2.2,
demonstrates that an efficient implementation is possible.

3. DESIGN

The three overall goals of NAMD2 were improved sequential performance, scalability
with respect to both simulation size and number of processors, and modifiability. We also
wanted the program to deal with periodic as well as non-periodic configurations, and pro-
vide the option of calculating long-range electrostatic forces. Modifiability was required to
support ease of maintainance as well as the ability to add new features. Each of the design
decisions described below contributes to achieving these goals.

The hybrid spatial/force decomposition scheme described above provides the basis for the
scalability of NAMD2. This scheme requires that a number of entities (multiple “patches”
and force computations) reside on each processor. Instead of a monolithic program that
orchestrates all these diverse actions on a single processor, we chose a message-driven
object-based paradigm. All of the computational entities were implemented as objects, and
they are scheduled based on availability of data needed for their continued execution. With
this, a force computation (for example) is scheduled for execution only when all the data it
needs are available on the local processor, thus avoiding the possibility that any particular

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 291

entity will block the processor while waiting for specific data. NAMD2 is written using
Charm++ [24], a parallel C++ extension that supports message-driven execution.

Like the original version of NAMD, NAMD2 uses CHARMm force fields and X-PLOR
coordinate and molecular structure files. In addition to non-periodic simulations, NAMD2
can use periodic boundary conditions over any combination of the three coordinate axes.
It performs cutoff simulations or full-electrostatic simulations employing multiple time
stepping using the DPMTA [40] or DPME [46] libraries. NAMD2 can connect to VMD [18],
the visualization component of MDScope [30], to allow monitoring of and interaction with
ongoing simulations.

We will first describe the core structure of NAMD2. The specific algorithms and inter-
esting data structures used for force computations are described next. To make a modular
implementation of NAMD2 possible, it was necessary to utilize and integrate several differ-
ent parallel programming paradigms. How such multiparadigm programming was supported
and why it is useful are discussed in Section 3.3.

3.1. Object-Oriented Design

For the sake of extensibility, we designed a class hierarchy that incorporates the structure
of molecular dynamics. The core of this hierarchy is composed ofPatch, Compute, and
Sequencerobjects. Patches represent cubical (actually, orthorhombic) regions of space, and
all the atoms within such a region.Computeobjects signify computation of different kinds of
forces on atoms in a set of patches. ASequencerspecifies the numerical integration scheme,
and drives the simulation of atoms within one patch. These base classes, and associated
service code, define basic functionality needed in any MD computation. A programmer
wishing to add features to NAMD2 can often extend an existing class to add some particular
functionality. (See Fig. 2.)

FIG. 2. In NAMD2 forces are calculated by independent compute objects which depend on one or more
patches for atomic coordinates. Proxy patches (shown as dotted cubes) are used to reduce the communication cost.
Communication between the different entities is represented by arrows.

292 KAL É ET AL.

3.1.1. Patches

The simulation space is divided into regular cubic regions calledpatches, each of which
is responsible for atoms within its boundaries, their coordinates, and the forces exerted on
them. The dimensions of the patches are chosen to be slightly larger than the cutoff radius.
Thus one can make the assumption that each patch only needs the coordinates from the
26 neighboring patches to compute non-bonded forces. To ensure that all atoms in a patch
indeed belong there, it is necessary to check all atoms at the end of each time step, and
migrate them to their proper home patches, if needed. This will be prohibitively expensive.
Using a well-chosen margin allows one to optimize this: With margins, even if an atom
strays outside the coordinate space of its patch, the assumption stays valid as long as the
straying is less than the margin. NAMD2 uses four to eight time steps before migrating
atoms to new locations, and detects any violations of the above assumption. The margin is
normally chosen to be about 1.5Å.

3.1.2. Compute Objects

The compute objects, together, are responsible for all the force computations in NAMD2.
Each compute object is associated with one, two, or more patches. The compute object
utilizes coordinates and other information from these patches, calculates a specific type of
force (e.g., non-bonded), and provides its client patches with the forces it calculated. The
run-time code manages dependencies: once a compute object has informed the system of
the patches it depends on, the system triggers each compute object when its client patches
are ready with the coordinates for the next time step. After the forces have been calculated,
the compute object informs the patch so that it can take the next step in its algorithm. Adding
a new type of force computation thus becomes a simple matter of specifying the patches a
compute depends on, and providing the code to calculate the new force terms.

3.1.3. Proxies

If a compute object and the patches it depends on reside on different nodes, then the
compute object must get the coordinate information from the patches on remote processors,
and send forces back to them. Often, there will be multiple compute objects on a processor
that are dependent on data from the same remote patch. To avoid redundant communication
in this common case, a representative of the home patch called aproxy patchis created on
the procesor. The compute object then contacts the proxy patch for the atom positions, and
deposits forces into the local proxy as well. Thus each patch sends all its coordinates to
its proxies, and receives forces from them once per time step. As the average number of
proxies is often substantially smaller than the number of compute objects that depend on
a patch, this represents a considerable optimization. In addition, the proxy patch provides
the compute objects with the same interface as that of the home patch, enhancing the ease
of programming: except for the code that deals with updating coordinate information in
proxies at the beginning of each time step, and sending forces back at the end, the rest
of the program can be written without any communication code. (Some communication is
needed to form global sums of various energy terms, but again each object simply deposits
its contribution into an existing library which does the necessary communication.)

3.1.4. Sequencers

Every home patch has asequencer threadassociated with it. It loops over all the time steps
in the simulation and essentially describes the life cycle of a single patch. The sequencer

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 293

FIG. 3. Sequencer algorithm for a triple-time-step long-range non-bonded force simulation.

provides the strategy, while the other objects such as the compute objects and patches provide
the mechanisms. Thesequencerabstraction allows it to be replaced by alternate modules
for experimenting with different algorithmic strategies, thus enhancing modifiability—one
of the primary design goals of NAMD2.

The pseudocode for the sequencer algorithm is shown in Fig. 3. The algorithm uses
multiple time stepping to reduce the computational cost of computing electrostatic forces
due to all pairs of particles in the system. The total electrostatic force acting on each atom is
divided into two parts, a short-range (local) component consisting of forces due to pairs that
are separated by less than the local interaction length (electrostatic cutoff) and a long-range

294 KAL É ET AL.

component consisting of the remaining pairs. The long-range forces vary slowly; hence
they are evaluated less frequently.

In each time step, depending on the frequency parameters specified by the user, it either
computes

1. only the bonded forces, or
2. bonded as well as non-bonded forces within a cutoff, or
3. bonded as well as non-bonded forces.

The velocities are updated based on the forces; velocities in turn are used to update the
positions. The sequencer then informs the home patch that its positions are ready. At every
cycle boundary, the patch sends the atom positions that do not belong to its space to the
neighboring patches. The proxy patches are populated next. The home patch sends all its
atom positions to all its proxies. Once the proxies are populated, it notifies all the dependent
compute objects that the coordinates are available for computing the forces for the next time
step and suspends the sequencer thread. The compute objects calculate the forces and awaken
the sequencer. The newly calculated forces are used to update the velocities, and reductions
and collections are initiated for the calculation of total energy and trajectory output.

3.2. Force Computation Schemes and Algorithms

The specific algorithms used to carry out and, in the case of bonded forces, partition the
computation, are influenced by the parallel decomposition scheme. The methods discussed
below contribute significantly to both the serial and the parallel performance of NAMD2,
as well as to its modifiability and clarity of design.

