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a b s t r a c t

Dynamic many-body potentials (DMBPs) significantly extend the applicability of molecular dynamics
(MD) simulations to broad material properties and processes, including chemical reactions. Recently,
we have designed a shift/collapse (SC) algorithm that accelerates DMBP-MD simulations over the
conventional approach based on linked-list cell and neighbor list (NBL) methods. Here, we present an
extension of the SC algorithm called SC-NBL, which outperforms the original SC algorithm and can
be implemented seamlessly in conventional NBL-based DMBP-MD programs. Excellent performance is
achieved by combining communication-lean SC and computation-lean NBL approaches. For small and
large granularities, the SC-NBL approach achieves 1.33× and 3.29× speedup, respectively, over the
original SC approach. In addition, SC-NBL performance surpasses the conventional NBLmethod for DMBP-
MD at large granularity with running time speedup of 2.2 folds, whichwas the shortcoming of the original
SC algorithm.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics (MD) has become a common investigation
tool to study dynamics of atoms for broad applications inmaterial
science, chemistry, physics, and biology [1,2]. Recently, chemically
reactive MD simulations using dynamic many-body potentials
(DMBP) [3–11] have gained great attention. These DMBP-MD sim-
ulations allow dynamic breakage and formation of atomic bonds,
thereby enabling the study of broadermaterial properties and pro-
cesses, including chemical reactions. However, the computational
cost of DMBP-MD is significantly higher than those for non-bonded
pairwise potentials or fixed-bond many-body potentials [12,13].
It is challenging, but with immense benefits, to develop efficient
computation algorithms for DMBP-MD for encompassing larger
spatio-temporal scale simulations for reactive systems than are
currently possible [14,15].

Conventional DMBP computations employ linked-list cell
and neighbor list (NBL) methods [1,2], as well as their hy-
brids [16]. Recently, we developed a highly scalable algorithm
called shift/collapse (SC), which outperforms the conventional hy-
brid cell-NBL approach for DMBP-MD computation [17]. SC algo-
rithm is a cell-based method that minimizes intra-node compu-
tation by eliminating redundant n-tuple evaluation (i.e., n = 2
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for pair, n = 3 for triplet, n = 4 for quadruplet, and so on),
while reducing inter-nodedata communication forDMBP-MDsim-
ulations on parallel computers. Superior performance of SC algo-
rithm in DMBP-MD, including theoretical proofs and performance
benchmarks in large-scale parallel machines, was demonstrated
extensively in our previous work [17]. Despite an established ex-
cellent parallel scalability performance, application of SC algorithm
is rather limited due to the incompatibility of SC algorithm and
the commonly used NBL method. NBL is a data structure stor-
ing information of nearest-neighbor atoms for each atom in the
system. Using NBL can substantially improve performance of MD
simulations by reducing number of atoms involved in the force
computation [2]. This is especially beneficial for many-body force
computation in DMBP-MD.

In this work, we have developed an SC algorithm that utilizes
neighbor list (SC-NBL). SC-NBL algorithm for parallel DMBP-MD
provides excellent scalability of SC algorithm, while tremendously
reduces many-body force computation (n ≥ 3) when compared
to the original SC algorithm. This paper presents the precise de-
scription and correctness proof of the SC-NBL algorithm, including
implementation detail. This paper is organized as follows. Sec-
tion 2 provides the details of SC and SC-NBL algorithms. Section 3
presents performance benchmark and conclusions are drawn in
Section 4.
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2. Methods

2.1. Range-limited n-tuple MD computation

MD simulation follows time evolution of an N-atom system
R = {r1, . . . , rN } by numerically integrating Newton’s equations of
motion

mi
d2ri
dt

=
∂Φ(R)

∂ri
, (1)

where Φ(R) denotes many-body interatomic potential-energy
function. Here,Φ(R) is defined as a sumof n-body potential-energy
function

∑
n=2Φn. Each Φn term can be evaluated as a function of

all atomic n-tuples in the system:

∂Φn

∂ri
=

N∑
j1=1

. . .

