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Online citizen science projects such as GalaxyZoo1, Eyewire2 and 
Phylo3 have proven very successful for data collection, annotation 
and processing, but for the most part have harnessed human pattern-
recognition skills rather than human creativity. An exception is the 
game EteRNA4, in which game players learn to build new RNA 
structures by exploring the discrete two-dimensional space of 
Watson–Crick base pairing possibilities. Building new proteins, 
however, is a more challenging task to present in a game, as both the 
representation and evaluation of a protein structure are intrinsically 
three-dimensional. We posed the challenge of de novo protein 
design in the online protein-folding game Foldit5. Players were 
presented with a fully extended peptide chain and challenged to craft 
a folded protein structure and an amino acid sequence encoding that 
structure. After many iterations of player design, analysis of the top-
scoring solutions and subsequent game improvement, Foldit players 
can now—starting from an extended polypeptide chain—generate 
a diversity of protein structures and sequences that encode them in 
silico. One hundred forty-six Foldit player designs with sequences 
unrelated to naturally occurring proteins were encoded in synthetic 
genes; 56 were found to be expressed and soluble in Escherichia coli, 
and to adopt stable monomeric folded structures in solution. The 
diversity of these structures is unprecedented in de novo protein 
design, representing 20 different folds—including a new fold not 
observed in natural proteins. High-resolution structures were 
determined for four of the designs, and are nearly identical to  
the player models. This work makes explicit the considerable 
implicit knowledge that contributes to success in de novo protein 
design, and shows that citizen scientists can discover creative new 
solutions to outstanding scientific challenges such as the protein 
design problem.

The principle underlying de novo protein design is that proteins 
fold to their lowest free-energy state6; hence, designing a new pro-
tein structure requires finding an amino acid sequence with its lowest 
energy state in the prescribed structure. In practice, this challenge can 
be divided into two subproblems: first, crafting a protein backbone 
that is designable (that is, that could be the lowest energy state of some 
sequence); and second, finding a sequence with its lowest energy state 
in the crafted structure. One of the challenges of protein design is 
the exponentially increasing number of conformations available to a 
polypeptide chain, which is huge even for a modestly sized protein of 
60–100 residues. Thus, the first subproblem of crafting a plausible back-
bone is extremely open-ended, and the second subproblem is difficult 
because it is not tractable to explicitly check that a designed sequence 
has lower energy in the crafted structure than in any other structure. 
There has been considerable progress in de novo protein design in 
recent years7–10, but it is unclear whether all of the contributions to 
this success have been made explicit in the protocols used to design 
proteins, and how much implicit knowledge resides in the expertise of 

the designers. Disentangling the role of expert knowledge is particu-
larly difficult for the extremely open-ended challenge posed by the first 
subproblem (that is, crafting a plausible backbone), for which there are 
a practically unlimited number of solutions. Because full computer 
enumeration of backbones is not possible, there is considerable room 
for human creativity and intuition in generating and designing new 
protein structures.

To investigate how crowd-based creativity could contribute to solving 
the de novo protein design problem, we incorporated de novo design 
tools into the protein-folding game Foldit. Foldit is a free online com-
puter game developed to crowdsource problems in protein modelling, 
and provides full control over the three-dimensional structure of a pro-
tein model5 (Fig. 1). Players compete to build a model with the lowest 
free energy, as calculated using the Rosetta energy function11. In the 
past, Foldit has been primarily applied to protein structure prediction 
problems, in which players are presented with an unstructured amino 
acid sequence and challenged to determine its native conformation5,12. 
In one case, Foldit players redesigned a loop region of an already folded 
structure13, but the de novo design of an entire protein is a far more 
expansive challenge.

We repeatedly challenged Foldit players to design stably folded pro-
teins from scratch, and iteratively improved the game on the basis of 
their results. In each challenge, players were provided with a polyiso-
leucine backbone in a fully extended conformation (60–100 residues 
in length) and were given 7 days to fold the backbone into a compact 
structure and identify a sequence specifying this backbone. Initially, 
most top-scoring (low-energy) Foldit player designs were highly 
extended, lacked a solvent-inaccessible core and were composed 
entirely of polar residues (Extended Data Fig. 1); such extended, fully 
α-helical structures have more favourable hydrogen bonding, electro-
static and local torsional energies than collapsed structures, which must 
contort to create a buried core. Whereas polylysine and other extended 
polar sequences resembling these initial Foldit solutions are often 
α-helical in solution14,15, the lack of long-range interactions precludes 
specific folding into a single stable structure16. This highlights a limi-
tation of using absolute energy as an optimization criterion for protein 
design: a low-energy design does not guarantee structural specificity, 
which arises only if all other alternative conformations have higher 
energy. To favour the design of globular solvent-excluding protein folds, 
with sequences that uniquely encode them, we introduced three sup-
plementary design rules into Foldit: a ‘core exists’ rule that requires a 
minimum proportion of residues (for example, 30%) to be solvent-in-
accessible in the designed structure; a ‘secondary structure design’ 
rule that prohibits glycine and alanine in all secondary structure ele-
ments; and a ‘residue interaction energy’ rule to penalize large residues  
that make insufficient intramolecular interactions in the designed 
structure. With the addition of these rules to Foldit, subsequent 
top-scoring designs from Foldit players were compact globular proteins.
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Fig. 2 | Comparison of Foldit player and automated design-sampling 
strategies. a, Single trajectories (ignoring abandoned branches) for three 
Foldit player-designed proteins in red (Foldit1), blue (Peak6) and green 
(Ferredog-Diesel); and design trajectories for four Rosetta-designed proteins 
in grey. The y axis is the Rosetta energy rescaled so that the final design has 
a value of −1.00, and positive energies are shown as zero. Foldit players 
are willing to undergo large increases in energy to explore new regions; by 
contrast, the Rosetta protocol has a limited ability to escape local energy 
minima. Red circles correspond to structures shown in b. b, Snapshots from 
the design trajectory of Foldit1: (i) the initial extended chain of polyisoleucine; 
(ii) development of secondary structure; (iii) development of folded tertiary 

