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Background

The understanding of biological net-
works is a fundamental issue in computa-
tional biology. When analyzing topological
properties of networks, one often tends to
substitute the term ‘‘network’’ for ‘‘graph’’,
or uses both terms interchangeably. From
a mathematical perspective, this is often
not fully correct, because many functional
relationships in biological networks are
more complicated than what can be
represented in graphs.
In general, graphs are combinatorial

models for representing relationships (edg-
es) between certain objects (nodes). In
biology, the nodes typically describe pro-
teins, metabolites, genes, or other biological
entities, whereas the edges represent func-
tional relationships or interactions between
the nodes such as ‘‘binds to’’, ‘‘catalyzes’’,
or ‘‘is converted to’’. A key property of
graphs is that every edge connects two
nodes. Many biological processes, however,
are characterized by more than two
participating partners and are thus not
bilateral. A metabolic reaction such as
A+BRC+D (involving four species), or a
protein complex consisting of more than
two proteins, are typical examples. Hence,
such multilateral relationships are not
compatible with graph edges. As illustrated
below, transformation to a graph represen-
tation is usually possible but may imply a
loss of information that can lead to wrong
interpretations afterward.
Hypergraphs offer a framework that

helps to overcome such conceptual limita-
tions. As the name indicates, hypergraphs
generalize graphs by allowing edges to
connect more than two nodes, which may
facilitate a more precise representation of
biological knowledge. Surprisingly, al-
though hypergraphs occur ubiquitously
when dealing with cellular networks, their
notion is known to a much lesser extent
than that of graphs, and sometimes they
are used without explicit mention.
This contribution does by no means

question the importance and wide applica-
bility of graph theory for modeling biolog-
ical processes. A multitude of studies proves
that meaningful biological properties can
be extracted from graph models (for a

review see [1]). Instead, this contribution
aims to increase the communities’ aware-
ness of hypergraphs as a modeling frame-
work for network analysis in cell biology.
We will give an introduction to the notion
of hypergraphs, thereby highlighting their
differences from graphs and discussing
examples of using hypergraph theory in
biological network analysis. For this Per-
spective, we propose using hypergraph
statistics of biological networks, where
graph analysis is predominantly used but
where a hypergraph interpretation may
produce novel results, e.g., in the context of
a protein complex hypergraph.
Like graphs, hypergraphs may be classi-

fied by distinguishing between undirected
and directed hypergraphs, and, according-
ly, we divide the introduction to hyper-
graphs given below into two major parts.

Undirected Hypergraphs

An undirected hypergraph H= (V,E) consists
of a set V of vertices or nodes and a set E of
hyperedges. Each hyperedge eME may
contain arbitrarily many vertices, the
order being irrelevant, and is thus defined
as a subset of V. For this reason,
undirected hypergraphs can also be inter-
preted as set systems with a ground set V and
a family E of subsets of V. If no hyperedge
is a subset of another hyperedge, H is also
called a Sperner hypergraph, or clutter.
Undirected graphs are special cases of

hypergraphs in which every hyperedge
contains two nodes (i.e., has a cardinality
of two). Protein–protein interaction (PPI)
networks provide a nice example illustrat-

ing the differences that may arise in
modeling biological facts with graphs and
hypergraphs. Various technologies for
measuring protein interactions have been
developed, but we concentrate here on
data obtained, e.g., by tandem affinity
purification (TAP, [2,3]) delivering protein
complexes (with possibly more than two
partners) instead of direct binary interac-
tions. A small-scale example mimicking
experimental data derived by TAP is
shown in Figure 1A (left). TAP data
naturally span a hypergraph: We have a
ground set of proteins and a set of
complexes, which themselves represent
subsets (hyperedges) of the ground set of
proteins. One method for drawing undi-
rected hypergraphs is shown in Figure 1A
(middle). Hypergraphs are often projected
onto graphs, losing some information but
making their drawing easier and their
analysis amenable to the huge corpus of
methods and algorithms from graph
theory. A typical graph representation of
our example is shown in Figure 1A (right)
(another way to convert hypergraphs to
graphs will be shown below). This repre-
sentation still captures the information on
pairs of proteins that occurred together in
a complex; however, in contrast to the
hypergraph, the complexes themselves
cannot be reconstructed from this figure.
This may lead to different results when
computing network properties such as the
k-core, a measure that is often used to
identify the core proteome [4,5]. In a
graph, the k-core is the maximal node-
induced sub-graph in which all nodes have
a degree (defined as the number of edges a
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node participates in) equal to or larger
than k. The maximum core of a graph
corresponds to the highest k where the
graph has a non-empty k-core. The
maximum k-core of the graph in
Figure 1A is a 3-core consisting of the
nodes {A,B,C,D}. A similar definition of a
k-core can be defined for (Sperner) hyper-
graphs, where k corresponds to the
number of hyperedges each node partic-

