
Equation-Free: The Computer-Aided Analysis of
Complex Multiscale Systems

Ioannis G. Kevrekidis
Dept. of Chemical Engineering, and PACM and Mathematics, Princeton University, Princeton, NJ 08544

C. William Gear
Dept. of Chemical Engineering, Princeton University, Princeton, NJ 08544

and

NEC Laboratories (Emeritus), 4 Independence Way, Princeton, NJ 08540

Gerhard Hummer
Laboratory for Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases,

National Institutes of Health, Bethesda, MD 20892

DOI 10.1002/aic.10106
Published online in Wiley InterScience (www.interscience.wiley.com).

The best available descriptions of systems often come at
a fine level (atomistic, stochastic, microscopic, agent
based), whereas the questions asked and the tasks re-

quired by the modeler (prediction, parametric analysis, optimi-
zation, and control) are at a much coarser, macroscopic level.
Traditional modeling approaches start by deriving macroscopic
evolution equations from microscopic models, and then bring-
ing an arsenal of computational tools to bear on these macro-
scopic descriptions. Over the last few years with several col-
laborators, we have developed and validated a mathematically
inspired, computational enabling technology that allows the
modeler to perform macroscopic tasks acting on the micro-
scopic models directly. We call this the “equation-free” ap-
proach, since it circumvents the step of obtaining accurate
macroscopic descriptions. The backbone of this approach is the
design of computational “experiments”. In traditional numeri-
cal analysis, the main code “pings“ a subroutine containing the
model, and uses the returned information (time derivatives,
etc.) to perform computer-assisted analysis. In our approach the
same main code “pings“ a subroutine that runs an ensemble of
appropriately initialized computational experiments from
which the same quantities are estimated. Traditional continuum
numerical algorithms can, thus, be viewed as protocols for
experimental design (where “experiment“ means a computa-

tional experiment set up, and performed with a model at a
different level of description). Ultimately, what makes it all
possible is the ability to initialize computational experiments at
will. Short bursts of appropriately initialized computational
experimentation -through matrix-free numerical analysis, and
systems theory tools like estimation- bridge microscopic sim-
ulation with macroscopic modeling. If enough control authority
exists to initialize laboratory experiments “at will” this com-
putational enabling technology can lead to experimental pro-
tocols for the equation-free exploration of complex system
dynamics.

The Equation-Free Approach
A persistent feature of many complex systems is the emer-

gence of macroscopic, coherent behavior from the interactions
of microscopic agents such as molecules, cells, or individuals
in a population. The implication is that macroscopic rules (a
description of the system at a coarse-grained, high level) can
somehow be deduced from microscopic ones (a description at
a much finer level). For laminar Newtonian fluid mechanics, a
successful coarse-grained description (the Navier-Stokes equa-
tions) was known on a phenomenological basis long before its
approximate derivation from kinetic theory. Today, we must
frequently study systems for which the physics can be modeled
at a microscopic, fine scale; yet, it is practically impossible to
derive a good macroscopic description from the microscopic
rules. Hence, we look to the computer to explore the macro-
scopic behavior, based on the microscopic description.
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It is difficult to define complexity in a precise, useful way,
yet it pervades current modeling in engineering science, in the
life and physical sciences (see, e.g., Ottino (2003)), and beyond
(e.g., economics). We may not think of laminar Newtonian
flow as complex, even though it involves interactions of enor-
mous numbers of fluid molecules with themselves and with the
flow boundaries. Such problems are considered simple because
we have a good model, describing the behavior of the system
at the level we need for practical purposes. If we are interested
in pressure drops and flow rates over humanly relevant space
and time scales, we do not need to know the location and
velocity of each and every molecule. Similarly, if a stirred
chemical reactor can be modeled adequately, for design pur-
poses, by a few ordinary differential equations (ODEs), the
immense complexity of molecular interactions involved in
flow, reaction, and mixing goes unnoticed. The system is
classified as simple, because a simple model of the behavior is
adequate for practical purposes. This suggests that the scale of
the observer, and the practical goals of the modeling, are
crucial in classifying a system as simple — or complex.

