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ABSTRACT
This paper presents the �rst, 15-PetaFLOPDeep Learning system for
solving scienti�c pattern classi�cation problems on contemporary
HPC architectures. We develop supervised convolutional architec-
tures for discriminating signals in high-energy physics data as well
as semi-supervised architectures for localizing and classifying ex-
treme weather in climate data. Our Intelca�e-based implementation
obtains⇠2TFLOP/s on a single Cori Phase-II Xeon-Phi node.We use
a hybrid strategy employing synchronous node-groups, while using
asynchronous communication across groups. We use this strategy
to scale training of a single model to ⇠9600 Xeon-Phi nodes; ob-
taining peak performance of 11.73-15.07 PFLOP/s and sustained
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performance of 11.41-13.27 PFLOP/s. At scale, our HEP architec-
ture produces state-of-the-art classi�cation accuracy on a dataset
with 10M images, exceeding that achieved by selections on high-
level physics-motivated features. Our semi-supervised architecture
successfully extracts weather patterns in a 15TB climate dataset.
Our results demonstrate that Deep Learning can be optimized and
scaled e�ectively on many-core, HPC systems.
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1 DEEP LEARNING FOR SCIENCE
In recent years, Deep Learning (DL) has enabled fundamental break-
throughs in computer vision, speech recognition and control system
problems, thereby enabling a number of novel commercial appli-
cations. At their core, these applications solve classi�cation and
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regression problems, tasks which are shared by numerous scienti�c
domains. For example, problems in identifying galaxies, screening
medical images, predicting cosmological constants, material proper-
ties and protein structure prediction all involve learning a complex
hierarchy of features, and predicting a class label, or regressing a
numerical quantity. We assert that that Deep Learning is poised
to have a major impact on domain sciences, but there are unique
challenges that need to be overcome �rst.

The primary challenge is in analyzing massive quantities of
complex, multi-variate scienti�c data. Current Deep Learning im-
plementations can take days to converge on O(10) GB datasets; con-
temporary scienti�c datasets are TBs-PBs in size. Scienti�c datasets
often contain dozens of channels/variables, which is in contrast to
the small number of channels in images or audio data. Scientists
need to be able to leverage parallel computational resources to get
reasonable turnaround times for training Deep Neural Networks
(DNNs). It is therefore imperative that DL software delivers good
performance not only on a single node but is also scalable across a
large number of nodes. We now elaborate on two scienti�c drivers
that motivate our optimization and scaling e�orts.

1.1 Supervised Learning for HEP
A major aim of experimental high-energy physics (HEP) is to �nd
rare signals of new particles produced at accelerators such as the
Large Hadron Collider (LHC) at CERN, where protons are accel-
erated to high-energies and collided together to produce resulting
particles within highly-instrumented detectors, such as the ATLAS
and CMS experiments. Improvements in classifying these collisions
could aid discoveries that would overturn our understanding of the
universe at the most fundamental level. Neural Networks have been
used in HEP for some time [1, 2]. Recently attention has focused
on deep learning to tackle the increase in detector resolutions and
data rates. Particles produced by LHC collisions (occurring every
25ns) propagate, decay and deposit energy in di�erent detector
parts, so creating signals in 100s of millions of channels, with each
collision forming an independent ‘event’. Data from the surface of
the cylindrical detector can be represented as a sparse 2D image,
with data from di�erent layers of instrumentation as channels in
that image. We use the energy deposited in the “electromagnetic”,
and “hadronic calorimeters”, and the number of “tracks” formed
from the “inner detector” in that region as three channels. This is
similar to the approach of [3][4] except that we use large images
covering the entire detector, and use these directly for classifying
entire events rather than individual objects.

The HEP community have simulations of the underlying physics
processes and the detector response that can be used for training
networks. For this paper, we generate events to match those used
for a particular analysis searching for new massive supersymmet-
ric particles in multi-jet �nal states at the LHC [5]. We use the
Pythia event generator [6] interfaced to the Delphes fast detector
simulation [7] (with fast jet [8]) to generate events for two classes,
corresponding to the new-physics ‘signal’ (6.4M events) and the
most prevalent known-physics ‘background’ (64M events). Before
training our network we apply some of the physics selections of [5]
to �lter images to those more challenging to discriminate, resulting

pixels channels #images Volume
HEP 228x228 3 10M 7.4TB
Climate 768x768 16 0.4M 15TB

Table 1: Characteristics of datasets used.

in a training sample of around 10M events. We compare the per-
formance of our deep network to our own implementation of the
selections of [5] as a baseline benchmark. We have veri�ed that the
samples and baseline selections give performance comparable to
that in [5] providing a meaningful benchmark even though those
selections were not tuned for these datasets.