N∑
jn=1
j1<jn

∂Φ(R)
∂G(rj1 , . . . , rjn )

·
∂G(rj1 , . . . , rjn )

∂ri
, (2)

where G(rj1 , . . . , rjn ) denoted n-tuple functions (e.g. interatomic
distance for n = 2, bond angle for n = 3) and ji ̸= jk for ∀ i
and ∀k ∈ {1,. . . , n}. Based on Eq. (2), n-tuple computation can be
accomplished by finding all combination of atomic n-tuples in R.
For range-limited n-tuple DMBP-MD, only atomic n-tuples within
the cutoff radius (rcut−n) are included for force computation. Here,
range-limited n-tuple is defined as(
rj1 , rj2 , . . . , rjn

)
|∀k ∈ {1, . . . , n − 1} : rjk,jk+1 ≤ rcut−n, (3)

where rjk,jk+1 is an interatomic distance between atoms rk and
rk+1. Since we focused on range-limited n-tuple, we denote χ =

(j1, j2, . . . , jn) for jk ∈ {1, . . . ,N} as range-limited atomic n-tuple
hereafter. Therefore, the main computation in range-limited n-
tuple MD is to find all χ for a given set of atom positions R.

Typically, finding all χ can be efficiently achieved by using
linked-list cell method. Cell method divides simulation box into
small cells of equal size with side length equal to or slightly larger
than rcut−n. The number of cells inα direction, Lα , is calculated from
Lα =

⌈
lα

rcut−n

⌉
for simulation box of side length lα in α = x, y, and

z directions, respectively. After that, atoms are assigned to each
linked-list cell based on their spatial coordinates. Specifically, an
arbitrary atom r is assigned to cell c = (cx, cy, cz) for cα =

⌊
rα

rcut−n

⌋
,

where (cx, cy, cz) denotes the cα-th cell inα = x, y, and z directions,
respectively.

The computation steps of cell method can be described as
follows. For an arbitrary atom in a particular cell c, all of its n-tuples
are found by traversing up to the (n−1) th nearest neighbor cells of
c (e.g. first nearest-neighbor cells for 2-body (pair) interaction, first
and second nearest-neighbor cells for 3-body (triplet) interaction,
and so on) [18]. This algorithm is described as a full-shell (FS)
method based on its traversing pattern [2], which includes all near-
est neighbor cells. This ensures that the n-tuples with interatomic
distance less than rcut−n are included in the force computation.

2.2. Computation pattern algebraic framework

The computation steps of cell method described in Section 2.1
are traditionally sufficient as it is straightforward to understand,
implement, and verify. The correctness of cell method can be de-
scribed using owner-compute rule, where each cell in the system
is responsible to generate all n-tuples of atoms resided within it.
However, the proof of correction ismore sophisticated formethods
that do not follow owner-compute rule such as zonal method [19],
neutral territory [20,21], and SC algorithm [17]. In the previous
work, we proposed a computation pattern algebraic framework
(CPAF) as a generalized description of cell-based method MD [17].

CPAF describes cell-based MD computation by ‘‘convolution’’ of
computation pattern onto every cell in the system to generate allχ .
For the sake of clarity, we briefly described the CPAF in this section.

Let computation pattern P be a set of cell interactions p, P= {p}.
Here, cell interactionp is defined as a tuple of length n for cell offset
vectors, p = (α⃗1, . . . , α⃗n), where cell offset vector α⃗j is a 3-integer
vector (αj,x, αj,y, αj,z). Convolution of P onto an arbitrary cell c is
defined as follows. For each p ∈ P, atomic n-tuples (j1, . . . , jn) are
generated from all combination of n atoms j1 to jn selected from
cells c + α⃗1, c + α⃗2, . . . , c + α⃗n, respectively (note that c + α⃗j =

(cx + αj,x, cy + αj,y, cz + αj,z)). To complete all force computation
in MD, P is generally convoluted onto all cells in the system to
generate all χ .