structure; (iv) sequence design of folded structure, with inset showing 
favourable packing at positions 13 and 45; (v) high-energy intermediate 
design, with inset showing redesign at positions 13 and 45, which results in 
steric clashes with the protein backbone; (vi) the final refined design, with 
inset showing renewed favourable interactions at positions 13 and 45. c, The 
design strategy for Foldit1 represented as a graph, showing all branch points 
where multiple design trajectories were spawned from a single intermediate. 
The final design was reached after 17 branch points. Node colours correspond 
to five different cooperating Foldit players, and the final design is marked with 
a star. d, Similar representation of a Rosetta design trajectory—there are only 
two branch points.
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Fig. 1 | The Foldit user interface. a, The Foldit score is the Rosetta energy 
with a negative multiplier, so that better models yield higher scores.  
b, The design palette allows players to change the identity of the amino-
acid residue at any position of the model. c, The ‘pull’ tool allows players 
to manipulate the 3D structure of the model. d, The ‘undo’ graph tracks 
the score as a model is developed, and allows players to backtrack and 
load previous versions of a model. e, Additional Foldit tools (from left to 

right): full-structure minimization, sidechain minimization, backbone 
minimization, auto-design sidechains, repack sidechains, translate 
or rotate model, secondary structure assignment, idealize secondary 
structure, manually design sidechains, delete residues, insert residues, 
insert cutpoint and idealize peptide bond geometry. f, Foldit players 
explore diverse structures that have no sequence or structural homology  
to natural proteins.
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We obtained custom synthetic genes encoding 12 player designs 
for which structure prediction calculations converged on the play-
er-designed conformation17. The sequences of these proteins have no 
homology to any known protein (Supplementary Table 1). The de novo 
designs were expressed in E. coli and purified by metal-affinity and 
size-exclusion chromatography. Analysis by chromatography and  
circular dichroism indicated that 6 of the 12 designs were monomeric 
and folded in solution, with helical secondary structure consistent with 
the players’ models (Supplementary Fig. 1). All of the experimentally 
tested proteins described in this paper are entirely the work of Foldit 
players.

During gameplay, the Foldit application uploads the player’s latest 
model to the Foldit server every 2–5 minutes; from these snapshots 
we can reconstruct the process by which a Foldit player develops a 
protein design (Fig. 2). Foldit players use more-varied and complex 
exploration strategies than standard Rosetta automated design pro-
tocols, and frequently revert to a previous iteration of their model to 
explore an alternative path, resulting in a highly branched search tree. 
A typical automated design protocol, by contrast, includes only two 
branch points18. In addition, Foldit players regularly sample much 
higher energy states than the automated protocol, which has only a 
limited ability to escape local energy minima.

Encouraged by the success of Foldit players in designing stable 
proteins from scratch, we made additions to the game to encourage 
players to explore more-diverse protein structures. Up until this point,  
all top-scoring Foldit designs had consisted of either three or four 
α-helices connected by minimal loops. Indeed, Foldit players had 
determined that designs with β-sheets did not score as well as α-helical  
bundles (Extended Data Fig. 2), and competitive players had aban-
doned any attempt to design more varied folds. This is an interesting 

parallel to protein design by practicing scientists, which has also 
focused much more on helical bundles than on other classes of protein 
folds19–22. To encourage the design of a wider variety of folds, we intro-
duced a ‘secondary structure’ rule, stipulating that no more than 50% of 
residues may form α-helices. Foldit players responded by designing a  
multitude of mixed α/β-proteins, which were indistinguishable from 
expert designs on visual inspection. However, structure prediction cal-
culations for these α/β design sequences showed poor sampling close to 
the target design structure, which suggests that the designed sequences 
did not strongly encode their local structures17. Further analysis showed 
that these player designs contained many residues with locally strained 
backbone conformations (backbone φ and ψ torsions in unfavoured 
regions of the Ramachandran plot23,24). That such designs had very 
low energies revealed a problem in the Rosetta energy function at the 
time: because Rosetta users typically sampled backbones starting from  
fragments of native proteins, unfavourable local conformations were 
rarely encountered—therefore, it had not been discovered that the 
energies associated with local-backbone strain were being under-
estimated. We addressed this flaw in the Rosetta model by increas-
ing the steepness of the energetic penalties associated with strained 
local-backbone geometry; this is now implemented in the latest Rosetta 
energy function11. We also added to Foldit an ‘ideal loops’ rule that 
restricted players to a set of 19 unstrained reverse-turn conforma-
tions7, and incorporated new tools to aid generation of unstrained 
backbones: a fragment lookup-based loop-closure tool, an interactive 
Ramachandran map and a protein blueprint scheme for drag-and-drop 
assembly of secondary structure elements and common loop conforma-
tions (Extended Data Fig. 3). Together, these upgrades brought about 
a marked improvement in the local-backbone quality of Foldit player- 
designed proteins (Extended Data Fig. 4).