1.2 Semi-Supervised Learning for Climate
Climate change is one of the most important challenges facing
humanity in the 21st century; climate simulations provide a unique
approach for understanding the future impact of various carbon
emission scenarios and intervention strategies. Modern Climate
simulation codes produce massive datasets: a single 30-year run
from the CAM5 25-km resolution model produces 100TBs of multi-
variate data[9]. In this paper, we are interested in the task of �nding
extreme weather events in such large datasets. Providing an ob-
jective, quantitative tool for �nding extreme weather patterns will
help climate scientists in understanding trends in such weather pat-
terns in the future (i.e. Do we expect more Category 4/5 hurricanes
to make landfall in the 21st century?), and conduct detection and
attribution studies (i.e. Is the chance in Tropical Cyclone activity
attributable to anthropogenic emissions, as opposed to being an
intrinsic property of the climate system?).

The �eld of climate science typically relies on heuristics, and
expert-speci�ed multi-variate threshold conditions for specifying
extremes [10–12]. We formulate this task as that of pattern classi�-
cation, and employ Deep Learning based methods. The problem can
be formulated as that of object recognition in images, the di�erence
being that climate images have 16 or more ’channels’, and their
underlying statistics are quite di�erent from natural images. Con-
sequently, we cannot leverage pre-trained weights from contem-
porary networks such as VGG or AlexNet. Earlier work conducted
by [13] demonstrates that convolutional architectures can solve
the pattern classi�cation task for cropped, centered image patches.
In this work we develop a uni�ed, semi-supervised architecture for
handling all extreme weather patterns and develop a methodology
for predicting bounding boxes. Most importantly, our method pro-
vides an opportunity to discover new weather patterns that might
have few/no labeled examples.

This paper makes the following contributions:

• WedevelopDeep Learningmodels which not only solve the
problem at hand to desired precision but are also scalable
to a large number of nodes. This includes for example
to not use layers with large dense weights such as batch
normalization or fully connected units.

• We develop highly optimized Deep Learning software that
can process complex scienti�c datasets on the Intel Xeon
Phi architecture
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• We build a system based on a hybrid asynchronous ap-
proach to scale Deep Learning to the full scale of the Cori
supercomputer (⇠9600 Xeon Phi nodes)

• We demonstrate supervised classi�cation on a 7.4 TB High-
Energy Physics dataset

• We develop a novel, semi-supervised architecture, and ap-
ply it to detect and learn new patterns on a 15 TB climate
dataset

• We obtain a peak performance of 11.73-15.07 PFLOP/s and
sustained performance of 11.41-13.27 PFLOP/s for our two
problems

While our exploration is conducted in the context of two concrete
applications, we believe that our approach, and the resulting lessons
learned, can be generalized to a much broader class of data analytics
problems in science.

2 CURRENT STATE OF THE ART
From a HPC perspective, we can look at deep learning from two
dimensions: �rst, how e�ciently can deep learning be mapped to a
single compute node; and second, how it scales across a cluster of
compute nodes.

2.1 Deep Learning on single node
The core computation in deep learning algorithms is dominated by
dense linear algebra in the form of matrix multiply and convolution
operations. While well-optimized libraries such as implementations
of BLAS and LaPACK have long existed for use in HPC applications,
the shapes and sizes of the operands di�er signi�cantly for deep
learning. Hence speci�c libraries with support for tall-skinnymatrix
multiplies and convolutions with multiple small �lters have been
developed for various architectures such as NVIDIA GPUs [14] and
CPU architectures [15, 16].

The hardware e�ciency of these kernels heavily depends on
input data sizes and model parameters (weight matrix dimensions,
number of convolutions, convolution strides, padding, etc). Deep-
Bench [17] is a recently developed benchmark from Baidu that
captures best known performance of deep learning kernels with
varied input sizes and model parameters on NVIDIA GPUs and
Intel® Xeon Phi™1. Their results show that while performance can
be as high as 75-80% of peak �ops for some kernels, decreasing
minibatch size (dimension ’N’ for matrix multiply and convolu-
tions) results in signi�cant e�ciency drops to as low as 20-30% (at
minibatch sizes of 4-16) on all architectures. As we shall see, this
has implications on performance at scale.