Macroscopic models of reaction and transport processes
come in the form of conservation laws (species, mass, momen-
tum, and energy) closed through constitutive equations (reac-
tion rates as a function of concentration, viscous stresses as
functionals of velocity gradients). These models are written
directly at the scale at which we are interested in practically
modeling the system behavior. Because we observe the system
at the level of concentrations or velocity fields, we sometimes
forget that what evolves during an experiment is distributions
of colliding and reacting molecules. We know from experience
that it is possible to write predictive deterministic laws for the
behavior (over space and timescales useful in engineering
practice) at the level of concentrations or velocity fields.
Knowing the right level of observation at which we can be
practically predictive, we attempt to write closed evolution
equations for the system at this level. The closures may be
based on experiment (e.g., through engineering correlations),
or on mathematical modeling and approximation of what hap-
pens at more microscopic scales (e.g., the Chapman-Enskog
expansion). In many problems of current modeling practice,
ranging from materials science to ecology, and from engineer-
ing to computational chemistry, the physics are known at the
microscopic/individual level, and the closures required to
translate them to high-level descriptions, are not available.
Sometimes we do not even know at what level of observation
one can be practically predictive. Severe computational limi-
tations arise in trying to bridge the enormous gap between the
scale of the available description and the macroscopic, “sys-
tem” scale at which modeling questions are asked and practical
answers are required (see, e.g. Maroudas, 2000; Lu and Kax-
iras, 2004). These computational limitations are a major stum-
bling block in current complex system modeling.

Our objective is to develop a computational approach for
studying the simple collective, coarse-grained behavior of any
complex, multiscale system, when we know in principle how to
model such systems at a very fine scale (e.g., through molec-
ular dynamics). We assume that we do not know how to write
simple model equations at the right macroscopic scale for their
collective, coarse grained behavior. We will argue that, in
many cases, the derivation of macroscopic equations can be
circumvented: by using short bursts of appropriately initialized

microscopic simulation, one can effectively solve the macro-
scopic equations without ever writing them down, and build a
direct bridge between microscopic simulation and traditional
continuum numerical analysis. It is, thus, possible to enable
microscopic simulators to directly perform macroscopic, sys-
tems level tasks. The main idea is to consider the microscopic
simulator as a (computational) experiment that one can initial-
ize and run at will. The results of such appropriately designed,
initialized, and executed brief computational experiments, al-
low us to estimate the same information that a macroscopic
model would let us evaluate from explicit formulas.

The heart of the approach can be conveyed through a simple
example (see Figure 1). Consider

dc
dt

! f!c"

Figure 1. Forward Euler (a) as a template for projective in-
tegration using the results of short experiments
(b); fixed-point iteration for a timestepper (c).
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as a model of a reactant concentration in a stirred reactor.
Given a finite amount of information (the state at the present
time, c(t#0)), we can predict the state at a future time. Con-
sider the simplest computational scheme for this, forward Euler

cn$1 ! c!%n " 1&#" ! cn " #f!cn".

Starting with the initial condition c0, we go to the equation and
evaluate f(c0), the slope of the trajectory c(t); we use this value
to make a prediction of the system state at the next time step c1.
We then repeat the process. Consider how the equation is used:
given the state we evaluate the time derivative; then, using
mathematics (in particular, Taylor series and smoothness to
create a local linear model of the process in time), we make a
prediction of the state at the next time step. A numerical
integration code will “ping” a subroutine to obtain the time-
derivative of the current state. The code will then process this
value, and use local Taylor series to make a prediction of the
next state. Three simple things are important to notice. First,
the task at hand (numerical integration) does not need a closed
formula for f(c) — it only needs f(c) evaluated at a particular
sequence of values cn. Whether the subroutine evaluates f(c)
from a single-line formula, uses a table lookup, or solves a
large subsidiary problem, from the point of view of the inte-
gration code, it is the same thing. Second, the sequence of
values cn at which we need the time derivative evaluated is not
known a priori. It is evaluated as the task progresses, from
processing results of previous function evaluations. We know
protocols for designing experiments to accomplish tasks, such
as parameter estimation (Box et al., 1978). In the same spirit,
we can think of the Euler method, and of explicit numerical
integrators in general, as protocols for specifying where to
perform function evaluations, based on the task we want to
accomplish (computation of a temporal trajectory). Lastly, the
form of the protocol (the Euler method here) is based on
mathematics, particularly on smoothness (Taylor series). The
trajectory is locally approximated as a linear function of time;
the coefficients of this function are obtained from the model
using function evaluations.

Suppose now that we do not have the equation, but we have
the experiment itself: we initialize the stirred reactor at con-
centration c0, run and record the time series of c(t). With the
results of a short run (over, say, 1 min), we can estimate dc/dt
at t#0, and predict (using the Euler method), where the con-
centration will be in, say, 10 min. Now, instead of waiting for
9 min for the reactor to get there, we stop the experiment and
immediately start a new one: reinitialize the reactor at the
predicted concentration; run for one more minute, and use
forward Euler to predict what the concentration will be 20 min
down the line. We are substituting short, appropriately initial-
ized experiments, and estimation based on the experimental
results, for the function evaluations that the subroutine with the
closed form f(c) would return. We are in effect doing forward
Euler again; but the coefficients of the local linear model are
obtained using experimentation on demand (Cybenko, 1996)
rather than function evaluations of an a priori available model.