Structural 
clustering

I

II–IV

V–VI 

VII

XII–XIV

XV

XVI–XX

XI

0 1 2 3 4 5 6 7
–15

–10

–5

0
ΔG = 14.4
kcal mol–1

25 50 75 100

–6

–4

–2

0

200 220 240 260
–10

0

10

20

30

200 220 240 260
–40

–20

0

20

40

60

200 220 240 260
–10

0

10

20

00 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

–160

–180

–200

–220

–180

–200

–240

–220

–200

–180

–160

–180

–160

–140

–170

–160
–150
–140
–130

1.2

Fold groups

IX–X

VIII N
or

m
al

iz
ed

 A
28

0 
(A

U
)

M
ea

n 
re

si
d

ue
 e

lli
p

tic
ity

  (
10

3  
d

eg
 c

m
2  

d
m

ol
–1

)

R
os

et
ta

 e
ne

rg
y

Cα r.m.s.d. ( ) Elution volume (ml) Wavelength (nm) Temperature (°C) Guanidinium HCl (M)

a b c d e f g

2003169_S953

2002949_0000

2002766_0001

2003594_S028

0 5 10 15 20

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0
1.2

200 220 240 260
–10

0

10

20

25 50 75 100

–8

–6

–4

–2

0

25 50 75 100
–20

–15

–10

–5

0

25 50 75 100
–8

–6

–4

–2

0

0 1 2 3 4 5 6 7
–20

–15

–10

–5

0

ΔG = 7.8
kcal mol–1

0 1 2 3 4 5 6 7
–30

–20

–10

0

10

ΔG = 7.4
kcal mol–1

0 1 2 3 4 5 6 7
–20

–15

–10

–5

0
ΔG = 12.3
kcal mol–1

Fig. 3 | Structural characterization of Foldit player-designed proteins. 
a, Dendrogram showing all 56 folded Foldit player designs clustered by 
structural similarity (TM-align26), with coloured circles highlighting the 
four designs characterized in b–g. The stacked bars show the 20 different 
folds among the clustered designs (Extended Data Fig. 5). Fold XX  
(see design 2003594_S028) is a new fold, previously unobserved in natural 
proteins. b–g, Cartoon depiction of four select Foldit designs (b); the 
graphs in c–g correspond to these four structures. c, Rosetta@home ab 
initio calculations show that the sequence for each design has an energy 
landscape that is strongly funnelled towards the design structure.  
y axis, Rosetta energy; x axis, Cα r.m.s.d. to the designed structure; points 
represent lowest-energy structures sampled starting from an extended 
chain (red points) and starting from the Foldit design model  

(green points). d, Size-exclusion chromatography traces (absorbance 
at 280 nm) show that designs are monomeric in solution. e, Circular 
dichroism spectra indicate that the designs adopt the expected secondary 
structure content in solution at 25 °C (blue trace), when heated to 95 °C 
(red trace) and when cooled again to 25 °C (green trace). f, Circular 
dichroism mean residue ellipticity at 220 nm as temperature is increased 
from 25 °C to 95 °C; the designs do not denature with increasing 
temperature. g, Cooperative unfolding during titration with guanidinium 
hydrochloride. Blue circles show circular dichroism mean residue 
ellipticity at 220 nm with increasing concentration of denaturant, and the 
black curve shows a two-state unfolding model fit to the data. Free energy 
of unfolding (ΔGunf) was determined by linear extrapolation using the fit 
model parameters27.

3 9 2  |  N A t U r e  |  V O L  5 7 0  |  2 0  J U N e  2 0 1 9



Letter reSeArCH

The importance of reducing local-backbone strain was borne out 
in experimental characterization. Before the backbone modelling 
improvements described in the previous paragraph, only 4 of 37 Foldit 
α/β-designs tested (11%) were monomeric and structured in solution. 
Following the backbone modelling additions, 46 of 97 (47%) were  
monomeric and exhibited the expected secondary structure in solu-
tion. Most showed exceptional stability in thermal and chemical dena-
turation experiments, with some free energies of unfolding (ΔGunf) 
exceeding 20 kcal mol−1; indeed, 32 designed proteins remained com-
pletely folded at 95 °C (Fig. 3, Supplementary Fig. 1). This success rate  
surpasses that in previous reports of designed α/β-proteins7,12.