3.2.1. Non-bonded Interactions

The calculation of local (cutoff) electrostatic and Lennard-Jones components of the force
field is the most expensive step in a simulation. As such, it must be calculated both effi-
ciently and in a manner which can be readily parallelized and load-balanced. We have
enabled parallelization within the NAMD2 framework by dividing most of the non-bonded
calculation between two classes of compute objects: self and pair. The self compute ob-
jects calculate pairwise interactions between atoms residing within a particular patch. The
pair compute objects calculate pairwise interactions between pairs of atoms residing in
neighboring patches. The size of a patch is guaranteed to be sufficiently large that all atoms
not in neighboring patches are beyond the cutoff distance. A third class, the exclusion com-
pute objects, efficiently handles the modifications to the non-bonded force field related to
the connectivity of the molecule.

The non-bonded force field used in biomolecular dynamics is complicated by the bonding
structure and variety of atom types present in the molecule. Non-bonded interactions are
generally excluded (set to zero) for pairs of atoms which are directly bonded (1–2 pairs)
or are bonded to a common atom (1–3 pairs). In addition, these interactions are modi-
fied for pairs of atoms separated in the molecule by three bonds (1–4 pairs), usually by
scaling down the electrostatic interaction and providing a second set of Lennard-Jones
parameters. Testing for these full and modified exclusions during the non-bonded force
evaluation may be made more efficient by first constructing a list for each atom of all other
atoms from which it is excluded; additional improvements as described below can also be
incorporated.

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 295

In most molecular dynamics programs, not every pair of atoms is tested against the cutoff
distance at every time step, since this operation scales asN2. Often, apair-list [48], a list
of atom pairs within or near the cutoff, is generated periodically. Alternately,link-cells[17]
may be used, grouping atoms into cells by location and calculating interactions between
atoms in pairs of nearby cells. Link-cells may also be used to efficiently generate a pair-
list. The exclusion list is generally used during pair-list construction to eliminate or flag as
modified certain pairs of atoms.

Patches function as link-cells to provide an efficient method of distance checking.
Although the original version of NAMD did use pair-lists, the additional group-based op-
timizations described below make pair-lists unnecessary in NAMD2. However, without
pair-lists an expensive exclusion check would need to be performed for every pair of atoms
within the cutoff at every time step. The solution to this problem is to first calculate all non-
bonded interactions without regard to exclusions, and then correct the interactions between
excluded pairs by iterating over a list of those pairs directly. The parallelization of the sec-
ond step is the role of the exclusion compute objects, which are identical in implementation
to the bond compute objects discussed below.

There is, unfortunately, one additional complication. While subtracting the electrostatic
interaction between bonded atoms is reasonable, adding and subtracting the 1/r 12 repulsive
term of the Lennard-Jones potential between covalently bonded atoms would result in
an unacceptable loss of numerical precision since such atoms are much closer than is
energetically possible for non-bonded pairs of atoms. We define, therefore, an additional
cutoff outside of which all exclusions are subtracted by the exclusion compute objects, and
inside of which exclusion checking is performed to avoid loss of precision.

Hence, the algorithm carried out by the non-bonded self and pair compute objects is:

for all pairs of atoms in the same or neighboring patches:

if the atoms are within the cutoff:

if the atoms are within the exclusion cutoff:

if the atoms are 1--4 excluded:

calculate modified interaction

else if the atoms are not excluded:

calculate normal interaction

else:

calculate normal interaction

and the complementary algorithm of the exclusion compute objects is:

for all pairs of excluded atoms:

if the atoms are beyond the exclusion cutoff:

calculate and subtract normal interaction

if the atoms are 1--4 excluded:

calculate modified interaction

NAMD2 takes advantage of the typical biomolecular structure in which one, two, or
three hydrogen atoms are bonded to every heavy atom by ensuring that all atoms in such a
“hydrogen group” are on the same patch and performing a preliminary group-based cutoff
check. Comparing the distance between the oxygen atoms in a pair of water molecules
against an extended “group cutoff” is nine times faster than comparing all pairs of atoms.
Although this speedup must be balanced against the cost of increasing the patch dimension

296 KAL É ET AL.

by the maximum hydrogen group diameter, a significant improvement is obtained because
at best only 19% of cutoff checks succeed (in a uniform, periodic system with patch size
equal to cutoff). The initial NAMD2 design used patches smaller than the cutoff length to
increase this success rate, but early experiments demonstrated that the overhead from the
factor of 8 increase in the number of patches and the factor of 500 increase in the number
of compute objects greatly exceeded the expected gain. NAMD2 also exploits the fact that
non-bonded interactions are excluded among all atoms in a hydrogen group to bypass the
exclusion algorithm described above, eliminating all exclusions for water molecules and
many for biopolymers.

Support for full electrostatics and multiple-time-step integrators in NAMD2 requires that
the non-bonded code provide a variety of services. For cutoff simulations, a shifting function
is applied to the electrostatic term to allow energy conservation. (A similar modification is
always made to the Lennard-Jones potential.) The fast multipole algorithm (FMA) calculates
full electrostatics for all atoms, but the non-bonded code must still subtract off exclusions and
apply a smooth splitting function to remove the short-range part from the full electrostatics
forces and to remove the long-range part from the cutoff electrostatics which are calculated
every time step. The electrostatic splitting function is different from the cutoff shifting
function, and a variety of splitting functions are available. The particle–mesh–Ewald (PME)
or particle–particle–particle–mesh (PPPM) algorithms use FFTs to calculate long-range
electrostatics forces to which an algorithm-specific short-range component must be added
before performing the same operations required for FMA.

For efficiency, all calculations on pairs of atoms which employ a cutoff-check should be
performed in a single step to avoid repeated distance calculations or (even if a pair-list is
used) repeated memory accesses. The use of if-statements within an inner loop like this
would degrade performance, even on modern CPUs with branch prediction, and impede
optimization by the compiler. Hand-writing separate code for all cases would result in a
maintenance nightmare of 27 different functions (self, pair, and exclusion classes; cutoff,
FMA, and PME algorithms; three splitting functions). Instead, the C preprocessor was
used to parse a single, easily maintained function definition containing flags to differentiate
the different methods. This single function definition allowed hand tuning of the initial
cutoff check through explicit pre-fetching of atom coordinates, which resulted in significant
performance improvement. Given sufficient compiler support, template meta-programming
could probably be used to achieve the same end with better error-checking.

3.2.2. Bonded Interactions

A trivial operation in a serial program, the efficient calculation of the bond, angle, dihedral,
and improper terms of the force field is complicated by the separation of atoms into patches.
The atoms required for a single dihedral calculation may reside on up to four patches. The
calculation of these bonding terms must be divided among compute objects on different
nodes without introducing excessive communication or overhead.

In NAMD2, a single compute object for each type of bonded interaction (bond, angle,
dihedral, improper, and exclusion) is created on each node. This compute depends on all
patches local to that node and the proxies of non-local patches which areupstream neighbors
of local patches, defined as being adjacent to a local patch while having greater or identical
x, y, andzcoordinates. The proxies of upstream patches are also sufficient to calculate non-
bonded interactions, so no extra communication is necessary (although migrating compute
objects to improve load balance will require additional proxies). All of the coordinates

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 297

for a particular bonded interaction are guaranteed to be present on the node containing
their common downstream patch, the patch with the minimumx, y, andz coordinates of
the patches containing the atoms of that interaction. For example, the coordinates for an
interaction involving atoms on patches at (2, 3, 4), (3, 3, 4), and (3, 2, 4) are guaranteed to
be on the node with patch (2, 2, 4).