Many elements of this example are contrived and may ap-
pear laughable. The point, however, remains: it is possible to
do forward Euler integration, using short bursts of appropri-
ately initialized experiments if it is easy to initialize such

experiments at will. An “outer” process (design of the next
experiment, setting it up, measuring its results, processing them
to design a new experiment) is wrapped around an “inner”
process (the experiment). The outer wrapper is motivated by
the task that we wish to perform (here, long-time integration),
and is based on traditional, continuum numerical analysis. The
inner layer is the process itself. It is clear that systems theory
components (data acquisition and filtering, model identifica-
tion, Ljung (1999)) are vital in forming the connection between
the outer layer and the inner layer (the task we want to
accomplish and the system itself).

Now, we complete the argument: suppose that the inner
layer is not a laboratory experiment, but a computational
model, such as a lattice kinetic Monte Carlo, kMC. Instead of
running the kMC model for long times, and observing the
evolution of the concentration, we can exploit the procedure
described earlier, perform only short bursts of appropriately
initialized microscopic simulation, and use their results to
evolve the macroscopic behavior over much longer timescales.
The conceptual point is: even if we do not have the right
macroscopic equation for the concentration, we can still per-
form its numerical integration without obtaining it in closed
form. The skeleton of the wrapper (the integration algorithm) is
the same one we would use if we had the macroscopic equa-
tion; but, now function evaluations are replaced by short com-
putational experiments with the microscopic simulator. If a
large separation of timescales exists between microscopic dy-
namics (here, the time we need to run kinetic Monte Carlo to
estimate dc/dt), and the macroscopic evolution of the concen-
tration, this procedure may be significantly more economical
than direct simulation.

Passing information between the microscopic and macro-
scopic scales at the beginning and the end of each computa-
tional experiment is a vitally important issue. It is accom-
plished through a lifting operator (macro- to micro-) and a
restriction operator (micro- to macro-), as discussed below
(Theodoropoulos et al., 2000; Kevrekidis et al., 2003, and
references therein). Detailed, fine-level dynamics are typically
given in terms of microscopically and stochastically evolving
distributions of interacting “agents” (molecules, cells); the evo-
lution rules could be molecular dynamics (classical, or Car-
Parrinello, (Car and Parrinello, 1985)), MC or kMC, Brownian
dynamics, etc. The macroscopic dynamics are described by
closed evolution equations, typically ordinary (for macroscop-
ically lumped), or partial differential and integrodifferential
equations. The dependent variables in these equations are
frequently a few, lower order moments of the evolving distri-
butions (such as concentration, the zeroth moment). The pro-
posed computational methodology consists of the following
elements:

(a) Choose the statistics for describing the long-term behav-
ior of the system, and their representation. For example, in a
gas simulation at the particle level, the statistics would proba-
bly be density and momentum (zeroth and first moment of the
particle distribution over velocities), and we might choose to
discretize them in a computational domain via finite elements.
We call this the macroscopic description u. These choices
suggest possible restriction operators M, from the microscopic-
level description U, to the macroscopic description: u # MU;

(b) Choose an appropriate lifting operator !, from the mac-
roscopic description u, to a set of (possibly one) consistent
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microscopic descriptions U. For example, in a gas simulation
using pressure etc., as the macroscopic-level variables, ! could
make random particle assignments consistent with the macro-
scopic statistics. !M #I, i.e., lifting from the macroscopic to
the microscopic, and then restricting (projecting) down again,
should have no effect, except roundoff.

(c) Start with a macroscopic condition (e.g., concentration
profile) u(t0);

(d) Transform it through lifting to consistent microscopic
realizations U(t0) # !u(t0);

(e) Evolve these realizations using the microscopic simula-
tor for the desired short macroscopic time T, generating the
value(s) U(T).

(f) Obtain the restrictions u(T)# MU(T), and average over
them.

This constitutes the coarse time-stepper, or coarse time-T
map. If this map is accurate enough, we showed earlier how to
use it in a two-tier procedure to perform Coarse Projective
Integration (Gear and Kevrekidis, 2003; Gear, 2001; Gear et
al., 2002).

The lifting step (creating microscopic distributions, condi-
tioned on a few of their lower moments, going back to Ehren-
fest, 1911) is clearly not unique: consider for example, creating
a distribution of particles on a lattice that has prescribed aver-
age and pair probabilities. A preparatory step (e.g., through
simulated annealing) may be required to arrange the particles
on the lattice consistently with the prescribed constraints.
Through such appropriate preparation, one can even lift pre-
scribed pair-correlation functions to consistent particle assem-
blies. Constrained dynamics algorithms, like SHAKE (Ryck-
aert, 1977), can also be thought of as lifting procedures.