Overall, the 56 successful Foldit designs are diverse in structure, 
representing 20 different protein folds (Fig. 3, Extended Data Fig. 5), 
one of which is a new fold that is previously unobserved in natural 
proteins. The success of Foldit designs is not attributed to just one 
or two exceptional Foldit players, but is shared broadly by the Foldit 
community (Supplementary Table 1). The 56 successful designs were 
created by 36 different Foldit players (the most prolific player created 
10 successful designs); 19 designs were created collaboratively by at 
least 2 cooperating players; and 5 successful designs were not top- 
scoring, but were nevertheless flagged by players as personal  
favourites. Foldit players lack formal expertise in protein modelling 
(Extended Data Fig. 6, Supplementary Notes), but knowledge and  
intuition gained from playing protein structure prediction puzzles 
in Foldit translated to success in de novo protein design (Extended  
Data Fig. 7).

We succeeded in solving high-resolution structures of four Foldit 
player-designed proteins. X-ray crystal structures of three designed 
proteins (named by their designers Foldit1, Peak6 and Ferredog-Diesel) 
closely match the designed conformations, with Cα root mean square 
deviations (r.m.s.d.) of 1.1, 0.9 and 1.7 Å, respectively (Fig. 4). Well-
resolved electron density in the protein core of Foldit1 and Peak6 shows 
that most sidechains adopt the intended rotamers and preserve the 
designed packing interactions. The electron density of Ferredog-Diesel 
is less clear, but the protein backbone adopts the designed fold, and 
many core sidechains appear to pack as intended. The solution nuclear 
magnetic resonance (NMR) structure of a fourth design, Foldit3, 
also closely matches the design conformation, with a Cα r.m.s.d. of 
1.1 Å between the design model and the medoid conformer25 of the 
ensemble.

From these results, we can draw several general conclusions about 
scientific models, citizen science and the interplay between the two. 
First, a scientific model that holds within the domain space considered 
by practicing scientists may not hold outside of this domain. This is 
most vividly illustrated by the highly extended structures generated by 
Foldit players in their first de novo design efforts, and later by the struc-
tures with strained local geometry not previously sampled by Rosetta 
users. Second, for citizen scientists to make essential and creative sci-
entific contributions through online gaming, the scoring function of 
the game must be an accurate representation of the science. In our 
initial iterations, Foldit did not present to players a sufficiently accu-
rate and general model to allow them to robustly design new proteins, 
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Ferredog-Diesel
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d

Fig. 4 | High-resolution structures of Foldit player-designed proteins. 
 a, The Foldit1 design (fold V in Fig. 3: three β-strands with sheet order 
1–2–3) model backbone (rainbow) aligns to the crystal structure (grey) 
with Cα r.m.s.d. of 1.1 Å. b, The Peak6 design (fold III: four strands, sheet 
order 1–2–4–3) model backbone aligns to the crystal structure with Cα 
r.m.s.d. of 0.9 Å. c, The Ferredog-Diesel design (fold I: four strands, sheet 
order 4–1–3–2) model backbone aligns to the crystal structure with Cα 

r.m.s.d. of 1.7 Å. Cross sections show core-residue sidechains, with the 
composite omit 2mFo − DFc map contoured at 2.0σ (a, b) or 1.0σ (c).  
d, The Foldit3 design model (fold XVII: four strands, sheet order 2–1–3–4) 
and NMR ensemble. The design model aligns to the representative 
(medoid) NMR model with a Cα r.m.s.d. of 1.1 Å. Cross sections compare 
core sidechains in the design model (rainbow) and representative NMR 
model (grey).
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even though the underlying Rosetta software had been used for protein 
design by practicing scientists. Third and most importantly, citizen 
science offers a powerful way to systematically improve a scientific 
model through iterations of model trial and model improvement. 
Human game players are exceptionally capable at finding and exploiting 
unanticipated solutions that are otherwise unexplored by experienced 
scientists, whose focus is not on getting a high score, but rather on 
solving their specific scientific problem.