ipates in [5]. The maximum k-core of the
hypergraph in Figure 1A is a 2-core
consisting of {A,C,E}. Thus, as one would
intuitively expect, the maximum k-core of
the hypergraph ranks A, C, and E as most
important—in contrast to the graph mod-
el, whose maximum k-core would weight B
and D stronger than E.
Another application of undirected hy-

pergraphs is minimal hitting sets (MHSs), also

known as generalized vertex covers or
hypergraph transversals [6,7]. For exam-
ple, in a given hypergraph model of a PPI
network, an interesting problem related to
experimental design [5] is to determine
minimal (irreducible) subsets of bait pro-
teins that would cover or ‘‘hit’’ all
complexes in a minimal way; i.e., no
proper subset of an MHS would hit all
complexes. In Figure 1A, the correspond-

Figure 1. Examples of undirected (A,B) and directed (C,D) hypergraphs arising in the context of biological networks analysis.
Detailed explanations are given in the text.
doi:10.1371/journal.pcbi.1000385.g001
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ing MHSs would be {A,E},{A,C},{B,E},
{C,E},{D,E}. MHSs are also relevant for
computing intervention strategies [8,9].
An example: Assume that a network
(which is in our example a directed graph)
contains feedback loops, and a given
selection of them is to be disrupted with
appropriate interventions. This is equiva-
lent to computing MHSs in a hypergraph,
where V is the ground set of interactions
(here: edges) and E is the set of targeted
feedback loops, i.e., each hyperedge con-
tains the involved interactions of one
feedback loop. Figure 1B shows a simple
interaction graph (left) containing three
feedback loops, thereof two being negative
(Figure 1B, middle). There are five MHSs
for disrupting the negative feedback loops:
Two of them remove only one edge,
whereas the other three cut two edges.
Even though they require two interven-
tions, the MHSs {3,4} and {3,5} will be
preferred if the only positive feedback loop
in the network, constituted by edges
1,2,7,6, is to be kept functional. In a very
similar way, one may compute MHSs of a
‘‘target set’’ of elementary modes, revealing
intervention strategies in metabolic net-
works [8,10].
Hypergraphs are also closely related to

the concept of independence systems. An
independence system I= (V,U) is a collec-
tion U of subsets of a ground set V in which
for each set uMU all subsets of u are part of
the collection. Any Sperner hypergraph
H= (V,E) can be extended to an indepen-
dence system I= (V,U) in which V is still the
set of vertices andU contains all hyperedges
of E plus all subsets of these hyperedges.
The hyperedges of the original hypergraph
are then the maximal independent sets (also
called bases) of the independence system I.
For example, the family of sets of the
independence system induced by the pro-
tein complex hypergraph in Figure 1A
would contain the three protein complexes
(the maximal independent sets) plus all
subsets of each complex. Consider now the
following problem: Each protein is assigned
a weight representing, for instance, the
molecular weight of the protein. We could
ask for the complex of maximal weight.
Can we find such a complex without
examining all complexes, i.e., all maximal
independent sets? If not, how good are
approximations that we can find quickly?
These questions can be answered by the
theory of independence systems using
methods from discrete optimization and
combinatorics [11,12]. The most promi-
nent type of independence system is that of
a matroid [13]. Optimization problems on
matroids are of low complexity because the
simple greedy algorithm (taking in each step

the locally optimal choice) always finds a
globally maximal independent set. Coming
back to the optimization problem of finding
the heaviest protein complex in Figure 1A,
assume the (molecular) weights are as
follows: A=1, B=2, C=3, D=4, E=5.
A greedy strategy (operating on the vertices)
would first select protein E because it has
the highest weight. This reduces the search
space to complex C2 and C3. For the next
protein we choose C because its molecular
weight is larger than that of A. The
algorithm finishes at that point as it has
found a maximal independent set (complex
C3) whose weight is 8, which is apparently
not the optimum (note that this is not due to
the larger size of complex C1; choosing
A=8, B=1, C=1, D=9, E=8, the
greedy algorithm would deliver the four-
protein complex C1, although the true
optimum is then the two-protein complex
C2). The reason that the greedy algorithm
fails in this simple example is that the
independence system spanned by the
complex hypergraph is not a matroid.
Given how frequently greedy-type algo-

rithms on hypergraphs are applied as
heuristics in practice, it appears important
to study the deviation of the hypergraph
under consideration from being a matroid
[13]. A recent study on algorithms for
measuring phylogenetic diversity under-
lines this point [14].