2.2 Deep Learning on multiple nodes
There have been many attempts to scale deep learning models
across a cluster of nodes [18–22]. In this work, we focus on scaling
the training of a single model across a cluster as opposed to the
embarassingly parallel problem of training independent models
[23]. We discuss two common architectures, shown in Figure 1.

2.2.1 Synchronous-parallel architectures. Synchronous systems
use synchronization barriers and force computational nodes to

1Intel, Xeon and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or
other countries.
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Figure 1: Example architectures.

perform every update step in lock-step (See Figure 1). Typically,
data parallelism is used where di�erent nodes split a big mini-batch
of samples, each processing a chunk of the data. Recent papers that
have attempted to scale synchronous deep learning have stopped at
a few hundred nodes [20, 21, 24], with the scalability depending on
the computation to communication ratio, the speed of the hardware
and the quality of the interconnect. Aside from communication
there are other factors that limit synchronous scaling:

Batch size. Most systems use some variant of SGD with batch
sizes that range from 64 to 1024. Large batch sizes have been shown
to cause slowdown in convergence [25], and degrade the gener-
alization properties of the trained model [26]. The batch size is a
limit on the number of nodes in data-parallel synchronous systems.

Stragglers. Since a synchronization barrier is used, the duration
of the iteration depends on the slowest node. Variability in the
computation needed per sample, OS jitter and, importantly, vari-
ations in the throughput and latency in the interconnect leads to
signi�cant load imbalance. This e�ect gets worse with scale.

2.2.2 Asynchronous and hybrid architectures. Conceptually, asyn-
chronous architectures [27, 28] remove the synchronization barriers.
Each node works on its own iteration (mini-batch) and produces
independent updates to the model. Those updates are sent to a
central parameter store, the parameter server (PS), illustrated in Fig-
ure 1. The PS applies the updates to the model in the order they are
received, and sends back the updated model to the worker where
the update originated. Asynchronous systems do not su�er from
straggler e�ects and are not limited by the total batch size in the
same way that synchronous systems are, an important property at
scale. Asynchronous methods are known to give signi�cant compu-
tational bene�ts in large-scale systems [29, 30]. Recent work [31]
sheds new light on the convergence properties of such systems and
shows the importance of momentum tuning for convergence.

Performance tradeo�. The main side-e�ect of asynchrony is the
use of out-of-date gradients: each update is computed based on an
older version of the model and then sent to the PS to be applied on
the latest model. The number of updates that other workers perform
between the time a worker reads the model and the time it sends its
own update to the PS is called staleness. Asynchronous systems may
need more iterations to solution, due to staleness: we say they have
worse statistical e�ciency [25, 32]. Synchronous systems typically
take longer per iteration due to the straggler e�ect: they have worse
hardware e�ciency.
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Hybrid architectures. The trade-o� between statistical e�ciency
vs. hardware e�ciency suggests a third kind of architecture: a hy-
brid system [25]. In this architecture, worker nodes coalesce into
separate compute groups. Each compute group follows a synchro-
nous architecture: the workers split a mini-batch among themselves
and produce a single update to the model. There is no synchroniza-
tion across compute groups. A parameter server (PS) holds the
model and each compute group communicates its updates to the PS
asynchronously. Given a cluster of �xed size, the number of com-
pute groups (and their size) is a knob that controls the amount of
asynchrony in the system. We can tune the amount of asynchrony
along with the other hyper-parameters to �nd the optimal con�gu-
ration. We use this hybrid architecture in our paper, as described
in Section 3.5.

3 INNOVATIONS
3.1 HEP architecture
We formulate the HEP problem as a binary image classi�cation
task. We use a Convolutional Neural Net comprised of 5 convo-
lution+pooling units with recti�ed linear unit (ReLU) activation
functions [33, 34]. The kernel sizes used in the convolutional lay-
ers are 3x3 pixels with strides 1x1 and 128 �lters per layer. In the
pooling layers we use 2x2 kernels with strides 2x2. We use max
pooling in the �rst four layers and use global average pooling in the
last convolutional layer. The output of the global pooling layer is
fed into a single fully connected layer which projects the resulting
128-dimensional vector into a two-dimensional vector on which
a softmax function is applied to determine the class probabilities
for signal and background. We use softmax with cross-entropy as
the loss function. We further employ the ADAM optimizer[35] as
the solver. ADAM requires less parameter tuning than Stochastic
Gradient Descent and suppresses high norm variability between
gradients of di�erent layers by adaptively adjusting the learning
rate.