In term of correctness, a given computation pattern P is correct
if and only if all χ is generated in the convolution step. If there are
multiple generations of some χ throughout the convolution steps,
the filter algorithm is required in order to assure that one and only
one χ is counted for force computation. Otherwise, there will be
force and energy double counting. One of themost commonly used
computation patterns is full shell (PFS) shown in Fig. 1(a), while
Fig. 1(b) shows the system after convolution using PFS onto all cells
(blue squares in Fig. 1(b)).

2.3. Original SC algorithm

Shift/collapse (SC) algorithm is an efficient computation algo-
rithm based on cell method for general range-limited n-tuple MD
computation. SC algorithm employs SC computation pattern (PSC),
which is an optimized computation pattern that eliminates redun-
dant computation andminimize the stencil region (see Fig. 1(c)). SC
algorithm to create PSC for arbitrary n contains three main phases.
First, PFS is created by performing (n − 1)-fold nested loops to
iterate (n − 1)-nearest neighbor cells. Second, PFS is transformed
using octant-compression shift algorithm, which shifts all cell in-
teractions p = (α⃗1, . . . , α⃗n) ∈ PFS toward the upper corner such
that all cell offset vector α⃗j > 0. This step compacts the computa-
tion footprint to only single octant (see Figure S1 in supplementary
data). In the last phase, reflective collapse algorithm is performed
to find and remove redundant cell interactions that generate the
same χ . The detailed description of SC algorithm can be found
in [17]. As a result, SC algorithm reduces computation by elimi-
nating redundant tuple evaluation. The reduction of stencil region
(i.e., striped region in Fig. 1(d) compared to Fig. 1(b)) eventually
minimizes communication in parallel SC-MD and improves data-
cache utilization during the force computation. The detail on data
communication in parallel SC-MD is described in the next section.

2.4. Parallel implementation of SC-MD

Parallel SC-MD employs domain decomposition scheme, where
atoms in the simulated system are distributed among compute
nodes based on their spatial coordinates. The computation steps
in each parallel SC-MD loop are shown in Fig. 2(a). Three steps
are involved in the inter-node communication (shown in orange
boxes in Fig. 2(a)), which are: (1) import atom data before force
computation; (2) return forces after force computation; and (3)mi-
grate atom data that moved out of the domain after updating
coordinates. The communication steps can be described as follows.

Before the force computation step, atoms near domain bound-
aries (within import radius rimport = maxn[(n − 1) rcut−n]) are
imported from the nearest compute nodes in x, y, z direction,
respectively. The imported atoms from the prior import direction
are also forwarded to the nodes in the subsequent directions,
thereby reducing number of communications by omitting direct
communication with the corner nodes. Therefore, only three im-
port communications with three neighbor nodes are necessary
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Fig. 1. (a) Full shell computation pattern (PFS) for n = 2 (b) cells in the system
after PFS convolution, where blue squares denoted domain cells and yellow squares
denoted extended cells due to stencil of computation pattern. Extended cells
are needed to be imported from nearest neighbor domain in parallel simulation.
(c) Shift/collapse (SC) computation pattern (PSC) for n = 2 and (d) system after
convolution of PSC . Note the stencil region and extended cells are reduced in PSC
when compared to PFS (showed in striped squares). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

in this scheme before force computation (steps 1–3 in Fig. 2(b)).
After the force computation is completed, reaction force acting
on the imported atoms is returned and forwarded to the owner
nodes in a reverse direction (z, y, x directions, respectively) (steps
6–8 in Fig. 2(b)). Finally, data of atoms that moved beyond the

domain boundary are migrated to the corresponding neighbor
nodes (step 10 in Fig. 2(a)).