Directed Hypergraphs

The definition of directed hypergraphs is
similar to undirected hypergraphs,
D= (V,A), but each hyperedge aMA—here
also called hyperarc—is assigned a direc-
tion, implying that one has to define where
it starts and where it ends. Directed
hypergraphs allow us to connect several start
nodes (the tail T ) with several end nodes (the
head H). A hyperarc is thus defined as
a= (T ,H) with T and H being subsets of the
vertices V. Again, directed graphs are
special cases of directed hypergraphs where
both T and H contain exactly one node
limiting their scope to 1:1 relationships. In
contrast, directed hypergraphs can repre-
sent arbitrary n:m relationships.
Typical examples are (bio)chemical

reactions, which are often bi-molecular,
such as the example A+BRC+D. The tail
T of this hyperarc consists of the reactants
A and B, whereas the head H contains the
product C and D. However, for an exact
description of stoichiometric reactions we
need to include the stoichiometric coeffi-
cients (which can be different from unity)
in the hypergraph model. For this pur-
pose, one adds into each hyperarc two
functions cT : TRN and cH: HRN,

assigning the stoichiometric coefficients
for the nodes in T and H, respectively.
Each hyperarc a then reads a= (T , cT , H,
cH). This completes the description of a
stoichiometric network, which is in prac-
tice often conveniently described by a
stoichiometric matrix (Figure 1C): The
columns correspond to the reactions, i.e.,
hyperarcs, and the rows to the nodes, i.e.,
metabolites with their stoichiometric coef-
ficients [15]. Reactants can be distin-
guished from the products by the negative
sign at their stoichiometric coefficients.

Directed hypergraphs can be drawn as
shown in the example in Figure 1C. For
simplifying drawing and analysis, directed
hypergraphs are often converted
(Figure 1C, right) either to directed
substrate graphs (similar to the graph in
Figure 1A) or to directed bipartite graphs.
In the latter, both reactions and metabo-
lites are represented as two different types
of nodes, and edges exist only from
metabolites to reactions, or vice versa. In
contrast to the simple graph projection
used in the substrate graph, the bipartite
graph still reflects the original information
from the hypergraph. This representation
can be used to determine a number of
relevant topological network properties
using graph-theoretical techniques [16].
However, even in bipartite graphs, graph-
theoretical methods may not be appropri-
ate when analyzing functional properties
that require an explicit consideration of
the AND connections between reactants
and products. For example, as one can
easily verify, removing reaction R1 from
the reaction network in Figure 1C implies
that a continuous production of E from A
alone would not be possible anymore.
However, a path from A to E still exists in
the bipartite graph (via nodes R2, D, and
R3), which might suggest that this was still
possible. Techniques of the popular con-
straint-based analysis of metabolic net-
works [15] directly operate on the stoi-
chiometric matrix and therefore take the
hypergraphical nature of metabolic net-
works explicitly into account. Using a
prominent example from the central
metabolism (production of sugars from
fatty acids), a recent contribution illus-
trates that non-functional pathways might
be detected in metabolic networks when
paths in the underlying graph representa-
tion are interpreted as valid routes [17]. A
widely used concept for pathways in
hypergraphical reaction networks is based
on elementary (flux) modes, which are mini-
mal functional sub-networks able to oper-
ate in steady state [18]. Elementary modes
are better suited for studying functional
aspects of metabolic networks than simple
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paths in the graph representation. How-
ever, it comes at the expense of higher
computational efforts. For example, the
calculation of the elementary mode with
the smallest number of reactions involved
is much harder (NP-hard [19]) than the
easy problem of computing shortest paths
in graphs. Furthermore, some problems
can be safely studied in the graph
representation. An example from
Figure 1C: The shortest ‘‘influence’’ path
along which a perturbation in the concen-
tration of metabolite A can spread over the
network and affect the concentration of
node E involves two steps (reactions R2
and R3) and can be deduced from both
graph representations. Even if reaction R1
is absent, this path would be valid if we
assume that the concentration of B is non-
zero at the beginning. What would not be
possible with R2 and R3 alone, as
discussed above, is a continuous production
of E when A is provided as a substrate.
Another application of directed hyper-