The algorithm for determining which bonded interactions should be calculated on which
node can have a major impact on performance, often a negative one. In NAMD2, the
bond, angle, dihedral, improper, and exclusion compute objects all derive from a single
template base class which treats bonded interactions as genericN-tuples (or “tuples”). This
permits easy tuning of the interaction-selection algorithm which must be run whenever
atoms migrate between patches. To support this algorithm, lists are maintained on every
node for every type of tuple identifying for each atom those tuples in which it is the first
atom. A map is also maintained to allow the efficient lookup of the patch and local index,
given the global index of an atom present in any home patch or proxy on that node. The
tuple-selection algorithm is realized as follows:

for all home or upstream patches:

for all atoms in this patch:

for all tuples with this atom as the first atom:

look up the patches containing atoms in this tuple

calculate the common downstream patch of these patches

if the common downstream patch is local:

add this tuple to the list of interactions to calculate

Developing a good algorithm for dividing the bonded calculation among the processors
turned out to be much more important than anticipated. The original design called for every
patch to have access to all of its neighboring patches. Bonded forces would be calculated
for all patches on a node, but no forces would be returned to proxies. This eliminates the
need for a point of synchronization and allows proxies to return results as soon as possible.
The current algorithm was devised to more than halve communication when running on
large numbers of nodes while eliminating redundant force calculations.

3.2.3. Periodic Boundary Conditions and Isobaric Methods

Periodic boundary conditions are dealt with as much as possible at the patch/proxy
level. All atoms within a patch are kept in a single consistent coordinate system with
periodicity accounted for when atoms are migrated across cell boundaries. When a non-
bonded pair compute object requests coordinates from a patch, it also specifies a unit cell
translation necessary to bring both of its patches to the same coordinate system. All required
transformations are performed by the patch or proxy and cached for other compute objects
requiring the same calculation; transformed coordinates are never communicated between
nodes. Compute objects for bonded interactions, however, may have to deal with the entire
system at once and hence use a utility function to find nearest-image vectors.

To allow implementation of constant pressure simulation methods which rescale the
periodic cell, the patches provide standard methods for rescaling coordinates, cell basis
vectors, and velocities. Compute objects are expected not to store the periodic cell definition
between invocations and are provided a correct version by each patch at every time step.
This permits a variety of constant pressure algorithms to be implemented without modifying
either the patches or the compute objects.

298 KAL É ET AL.

3.3. Multiparadigm Programming Approach

One of our major design decisions to use the multiparadigm approach for implementation
of NAMD2 was based on the following requirements:

• NAMD2 must be able to utilize the DPMTA module which is written in PVM [45],
without having to pay the overhead of interacting with separate PVM processes.
• The performance-critical core of parallel computation must be written in Charm++ [25],

to take advantage of its message-driven execution for adaptive overlap of communication
with computation, and the ability to prioritize messages.
• The coordination logic of the program must be modularly separated from the parts of

the program that implement the parallel mechanics needed to execute it.
• Nearly half of the code involved parallel initialization, using synchronous message

passing. Reusing code from the original NAMD without extensive modification was desir-
able.

Traditional implementations of these paradigms cannot work together in a single ap-
plication, because the control-regimes for these paradigms are seemingly incompatible.
Fortunately, Converse [23], described in the next subsection, allowed us to use these differ-
ent paradigms in NAMD2.

3.3.1. Converse: An Interoperable Runtime System

Converse provides a portable framework that supports multilingual parallel programming
(a) by using a common scheduler’s queue for entities across languages, (b) by providing
a customizable scheduler that is exposed to language runtimes, and (c) by providing a
component-based architecture with support for many common building blocks of parallel
run times.

A specific language implementation in the Converse framework incorporates only the
necessary components, customizing them as needed, thus incurring minimal overhead. The
components provided by Converse include a machine interface (that supports communi-
cation, timers, and other operating system calls), scheduler queues, a threads package, a
message manager, and a load-balancing package. Over a dozen languages based on differ-
ent paradigms, including Charm++ and PVM, have been implemented on top of Converse
[26].

Converse has been implemented on several parallel platforms, including workstation
cluster, IBM SP2, Convex Exemplar, SGI Origin 2000, Cray T3E, and Intel Paragon. Porting
Converse to a new machine is relatively easy because only a small machine-dependent
component needs to be rewritten.

3.3.2. Paradigms Used in NAMD2

Using different languages for implementing different modules, we were able to address
all of the above requirements (see Fig. 4).

The initialization code involved reading in the data from the disk, and installing individual
data structures on the parallel processors. To avoid race conditions, it used synchronous mes-
sage passing, with tagged messages and blocking receives. The SM language provides such
message passing with lower overhead than PVM or MPI. Also, in SM, an innovative use of
message streams allowed us to streamline messages without fully assembling them. This
resulted in major saving in memory requirements in the initialization phase.

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 299

FIG. 4. NAMD architecture.

We were able to reuse the DPMTA module by linking it with the implementation of PVM
on Converse.

The remaining requirements presented a major challenge. Writing the code for core
computations entirely in Charm++ would lead to good performance, and also reasonable
perspicuity. However, we wanted to separate the algorithmic logic from the parallel logic,
so that someone wishing to change the basic numerical algorithm (e.g., Verlet-I integration,
Langevin dynamics) can do so without being encumbered by the parallel logic. This was
accomplished by observing that the algorithmic logic involves the description of the life
cycle of a patch: sequencing of the steps of the algorithm, and choosing individual sub-
algorithms for each step. In contrast, the parallel logic involves movement of data, triggering
of computations based on the availability of data, and interprocessor synchronization. The
latter can be thought of as mechanisms under control of the algorithmic logic, encapsulated
in the sequencer object.

As there are multiple patches per processor, multiple sequencers must be active on indi-
vidual processors, with the possibility that they may not be in lock-step. Some sequencers
may be lagging behind, while others race ahead, constrained only by the data dependencies.
Periodically each sequencer must wait for its data to become available, while one of the
other sequencers on the processor can continue. Also, the bulk of parallel computations
in Charm++ modules must be allowed to execute interleaved with the sequencers. This
suggested the use of threads for implementing sequencers. Normally, it would be difficult
to concurrently run multiple threads and message-driven objects in the same program. For
one thing, Charm++ would use its own message-driven loop to schedule messages for its
objects, which would conflict with the thread scheduler. Running Charm++ in one of the
threads is not a good solution, because of the stack space limitations imposed by threads,
and the context-switching overheads of threads, which we wish to avoid for the fine-grained
dominant computations. However, the threads implemented within Converse allow appli-
cations to mix threaded and non-threaded computations effectively. The common scheduler
can switch between threads and objects, while allowing unlimited stack space to the objects.

300 KAL É ET AL.

In spite of the modular separation of the sequencing operations provided by the use
of threads, two significant problems remained in using threads. The first problem was
the overhead of thread context-switching, and the second was wastage of memory space
due to over-estimating the stack size needed for threads. Our experiments comparing the
overheads of thread context-switching to the message-driven scheduling showed [22] that in
many programs, this overhead can be a significant factor in program performance. Also, our
efforts to run NAMD2 on machines with limited swap space indicated that many real parallel
machines do not have enough memory to run thousands of threads. However, creating
thousands of message-driven objects is almost always possible on these machines. Our
research on creating a low-overhead and lightweight programming abstraction resulted in
Structured Dagger, a coordination language for message-driven parallel programming [22].
We have since reimplemented one of the sequencer algorithms using this language.

4. SCALABILITY AND PARALLEL PERFORMANCE

Although the previous section described how NAMD2 performs its calculations effi-
ciently, if the load is not properly balanced, the program will not achieve good scalability.
This section describes the load balancing algorithm used by NAMD2 and the resulting
performance.

4.1. Load Balancing

The parallel efficiency of NAMD2 is highly dependent on efficient load distribution.
Computational time is consumed mainly by two object types, patches and force objects.
To distribute these objects, NAMD2 performs two types of load balancing, initial load
balancing and dynamic load balancing.