An important point made in Figure 2a is that an initial
interval must elapse before estimating the time derivative of the
macroscopic variables from the microscopic simulation. In the
microscopic dynamics, every particle evolves while interacting
with other particles, and the moments of the distribution evolve
in a coupled manner. Remarkably, practically predictive mod-
els are usually written in terms of only a few moments of these
evolving distributions. This is only possible because the re-
maining higher-order moments quickly become functionals of
the few, lower-order, slow, “master” moments —our observa-
tion variables. This occurs over timescales that are short, com-
pared to the macroscopic observation timescales. In this sepa-
ration of timescales (and concomitant space scales), lies the
essential reduction step, underpinning effective simplicity and
practical determinism. The long-term observable dynamics of
the system evolve on a low-dimensional, strongly attracting,
slow manifold in moments space; this is, effectively, a quasi-
steady state approximation (Bodenstein, 1913). This manifold
is parameterized by our observation variables (typically, the
lower distribution moments, such as concentration), in terms of
which we write macroscopic equations. The expected values of
the remaining moments can be written as an (unspecified)
function of the coarse variables; that is, the graph of the
manifold. A good example is provided by Newtonian viscosity:
when one starts a molecular simulation, the stresses are not
instantaneously proportional to velocity gradients — but for
Newtonian fluids, they become so within a few collision times,
i.e., over times much shorter than the macroscopic observation
times, over which the Navier-Stokes equations become valid
approximations. The coarse variables are, therefore, observa-

tion variables. If the fine scale simulation, conditioned on
values of the observation variables, is initialized “off manifold”
it only takes a fast initial transient to approach a neighborhood
of this manifold. Through the restriction operator, we observe
the dynamics on the hyperplane spanned by our chosen obser-
vation variables. After the system quickly relaxes to the man-
ifold, we estimate the time-derivative of the observation vari-
ables, and use it in projective integration. The dynamics of the
full system will then, after lifting and a short integration,
spontaneously establish (by bringing us to the manifold) the
missing closure, that is, the effect of the full description on the

Figure 2. (a) Coarse projective integration; (b) patch dy-
namics; and (c) coarse timestepper-based bifur-
cation computations (see text).
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observed dynamics. A direct conceptual analogy arises with
center manifolds in dynamical systems (parameterized using
eigenvectors of the linearization, Guckenheimer and Holmes,
1983), or inertial manifolds for dissipative PDEs (Constantin et
al., 1988; Temam, 1990). Normal forms and (approximate)
inertial forms are thus analogous to macroscopic equations for
the coarse observation variables.

Low-order distribution moments have traditionally been the
observation variables of choice. In principle, however, any set
of variables that parameterizes this low-dimensional slow man-
ifold can be used as observation variables with the appropriate
lifting and restriction operators. Working with more observa-
tion variables than necessary reduces computational efficiency,
it is analogous to using a finer mesh than necessary for the
accuracy required in solving a problem. Intelligently chosen
order parameters usually provide a much more parsimonious
basis set on which to observe the dynamics, and apply our
computational framework. There is a clear analogy here with
empirical eigenfunctions (Holmes et al., 1998), used for model
reduction in the discretization of dissipative PDEs. The detec-
tion of good observables, capable of efficiently parameterizing
this manifold through statistical analysis of simulation results
(Coifman et al., 2004) is a crucial enabling technology for our
computational framework.

In coarse projective integration, we exploit the smoothness
in time of the unavailable macroscopic equation in order to
project (jump) to the future. In the case of macroscopically
(spatially or otherwise) distributed systems, one can also ex-
ploit smoothness of the unavailable macroscopic equation in
space in order to perform the microscopic simulations only
over a few, appropriately coupled, small computational boxes
called teeth. This is illustrated in Figure 2b:

(a) Coarse variable selection (same as above, but now the
variable u(x) depends on “coarse space” x. For simplicity, we
consider only one space dimension).

(b) Choice of lifting operator (same as above, but now we
lift entire profiles of u(x) to profiles of U(y), where y is
microscopic space corresponding to the macroscopic space x.
This lifting involves, therefore, not only the variables, but the
space descriptions too. The basic idea is that a coarse point in
x corresponds to an interval (a “box” or “tooth” in y).

(c) Prescribe a macroscopic initial profile u(x,t0) — the
“coarse field”. Particularly, consider the values ui(t0) at a num-
ber of macro-mesh points; the macroscopic profile arises from
interpolation of these values of the coarse field.