2.5. Shift/collapse algorithm on neighbor list (SC-NBL)

The n-tuple MD computation using SC-NBL algorithm can be
summarized in two steps: (1) NBL creation during SC algorithm
for n = 2 and (2) n-tuple generation for n > 2 using NBL. Also,
the convolution in SC-NBL algorithm is changed slightly when
compared to original SC algorithm. The detail of SC-NBL algorithm
is explained in the following subsections.

2.5.1. Neighbor list creation
In SC-NBL, NBL of atom i (NBL(i)) is defined as a set of all atom

indices j such that rij < rcut-NBL. Here rcut-NBL is the largest cutoff
among n-tuple computation rcut-NBL = maxn≥2 (rcut−n). To save
the NBL creation cost, NBL can be created simultaneously with the
force computation for n = 2 in the convolution step. This approach
should be common in most cases because rcut-2 is usually larger
than rcut−n for n > 2 in general. In addition, since the force compu-
tation for n = 2 is completed at the same time as NBL creation, NBL
is only needed to store atom data for force computation of n > 2.
Therefore, we consider rcut-NBL = maxn>2 (rcut−n) hereafter.

Next,we describe the convolution step for SC-NBL. AlthoughPSC
is still used in SC-NBL algorithm, the convolution step is slightly
different than the original SC. Here, the PSC convolution is per-
formed on both domain cells and imported cells rather than only
the domain cells in original SC (see Fig. 3(a)). Particularly, PSC
convolution on domain cells includes force computation for n = 2
and update the NBL, while PSC convolution on imported cells will
only update the NBL. The PSC convolution on imported cells is
required so that the information of NBL for atoms in the imported
cell is completed. During SC-NBL convolution on the imported
cells, cell interaction refers to the cell outside scope of the system
(i.e. combined domain and imported cells) will be ignored. This
creates ‘‘partial NBL’’ for atoms in the imported cells and near the
boundary, which is required to generate all tuples of every atom
(see Fig. 3(b)). Upon the completion of this procedure, the force
contribution for n = 2 and NBL within the radius of rcut–NBL for
every atom are obtained.

Fig. 2. (a) Computation steps in each MD loop of parallel SC-MD, where blue boxes denoted computation steps and orange boxes denoted communication steps. (b)
Communication routine during atom import and force return. Blue cubes denoted domain cells, while red, green, and yellow cubes denoted imported cells in x, y, and z
directions, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. (a) Comparison of PSC convolution in SC-NBL and SC algorithms. Convolution in SC-NBL includes domain and imported cells (blue and yellow squares), while
convolution of SC includes only domain cells (blue squares). Note that SC-NBL convolution at the imported cell performs only NBL update (no force computation).
(b) Illustration of full NBL used in conventional NBL method and partial NBL used in SC-NBL. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

2.5.2. N-Tuple computation using NBL
After the NBL is created from the first step, χ for n > 2 are

generated as follows. Let χ (i) denote χ beginning with atom i,
which can be generated by consecutively traverse through the
chain of atoms in NBL starting from NBL(i):

χ (i) =

{
(i, j2, . . . , jn)|

∀jk ∈ NBL(i) fork = 2
∀jk ∈ NBL(jk−1) fork > 2

}
, (4)

This n-tuple generation scheme may include duplicated χ from
two scenarios: (1) inverse duplication (i, . . . , jn) and (jn, . . . , i); and
(2) parallel duplication, in which duplicated n-tuple that may exist
in the multiple computing domains in parallel implementation.
To ensure that all generated n-tuples are unique among all nodes
under this scheme, a filtering algorithm needs to be applied for
all χ generated from NBL. Avoiding inverse duplication of χ (i) is
straightforward by using filtering condition i<jn. In case of parallel
duplication, we have developed a Unique Tuple Test (UTT) to filter
the non-unique tuples in parallel domains. The UTT is described as
follows.