3.2 Climate architecture
We formulate the climate problem as semi-supervised bounding
box regression adapted from [36], which is inspired by [37–39].
Essentially, we have a fully supervised convolutional network for
bounding box regression and an unsupervised convolutional au-
toencoder. These two networks share various layers, so the extra
unlabelled data input to the autoencoder can help improve the
bounding box regression task. We use a a series of strided convolu-
tions to learn coarse, downsampled features of the input climate
simulations. We call this series of convolutions the encoder of the
network. At every location in the features, we compute 4 scores
(con�dence, class, x and y position of bottom left corner of box,
and height and width of box) using a convolution layer for each
score. At inference time we keep only the boxes corresponding
to con�dences greater than 0.8. For the unsupervised part of our
architecture, we use the same encoder layers, but use the coarse
features as input to a series of deconvolutional layers, which we call
the decoder. The decoder attempts to reconstruct the input climate
image from the coarse features. The objective function attempts
to simultaneously minimize the con�dence of areas without a box,
maximize those with a box, maximize the the probability of the
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Figure 2: Hybrid architecture example.

correct class for areas with a box, minimize the scale and location
o�set of the predicted box to the real box and minimize the recon-
struction error of the autoencoder. As a solver, we use stochastic
gradient descent with momentum.

3.3 Single-node performance on manycore
architectures

In this work, we used the Intel distribution of Ca�e [40] to train our
models. This distribution links in the Intel MKL 2017 library [15]
with optimized deep learning primitives for Intel Xeon Phi. For our
semi-supervised climate network, we needed optimized implemen-
tations of deconvolution that were not available. We used the fact
that the convolutions in the backward pass can be used to compute
the deconvolutions of the forward pass and vice-versa in order to
develop optimized deconvolution implementations. These layers
perform very similarly to the corresponding convolution layers.

3.4 Multi-node scaling with synchronous
approach

We utilize the new Intel® Machine Learning Scalability Library
(MLSL) [41] for our multi-node implementation. This handles all
communication required to perform training in a synchronous set-
ting, and enables di�erent forms of parallelism - both data and
model parallelism - to be applied to di�erent layers of the net-
work without the user/developer worrying about communication
details. In this work, we deal with either fully convolutional net-
works or those with very small fully connected layers, so we only
use data parallelism which is well suited for such layers. MLSL
also introduces performance improvements over vanilla MPI im-
plementations using endpoints - proxy threads/processes which
drive communication on behalf of the MPI rank and enable better
utilization of network bandwidth. Results with this library have not
been reported at large scales of more than a few hundred nodes; in
this work we attempt to scale this out to thousands of nodes.

3.5 Multi-node scaling with hybrid approach
In Section 2.2.2 we outlined the limitations of fully synchronous
systems that motivate asynchronous architectures. Asynchronous
systems are not limited by the total batch size in the same way that
synchronous systems are. Furthermore, asynchrony provides an
added layer of resilience to node failures and the straggler e�ect.
In this section we describe the hybrid architecture we use in our
system and discuss some of its novel elements.
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Architecture Input Layer details Output Parameters size
Supervised HEP 224x224x3 5xconv-pool,1xfully-connected class probability 2.3MiB
Semi-supervised Climate 768x768x16 9xconv,5xDeconv coordinates, class, con�dence 302.1 MiB

Table 2: Speci�cation of DNN architectures used in this study.

Worker	node

Root	worker

Electrical	group

Parameter	server

Interconnect

Compute	group

Figure 3: Topological placement on Cori Phase II.

Our architecture is inspired by recently proposed hybrid ap-
proaches [25], depicted in Figure 2. Nodes are organized into com-
pute groups. Parallelization is synchronouswithin (using all-reduce),
but asynchronous across groups via a set of parameter servers. The
number and size of compute groups, is a knob which controls the
level of asynchrony, and allows us to tune asynchrony and mo-
mentum jointly, as per recent theoretical guidelines [31]. Figure 3
shows an ideal placement of nodes and compute groups on Cori.2
All-reduce operations are used to get the aggregate model update
from all workers in the group. Then a single node per group, called
the root node is responsible for communicating the update to the
parameter servers, receiving the new model, and broadcasting it
back to the group.