(d) Lift the “mesh points” xi, and the values ui(t0) to profiles
Ui(yi) in the microscopic domains (“teeth”) corresponding to
the coarse mesh points xi. These profiles should be conditioned
on the values ui, and also on certain boundary conditions
motivated by the coarse field (e.g., be consistent with coarse
slopes at the boundaries of the “teeth,” computed from the
coarse field).

(e) Evolve each of these boxes for a short time based on the
microscopic description, and through ensembles that enforce
the coarsely inspired boundary conditions (see, e.g. Li et al.,
1998) and, thus, generate Ui(yi, T).

(f) Obtain the restriction from each tooth to coarse variables
ui(T) # M Ui(yi, T).

(g) Interpolate between these to obtain the new coarse field
u(x,T).

Up to this point, we have the gaptooth scheme: a scheme that
computes in small domains (the “teeth”) which communicate
over the gaps between them through “coarse field motivated”
boundary conditions. We can now proceed by combining the
gaptooth scheme with projective integration ideas to

(h) repeat the process (lift within the teeth, compute bound-
ary conditions, evolve microscopically, restrict to macroscopic
variables and interpolate) for a few steps, and then

(i) Project coarse fields “long“ into the future. For a projec-
tive forward Euler, this would involve the chord between two
successive coarse fields to estimate the right-hand-side of the
unavailable coarse equation, and then an Euler “projection“ of
the coarse field long into the future.

(j) Repeat the entire procedure starting with the lifting (d)
above.

This leads to patch dynamics: a computational framework in
which simulations using the microscopic description over short
times and small computational domains (“patches” in space-
time) can be used to advance the macroscopic dynamics over
long times and large computational domains (Kevrekidis,
2000; Kevrekidis et al., 2003; Gear et al., 2003; Samaey et al.,
2003). Initializing microscopic computations conditioned on
macroscopic variables is an important component of coarse
projective integration; similarly, imposing macroscopically
motivated boundary conditions to microscopic computations is
an important element of gaptooth and patch dynamics.

The methods we discussed can, under appropriate condi-
tions, drastically accelerate the direct simulation of the coarse-
grained, macroscopic behavior of certain complex multiscale
systems. Direct simulation, however, is but the simplest com-
putational task one can perform with a system model. It cor-
responds to physical experimentation: we set parameter values
and initial conditions, let the system evolve on the computer
and observe its behavior, just like a laboratory experiment.
Depending on what we want to learn, however, there exist
much more interesting and efficient ways of using the model
and the computer. Consider the location of steady states: fixed
point algorithms, like Newton-Raphson, are a much more ef-
ficient way of finding steady-states than direct integration
(given a good initial guess). Such algorithms can locate both
stable and unstable steady-states (the latter would be extremely
difficult or impossible to find with direct simulation). “The
Jacobian of the solution is a treasure trove, not only for
continuation, but also for analyzing stability of solutions, for
detecting bifurcations of solution families, and for computing
asymptotic estimates of the effects, on any solution, of small
changes in parameters, boundary conditions and boundary
shape” (Brown et al., 1980). Beyond stability and sensitivity
analysis, having the steady-states and using Taylor series in
their neighborhood (Jacobians, Hessians), one can design sta-
bilizing controllers, observers, solve optimization problems,
etc. There is a vast arsenal of algorithms (and codes imple-
menting them) for the computer-aided analysis of system mod-
els, going much beyond direct simulation. However, these
algorithms are applicable to macroscopic equations. Smooth-
ness and Taylor series expansions are vital in formulating and
implementing most of these algorithms. When the model
comes in the form of microscopic and stochastic simulators at
a much finer scale — without a closed formula for the equation,
i.e., without a “righthand side” for the time derivative-, this
arsenal of continuum numerical tools appears useless. Fortu-
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nately, the same coarse timestepping idea we used to accelerate
direct simulation of an effectively simple multiscale system can
be used to enable its coarse-grained computer-assisted analysis,
even without explicit macroscopic equations.

To illustrate this, we return to our simple scalar example in
Figure 1. We are given a black box timestepper for this equa-
tion: a code which, initialized with cn(t#n#) integrates the
equation for time # and returns the result cn$1#c(t#[n$1]#).
We use the notation

cn$1 ! '#!cn".

We can find a steady state for the equation by calling the
timestepper repeatedly (integrate forward in time) until the
result does not change any more. Indeed a steady state of the
equation is a fixed point for the timestepper, x* # '#( x*). Yet
this iteration will only find stable steady states, and the rate of
convergence to them depends on the physical dynamics of the
problem. The method of choice for finding a steady state (given
a good initial guess) would be a Newton-Raphson iteration,
which would converge quadratically to nonsingular steady
states.