Initial load balancing occurs at program startup. Patches are distributed using a recursive
bisection algorithm, to distribute atoms approximately evenly, while still maintaining data
locality. All of the bond force objects are distributed next, one per processor. Finally, the
non-bonded force objects are distributed. Non-bonded force objects for patch self inter-
actions are first placed on the same processors as their patches. Patch-pair force objects
are next distributed to theupstream processorfor the two patches. This guarantees that
communication is initially minimized, since the same proxies required for the bond com-
putations are also used for the non-bonded force objects. It does not necessarily result in an
optimum load balance, since patch locality probably results in the distribution of clusters of
computationally intensive force objects to a small number of processors, but by minimizing
communication, the strategy promotes effective dynamic load balancing.

NAMD2 relies on a dynamic, measurement-based load balancing scheme to achieve
efficient throughput. Heuristic-based static load balancing schemes exhibit several disad-
vantages in molecular dynamics. The first difficulty we ran across was determing the com-
putational load represented by a particular force object. Processor speed and inter-processor
communication costs both affect the heuristic model of load necessary for static load bal-
ancing. Determining an accurate model for all the different architectures NAMD2 runs on
was prohibitively time consuming. Therefore, NAMD2 was designed to measure the actual
time consumed by various objects and use those data to redistribute these objects efficiently.
This method produces the additional benefit that it can be repeated during a run, to react to
changes in load distribution as the atoms move during the evolution of the simulation.

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 301

Migratableobjects are those objects which can be moved to a new processor during a
simulation. Ideally, any work should be assignable to any processor, but making objects
migratable complicates their code. In NAMD2 we chose to make only non-bonded compute
objects migratable. These objects consume the majority of the simulation time; yet there
are enough of them to provide sufficient freedom to balance the load. The load balancer
treats non-migratable work, including integration and bond force evaluation, as background
load which does not change, but must be considered when distributing the migratable
objects.

Simulations execute the following procedure to perform load balancing. First, the sim-
ulation runs for a small number of steps, typically lasting a few minutes. Migratable ob-
ject times are measured during this time. In addition, the Converse system provides a
means of measuring idle time for each processor, so non-migratable load is determined
by tnon-migratable= ttotal− tidle− tmigratable. After a particular simulation step, the program col-
lects the load data from each processor, computes a new load distribution, and moves the
migratable objects.

The load balancing algorithm we selected uses a modified greedy algorithm to distribute
load while keeping the amount of communication small. A min-heap stores the currently
assigned load on each processor, so the most lightly loaded processor can be easily retrieved.
The initial processor load is the measured background load for that processor. Migratable
objects are also stored in a max-heap to allow the most expensive compute objects to
be assigned first. The load balancer also uses a map of required proxies, i.e., the proxies
required for the calculations of bonded forces. The load balancer makes no distinction
between patches and proxies, so when the following description mentions proxies, it also
refers to patches. An average load is computed from the total measured load. Then each
migratable object is examined, starting with the most expensive. The load balancer considers
three possible locations for the compute: the least-loaded processor already receiving both
proxies, one proxy, or no proxies. The object is assigned to the two-proxy processor if
the resulting load on the processor is less than the average load times an overload factor.
Otherwise the one-proxy processor is considered, and finally, if necessary, the no-proxy
processor. Then the load balancer adds the object load to the selected processor’s total
load, and updates the proxy map. A fairly generous overload factor is selected, so that data
locality is more important than exact load balance. This procedure repeats until all compute
objects are assigned.

A refinement procedure is next used, to fine-tune the load balancing produced by the sort-
ing algorithm. The load balancer makes a second pass through the processor assignments.
A smaller overload factor is selected, and any processors whose load exceeds the average
by more than the overload factor has a number of force objects moved to lighter loaded
processors, using the same selection criteria described above. Since the threshold is now
lower, this procedure is likely to add a few more proxies, but produces good load balance
with small communication overhead.

After refinement, the simulation resumes using the new object placements. Although the
new load balance is good, the changes in the communication patterns produce changes in
the background load, which the previous load balancing did not take into account. There-
fore, the simulation runs for a few more steps, then stops for a second load balancing.
This time the load balancer only performs the refinement step, resulting in just a few
adjustments to the object placement. The resulting load assignment produces well-balanced
load distribution, as shown in Fig. 5.

302 KAL É ET AL.

FIG. 5. Load distribution for a 16 processor simulation, showing the load before (left) and after (right) the
load balancer is run.

4.2. Parallel Performance

NAMD2 has demonstrated good performance on many parallel machines. Table II shows
the performance data obtained while running three benchmarks of varying sizes on the
Cray T3E. The systems chosen range in size from 3800 atoms to 92,000 atoms. The largest
configuration used (ApoA-I) was a periodic simulation, while the other two were non-
periodic. The tables show time per integration step in seconds, and the corresponding
speedup obtained. In some cases, the memory per processor was insufficient to allow runs
on small numbers of processors. In those cases, the speedup has been estimated using
the speedup factors obtained on smaller molecules. This is conservative, as the speedups
typically get better when a larger number of atoms are involved on the same number of
processors. Figure 6 demonstrates that NAMD2 achieves good scaling (speedup of over 180
on 220 processors) even on large numbers of processors, for sufficiently large simulations.

As can be seen, speedups around 100 were obtained with 128 processors, and they seem
to increase with the same efficiency beyond 128 processors. The speedups were calculated
in comparison with the one-processor performance of NAMD2. This raises the question of
how well NAMD2 performs sequentially. As Table IV shows, the sequential performance
of NAMD2 is better than its predecessor and X-PLOR, which was used as a specification

TABLE II

Execution Time (Seconds) per Time Step for Several Simulations

on the CRAY T3E (450-MHz Processors)

Processors
Simulation
No. of atoms 1 2 4 8 16 32 64 128 160

bR Time 1.138 0.578 0.315 0.158 0.086 0.048
3,762 atoms Speedup 1.0 1.97 3.61 7.20 13.2 23.7

ER-ERE Time 6.115 3.099 1.598 0.810 0.397 0.212 0.123 0.098
36,573 atoms Speedup (1.97) 3.89 7.54 14.9 30.3 56.8 97.9 123

ApoA-I Time 10.760 5.464 2.850 1.470 0.729 0.382 0.321
92,224 atoms Speedup (3.88) 7.64 14.7 28.4 57.3 109 130

Note. All the simulations were run using a 12-Å cutoff. Some simulations could not run on small numbers of
processors due to lack of memory, so speedup numbers in parentheses are estimates.

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 303

FIG. 6. The speedup for ApoA-I (92,224 atoms, 12-Å cutoff) on the ASCI-RED.

for both NAMD and NAMD2. Although benchmark times of other popular MD programs
suggest that NAMD2 is comparable in sequential performance and superior in speedup,
we have not yet done experiments to compare the performance of NAMD2 with other
programs for identical molecules with identical force-field parameters. We plan to perform
these comparisons soon.

NAMD2 is designed to be portable, and uses a portable runtime framework (Converse).
Porting NAMD2 to new machines still required us to modify the program to satisfy the va-
garies of C++ compilers on different machines. Other than that, the porting was straightfor-
ward. In particular, no machine specific performance tuning was necessary. Table III shows
the performance obtained while simulating ER-ERE on a variety of parallel machines.