Extreme Scale. Our work is the �rst instance of a hybrid architec-
ture that scales to thousands of nodes. Previous implementations
were designed (and typically deployed) on dozens or hundreds of
commodity machines. For the present work, we deployed our im-
plementation on con�gurations of up to 9600 nodes on an HPC
system.

Use of MLSL library. MLSL does not natively support asynchro-
nous communication. Speci�cally, all nodes are assumed to commu-
nicate with each other and the default library did not allow us to
dedicate some subset of nodes for parameter servers. In this work,
we extended MLSL to enable our hybrid implementation. Speci�-
cally, we extended MLSL to facilitate node placement into disjoint
communication groups and dedicating nodes as parameter servers.
Our new MLSL primitives allow for e�cient overlaying of group
communication and endpoint communication with the parameter
server.

Dedicated parameter servers for each layer. The parameter server
needs to be able to handle the volume of network tra�c and com-
putation for the updates originating from multiple compute groups
2For simplicity PSs are shown in their own electrical group, however this is not
typically the case.

Layer	N	PS

Layer	N-1	PS

Layer	2	PS

Layer	1	PS

Group	1

Group	2

Group	G

Model	update

New	model

Figure 4: We assign a dedicated parameter server to each
trainable layer of the network. Each group exchanges data
with the PS for the corresponding layer. For clarity, we only
depict the communication patterns for Group 1.

and for very large models. To reduce the chances of PS saturation,
we dedicate a parameter server to each trainable layer in the net-
work (Figure 4). We can consider each compute group as a bigger,
more powerful node, that performs the usual forward and backward
pass operations on the layers of the network. The backward pass
generates a gradient (model update) for each layer of the network.
That update is communicated to its dedicated parameter server, the
update is performed and the model communicated back to the same
compute group.

4 CORI PHASE II
All experiments reported in this study are conducted on the Cori
Phase II system at NERSC. Cori is a Cray XC40 supercomputer com-
prised of 9,688 self-hosted Intel Xeon Phi™ 7250 (Knight’s Landing,
KNL) compute nodes. Each KNL processor includes 68 cores run-
ning at 1.4GHz and capable of hosting 4 HyperThreads for a total
of 272 threads per node.

The peak performance for single precision can be computed as:
(9688 KNLs) x (68 Cores) x (1.4 GHz Clock Speed) x (64 FLOPs /
Cycle) = 59 PetaFLOP/s. However, for sustained AVX work, the
clock-speed drops to 1.2 GHz, yielding a sustained peak perfor-
mance of: 50.6 PetaFLOP/s.
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Each out-of-order superscalar core has a private 32KiB L1 cache
and two 512-bit wide vector processing units (supporting the AVX-
512 instruction set3). Each pair of cores (a “tile”) shares a 1MiB L2
cache and each node has 96GiB of DDR4 memory and 16GiB of
on-package high bandwidth (MCDRAM) memory. The MCDRAM
memory can be con�gured into di�erent modes, where the most
interesting being cache mode in which the MCDRAM acts as a
16GiB L3 cache on DRAM. Additionally, MCDRAM can be con�g-
ured in �at mode in which the user can address the MCDRAM as a
second NUMA node. The on-chip directory can be con�gured into
a number of modes, but in this publication we only consider quad
mode, i.e. in quad-cache, all cores are in a single NUMA domain
with MCDRAM acting as a cache on DDR4 main memory. Further-
more, Cori features the Cray Aries low-latency, high-bandwidth
interconnect utilizing the dragon�y topology.

5 PERFORMANCE MEASUREMENT
We count the executed FLOPs using Intel® Software Development
Emulator (SDE) [42]. SDE distinguishes the precision of the FLOP
operations and the actual executed FLOPs in the masked SIMD
instructions of the code. We use SDE to count the executed single-
precision �ops in the computational kernels (i.e, the neural network
layers) of a single node. Given that all the nodes execute these layers
the same number of times and using the same problem size, we
compute the total FLOPs by multiplying the single node FLOPs
by the number of nodes. The counted FLOPs constitute the vast
majority of the application’s FLOP operations. The application
time is spent in an iterative training loop, where the computation
performed in each training iteration is the same. However, in some
iterations, a checkpointing is performed to save the current trained
model to the �lesystem; this imposes some overhead on runtime.
We measure the wall clock time per iteration to obtain the �op
rate (i.e. iteration’s measured FLOPS / iteration’s time). The peak
�op rate is obtained from the fastest iteration, while the sustained
�op rate is computed from the best average iteration time in a
contiguous window of iterations.