We have demonstrated that non-expert citizen scientists, playing the 
online computer game Foldit, can accurately design completely new 
protein structures from scratch. Locally, players’ solutions are physically 
plausible and resemble natural proteins, but globally, they are creative 
and diverse. Proteins designed by citizen-scientist Foldit players are 
by no measure inferior to those of expert protein designers: they fold 
accurately to the intended conformation, show exceptional folding sta-
bility and span a wide diversity of structures. This result is all the more 
impressive given that de novo protein design was an almost completely 
unsolved problem just a few years ago, and the diversity in protein folds 
spanned by the successful Foldit players’ models considerably exceeds 
that in any previous protein design report, to our knowledge. The sus-
tained success of Foldit players over a wide diversity of protein folds 
highlights the power of human creativity when guided by scientific 
understanding presented in a readily comprehensible form.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-1274-4.
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MEthodS
Foldit protein design puzzles. Foldit puzzles were set up with a model polyiso-
leucine in fully extended conformation, with fixed length ranging from 60 to 100 
residues. Each puzzle was posted online for seven days, during which Foldit players 
competed to develop a protein model with the lowest energy, as calculated by the 
Rosetta energy function. Foldit puzzles used the talaris2013_cart scorefunction 
with the following modifications: (1) the cart_bonded scoreterm was upweighted 
(increased from 0.5 to 2.0) to ensure realistic bond lengths and angles as players cut 
and splice the backbone chain; (2) a penalty-only envsmooth scoreterm (weighted 
at 2.0) was added to supplement the Rosetta solvation treatment, and to discourage 
the design of buried polar and exposed nonpolar residues; (3) the reference energy 
of alanine was modified (increased to 3.0) to discourage the excessive design of 
alanine. Configuration files for all Foldit puzzles are provided in the Supplementary 
Data. Each Foldit puzzle was accompanied by a brief description, along with an 
explanation of any supplementary rules enforced in the puzzle. Design puzzles were 
accessible to all Foldit users; Foldit user registration is free and open to the public, 
at http://fold.it. Models were collected continuously as Foldit players worked on the 
puzzles, as the Foldit application automatically uploads the user’s latest model to 
a server every 2–5 min. This study was approved by the University of Washington 
Institutional Review Board, and informed consent for this research was obtained 
from all Foldit users at the time of user registration.
Protein design selection. After the end of each puzzle, we selected player models 
for further analysis as follows: first, we selected the lowest-energy model from 
each of the ten top-ranked groups, in which independent players were treated 
as individual groups (designs named with suffix ‘0000-9’). Second, we selected 
the lowest-energy model from the ten top-ranked solo players, which includes 
independent players as well as group members that developed a model without 
assistance from their group (suffix ‘s000-9’). Third, we visually inspected mod-
els that were flagged by Foldit players for special consideration, and selected any 
models that appeared plausible (suffix ‘S∗∗∗’). Last, we ranked and pruned the set 
of remaining models by removing any models that align to a better-scoring model 
with Cα r.m.s.d. less than 2.5 Å. We visually inspected the 50 top-ranked models 
in the pruned set and selected any models that appeared plausible (suffix ‘1001-
50’). Models deemed ‘implausible’ typically lacked secondary structure, contained 
buried polar residues or included long stretches of completely polar residues. At 
each step, we used TM-align26 to eliminate duplicate models (TM-score >0.98) that 
had already been selected (for example, models that were top-ranking and flagged 
by players). In rounds 2 and 3, the top-ranked group and solo models were auto-
matically selected for further analysis, without visual inspection. The sequences 
of selected models were subjected to Rosetta ab initio structure prediction17, using 
the distributed computing platform Rosetta@home. If ab initio predictions identi-
fied any decoy structures with energy comparable to (or lower than) the designed 
structure, or if ab initio predictions were unable to sample the designed structure, 
the design was rejected. All other designs were selected for experimental charac-
terization. See Extended Data Table 1 for summary statistics on design selection. 
The majority of experimentally tested designs (96 of 146) were top-ranked group 
or solo designs, which were selected ‘blindly’ (without visual inspection). Models 
and FASTA sequences of all tested designs are shown in the Supplementary Data.
Protein expression and purification. A 6×His tag with TEV-cleavable linker 
(sequence MGHHHHHHGWSENLYFQGS) was prepended to the N terminus 
of each design selected for experimental characterization. Plasmids containing 
the encoded genes were ordered from Genscript in pET15 (designs with prefix 
between 997258 and 1998925), in pET21 (1998555–2002990) or from Twist in 
pET29 (2003048-2003594) vectors. Plasmids were transformed into E. coli BL21 
Star (DE3) cells (Invitrogen), and grown overnight in 4 ml Luria–Bertani (LB) 
medium with 50 μg/ml carbenicillin (for pET15, pET21 vectors) or 30 μg/ml kan-
amycin (for pET29). Overnight cultures were used to inoculate 0.5 l auto-induction 
medium, and grown at 37 °C for 18 h. Cultures were pelleted and resuspended  
in 25 ml lysis buffer (20 mM Tris pH 8.0, 300 mM NaCl, 1 mg/ml lysozyme, 0.1 mg/ml  
DNase, 1 mM PMSF), and lysed by microfluidization. The cell lysate was pelleted 
and supernatant was filtered with a 0.22-μm filter before loading onto a 2 ml nick-
el-affinity gravity column. Protein bound to the column was washed with 20 ml 
wash buffer (20 mM Tris pH 8.0, 500 mM NaCl, 30 mM imidazole) and eluted 
in 10 ml elution buffer (20 mM Tris pH 8.0, 500 mM NaCl, 250 mM imidazole). 
Purified protein was dialysed into TBS (20 mM Tris pH 8.0, 300 mM NaCl) at 4 °C 
overnight to remove imidazole and further purified by size-exclusion chromatog-
raphy on an AKTAxpress (GE Healthcare) with a Superdex S75 10/300 GL column 
(GE Healthcare). For proteins containing cysteine, dialysis and gel filtration were 
carried out in TBS with 1 mM tris(2-carboxyethyl)phosphine (TCEP). Protein 
expression and solubility was determined from SDS–PAGE and mass spectrometry. 
Oligomeric state was determined by size-exclusion chromatography.
Circular dichroism. Purified protein was dialysed into 50 mM sodium phosphate 
pH 7.4 at 4 °C overnight (plus 500 μM TCEP for proteins containing cysteine). 
All circular dichroism data were collected on an AVIV Model 420 spectrometer. 