graphs in computational biology is the
representation of logical relationships in
signaling and regulatory networks. Interac-
tion graphs (signed directed graphs) are
commonly used topological models for
causal relationships and signal flows in
cellular networks. For example, in
Figure 1D, species A and B have a positive
and C a negative influence on the activa-
tion level of D. However, due to the 1:1
relationships, we cannot decide which
combinations of input signals of D will
eventually activate D itself. With additional
information, a refined hypergraph repre-
sentation might be constructed as in the
right part of Figure 1D: The hyperarc
connecting A and B with D expresses a
logical AND, whereas the (simple) red
hyperarc from C to D indicates an
alternative way to activate D, namely if
the inhibiting species C is not active.
Hence, this hypergraph expresses the
Boolean function ‘‘D gets activated if A
AND B are active OR if C is inactive’’. In
fact, any Boolean network can be repre-
sented by a directed hypergraph [9], which
can be advantageous when analyzing
biologically relevant network properties
[9,20,21]. Again, a correct analysis of
network function and dysfunction, e.g.,
which knock-out combinations guarantee
an inactivation of D in Figure 1D, requires
the explicit consideration of AND relation-
ships properly captured by hypergraphs.

Algorithmic Considerations

The concept of hypergraphs provides
such a rich modeling framework that
algorithms necessarily will be problem-

specific, and will differ in complexity from
similar algorithms for graphs. Clearly, since
graphs are special cases of hypergraphs,
algorithms for hypergraphs are at least as
hard as its specialized implementations in
the graph case. Generally, when discussing
algorithms in graphs and hypergraphs, one
has to distinguish between two types of
problems. The first type encompasses algo-
rithms determining a particular (e.g., optimal)
solution. One example, as noted above, are
shortest-path algorithms for graphs that are
of low complexity (and thus applicable in
large-scale networks) and which can also be
used to find the connected components or to
determine spanning trees in a hypergraph.
This is due to the fact that the graph
representation as in Figure 1C captures all
necessary information for these questions. If
hyperedges are weighted, however, the
shortest-path problems are hard ones in
general, unless assumptions about the struc-
ture of the edge weight function are made: If
each edge is weighted by its cardinality, the
shortest-path problem is NP-hard, but if the
weight function is additive, the problem can
be solved using a modified Dijkstra algo-
rithm [22]. On the other hand, problems
that are computationally easy for graphs can
be hard for hypergraphs: Finding a maximal
matching in a bipartite graph, i.e., deter-
mining a set of edges with maximal weight
so that each node is contained in exactly one
of the edges, is polynomial time–solvable.
Even checking whether a hypergraph is
bipartite, i.e., can be partitioned into two
sets of nodes so that no hyperedge is
contained in either of them, is NP-hard [23].
The second type of problem is enumer-

ation problems such as computing all paths
and cycles in a graph or all minimal hitting
sets in a hypergraph. These problems
typically require enormous computational
effort and are often limited to networks of
moderate size. For example, the hardness
of computing the minimal hitting sets
(transversal of a hypergraph) is an open
question in complexity theory [11]. The
theoretically fastest currently known algo-
rithm is quasi-polynomial [24], used
successfully, e.g., in [12], whereas variants
of Berge’s method [6] are often faster in
practice [10]. In general, it turns out that
the particular topology of cellular net-
works renders enumeration problems of-
ten feasible where one would expect
infeasibility in random networks with
comparable size (see, e.g., [10,25]).

Network Statistics in
Hypergraphs

With the increasing availability of large-
scale molecular interaction graphs such as

PPI or gene regulatory networks, more
and more researchers have begun asking
not only for single specific elements of a
graph but instead for its statistical proper-
ties or significant building blocks. Exam-
ples are the neural network of C. elegans,
which satisfies the small-world property,
implying shorter mean shortest paths and
higher clustering coefficients than one
would expect in random networks [26],
and the PPI network of yeast, which may
be modeled using a scale-free topology
and whose node connectivity is correlated
with essentiality of the corresponding
protein [27]. Key novelties in these
approaches are that properties of the
graphs are now interpreted as statistical
distributions, which can be correlated with
other variables and asked for significance
within an appropriate class of random
graphs [28,29]. In the following, we will
first shortly outline some existing exten-
sions of graph statistics to hypergraph
statistics and corresponding random mod-
els and afterward indicate applications in
computational biology. We will focus on
undirected hypergraphs, although exten-
sions to directed ones are possible.

The degree d(n) of a vertex nMV of an
undirected hypergraph H= (V,E) is the
number of hyperedges that contain n.
Similarly, the degree d9(e) of an hyperedge
eMH is the number of vertices of that
hyperedge. If G is a graph, then d9(e) = 2.
In the more general hypergraph setting,
however, we can consider distributions
both of vertex and hyperedge degrees. We
can ask for mean degrees or more general
properties of the distributions. In social
network analysis, this has already been
done: For instance, an actor–movie hy-
pergraph obeys power-law distributions in
both degrees whereas an author–publica-
tion hypergraph shows a power law only in
the number of co-authored papers, but not
in the author degree [30]—which is simply
due to the fact that the number of authors
on a paper is relatively limited.