In the following section, we present the results of training the
HEP and climate networks on the Intel Xeon Phi nodes of the Cori
supercomputer. All our experiments use 66 of the 68 cores on each
node, with 2 being reserved for the OS. All our experiments deal
with single precision data and model parameters.

6 PERFORMANCE RESULTS
6.1 Single node performance
Figures 5a and 5b show the �op rates and time spent in various
layers for HEP and Climate networks. For a batch size of 8 images,
the overall �op rate of the HEP network stands at 1.90 TFLOP/s,
while that of the Climate network stands at 2.09 TFLOP/s. For both
networks, most of the runtime is spent in convolutional layers,
which can obtain between 3.5 TFLOP/s for layers with many chan-
nels, and around 1.25 TFLOP/s on the initial layers with very few
channels. As mentioned previously in DeepBench [17], the shapes
of the parameters and inputs to a layer can a�ect performance
signi�cantly; we observe that in our experiments.

3This includes the subsets F, CD, ER, PF but not VL, BW, DQ, IFMA, VBMI.

For the HEP network, about 12.5% of the runtime is spent in the
solver update routine which applies the update to the weights and
adjusts hyper-parameters for the next iteration. This step spends
time in operations like copying models to keep history that do not
contribute to �ops. The overhead of this step is insigni�cant (< 2%)
in the climate network. For the climate network, time spent in I/O
(13%) for loading the data is signi�cant; recall that climate problem
consists of high resolution, 16-channel data. In comparison, the
I/O time is much lower ( 2 %) for the HEP network, which has low
resolution, 3-channel data. We have identi�ed two bottlenecks in
our current I/O con�guration: �rst, I/O throughput from a single
Xeon Phi core is relatively slow, second, the current HDF5 library
is not multi-threaded. We will address these limitations in future
work.

6.2 Multi-node scaling
We now report on scaling experiments conducts on Cori Phase II.

6.2.1 Strong Scaling. The strong scaling con�guration (involv-
ing keeping the overall batch size per update step �xed while vary-
ing the number of nodes) is a natural use-case for deep learning.
Figure 6 shows the strong scaling results for HEP and climate net-
works. We show 3 con�gurations: 1 synchronous group, 2 and 4
hybrid groups; and show scalability from 1 to 1024 nodes. We use a
batch size of 2048 per update. For the synchronous con�guration,
all nodes split the batch of 2048 images; for hybrid con�gurations,
each compute group independently updates the model and is as-
signed a complete batch. Figure 6a shows that the synchronous
algorithm does not scale past 256 nodes – 1024 node performance is
somewhat worse than for 256. The scalability improves moderately
for 2 hybrid groups, which saturates at 280x beyond 512 nodes, and
more signi�cantly with 4 hybrid groups, with about 580x scaling at
1024 nodes. We observe similar trends for the climate network in
Figure 6b - the synchronous algorithm scales only to a maximum
of 320x at 512 nodes and stops scaling beyond that point. The 2 and
4 group hybrid groups continue scaling to 1024 nodes; with scala-
bility improving from 580x (on 1024 nodes) for 2 hybrid groups to
780x for 4 hybrid groups. There are two main reasons for this: one,
in hybrid algorithms, only a subset of nodes need to synchronize
at each time step; this reduces communication costs and straggler
e�ects. Second, the minibatch size per node is higher for the hybrid
approaches resulting in better single node performance. Scaling
for our hybrid approaches is still not linear due to the single node
performance drop from reduced minibatch sizes at scale.

6.2.2 Weak Scaling. Figure 7a shows weak scaling for the HEP
network, where we keep a constant batch size (8 per node) across
all con�gurations (synchronous and hybrid). On scaling from 1 to
2048 nodes, we �nd that the performance scales sub-linearly for all
con�gurations: about 575-750x speed-up on 1024 nodes; and about
1150-1250x speed-up on 2048 nodes for asynchronous con�gura-
tions. We note that the synchronous speed-up on 2048 nodes stands
at about 1500x. In contrast, the weak scaling results for the climate
network in Figure 7b are near-linear (1750x for synchronous and
about 1850x for hybrid con�gurations). Our analysis indicates sig-
ni�cant variability in runtime across iterations for HEP at scale,
leading to sublinear scaling. An average convolution layer in HEP
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(a) HEP (b) Climate

Figure 5: Single node runtime and �op rate of the top time consuming components, with batch size 8
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Figure 6: Strong scaling results for synchronous and hybrid approaches (batch size = 2048 per synchronous group).

takes about 12 ms to execute; at the end of which nodes need to
synchronize and reduce a small model of ⇠590 KB. Even a small
jitter in communication times can lead to signi�cant variability in
this scenario. Hybrid approaches, where we have two additional
communication steps (to and from the PS) are more a�ected by this
variability, leading to reduced scaling. Our climate model takes on
average over 300 ms per convolution layer, leading to less frequent
communication and impact from jitter - we observe slightly better
scaling for hybrid over synchronous con�gurations due to reduced
straggler e�ects.