Far UV spectra and temperature melts were measured with 11–62 μM protein 
in a quartz cuvette with path length of 1 mm. Protein concentration was deter-
mined by absorbance at 280 nm using a NanoDrop spectrophotometer (Thermo 
Scientific), using predicted extinction coefficients. Wavelength spectra were meas-
ured between 195 and 260 nm at 25 °C, 95 °C and again after cooling to 25 °C. For 
temperature melts, ellipticity at 220 nm was monitored as temperature increased 
from 25 °C to 95 °C in increments of 2 °C. Chemical titrations were carried out 
with 1.0–21 μM protein in a quartz cuvette with path length of 10 mm. Ellipticity 
at 220 nm was monitored at concentrations of guanidinium chloride increasing 
from 0 to 7 M, in increments of 0.25 M. Denaturation curves were fitted with 
nonlinear regression to two-state unfolding model with six parameters: the folding 
free energy, m-value, and slope and y intercept for baseline curves27.
X-ray crystallography. Prior to X-ray crystallography, the N-terminal 6×His 
tag was cleaved from protein samples by incubation with 250 μg TEV protease 
at 25 °C for 4 h in 20 mM Tris pH 8.0, 300 mM NaCl, 1 mM DTT. The reaction 
product was dialysed into TBS overnight at 4 °C to remove DTT and flowed over a 
2 ml metal-affinity gravity column to remove TEV protease and residual histidine 
tag. The cleaved protein was further purified by gel filtration as described above. 
Purified protein was concentrated to 20–100 mg/ml in 20 mM Tris pH 8.0, 300 mM 
NaCl. Crystallization screening was carried out with a variety of 96-condition spare 
matrix suites available from Qiagen or Hampton Research. A Mosquito Crystal 
nanolitre robot (TTP Labtech) was used to prepare screens in 3-well sitting drop 
plates, with 200 nl drops and protein:precipitant ratios of 1:1, 1:2 and 2:1.

Foldit1 (2002949_0000) was crystallized at 20 mg/ml in 50 mM HEPES pH 
7.5, 0.2 M potassium chloride, 35% v/v pentaerythritol propoxylate. Crystals were 
flash-frozen in liquid nitrogen without further cryo-protection. X-ray diffraction 
was collected to a resolution of 1.18 Å.

Peak6 (2003333_0006) was crystallized at 40 mg/ml in 0.1 M sodium acetate 
pH 4.5, 0.2 M lithium sulphate, 50% w/v PEG 400. Crystals were briefly soaked 
in mother liquor plus 20% PEG 200, then flash-frozen in liquid nitrogen. X-ray 
diffraction was collected to a resolution of 1.54 Å.

Ferredog-Diesel (2003169_S953) was crystallized with 6×His tag intact, at 80 
mg/ml in 0.1 M citrate pH 4.0, 3.0 M NaCl. Crystals were dehydrated by soaking 
in 5 μl mother liquor in open air for 10 min, then flash-frozen in liquid nitrogen. 
X-ray diffraction was collected to a resolution of 1.92 Å.

X-ray diffraction datasets were collected at the Advanced Light Source 
(Berkeley, CA). Data was processed with HKL200028. Crystal structures were 
solved by molecular replacement with Phaser29, using the backbone of the original 
designed model with sidechains truncated to the β-carbon (Foldit1 and Peak6), 
or using the backbone of a model predicted ab initio from the design sequence 
(Ferredog-Diesel). Models were built and refined in iterative cycles using Coot 
and PHENIX30,31. Diffraction data and refinement statistics are listed in Extended 
Data Table 2.
NMR spectroscopy. NMR studies were performed using uniformly 15N,13C-
enriched protein samples. A synthetic gene for Foldit3 (2003265_s008) was 
obtained from Genscript already incorporated into plasmid pET15TEV_NESG, 
which includes a N-terminal 6×His purification tag, followed by a TEV protease 
cleavage site (sequence MGHHHHHHGWSENLYFQGS). E. coli BL21(DE3) cells 
containing plasmid pET15TEV_NESG-Foldit3 were grown in 1 l MJ9 minimal 
medium32, supplemented with 100 μg/ml ampicillin at 37 °C. To produce uniformly 
15N and 13C-enriched protein samples, 1 g/l 15NH4 salts and 2g/l U-13C glucose 
were added as sole nitrogen and carbon sources, respectively. When OD600 reached 
around 0.5 units, the culture was transferred to 18 °C, and protein production was 
induced by addition of 1 mM IPTG. After overnight incubation, the cells were col-
lected and resuspended in 20 ml binding buffer (20 mM Tris-HCl pH 8.0, 500 mM 
NaCl and 20 mM imidazole). After passing the cells through 900–1000 psi French 
press twice, cell debris were removed by 10,000 r.p.m. for 30 min. The supernatant 
was further spun down at 40,000 r.p.m. for 1 h. The obtained supernatant (solu-
ble fraction) was mixed with 1 ml of Ni-resin and incubated at 4 °C for 1 h. The 
non-specific binding proteins were removed by 20 ml binding buffer and washing 
buffer (20 mM Tris-HCl pH 8.0, 500 mM NaCl and 50 mM imidazole) and the 
target protein was eluted by 5 ml elution buffer (20 mM Tris-HCl pH 8.0, 500 mM 
NaCl and 300 mM imidazole). The protein was dialysed against GF buffer (20 mM 
Tris-HCl pH 8.0, 100 mM NaCl) for overnight and gel filtration was carried out 
using AKTA express with high-load 26/600 Superdex 200 pg column. Homogeneity 
(>97%) was validated by SDS polyacrylamide gel electrophoresis. The purified 
protein was dialysed against 20 mM potassium phosphate (pH 6.5), and the protein 
concentration was adjusted to between 0.3–0.4 mM for NMR studies.