" df
dc#

c!n"

!c!n$1" $ c!n"" ! (f!c!n"".

Can we trick an integration code into becoming a fixed point
solver ? In other words, if we do not have the equation for f(c),
but can computationally evaluate the timestepper, can we still
do Newton for the steady state ? The answer is illustrated in
Figure 1c: we use the computationally evaluated timestepper to
solve the fixed point problem

G!c" ! c $ '!c" ! 0.

Calling the timestepper for an initial condition c(n) gives us
'(c(n)) and the residual, G(c(n)). Lacking a formula to compute
the linearization, we call the timestepper with a nearby initial
condition, c(n)$%. This gives us '(c(n)$%), and the difference
(using Taylor series) is approximately (d'/dc) ! &. This esti-
mate of the action of the Jacobian can then be used in a secant
method to compute the next iterate c(n$1) of the steady-state
search. Notice again the crucial issue of being able to initialize
a simulator at will; after c(n$1) is estimated from the nearby
integrations and the secant procedure, we can immediately call
the timestepper with initial condition c(n$1) and iterate the
process. We have not done much more than estimating deriv-
atives through differencing. Yet forward integration can now
be used (through a computational superstructure, a “wrapper”
that implements what we just described in words) to converge
to unstable steady states, and eventually to compute bifurcation
diagrams. We have enabled a simulation code to perform a task
(fixed-point computation) for which it had not been designed
(Theodoropoulos et al., 2000).

This procedure may initially appear hopeless in higher di-
mensions (e.g., for the large sets of ODEs arising in PDE
discretizations). Fortunately, recent developments in large
scale computational linear algebra (the so-called matrix free
solvers and eigensolvers) address precisely this point. Integrat-

ing with two nearby initial conditions (m-vectors, differing by
the m-vector "), and taking the difference of the timestepper
results provides an estimate of D# . ", the inner product of the
m)m Jacobian matrix of the timestepper (which is not avail-
able in closed form), and the known m-vector ". Matrix-free
iterative algorithms (for example, Newton-Krylov/GMRES
methods, based on the timestepper) can then be used to solve
for the steady state (e.g., Kelley, 1995; Saad, 2003). Matrix free
eigensolvers (e.g., subspace iteration methods, based on the
timestepper) can be used to estimate the part of the spectrum of
the linearization close to the imaginary axis, which is relevant
for stability and bifurcation computations of the unavailable
equation (Lehoucq et al., 1998). We see once more that the
quantities necessary for computer-aided analysis (residuals,
action of Jacobians) can be estimated by appropriately de-
signed short calls to the timestepper and subsequent postpro-
cessing of the results, even if the equation is not available in
closed form.

Independently of complex and multiscale computations,
these software wrappers have the potential to enable legacy
codes (large scale, industrial dynamic simulators) to perform
tasks, such as stability/bifurcation and operability analysis,
controller design and optimization, for which they have not
been designed. Our inspiration comes from precisely such a
wrapper: the recursive projection method of Shroff and Keller
(1993), which enables large scale direct simulators (even
slightly unstable ones) to become convergent fixed-point solv-
ers.

Clearly, the same type of superstructure can turn coarse
timesteppers into coarse fixed point algorithms, and coarse
bifurcation algorithms (Figure 2c). Coarse residuals and the
action of coarse slow Jacobians and Hessians can be estimated
in a matrix-free context by calls to the coarse timestepper.
Coarse equation solvers and coarse eigensolvers can, thus, be
implemented and many aspects of the computer-assisted anal-
ysis of the unavailable macroscopic equation can be performed.
Motivated by the connection to matrix-free numerical analysis
methods, we call the timestepper and coarse-timestepper based
computer-assisted analysis equation free computation
(Kevrekidis et al., 2003).

The scope of the approach is very general. We have used
coarse projective integration, and coarse bifurcation computa-
tions in problems ranging from the kMC modeling of catalytic
surface reactions (Makeev et al., 2002a,b, 2004; Rico-Martinez
et al., 2004), and MD simulations of the folding of a peptide
fragment (Hummer and Kevrekidis, 2003) to individual-based
models of evolving diseases (Cisternas et al., 2004) and e-coli
chemotaxis (Setayeshgar et al., 2004). Beyond simulation and
stability, equation-free computation has been used to perform
linear stabilizing controller design for kMC, LB-BGK and BD
simulators (Siettos et al., 2003a,b; Armaou et al., 2004); coarse
optimization (Armaou and Kevrekidis, 2003), as well as coarse
feedback linearization (Siettos et al., 2004); coarse reverse
integration (Gear and Kevrekidis, 2004); coarse dynamic
renormalization (Kevrekidis et al, 2003; Chen et al. 2004); and
effective medium computations (Runborg et al., 2002; Moeller
et al., 2003). Wrappers for large-scale codes like gPROMS
(accelerating rapid pressure swing absorption computations),
have been devised (Siettos et al., 2003c). As experience is
accumulated, and the methods develop, more problems may
become accessible to equation-free computer aided analysis.