Although the parallel performance of NAMD2 is quite good, it still leaves room for im-
provement. The efficiency on 128 processors is close to 80%. Although part of the efficiency
loss is inevitable due to communication overhead, we believe that further improvement is
possible. Our analysis indicates that about half of this loss (10%) is due to communication

TABLE III

Execution Time (Seconds) per Time Step for ER-ERE (36,573 Atoms,

12-Å Cutoff) on Several Parallel Machines

Processors

1 2 4 8 16 32 64 128 160 192

T3E Time 6.12 3.10 1.60 0.810 0.397 0.212 0.123 0.098
450 MHz Speedup (1.97) 3.89 7.54 14.9 30.3 56.8 97.9 123

Origin2000 Time 8.28 4.20 2.17 1.07 0.542 0.271 0.152
195 MHz Speedup 1.0 1.96 3.80 7.74 15.3 30.5 54.3

ASCI-RED Time 28.0 13.9 7.24 3.76 1.91 1.01 0.500 0.279 0.227 0.196
200 MHz PPro Speedup 1.0 2.01 3.87 7.45 14.7 27.9 56.0 100 123 143

HP735/125 Time 24.1 12.4 6.39 3.69
125 MHz Speedup 1.0 1.94 3.77 6.54

LINUX Time 12.34 6.42 3.28 1.69 1.01 0.62
400 MHz PII Speedup 1.0 1.92 3.77 7.30 12.21 19.90

Note. The HP735 workstations are interconnected with a 100 Mb/s ATM switch. The Linux machines use
100 Mb/s switched Ethernet.

304 KAL É ET AL.

TABLE IV

Execution Time (Seconds) per Time Step for Several Simulation

Programs on a Single HP735/125 Workstation

Program X-PLOR NAMD 1.5 NAMD2

Time 8.1 8.8 6.1

Note. The simulation is a 14,532 atom simulation of a protein in water with
an 8.5-̊A cutoff.

overhead and increased time for some of the force calculations when done in parallel. The
other 10% is idle time, spent waiting for messages. This is due to a combination of load
imbalance and message scheduling. We believe that improvements to our load balancer,
combined with the use of priorities for messages (which are supported by Charm++), will
allow us to decrease the idle time further.

Some of the features of C++ do impose a speed penalty, so profiling information was
employed to pinpoint the parts of the code that penalized performance, and these portions
were hand-tuned for best performance.

NAMD2 currently does not use pair-lists, relying instead on the fact that only a small
subset of the atoms (those in the neighboring patches) must be examined for each atom.
Although this strategy yields good performance, it is possible that either incorporating pair-
lists or partitioning atoms into cells smaller than the patch size will yield further performance
improvements.

The current load balancer does not take the interconnection topology of the host computer
into account. This is valid for many parallel machines, such as the Cray T3E. However, an
increasing number of parallel machines exhibit a two-level architecture: a collection (from 2
to 32) of shared memory processors, connected to other similar nodes via an interconnection
topology. In other machines, the communication time (and bandwidth utilized) varies widely
depending on which processors are communicating. We plan to develop a load balancing
strategy that adapts itself to the communication architecture.

Our benchmarks above describe only cutoff electrostatics performance of NAMD2. The
long-range interactions in NAMD can be computed using the DPMTA library developed at
Duke University. The parallel performance of DPMTA has been documented in [40]. The
performance of the long-range interactions phase is orthogonal to that of the rest of NAMD2.
In the future, we plan to experiment with other methods for long-range electrostatics, such
as particle–particle particle–mesh methods, and with tighter integration of such libraries to
improve performance.

5. EXTENSIONS

This section describes a set of features added to NAMD2 on top of the basic design
described above. In addition to demonstrating the added functionality of the program, the
subsections below also illustrate the extensibility of the core design. Current extensions
to the program center on full electrostatics methods, modifications and improvements to
the integrator, and new ways for the user to control and analyze the simulation via addi-
tional forces. Not detailed below are simple single-body forces present in NAMD2 such as
harmonic restraints and soft-wall boundaries.

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 305

5.1. Full Electrostatic Evaluation

NAMD2 provides three methods for incorporating long-range electrostatic forces into a
simulation. The communication patterns employed by these methods do not correspond to
the spatial decomposition used for short-range interactions and the code may be developed
externally. Hence, a standard interface to these external parallel libraries has been developed.
Every full electrostatics calculation is carried out by one compute object on each node
which receives charges and coordinates for all of the atoms on that node. These objects
are responsible for calculating a simple electrostatic potential and returning energies and
forces for all atoms. No exclusions, cutoffs, or splitting functions are calculated in the full
electrostatics modules.

5.1.1. Direct Calculation

The naive approach to electrostatic evaluation, in which forces are computed directly
between all pairs of atoms, is primarily used for testing. The algorithm is implemented
by passing coordinates and forces halfway around a ring, using Newton’s third law to
eliminate redundant calculations. Ewald summation is not implemented; the nearest-image
convention is used for periodic systems. Despite scaling asN2, direct calculation is more
efficient for small systems than methods with better scaling, but more complexity.

5.1.2. DPMTA: Fast Multipole Algorithm

The variant of the fast multipole algorithm (FMA) [13] and Barnes–Hut treecode algo-
rithms [2] implemented in DPMTA [40] begins by dividing simulation space into cells.
Multipole representations of the charges within each cell are constructed and combined
within an oct-tree to form a full hierarchy of representations. Multipoles from cells beyond
a cutoff distance are used to construct a local Taylor series expansion of the electrostatic field
within each cell, which is then used to calculate forces on individual particles. Forces be-
tween atoms in cells which are too close together to be treated as multipoles are calculated
directly. Unlike many multipole-based implementations, DPMTA does support periodic
boundary conditions. FMA scales linearly (under certain conditions, more generally it is of
orderN log N) but with a large constant factor, making it expensive for small systems. In
addition, the forces calculated by DPMTA change discontinuously as particles cross bound-
aries between cells. For this reason, greater accuracy and larger numbers of multipoles must
be used for a simulation to conserve energy than would otherwise be needed to obtain a
sufficient approximation of the long-range electrostatics of the system, further slowing the
calculation. DPMTA is implemented with PVM and hence its incorporation would have
been much more difficult without the multi-paradigm capabilities of Converse.

5.1.3. DPME: Particle Mesh Ewald

The particle–mesh–Ewald (PME) [9, 11] algorithm in NAMD2 is currently based on
DPME [46]. As the name implies, this method is only applicable for periodic boundary
conditions. Similarly to particle–particle–particle–mesh (P3M) [17, 28, 39], PME divides
the electrostatic potential into a local interaction which must be calculated within a cutoff,
and a smooth, long-range interaction which is evaluated on a grid via a three-dimensional
fast Fourier transform. Owing to the FFT, the complete algorithm scales asN log N. Since
the local interaction has a simple analytical form, it has been incorporated into the cutoff
non-bonded evaluation mechanism of NAMD2. At present, one collects all data for the

306 KAL É ET AL.

FFT on a single node rather than attempting to distribute the relatively inexpensive FFT.
However, for the method to scale beyond tens of processors this serial bottleneck will have
to be eliminated, although this may be accomplished by distributing the FFT among a
small subset of the processors to limit communications. DPME is implemented such that
the calculated forces are analytical derivatives of a smooth potential energy approximation.
Therefore the required accuracy for a simulation will be determined by the required accuracy
to capture the effects of long-range electrostatics rather than energy conservation. DPME
also uses PVM, again reinforcing the utility of the multi-paradigm capabilities of Converse.

5.2. Alternate Integration Methods

One of the goals for NAMD2 was to allow the integration method to be obvious and
modifiable. This was addressed in the design via the sequencer threads, which allow the
parallel algorithm to be written sequentially. With a master sequencer thread to support
operations on global quantities such as temperature and pressure, NAMD2 is capable of
implementing mostexplicit isothermal and/or isobaric simulation methods using single
or multiple time steps. These features are currently being developed. Currently all of the
production simulation algorithms are incorporated into a single sequencer function while
an alternate test sequencer is used for verifying certain parallel methods.