All NMR spectra were recorded at 25 °C using cryogenic NMR probes. All 
NMR data were collected on the Bruker AVANCE III 600 MHz spectrometers 
and processed using the program NMRPipe33, and analysed using the programs 
SPARKY and XEASY34. Spectra were referenced to external DSS. Sequence-specific 
resonance assignments were determined using AutoAssign software together with 
interactive manual analysis, as previously described35. Backbone dihedral angle 

http://fold.it
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constraints were derived from the chemical shifts using the program TALOS_N36 
for residues located in well-defined secondary structure elements. The programs 
ASDP37 and CYANA38,39 were used to automatically assign NOEs and to calculate 
structures. RPF analysis37,40 was used in parallel to guide iterative cycles of noise 
and artefact peak removal, peak picking, and NOESY peak assignments. The 20 
conformers with the lowest target CYANA function value were then refined in 
explicit water41 using the program CNS42. The structural statistics and global 
structure quality factors (Extended Data Table 3) including Verify3D43, ProsaII44, 
PROCHECK45, and MolProbity46 raw and statistical Z-scores were computed using 
the PSVS47 v.1.5 and PDBStat48 software packages. The global goodness-of-fit of 
the final structure ensembles with the NOESY peak list data, the NMR DP score, 
was determined using the RPF analysis program40.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The atomic coordinates of Foldit1, Peak6 and Ferredog-Diesel crystal structures 
and the Foldit3 NMR structure have been deposited in the RCSB Protein Data 
Bank (PDB) with accession numbers 6MRR, 6MRS, 6NUK and 6MSP, respec-
tively. Chemical shift and NOESY peak list data for Foldit3 were deposited in the 
Biological Magnetic Resonance Data Bank with accession number 30527.

Code availability
Because Foldit crowdsourcing relies on regulated, fair competition between par-
ticipants, the source code of the Foldit user interface is not open. The under-
lying Rosetta macromolecular modelling suite (https://www.rosettacommons.
org) is freely available to academic and non-commercial users, and commercial  
licenses are available via the University of Washington CoMotion Express License 
Program. Analysis scripts used in this paper are available in the Supplementary 
Information.
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Extended Data Fig. 1 | Initial top-ranking Foldit player designs. 
When challenged to design a protein with only the talaris2013 score 
function (and no additional rules), Foldit players discovered low-energy 
models that are unlikely to fold as designed. a, An extended α-helix, 
composed entirely of lysine and glutamate, has very favourable energies 
for hydrogen-bonding, electrostatic and backbone torsions, but is 
unlikely to fold cooperatively into a single stable structure. This type of 
design is discouraged with the ‘core exists’ rule. b, Owing to their greater 
surface area, large aromatic sidechains can make more interactions than 

smaller aliphatic sidechains, even when underpacked or solvent-exposed. 
This type of design is discouraged with the ‘residue interaction energy’ 
rule. c, A design with an alanine- and glycine-saturated core can make 
favourable van der Waals interactions between closely packed backbone 
atoms; however, the burial of these small sidechains is associated with a 
weaker hydrophobic effect, and the lack of interdigitation allows exchange 
between multiple conformations with similar core packing energies (that 
is, molten globule behaviour). These designs are discouraged with the 
‘secondary structure design’ rule.
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Extended Data Fig. 2 | Rosetta energy of top Foldit player designs. 
Rosetta energy of top-ranking designs was calculated with the talaris2013 
score function and normalized by residue count. a, Energy of top-ten-
ranked designs from: initial Foldit puzzles (round 0; n = 30 designs), 
round 1 puzzles (n = 170), round 2 puzzles (n = 510) and round 3 puzzles 
(n = 250). The introduction of supplementary rules in round 1 and round 
2 resulted in higher-energy designs (P < 10−6 and P < 0.01, respectively; 
Wilcoxon rank-sum test). The backbone modelling improvements in 
round 3 resulted in lower-energy designs (P < 10−15; Wilcoxon rank-sum 
test). b, Energy of top-ten-ranked designs from round three all-α puzzles 
(n = 30) or α/β-puzzles using the ‘secondary structure’ rule (n = 220). 
All-α designs tend to have lower energy than α/β-designs (P < 10−10; 
Wilcoxon rank-sum test). Box plots show: centre line, median; box limits, 
upper and lower quartiles; whiskers, 1.5× interquartile range; points, 
outliers.
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Extended Data Fig. 3 | New backbone-modelling tools in Foldit. a, The 
‘remix’ tool allows players to select a region of the model and search a 
library of backbone fragments for a conformation that can be substituted. 
b, An interactive Ramachandran map allows players to easily identify 
residues with outlier backbone conformations. Players can also click and 
drag points on the Ramachandran map to set the backbone torsions of 