The natural next step in defining hyper-
graph statistics is to correlate vertex and
hyperedge connectivity, a major ingredient
for determining, e.g., the small-world prop-
erty known from the graph case [26]. Here,
the commonly used graph clustering coeffi-
cient may be extended. For this, let N vð Þ
denote the neighborhood of a vertex, which
is defined as the set of hyperedges that
contain n. Then the (hypergraph) clustering
coefficient cc defined for a pair of vertices
(u,n) is given by cc u,vð Þ~ N uð Þ\N vð Þj j=
N uð Þ|N vð Þj j, which quantifies overlap
between neighborhoods. By analogy, it can
be defined for hyperedges as well, and, by
averaging over all vertices, a univariate
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clustering coefficient may be defined. In the
author–publication hypergraph, clustering
coefficients of both vertices and hyperedges
are higher than expected by chance [30].
Another proposal for clustering coefficients
in hypergraphs can be found in [31]. In
addition to such local measures, we may also
ask for global or semi-global properties. A
common question in the graph case is to
identify clusters, often denoted as commu-
nities, within the graph. Various methods
have been proposed in this context, with
normalized cut [32] and graph modularity
[33] being two of the most popular ones,
resulting in applications such as the search
for modular structures, ideally protein
complexes, in PPI networks [34]. The
former method has already been extended
to hypergraphs [35].

In order to test for significance of certain
structures, e.g., network motifs [36] or
scaling structures [26,27], good null models
are important. Such null models describe
random occurrences of structures. One
typically wants to keep some statistics of
the network fixed while at the same time
randomly sampling from its representation-
al class. This results in the notion of random
graphs with certain additional properties
such as Erdös-Rényi [37] or Barabási-
Albert [38]. Extensions of random models,
in particular to hypergraphs, would focus
on generative models, which increasingly
find applications at least in the graph case
[26,39]. In the context of hypergraphs, first
models have already been proposed [40].
What could be potential biological

applications of hypergraph statistics? Giv-

en the fact that in gene regulatory
networks statistical properties are decisive
[27], it stands to reason that if one wants
to combine two types of regulations or
interactions, e.g., gene and microRNA
regulation, the resulting hypergraph ought
to be analyzed from a hypergraph statistics
point of view. Another example is the
human–disease network [41], consisting of
disease genes and related diseases. Often,
analysis and visualization are done on the
projected versions, either onto diseases or
genes. However, node statistics or motif
detection [36] may be performed in the
hypergraph itself. The latter is already
implemented, e.g., in FANMOD [42], a
motif-finding tool ready to deal with n-
partite networks. Finally, we want to
mention a hypergraph analysis of a

Figure 2. Generating a hypergraph null model by rewiring. Choose two distinct hyperedges and two different vertices contained in either of
the two. Then swap them. Clearly this operation keeps both degree distributions fixed. After a certain number of iterations, the thus-generated
Markov chain produces independent samples of the underlying random hypergraph with given degree distributions. In the figure, this is illustrated
using the in-this-case simpler-to-visualize bipartite version. The gray double-arrows indicate edges to be swapped. Each of the three swaps, (A,H2)–
(C,H3), (B,H1)–(E,H3), and (B,H3)–(D,H1), does not change the vertex and edge degrees. Significance analysis of the CORUM protein complex
hypergraph was done in [44] using this idea.
doi:10.1371/journal.pcbi.1000385.g002
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mammalian protein complex hypergraph
acquired from the CORUM database
[43]. The hypergraph shows scale-free
behavior in both vertex degree and
hyperedge degree distribution [44]. As
illustrated schematically in Figure 2, the
authors then built a random hypergraph,
in which each node and each edge still had
the same degrees as in the original
hypergraph, but where any higher-order
node correlations such as the clustering
coefficients were destroyed. By using this
hypergraph null model, the authors were
able to show that certain large protein

complexes with low mean protein length
would not be expected by chance. Alto-
gether, hypergraph statistics can be easily
applied to, e.g., networks of interactions
between nodes of two types, and first
examples already show promising results.

Conclusions

To summarize, hypergraphs generalize
graphs by allowing for multilateral rela-
tionships between the nodes, which often
results in a more precise description of
biological processes. Hypergraphs thus

provide an important approach for repre-
senting biological networks, whose poten-
tial has not been fully exploited yet. We
therefore expect that applications of hy-
pergraph theory [6,22] in computational
biology will increase in the near future.
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