5.2.1. Triple Time Stepping

For greater efficiency, NAMD2 allows the force field to be split into three parts based on
their frequency of variation. All bonded forces (bonds, angles, dihedrals, and impropers) are
considered quickly varying, non-bonded forces (electrostatics and Lennard-Jones) within
a cutoff are slower, and long-range electrostatics (separated from local electrostatics by a
smooth splitting function) vary on the slowest time scale. In a typical simulation, the three
parts of the force field would be evaluated on 1, 2, and 4 fs intervals, respectively, and the
symplectic r-RESPA integrator [47, 50] would be used. In fact, long-range electrostatics
vary much more slowly than 4 fs, but frequent evaluation is necessary to avoid resonance
[4]. Although support for splitting forces into different classes is required throughout the
code, the integrator itself is fully contained in the sequencer.

5.2.2. Rigid Bonds to Hydrogen

Bonds to hydrogen atoms, as well as H-O-H angle in water, can be fixed using the
SHAKE/RATTLE algorithm [42, 1] to increase the time step or implement certain water
models. This calculation is localized to a single patch since hydrogen atoms are stored on the
same patch as the heavier atoms to which they are bonded. Rigid bonds increase simulation
speed by eliminating the fasted vibrations in the molecule, allowing the time step to be
roughly doubled to 2 fs. In contrast to triple time stepping above in which non-bonded forces
are evaluated less often than bonded forces, rigid bonds avoid the extra communication
required for bonded-only force evaluations. In addition, rigid bonds eliminate the highest
frequency resonances in the system, allowing long-range electrostatics to be evaluated at
8-fs intervals.

5.3. Simulation Control and Analysis

The processes of interest in many biomolecules occur often on microsecond time scales.
Therefore it is necessary to enforce a desired process in order to gain any information during

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 307

the few nanoseconds of a typical MD run. With its modular design, NAMD2 has addressed
this need well, as demonstrated by the four methods currently implemented. The Steered
Molecular Dynamics module seeks maximum parallel efficiency by performing most force
calculations locally and only communicating across nodes when absolutely necessary. In
contrast, the Tcl, free energy, and MDScope modules described below enjoy a simpler
implementation by deriving from a common subclass which collects requested atoms to the
master node and broadcasts forces generated by the module. Typically a small number of
atoms are involved and this communication overlaps with the force computation, resulting
in minimal effects on performance.

5.3.1. Steered Molecular Dynamics

Steered Molecular Dynamics (SMD) [14, 27, 20] is a simulation technique in which
time-dependent forces are applied to certain atoms of a molecule. Recording the applied
forces and resulting positions over time gives insight into problems such as unbinding of
ligands from proteins. SMD is implemented as additional force objects acting on each
patch. The applied forces are combined with the normal bonded and non-bonded forces,
so only isolated changes, and the creation of a new compute class, were needed to add the
fuctionality to NAMD2.

5.3.2. Tcl Scripting

In order to allow the end user to automatically monitor or manipulate a biomolecular
system during a simulation without modifying the NAMD2 source code, the Tcl scripting
language [32] has been incorporated. Although rudimentary, the interface allows the user to
obtain the coordinates of particular atoms or groups of atoms (center of mass) and to apply
forces to any atom or group of atoms at every time step. The user is required to define an
initialization function, which requests coordinates of particular atoms, and a force function
to which these coordinates are passed at every time step. The force function can return
forces for any atom and monitor simple quantitites based on the requested atoms. When
additional utilities have been incorporated the module will be particularly useful for rapid
prototyping of SMD methods.

5.3.3. Free Energy Calculations

The same mechanism used to add Tcl scripting to NAMD2 was readily extended to
accommodate an externally developed free energy difference calculation [3] module from
the group of Jan Hermans at the University of North Carolina. A script in the configuration
file specifies distances, angles, or dihedrals to which additional restraining forces should be
applied. These restraints are monitored and modified during the course of the simulation to
calculate the free energy difference between two configurations of the molecule.

5.3.4. MDScope: Interactive Modeling with VMD

In MDScope2 [31], NAMD2 is connected to the molecular visualization package VMD3

[18], allowing the user to view a remotely running simulation and to apply forces to atoms,
residues, or molecules. All atoms of the simulation are sent to VMD using the same

2 URL: http://www.ks.uiuc.edu/Research/mdscope/.
3 URL: http://www.ks.uiuc.edu/Research/vmd/.

308 KAL É ET AL.

coordinate collection methods used for trajectory output to a file. The forces currently
provided by VMD are constant and atom-based, making no use of the ability to calculate
forces based on coordinates. However, in future versions of MDScope the user will be able
to restrain atoms to movable locations or to each other. Due to network lag, it would
be unreasonable to have VMD update these forces at every time step. At this point the force
calculation framework developed for free energy calculations and Tcl scripting will pay off
in simplified development.

6. INITIAL APPLICATIONS

In order to demonstrate to the reader that NAMD2 is a useful, production-quality program,
we now outline three studies to which it has been applied. The earliest of these was completed
during the spring of 1997, while the more recent examples highlight the SMD features of
NAMD2.

6.1. High-Density Lipoprotein Disk

High-density lipoproteins (HDL) circulate in the blood of vertebrates, transporting choles-
terol from various body tissues to the liver for excretion or recycling. HDL particles are
protein–lipid complexes of apolipoprotein A-I (apoA-I), several minor proteins, phospo-
lipids, cholesterol, and cholesterol esters. Reconstituted HDL (rHDL) have provided the
best opportunities to experimentally study the structure–function relationships of apoA-I
because of their defined compositions and sizes [21]. Nascent rHDL particles consist of a
phospolipid bilayer disk surrounded by two apoA-I molecules. The amphipathic helices of
apoA-I shield the hydophobic lipid tails, solubilizing the rHDL particle in water.

The structure of rHDL has not been observed experimentally as protein–lipid complexes
are extremely difficult to crystallize. Phillipset al.4 have constructed a model of the lipid-
binding domain of apoA-I in rHDL particles based on experimental evidence and sequence
analysis [34]. The total system, comprising two apolipoproteins, 160 POPC lipids, and 6224
water molecules, 46,522 atoms in all, was tested via simulated annealing using NAMD2 for
a total of 250 ps. A larger, periodic simulation of rHDL in water containing 92,224 atoms
has also been used as a test case for NAMD2.

6.2. Binding Pathway of Arachidonic Acid in Prostaglandin H2 Synthase-1

The enzyme prostaglandin H2 synthase-1 (PGHS-1) catalyzes the transformation of the
essential fatty acid, arachidonic acid (AA), to prostaglandin H2 [44]. Aspirin, flurbiprofen,
and other non-steroidal anti-inflammatory drugs directly target PGHS-1 and inhibit the
first step of this transformation by preventing access of AA to its cyclooxygenase active
site. Based on the crystal structure of PGHS-1, with flurbiprofen bound at the active site,
a model for AA embedded in the enzyme has been suggested, in which AA replaces
the inhibitor [35]. Molnaret al.5 seek to eludicate the folding of AA into the narrow
binding channel of the cyclooxygenase site and to identify key residues guiding AA
binding.

4 URL: http://www.ks.uiuc.edu/Research/apoa1/.
5 URL: http://www.ks.uiuc.edu/Research/pghs/.

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 309

Steered molecular dynamics (SMD) calculations of enforced unbinding were carried out
with NAMD2 on one monomer of the PGHS-1 homo-dimer, with AA bound in its putative
cyclooxygenation site leading to the exit of the ligand from its narrow hydrophobic binding
channel. AA contains four rigidcis double bonds connected to each other by a pair of
conformationally flexible single bonds. The unbinding mechanism can be described as a
series of rotations around these single bonds which leave the “rigid backbone” of the fatty
acid formed by the conformationally inflexiblecisdouble bonds relatively unaffected.