Let import flag (IPF), θ (i), be an import status of atom i. Here,
θ (i) = (θx(i), θy(i), θz(i)) is a three-Boolean vector which specifies
whether atom i is imported or forwarded in particular direction.
Specifically, θm(i) ∈ {true, false}, where m ∈ {x, y, z} denoted the
directionality of imported domain. The value of θm(i) is assigned
using the following condition:

θm (i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true atom i is imported from node in

m direction
true atom i is forwarded from m

direction in prior communication step
false none above.

(5)

Example of different scenarios for various IPFs is shown in Table 1.
Then, the parallel duplication can be filtered using the UTT, which
is defined as follows.

Unique Tuple Test Theorem. Let us define Unique Tuple Test (UTT)
as

UTT (χ = (j1, . . . , jn)) =

⋁
m={x,y,z}

[θm (j1) ∧ · · · ∧ θm (jn)]

= [θx (j1) ∧ · · · ∧ θx (jn)] ∨
[
θy (j1) ∧ · · · ∧ θy (jn)

]
∨ [θz (j1) ∧ · · · ∧ θz (jn)] ,

where χ = (j1,. . . ,jn) be an arbitrary range-limited n-tuple,∨ and ∧

denoted logical OR and AND operators, respectively. For every χ in
parallel SC-MD domains, there is a unique (one and only one) χ0
among all nodes that satisfy UTT (χ0) = false.

The proof of correctness for Unique Tuple Test Theorem is as
follows. Assume that χp = (j1,. . . ,jn) is a parallel duplicated n-tuple
(UTT(χp) = true). There exists χ0 in the neighbor domain in m*
direction that χp is imported or forwarded from (i.e. all IPFs from
m* direction, θm∗(j1) to θm∗(jn), must be true). Since χp is imported,
χ0 must be original. This proves that UTT(χ0) = false when χ0 is
original. Therefore, UTT(χ ) = true can be used as an exclusion
criteria to avoid force double computing of parallel duplicated
n-tuple.

3. Results and discussion

3.1. Result validation

We have validated SC-NBL implementation using Vashishta’s
potential for silica glass [5]. The validation was performed by
comparing the result of SC-NBL with the original SC using ther-
malization simulation of silica glass at 300 K in microcanonical
(NVE) ensemble. The silica glass system was prepared using melt-
quench techniques as follows. First, initial configuration of MD
simulationwas built from8×8×8unit cells ofβ-crystobalite SiO2
(total of 12,288 atoms). To validate the parallel implementation,
we created three different initial configurations using different
number of domain (i.e. number of MPI tasks to run), which are:
(1) single domain (P1) for 12,288 atoms; (2) 2× 2× 2= 8 domains
(P8) for 1536 atoms per domain on average; and (3) 4 × 4 × 4 =
64 domains (P64) for 192 atoms per domain on average. Note that



92 M. Kunaseth et al. / Computer Physics Communications 235 (2019) 88–94

Fig. 4. Pair distribution function, g(r), of silica glass systems using different parallelizations (P1, P8, P64) based on SC-NBL and original SC algorithms (a) Si–Si (b) Si–O (c)
O–O. Note that g(r) plots were shifted for comparison clarity.

different random number seeds were used in those three systems
to ensure the non-bias comparison. Next, velocity scaling was
used to increase temperature of the initial configuration to 2,500
K, which is well-above Tmelt of SiO2 [5]. The temperature scaling
was carried out based on Boltzmann distribution to 2,500 K every
23000 MD steps for 50,000 MD steps. After that, the systems were
thermalized without velocity scaling for 50,000 MD steps. Then,
the systems were slowly quenched by scaling velocity to 23000 K,
1,600 K, 300 K, using 50,000MD stepswith scaling period of 10,000
MD steps for each scaling temperature, respectively. Finally, the
systems continued to thermalize without velocity scaling at 300 K
for 50,000 MD steps before the final 50,000 MD steps were run for
P1, P8, and P64 using both SC-NBL and original SC for collecting
validation result.