AIChE Journal 1351July 2004 Vol. 50, No. 7



Most of the discussion so far was formulated in a determin-
istic context; yet many systems of interest are described by
stochastic models. Every outcome of computations with such
models is in principle different; noise destroys determinism at
the level of a single experiment. Determinism is often restored,
however, at a different level of observation: the distribution of
the outcomes. One might be able to make deterministic pre-
dictions about, say, the expectation and the standard deviation
of a sufficiently large ensemble of replica (computational)
experiments. Once again, higher-order moments of a probabil-
ity distribution (whose evolution is governed by a Fokker-
Planck-type equation) get quickly slaved to lower-order mo-
ments, and one can be practically predictive if one looks at an
appropriately coarse-grained level. For the right observables,
the coarse timestepper is constructed by simulating a large
enough ensemble of realizations of the stochastic problem. An
important category of problems can be approximated by dy-
namics on low-dimensional free-energy surfaces, parametrized
by a few well chosen coarse variables (reaction coordinates). In
the statistical mechanics of molecular systems the ability to be
“practically predictive” with just a few meaningful reaction
coordinates is intimately connected with separation of time-
scales. Formally, such coordinates could be defined with the
help of the leading eigenfunctions of a Frobenius-Perron op-
erator for the detailed problem (Schuette et al., 1999); yet this
is practically unachievable. Instead, physical intuition, experi-
ence and data analysis is often used to suggest collective
coordinates, which hopefully provide dynamically relevant
measures of the progress of a reaction. Projecting the full
dynamics on such well-chosen reaction coordinates will then
retain the macroscopically relevant features of the dynamics,
with only simplified representations of noise and memory
(Zwanzig, 2001, Haenggi et al., 1990). Short bursts of appro-
priately initialized molecular dynamics can again be used to
estimate on demand the drift and the noise terms of effective
Langevin or Fokker-Planck equations in these variables (e.g.,
Kupferman and Stuart, 2004; Givon et al., 2004); to find
minima and saddles; and to construct approximate propagators
for the density on this surface, without deriving or writing this
effective equation in closed form.

In our discussion we have outlined the possibilities opened
by the equation-free framework. There are many theoretical
and practical difficulties. Some are the usual problems of error
monitoring, and control of the standard macroscopic algo-
rithms made more difficult by the microscopic environment;
some are particular to complex/multiscale timesteppers (con-
sistent initialization through lifting; estimation and filtering
involved in restriction operators; imposition of macroscopi-
cally inspired boundary conditions); some arise from the cou-
pling (choice of good observation variables). We will mention
one special feature here. To adaptively determine the level of
coarse-graining at which we can be practically predictive, the
coarse timestepper can be computed with different numbers of
coarse variables (e.g., surface coverages only, vs. surface cov-
erages and pair probabilities for lattice simulations of surface
reactions). Matrix-free, timestepper-based eigensolvers can
then be used to estimate the slow eigenvalues and correspond-
ing eigenvectors for the timestepper, which should be tangent
to the slow manifold (embodying the missing closure). Gaps in
this spectrum, and the components of the corresponding eig-
envectors can be used to probe the number and nature of coarse

variables that should be used to observe the system dynamics
(i.e., to locally parameterize the manifold).

Handshaking between microscopic solvers and continuum
numerical analysis consists mainly of components traditionally
studied in systems theory. System identification, based on the
results of computational experimentation with the fine scale
model is the most important component. Separation of time-
scales underpins the low-dimensionality of the macroscopic
dynamics. The dynamics of the hierarchy of distribution mo-
ments constitute a singularly perturbed system, and brief de-
tailed simulation is used to establish the missing closure. Adap-
tive tabulation (Pope, 1997) can be used to economize in the
design of experiments, and the importance of data assimilation
and statistical analysis tools to identify nonlinear correlations
has already been stressed. The use of observer theory (e.g.,
Luenberger, 1964; Krener, 2003) and realization balancing
(e.g., Moore, 1981; Lall et al., 2002) arises naturally: the
microscopic system dynamics are observed on the macroscopic
variables, but are realized through the microscopic simulator.
Techniques for filtering (Kalman and Bucy, 1961) and variance
reduction (e.g., Melchior and Oettinger, 1995) will play an
important role in making equation-free computations practical
(Li et al., 2003).