6.2.3 Overall Performance. For the HEP network, we obtained
a peak throughput (as described in Section 5) of 11.73 PFLOP/s
for a con�guration of 9600 total nodes (9594 compute nodes plus
6 parameter servers) split into 9 groups, with each group using a
minibatch of 8528. This corresponds to a speedup of 6173x over
single node performance. The sustained throughput as measured

over a 100 iteration timespan is 11.41 PFLOP/s. This corresponds
to an average per-iteration runtime of about 106 ms for processing
a minibatch.

For the climate network, we obtained a peak throughput of
15.07 PFLOP/s for a con�guration of 9622 total nodes (9608 com-
pute nodes plus 14 parameter servers) split into 8 groups, with each
group using a minibatch of 9608. This corresponds to a speedup
of 7205X over single node performance. The sustained through-
put as measured over a 10 iteration span is about 13.27 PFLOP/s,
corresponding to a speedup of an average per-iteration runtime of
12.16 seconds. The sustained throughput computed includes the
overhead of storing a model snapshot to disk once in 10 iterations,
causing slowdowns.

6.2.4 Time to Train. Figure 8 reports the result of di�erent train-
ing runs on the HEP network using 1024 worker nodes. We �x the
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Figure 7: Weak scaling results for synchronous and hybrid approaches (batch size = 8 per node).
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Figure 8: Training losses vs wall clock time for HEP on 1K
nodes. Comparing synchronous con�guration to 2,4 and 8
groups.

total batch to 1024 and try a fully synchronous run, and three hy-
brid runs with 2, 4, 8 groups. We use the Adam update and tune
its learning rate in the following range: [1e � 4, 1e � 3]. For the
synchronous setting we �x its momentum to 0.9, but for hybrid
runs we tune the momentum on a discrete set of values (0.0, 0.4,
0.7) to account for the momentum contributed by asynchrony [31].
We report the measured training loss over wall-clock for the best
con�gurations. For the synchronous setting, we report (for the
same best hyper-parameter con�guration) the best and worst run
out of 3. We report wall-clock time speedups with respect to a loss
of 0.05 that beats the baseline for HEP (as de�ned in Section 1.1).
We establish that the best hybrid con�guration achieves the target
loss in about 10 minutes, which is about 1.66⇥ faster than the best
sync run. The worst sync run is many times slower. We attribute

this, as well as some of the jumps observed in the loss curves of the
2-group case to variability in individual node performance when
running on 1K nodes. Note that without additional hyperparameter
tuning, we achieve a speedup of 11x in time to convergence for
going from 64 to 1024 nodes, which is in line with expectations
from weak scaling (cf. Figure 7a).

7 SCIENCE RESULTS
7.1 HEP Science Result
For the HEP classi�cation problem, it is important to achieve a high
signal e�ciency at a very low acceptance of the much more preva-
lent background class. Our benchmark analysis, which is based on
selections on high-level physics-derived features, achieves a true-
positive rate of 42% at a false-positive rate of 0.02%. To evaluate
our results we compare the true-positive rate at this same very
low false-positive rate. For the hybrid con�guration described in
section 6.2.4, we achieve a rate of 72% which represents a 1.7x im-
provement over our benchmark. For the full-system runs reported
here, even with reduced runtime and without extensive tuning for
accuracy, the SGD solver outperforms our benchmark by 1.3X. The
capability to achieve high sensitivities to new-physics signals from
classi�cation on low-level detector quantities, without the need
to design, reconstruct, or tune, high-level features o�ers consider-
able potential for enabling new-physics discoveries in future HEP
analyses.