In the first verification, the number of pairs and triplets that
were evaluated for force in each MD step for P1, P8, and P64
systems using original SC and SC-NBL algorithms were compared
in Table 2. Here, Table 2 shows that there are no significant differ-
ences (i.e.within the standard deviation) in terms of pair and triplet
counts between SC and SC-NBL in all P1, P8, and P64 systems. In
addition, considerable number of filtered triplets in all SC-NBL runs
(last row of Table 2) indicated that the filtering algorithms used in
SC-NBL essentially avoid double counting of triplets.

Next, to validate SC-NBL results, we compared pair distribution
function, g(r) [1,2], of SC-NBL against that of original SC. Fig. 4
shows g(r) comparison for Si–Si (Fig. 4(a)), Si–O (Fig. 4(b)), and
O–O (Fig. 4(c)), in which all of the results are almost identical for

P1, P8, and P64 systems in both SC-NBL and original SC. Addition-
ally, atomic positions, atomic forces, and total energies of SC-NBL
and SC were validated. The results show that maximum atomic-
force difference, maximum atomic-position difference, and total
energies between SC-NBL and SC runs in each MD step are less
than 0.1 pN, 10−4 Å, and 10−7 eV/atom, respectively (see details
in Section S2 of supplementary data). This negligible degree of
divergence for atomic forces, positions, and total energies is likely
to be the numerical origin, and thus acceptable for validating SC-
NBL implementation.

3.2. Performance benchmark

In this section, we compared computing performance of SC-
NBL and the original SC algorithm. The benchmark was performed
using 96 MPI tasks on 8 compute nodes of dual hexcore Intel Xeon
2.6 GHz (12 compute cores per node, total 96 compute cores) with
64 GB memory. Running time per MD steps was collected from
thermalization simulation of amorphous silica glass at 300 K using
NVE ensemble. Here, the numbers of atoms in the benchmark sys-
tems were varied from 2304 atoms (24 atoms per compute core)
to 2,304,000 atoms (24,000 atoms per compute core). Fig. 5 shows
average running time per MD steps for systems with different
average number of atoms per compute core. Benchmark results
show significant performance improvement of SC-NBL over the
original SC algorithm in all of the system sizes, with 1.33× and
3.29× running time speedups on systemwith 24 and 24,000 atoms
per compute core, respectively (see Fig. 5).
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Table 1
Different scenarios with various corresponding IPFs.

Status of atom i IPF (θx(i), θy(i), θz(i))

• Owned by the current compute node (resident atom) (false, false, false)

• Import from node in x direction (true, false, false)
• Not a forwarded atom

• Import from node in y direction (false, true, false)
• Not a forwarded atom

• Import from node in y direction (true, true, false)
• Forwarded from x direction (from prior communication)

• Import from node in z direction (true, false, true)
• Forwarded from x direction (from prior communication)

• Import from node in z direction (true, true, true)
• Forwarded from x and y directions (from first- and second-prior
communications, respectively)

Table 2
Average number of pairs, triplets, and filtered duplicated triplets for SC and NBL-SC algorithms in P1, P8, and P64 systems, respectively. Note that numerals after ± denoted
standard deviation.

Algorithm P1 (1 MPI task) P8 (8 MPI tasks) P64 (64 MPI tasks)

SC SC-NBL SC SC-NBL SC SC-NBL

Number of pairs 281,889.2 ± 105.6 281,876.5 ± 105.8 281,893.6 ± 106.0 281,902.5 ± 105.2 281,971.6 ± 107.1 281,949.0 ± 104.5
Number of triplets 31,186.5 ± 23.9 31,191 ± 25.2 31,235.6 ± 24.3 31,237.3 ± 24.2 31,141.9 ± 27.8 31,138.1 ± 26.7
Filtered Triplets N/A 54,314.3 ± 331.2 N/A 28,928.5 ± 210.0 N/A 182.14.7 ± 163.8

Fig. 5. Computation performance based on running time per MD step of SC-NBL
compared to the original SC algorithm on 96 compute cores.