Equation-free methods constitute alternative ensembles for
performing microscopic (molecular dynamics, kMC) simula-
tions. These ensembles are motivated by macroscopic numer-
ical analysis, rather than statistical mechanics. We are currently
exploring the applicability of these “numerical analysis moti-
vated” ensembles in accelerating equilibrium computations
(grand canonical MC computations of micelle formation, Ko-
pelevich et al., 2004a,b). It is particularly interesting to con-
sider ensembles motivated by the augmented systems arising in
multiparameter continuation. In such ensembles, like the pa-
thostat (Siettos et al., 2004), based on pseudoarclength contin-
uation, both the variables and the operating parameters them-
selves evolve, so that the system traces both stable and unstable
parts of bifurcation diagrams.

An increasing number of experimental systems appears in
the literature for which finely spatially distributed actua-
tion–coupled with sensing- is available; chemical reactions
addressed through light (Sakurai et al., 2002; Wolff et al.,
2001) and colloidal particles manipulated through electric
fields (Ristenpart et al., 2003) constitute such examples. When
experiments can be initialized at will, the methods we dis-
cussed can be applied to laboratory–rather than computational–
experiments. Continuum numerical methods will then become
experimental design protocols, tuned to the task we wish to
perform. This way, mathematics might be performed directly
on the physical system, and not on the (approximate) equations
modeling it.

Many of the mathematical and computational tools com-
bined in this exposition (e.g., system identification, or inertial
manifold theory) are well established; we borrowed them, in
our synthesis with tools developed in our group, as necessary.
Innovative multiscale/multilevel techniques proposed over the
last decade include the quasi-continuum methods of Phillips
and coworkers (Phillips, 2001; Ortiz and Phillips (1999));
optimal prediction methods of Chorin and coworkers (Chorin
et al., 1998, 2000); coupling of continuum fields with stochas-
tic evolution by Oettinger and coworkers (Oettinger, 1996;
Laso and Oettinger, 1993); kinetic-theory based solvers by Xu
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and Prendergast (Xu and Prendergast, 1994; Xu, 2001), the
modification of equation-free computation in the context of
conservation laws by E and Engquist (2003); and lattice coarse
graining by Katsoulakis et al., 2003 (see the review by Givon
et al., 2003, and the discussion in Kevrekidis et al. (2003)). In
the context of molecular dynamics simulations, the idea of
using multiple, possibly coupled replica runs to search confor-
mation space forms the basis of approaches, such as parallel
replica MD (Voter, 1998), SWARM-MD (Huber and van Gun-
steren, 1998), coarse extended Lagrangian dynamics (Iannuzzi
et al., 2003; Laio and Parrinello, 2002), and simple averaging
over multiple trajectories (Yeh and Hummer, 2002; Snow et
al., 2002).

It is fitting to close by citing from a 1980 article entitled
“Computer-Aided Analysis of Nonlinear Problems in Trans-
port Phenomena” by Brown, Scriven and Silliman (Brown et
al., 1980): “The nonlinear partial differential equations of
mass, momentum, energy, species and charge transport, espe-
cially in two and three dimensions, can be solved in terms of
functions of limited differentiability -no more than the physics
warrants- rather than the analytical functions of classical
analysis. . . . Organizing the polynomials in the so-called finite
element basis functions facilitates generating and analyzing
solutions by large, fast computers employing modern matrix
techniques”. These sentences celebrate the transition from an-
alytical solutions (of explicitly available equations) to comput-
er-assisted solutions. The solutions are not analytically avail-
able for our class of complex/multiscale problems either; but
now the equations themselves are not available, and they are
solved in a computer-assisted fashion using appropriate com-
putational experiments at a different level of system descrip-
tion. The similarity of the list of important elements is remark-
able: The right basis functions, dictated by the physics
(discretizations of the right coarse observation variables);
large, fast computers (now massively parallel clusters, each
CPU computing one realization of trajectories for the same
“coarse” initial condition); and modern matrix techniques (now
matrix-free iterative linear algebra). The approach bridges tra-
ditional numerical analysis, computational experimentation
with the microscopic simulator, and systems theory; its most
vital element is the simple fact that a code can be initialized at
will.

If one has good macroscopic equations, one should use them.
However, when these equations are not available in closed
form (and such cases arise with increasing frequency in con-
temporary modeling) the equation-free computational enabling
technology we outlined here may hold the key to the engineer-
ing of effectively simple systems.
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