6.3. Modeling Ligand Binding to Nuclear Hormone Receptors

Retinoic acid (t-RA) is an important regulator of cell growth and differentiation in both
the adult and the developing embryo. The effects of t-RA are mediated through the retinoic
acid receptor (RAR) that binds all-trans-RA (t-RA) but the underlying mechanism is still
not known [33]. Kosztinet al.6 study the transition between the bound and unbound forms of
the retinoic acid receptor, known from experiment to be accompanied by a conformational
change that enables the hormone–receptor complex to bind to specific sequences of DNA and
other transcriptional coactivators or repressors. The crystal structure of the ligand binding
domain (the receptor domain responsible for recognizing and binding the hormone) of the
human retinoic acid receptor hRAR-gamma bound to all-trans retinoic acid [41] is used for
simulating different unbinding pathways. Examination of the crystal structure of the hRAR-
gamma bound to t-RA suggests three entry/exit points for the hormone that were explored
using SMD. In all simulations, the protein–ligand system was surrounded by a water bath,
the total number of atoms being 15,000. One atom of the hormone was harmonically re-
strained (K = 10 kcal/molÅ2) to a point moving with a constant velocityv= 0.032Å/ps
in a chosen direction. NAMD2 was used to compute three different trajectories of 750 ps
each. The results of our simulations show that it is possible to extract the hormone out of
the binding pocket with little or almost no effect on the protein structure if strong enough
forces are applied. Along one of the pathways the hormone has to overcome the strong
electrostatic forces between its carboxylate group and the charged Lys and Arg residues
lining the opening. In the other two cases, before the hormone is completely out of the
protein, the carboxylate group of the hormone interacts very strongly with some of the
neighboring residues. It may be speculated that those residues are the ones to attract and
guide the hormone toward the binding pocket.

7. CONCLUSION

We have described the design of the parallel molecular dynamics program NAMD2. The
program uses a novel combination of spatial and force decomposition to attain both theoreti-
cal and practical scalability. It uses an adaptive load balancing scheme to attain high parallel
efficiency even while simulating non-periodic systems. It uses a highly modular design with
a class hierarchy implemented in C++ that incorporates mechanisms needed in molecular
dynamics codes while permitting easy experimentation with algorithmic strategies. Using
the message-driven language Charm++ allows adaptive overlap of communication and com-
putation, while using Converse, an interoperability framework, allows NAMD2 to integrate
modules written in different parallel paradigms. Performance results obtained on a variety

6 URL: http://www.ks.uiuc.edu/Research/proDNA/ster horm rec/.

310 KAL É ET AL.

of parallel machines were described, which demonstrate the speed and parallel efficiency
of NAMD2. Excellent scalability was demonstrated, with a speedup of about 100 on 128
processors of the Origin 2000, and 180 on 220 nodes of the ASCI Red machine.

NAMD2 has been used effectively in many scientific studies. Its design makes it relatively
easy to add new features, permitting one to experiment with alternate algorithms. Several
such extensions made to NAMD2 were discussed, demonstrating the extensibility of the
program.

NAMD2 is part of the MDScope framework, which includes visualization and interaction
components. Coupling these capabilities with the high parallel efficiency of NAMD2 for
current and future parallel machines, we expect MDScope to become a very useful tool for
researchers. NAMD2 and the other components of MDScope are available on the web at
http://www.ks.uiuc.edu/.

ACKNOWLEDGMENTS

The primary developers of NAMD2 were J. Phillips, A. Shinozaki, R. Brunner, N. Krawetz, M. Bhandarkar,
and A. Gursoy. Jes´us Izaguirre and Nick Dietz performed regression testing on NAMD2, showing that it produced
correct results by comparison with NAMD 1.5. NAMD development is a service of the National Institutes of Health
Resource for Macromolecular Modeling and Bioinformatics under the supervision of principal investigators L.V.
Kalé, R. Skeel, and K. Schulten. The steered MD module was contributed by Sergei Izrailev. The free energy
module was contributed by David Hurwitz from the group of Jan Hermans at the University of North Carolina.
The DPMTA and DPME full electrostatics packages were made available by the group of John Board at Duke
University. Joshua Yelon tested object-based load balancing on the ASCI Red machine. The developers thank
Dorina Kosztin, Sergei Izrailev, and Ferenc Molnar for their early adoption of NAMD2, their patience during
the development process, and their contributions to the Initial Applications section of the paper. The work was
supported by the National Institutes of Health (under Grant NIH PHS 5 P41 RR05969-04) and the National Science
Foundation (under Grants NSF/GCAG BIR 93-18159 and NSF BIR 94-23827 EQ). J.C.P. was supported by a
Computational Science Graduate Fellowship from the United States Department of Energy.

REFERENCES

1. H. C. Andersen, Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations,
J. Comput. Phys.52, 24 (1983).

2. J. Barnes and P. Hut, A hierarchicalO(N log N) force-calculation algorithm,Nature324, 446 (1986).

3. D. L. Beveridge and F. M. DiCapua, Free energy via molecular simulation: Applications to chemical and
biological systems,Annu. Rev. Biophys. Biophys. Chem.18, 431 (1989).

4. T. C. Bishop, R. D. Skeel, and K. Schulten, Difficulties with multiple time stepping and the fast multipole
algorithm in molecular dynamics,J. Comput. Chem.18, 1785 (1997).

5. B. R. Brooks and M. Hodoscek, Parallelization of CHARMM for MIMD machines,Chemical Design
Automation News(July 1992), p. 16.

6. D. Brown, H. Minoux, and B. Maigret, A domain decomposition parallel processing algorithm for molecular
dynamics simulations of systems of arbitrary connectivity,Comput. Phys. Commun.103, 170 (1997).

7. D. Brown, J. H. R. Clarke, M. Okuda, and T. Yamazaki, A domain decomposition parallel processing algorithm
for molecular dynamics simulations of polymers,Comput. Phys. Commun.83, 1 (1994).

8. T. W. Clark, R. v. Hanxleden, J. A. McCammon, and L. R. Scott, Parallelizing molecular dynamics using
spatial decomposition, inProceedings, Scalable High-Performance Computing Conference(IEEE Comput.
Soc. Press, Los Alamitos, Calif., 1994), pp. 95–102.

9. T. A. Darden, D. M. York, and L. G. Pedersen, Particle mesh Ewald. AnN · log(N) method for Ewald sums
in large systems,J. Chem. Phys.98, 10089 (1993).

10. K. Esselink and P. A. J. Hilbers, Efficient parallel implementation of molecular dynamics on a toroidal network.
II. Multi-particle potentials,J. Comput. Phys.106, 108 (1993).

NAMD2: GREATER SCALABILITY FOR PARALLEL MD 311

11. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, A smooth particle mesh
Ewald method,J. Chem. Phys.103(19), 8577 (1995).

12. A. Grama, A. Gupta, and V. Kumar, Isoefficiency: Measuring the scalability of parallel algorithms and
architectures,IEEE Parallel & Distrib. Technol.1(3) (August 1993).

13. L. Greengard and V. Rokhlin, A fast algorithm for particle simulation,J. Comput. Phys.73, 325 (1987).

14. H. Grubm¨uller, B. Heymann, and P. Tavan, Ligand binding and molecular mechanics calculation of the
streptavidin–biotin rupture force,Science271, 997 (1996).

15. J. L. Gustafson, Reevaluating Amdahl’s law,Comm. ACM31(5), 532 (1988).

16. H. Heller, H. Grubm¨uller, and P. Tavan, Famusamm: A new algorithm for rapid evaluation of electrostatic
interaction in molecular dynamics simulations,J. Comput. Chem.18, 1729 (1997).