To compare performance of SC-NBL against the existing algo-
rithms, we performed a performance benchmark on three codes:
(1) original SC; (2) MD-NBL; and (3) SC-NBL codes. MD-NBL is a
production code presented in Ref. [22], which employs cell method
for 2-body force computation and NBL for 3-body force compu-
tation. MD-NBL code utilizes conventional full-shell computation
and communication schemes in 2-body computation, which is
common for most of DMBP-MD programs. The benchmark was
carried out on 64 dual-hexcore Xeon 2.6 GHz nodes (768 compute
cores total) by varying granularities (i.e., numbers of atoms per
core) from 24 to 3000. Fig. 6 shows benchmark results of running
time per MD step of for three codes as a function of granularity. At
the smallest granularity (i.e., 24 atoms per core), original SC and SC-
NBL considerably outperform MD-NBL such that the running time
per MD step of MD-NBL is 9.7 and 16.2 folds of the original SC and

Fig. 6. Comparison of running timeperMDstep as a function of granularity (number
of atoms per core) on 768 compute cores for the original SC, MD-NBL, and SC-NBL
codes.

SC-NBL, respectively. As the number of atoms per core increases,
running time of original SC is gradually increased with respect to
MD-NBL. Eventually, performance of original SC becomes slower
than MD-NBL at 3000 atoms per compute core. This is due to
the reduced 3-body force computation cost using NBL in MD-
NBL, which was previously observed in [17]. On the other hand,
the gap between running time per MD step of MD-NBL and SC-
NBL remains large at all granularities. The running time ratios
of MD-NBL over SC-NBL are ranging from 16.2 to 2.2 folds for
granularities between 24 and 3000 atoms per core. This signifies
that SC-NBL encompasses the performance of the original SC at
small granularities and that of MD-NBL on larger granularities.

To evaluate sustained performance of SC-NBL, we performed
large-scale benchmarks of 31,104 atom-system (24 atoms per MPI
task) and 248,832 atom-system (192 atoms per MPI tasks) on
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9 × 12 × 12 = 1,296 MPI tasks using 1,296 compute cores on
108 dual-hexcore Intel Xeon 2.6 GHz compute nodes. The results
showed average running time per MD step of 0.65 and 1.72 ms
over 500,000 MD steps for 24 atoms/core and 196 atoms/core
systems, respectively. This is equivalent to 132.9 ns/day and 50.3
ns/day based on 1 fs MD time step for 31,104 and 248,832 atom-
systems, respectively. Additionally, we investigated performance
of SC and SC-NBL algorithms based ondifferent phases ofmaterials.
The results show that performance of SC and SC-NBL for molten
and crystalline SiO2 phases is very similar, see Section S3 in sup-
plementary data for details.

4. Conclusion

In thiswork,we have developed a SC-NBL algorithm for reactive
many-body MD algorithm. Significant performance improvement
of SC-NBL is achieved through the combination of communication-
lean SC algorithm and a computation-lean NBL-based algorithm.
Our benchmark indicated that SC-NBL-algorithm speeds up com-
putation time over the original SC algorithm by 1.33× up to 3.29×
for MD simulation with 24 and 24,000 atoms per compute core,
respectively. SC-NBL surpasses the conventional NBL method for
DMBP-MD at large granularity with running time speedup of 2.2
folds at 3000 atoms per core, which was the shortcoming of the
original SC algorithm. In addition, the performance benchmark
also showed a sustained remarkable performance of SC-NBL at
very small granularity on 1,296 compute-cores parallel MD sim-
ulation, thereby achieving computation performance of 0.65 and
1.72 ms per MD step. This highlights a significant performance
improvement on both strong- and weak-scaling regimes, which
is remarkably challenging for large-scale parallel DMBP-MD simu-
lations. SC-NBL algorithm significantly improves time-to-solution
of reactive atomistic simulations, while allowing large-size and
long-time scale DMBP-MD studies to be performed using modest
computation resources.
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