individual residues. c, A ‘blueprint’ panel shows the primary sequence and 
secondary structure content of the model. Residues are coloured according 
to the ABEGO quadrants of the Ramachandran plot7. d, Players can drag-
and-drop modular building blocks onto the blueprint panel to insert 
common turn conformations into their model.
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Extended Data Fig. 4 | Improvement of backbone quality in round 
3 Foldit designs. MolProbity24 was used to calculate the proportion of 
residues with unfavored or outlier backbone torsions in: high-resolution 
crystal structures of native proteins (n = 6,342), de novo design models 
from a previous study7 (n = 72), and top-ranking Foldit player designs 
from before (n = 680) and after (n = 250) improvements to Foldit 
backbone-modelling tools. Initial Foldit player designs contained 
significantly more unfavoured torsions than native proteins or other 
de novo designs from a previous study7 (P < 10−15, two-tailed t-test). 
Improvements to Foldit’s backbone-modelling tools led Foldit players to 
produce designs with fewer unfavoured torsions (P < 10−15, two-tailed 
t-test). Box plots show: centre line, median; box limits, upper and lower 
quartiles; whiskers, 1.5× interquartile range; points, outliers.
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Extended Data Fig. 5 | Protein folds represented by successful Foldit 
player designs. Each fold has a unique arrangement and connectivity of 
secondary structure elements, depicted in cartoon diagrams. Diagrams 
are labelled with Roman numerals as in Fig. 3. Fold XX is a new fold, 

previously unobserved in natural proteins; TM-align26 and DALI50 
alignments of design 2003594_S028 against the entire PDB found no 
structural homologues with this fold.
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Extended Data Fig. 6 | Foldit player demographics. All players who participated in Foldit protein design puzzles and who had not opted out of  
Foldit-related email were solicited for survey questions. Data are shown for n = 324 responding Foldit players.
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Extended Data Fig. 7 | Category rankings of Foldit players. Foldit player 
rankings are strongly correlated in the design and prediction categories 
(Spearman’s rank correlation coefficient of 0.84). This suggests that skills 
developed playing Foldit structure prediction puzzles carry over to design 
puzzles and vice versa.
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Extended data table 1 | Success rates of Foldit player-designed proteins

*Linguistic sequence complexity49 was calculated from the top-ten-ranked models in all puzzles, using word lengths of 1, 2 and 3.
†Rosetta energy is the talaris2013 energy normalized by residue count. Values shown are mean and standard deviation for the ten top-ranked models in all puzzles. See Extended Data Fig. 2 for 
sample sizes.
‡Includes redundant models, as very similar models can appear in two or more categories (top, shared and clustered). See Methods for details on model selection.
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Extended data table 2 | X-ray crystallography data and refinement statistics

Values in parentheses are for highest resolution shell. X-ray diffraction data for each protein structure were collected on a single crystal and processed as described in the Methods.
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Extended data table 3 | NMR and refinement statistics for protein structures

∗Pairwise r.m.s.d. was calculated among 20 refined structures for ‘well-defined’ residues 21–45, 48–54, 58–76, 81–87 and 90–96.
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Software and code
Policy information about availability of computer code

Data collection The pre-compiled Foldit game is freely available for download at https://fold.it for Windows, Linux, and Mac. A standalone version of 
Foldit is also freely available for academic use; for details visit https://fold.it/standalone. Foldit configuration files for all design puzzles 
are included in the Supplementary Information. The Rosetta software suite was used to perform ab initio prediction calculations; Rosetta 
is freely available for academic users on Github, and can be licensed for commercial use by the University of Washington CoMotion 
Express License Program.

Data analysis Custom Python scripts written to analyze circular dichroism data are included in the Supplementary Information. Protein structures were 
analyzed with MolProbity (version 4.2). Crystallographic data were analyzed with PHENIX (release 1.101.1-2155) and Coot (v0.8.7 EL). 
NMR data were analyzed with SPARKY, XEASY, TALOS_N, ASDP, CYANA, PDBStat and PSVS (version 1.5).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The atomic coordinates of Foldit1, Peak6, and Ferredog-Diesel crystal structures, and the Foldit3 NMR structure, have been deposited in the RCSB Protein Data Bank 
with accession numbers 6MRR, 6MRS, 6NUK and 6MSP, respectively. Chemical shift and NOESY peak list data for Foldit3 were deposited in the Biological Magnetic 
Resonance Bank (BMRB ID 30527).

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size for protein characterization was determined by estimated work load. In total, 146 protein designs were tested, from 97 Foldit 
puzzles. This was deemed sufficient due to the high number of successfully folded designs in our testing. For in silico designed-backbone 
analysis, the sample sizes of (n = 717 or 250) was considered sufficient. The inclusion of additional samples is not expected to affect the 
distribution of measured values.

Data exclusions No data were excluded from analysis.

Replication Puzzle configurations were used repeatedly in replicated Foldit puzzles to ensure reproducibility. The final puzzle configuration was used for 
25 replicate Foldit puzzles. Protein expression and solubility was tested in duplicate. Structural characterization were performed once or twice 
with internal statistical validation. If positive results (e.g. protein expression, solubility, etc.) could not be replicated, they are reported as 
negative results.

Randomization There was no randomized sample allocation in this work. All tested protein designs received identical treatment.

Blinding Blinding was not relevant to this work, since all tested proteins received identical treatment.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Participation was open and free to the public, and we did not control for participant demographics. See Extended Data Fig. 6 for 
demographic data from a voluntary (non-obligatory) participant survey.

Recruitment Participation was open and free to the public, at https://fold.it.
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