17. R. W Hockney and J. W. Eastwood,Computer Simulation Using Particles(McGraw–Hill, New York, 1981).

18. W. F. Humphrey, A. Dalke, and K. Schulten, VMD—Visual molecular dynamics,J. Mol. Graphics14, 33
(1996).

19. Y.-S. Hwang, R. Das, J. H. Saltz, M. Hodoscek, and B. R. Brooks, Parallelizing molecular dynamics programs
for distributed memory machines,IEEE Comput. Sci. & Eng.2(2), 18 (Summer 1995).

20. S. Izrailev, S. Stepaniants, B. Isralewitz, D. Kosztin, H. Lu, F. Molnar, W. Wriggers, and K. Schulten,
Steered molecular dynamics, inComputational Molecular Dynamics: Challenges, Methods, Ideas, edited by
P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel, Lecture Notes in
Computational Science and Engineering (Springer-Verlag, Berlin, 1998), Vol. 4, pp. 36–62.

21. A. Jonas, Reconstitution of high-density lipoproteins,Methods Enzymol.128, 553 (1986).

22. L. V. Katé and M. Bhandarkar, Structured dagger: A coordination language for message-driven program-
ming, in Proceedings, Second International Euro-Par Conference, Lecture Notes in Computer Science
(Springer-Verlag, Berlin/New York, 1996), Vols. 1123–1124, pp. 646–653.

23. L. V. Kalé, M. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon, Converse: An interoperable framework
for parallel programming, inProceedings, 10th International Parallel Processing Symposium, Honolulu,
Hawaii, April 1996, pp. 212–217.

24. L. V. Kalé and S. Krishnan, Charm++: A portable concurrent object oriented system based on C++, inProceed-
ings, Conference on Object Oriented Programming Systems, Languages and Applications, September 1993.

25. L. V. Kalé and S. Krishnan, Charm++, inParallel Programming in C++, edited by Gregory V. Wilson and
Paul Lu (MIT Press, Cambridge, 1996), pp. 175–213.

26. R. Brunner, L. V. Kal´e, M. Bhandarkar, and J. Yelon, Multiparadigm, multilingual interoperability: Experience
with converse, inProceedings, 2nd Workshop on Runtime Systems for Parallel Programming (RTSPP),
Orlando, Florida, Lecture Notes in Computer Science (Springer-Verlag, Berlin/New York, 1998).

27. H. Lu, B. Isralewitz, A. Krammer, V. Vogel, and K. Schulten, Unfolding of titin immunoglobulin domains
by steered molecular dynamics simulation,Biophys. J.75, 662 (1998).

28. B. A. Luty, M. E. Davis, I. G. Tironi, and W. F. van Gunsteren, A comparison of particle–particle,
particle–mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems,
Mol. Simul.14(1), 11 (1994).

29. M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kal´e, R. D. Skeel, and K. Schulten, NAMD—A parallel,
object-oriented molecular dynamics program,J. Supercomput. Appl.10, 251 (1996).

30. M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kal´e, R. Skeel, K. Schulten, and R. Kufrin, MDScope—A
visual computing environment for structural biology,Comput. Phys. Commun.91(1–3), 111 (1995).

31. M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kal´e, R. Skeel, K. Schulten, and R. Kufrin, MDScope—A
visual computing environment for structural biology, inComputational Mechanics 95, edited by S. N. Atluri,
G. Yagawa, and T. A. Cruse (Springer-Verlag, Berlin/New York, 1995), Vol. 1, pp. 476–481.

32. J. Ousterhout,Tcl and the Tk Toolkit(Addison–Wesley, Reading, MA, 1994).

33. M. G. Parker (Ed.),Nuclear Hormone Receptors(Academic Press, San Diego, 1991).

34. J. C. Phillips, W. Wriggers, Z. Li, A. Jonas, and K. Schulten, Predicting the structure of apolipoprotein A-I
in reconstituted high density lipoprotein disks,Biophys. J.73, 2337 (1997).

35. D. Picot, P. J. Loll, and Mi. Garavito, The X-ray crystal structure of the membrane protein prostaglandin H2

synthase-1,Nature367(20), 243 (1994).

312 KAL É ET AL.

36. M. R. S. Pinches, D. J. Tildesley, and W. Smith, Large scale molecular dynamics on parallel computers using
the link-cell algorithm,Mol. Simul.6(1), 51 (1991).

37. S. Plimpton and B. Hendrickson, A new parallel method for molecular dynamics simulation of macromolecular
systems,J. Comput. Chem.17(3), 326 (1996).

38. S. J. Plimpton, Fast parallel algorithms for short-range molecular dynamics,J. Comput. Phys.117, 1 (March
1995).

39. E. L. Pollock and J. Glosli, Comments on P3M, FMM, and the Ewald method for large periodic Coulombic
systems,Comput. Phys. Commun.95(2–3), 93 (1996).

40. W. Rankin and J. Board, A portable distributed implementation of the parallel multipole tree algorithm, in
Proceedings, IEEE Symposium on High Performance Distributed Computing(IEEE Computer Society Press,
Los Alamitos, 1995), pp. 17–22.

41. J. P. Renaud, N. Rochel, M. Ruff, V. Vivat, P. Chambon, H. Gronemeyer, and D. Moras, Crystal structure of
the RAR-γ ligand-binding domain bound to all-transretinoic acid,Nature378, 681 (1995).

42. J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, Numerical integration of the Cartesian equations of
motion of a system with constraints: Molecular dynamics ofn-alkanes,J. Comput. Phys.23, 327 (1977).

43. M. M. Smith, Histone structure and function,Curr. Opinion Cell Biol.3, 429 (1991).

44. W. L. Smith and D. L. DeWitt, Prostaglandin endoperoxide H synthases-1 and -2,Adv. Immunol.62, 167 (1996).

45. V. S. Sunderam, PVM: A framework for parallel distributed computing,Concurrency: Practice and
Experience2(4) (December 1990).

46. A. Toukmaji, D. Paul, and J. A. Board Jr., Distributed particle–mesh Ewald: A parallel Ewald summation
method, inProceedings, Parallel and Distributed Processing Techniques and Applications Conference, Aug.
9–11, 1996, Sunnyvale, CA, 1996.

47. M. Tuckerman, B. J. Berne, and G. J. Martyna, Reversible multiple time scale molecular dynamics,J. Chem.
Phys.97(3), 1990 (1992).

48. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones
molecules,Phys. Rev.159, 98 (1967).

49. J. Vincent and K. M. Merz, A highly portable parallel implementation of amber using the message passing
interface standard,J. Comput. Chem.11, 1420 (1995).

50. M. Watanabe and M. Karplus, Simulation of macromolecules by multiple-time-step methods,J. Phys. Chem.
99(15), 5680 (1995).

51. A. Windemuth, Advanced algorithms for molecular dynamics simulation: The program PMD, inParallel
Computing in Computational Chemistry, edited by T. G. Mattson (Am. Chem. Soc. Books, Washington, DC,
1995), pp. 151–169.

	1. INTRODUCTION AND MOTIVATION
	2. PARALLELIZATION APPROACHES FOR MOLECULAR DYNAMICS
	TABLE I
	FIG. 1.

	3. DESIGN
	FIG. 2.
	FIG. 3.
	FIG. 4.

	4. SCALABILITY AND PARALLEL PERFORMANCE
	FIG. 5.
	TABLE II
	FIG. 6.
	TABLE III
	TABLE IV

	5. EXTENSIONS
	6. INITIAL APPLICATIONS
	7. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