7.2 Climate Science Result
Figure 9 presents a sample image that illustrates the ability of our
semi-supervised architecture to produce bounding boxes and class
labels. In the �gure, the architecture does a good job of localizing
and identifying tropical cyclones. We are working on generating
additional metrics for assessing the accuracy of bounding boxes
for known classes (including extra-tropical cyclones and atmo-
spheric rivers). More importantly, we are evaluating the ability of
the architecture to discover novel weather patterns. Since this is
fundamentally new approach for pattern detection in the climate



Deep Learning at 15PF SC17, November 12–17, 2017, Denver, CO, USA

Figure 9: Results fromplotting the network’smost con�dent
(>95%) box predictions on an image for integrated water va-
por (TMQ) from the test set for the climate problem. Black
bounding boxes show ground truth; Red boxes are predic-
tions by the network.

science community, we do not have a well-established benchmark
to compare our results to.

8 IMPLICATIONS
8.1 Deep Learning on HPC
To the best of our knowledge, ourwork is the �rst successful attempt
at scaling Deep Learning on large, many-core HPC systems. We
share a number of insights from this unique exercise.

First, at a scale of thousands of nodes, we found signi�cant
variability in runtimes across runs, which could be as high as 30%.
The probability of one of the thousands of nodes failing or degrading
during the run is non-zero. In this work, we report runs where we
did not encounter complete node failures.We note that even a single
node failure can cause complete failure of synchronous runs; hybrid
runs are much more resilient since only one of the compute groups
gets a�ected. However, even in hybrid runs, if model updates from
one of the compute groups lags signi�cantly behind others, it can
result in "jumps" in the overall loss and accuracy that we have
highlighted in Figure 8.

Second, current architectures and software stacks for deep learn-
ing are still not as mature as the traditional HPC application stack.
Speci�cally, performance on small batch sizes (essential for scale
out) has not been completely optimized in many frameworks. Fur-
ther, the state of the art in deep learning kernel implementations is
rapidly evolving with new algorithms like Winograd [43] and FFT
based algorithms. We did not experiment with such algorithms in

this work; studying the impact on per-node performance and scale
out behaviour of these algorithms is a direction for future research.

There has been a lot of discussion surrounding training with
quantized weights and activations [44, 45]. The statistical implica-
tions of low precision training are still being explored [46, 47], with
various forms of stochastic rounding being of critical importance in
convergence. While supercomputers with architectures supporting
low precision computations in hardware are not yet present, we
believe that such systems have the potential to further accelerate
training time for our applications.

8.2 Deep Learning for Science
We believe that science domains that can readily generate vast
amounts of representative training data (via simulators) stand to
bene�t immediately from progress in DL methods. In other scien-
ti�c domains, unsupervised, and semi-supervised learning are key
challenges for the future. In both cases, it is unreasonable to expect
scientists to be conversant in the art of hyper-parameter tuning.
Hybrid schemes, like the one presented in this paper, add an extra
parameter to be tuned, which stresses the need for principled mo-
mentum tuning approaches, an active area of research (eg.[25] and
recently [48]). With hyper-parameter tuning taken care of, higher-
level libraries such as Spearmint [49] can be used for automating
the search for network architectures.
We also note that more aggressive optimizations involving com-
puting in low-precision and communicating high-order bits of
weight updates are poorly understood with regards to their im-
plications for classi�cation and regression accuracy for scienti�c
datasets. A similar story holds with regards to deployment of DL
models. Unlike commercial applications where a sparse/compact
representation of the model needs to be deployed in-situ, scienti�c
applications will typically utilize DL models within the context of
the HPC/Datacenter environment. Nevertheless, the �eld of Deep
Learning is evolving rapidly, and we look forward to adopting
advances in the near future.

9 CONCLUSIONS
This paper has presented the �rst 15-PetaFLOP Deep Learning soft-
ware running on HPC platforms. We have utilized IntelCa�e to
obtain ⇠2 TF on single Xeon Phi nodes. We utilize a hybrid strategy
employing synchronous groups, and asynchronous communication
among them to scale the training of a single model to ⇠9600 Cori
Phase II nodes. We apply this framework to solve real-world super-
vised and semi-supervised patterns classi�cation problems in HEP
and Climate Science. Our work demonstrates that manycore HPC
platforms can be successfully used to accelerate Deep Learning,
opening the gateway for broader adoption by the domain science
community. Our results are not limited to the speci�c applications
mentioned in this paper, but they extend to other kinds of models
such as ResNets [50] and LSTM [51, 52], although the optimal con-
�guration between synchronous and asynchronous is expected to
be model dependent. This highlights the importance of a �exible,
hybrid architecture in achieving the best performance for a diverse
set of problems.
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