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We present an efficient and highly accurate GP-GPU implementation of our community
code, PuReMD, for reactive molecular dynamics simulations using the ReaxFF force field.
PuReMD and its incorporation into LAMMPS (Reax/C) is used by a large number of research
groups worldwide for simulating diverse systems ranging from biomembranes to explosives
(RDX) at atomistic level of detail. The sub-femtosecond time-steps associated with ReaxFF
strongly motivate significant improvements to per-timestep simulation time through
effective use of GPUs. This paper presents, in detail, the design and implementation of
PuReMD-GPU, which enables ReaxFF simulations on GPUs, as well as various performance
optimization techniques we developed to obtain high performance on state-of-the-art
hardware. Comprehensive experiments on model systems (bulk water and amorphous
silica) are presented to quantify the performance improvements achieved by PuReMD-GPU
and to verify its accuracy. In particular, our experiments show up to 16× improvement in
runtime compared to our highly optimized CPU-only single-core ReaxFF implementation.
PuReMD-GPU is a unique production code, and is currently available on request from the
authors.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

There has been significant effort aimed at atomistic modeling of diverse systems – ranging from materials processes
to biophysical phenomena. Parallel formulations of these methods have been shown to be among the most scalable ap-
plications. Classical MD approaches typically rely on static bonds and fixed partial charges associated with atoms. These
constraints limit their applicability to non-reactive systems. A number of recent efforts have addressed these limita-
tions [1–5]. Among these, ReaxFF, a novel reactive force field developed by van Duin et al. [6] bridges quantum-scale and
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classical MD approaches by explicitly modeling bond activity (reactions) and the distribution of partial charges. The flexibil-
ity and transferability of the force field allows ReaxFF to be easily extended to systems of interest. Indeed, ReaxFF has been
successfully applied to diverse systems [6–9].

ReaxFF is a classical MD method in the sense that atomic nuclei, together with their electrons, are modeled as ba-
sis points. Interactions among atoms are modeled through suitably parameterized functions and atoms obey the laws of
classical mechanics. Accurately modeling chemical reactions while avoiding discontinuities on the potential energy surface,
however, requires more complex mathematical formulations than those in classical MD methods (bond, valence angle, dihe-
dral, van der Waals potentials). In a reactive environment in which atoms often do not achieve their optimal coordination
numbers, ReaxFF requires additional modeling abstractions such as lone pair, over/under-coordination, and three-body and
four-body conjugation potentials, which increase its computational complexity. This increased computational cost of bonded
interactions (reconstructing all bonds, three-body and four-body structures at each time-step) approaches the cost of non-
bonded interactions for ReaxFF. In contrast, for typical MD codes, the time spent on bonded interactions is significantly
lower than that spent on nonbonded interactions [10].

An important part of ReaxFF is the charge equilibration procedure. This procedure recomputes partial charges on atoms
to minimize the electrostatic energy of the system. Charge equilibration is mathematically formulated as the solution of a
large linear system of equations, where the underlying matrix is sparse and symmetric, with dimension equal to the number
of atoms. We note that the number of atoms in a simulation may range from thousands to millions and due to the dynamic
nature of the system, a different set of equations needs to be solved at each timestep. An accurate solution of the charge
equilibration problem is highly desirable, as the partial charges on atoms significantly impact forces and the total energy
of the system. Suitably accelerated Krylov subspace methods are used for this purpose [11]. Since the timestep for ReaxFF
is typically an order of magnitude smaller than conventional MD (tenth of femtoseconds as opposed to femtoseconds),
scaling the solve associated with charge equilibration is a primary design consideration for GPU/parallel formulations. Note
that partial charges on atoms are fixed in most classical MD formulations. Consequently, this is not a consideration for
conventional methods.

Our prior work in the area led to the development of the PuReMD (Purdue Reactive Molecular Dynamics) code, along
with a comprehensive evaluation of its performance and its application to diverse systems [12–14]. PuReMD incorporates
several algorithmic and numerical innovations to address significant computational challenges posed by ReaxFF. It achieves
excellent per timestep execution times, enabling nanosecond-scale simulations of large reactive systems. Using fully dy-
namic interaction lists that adapt to the specific needs of simulations, PuReMD achieves low memory footprint. Our tests
demonstrate that PuReMD is up to 5× faster than competing implementations, while using significantly lower memory.
PuReMD has also been integrated with the LAMMPS software package (available as the User-ReaxC package).

PuReMD and its LAMMPS version have been used extensively in the scientific community to simulate phenomena ranging
from oxidative stress on biomembranes (lipid bilayers) to explosives (RDX) [15]. It has a large number of downloads and
an active developer community. While the code was designed from the ground up to be parallel, a significant segment
of the user community uses it on serial platforms. On state-of-the-art serial platforms (Intel i7, 6 GB), a single timestep
for a typical system (6K water atoms) takes about a second of simulation time. Timesteps in ReaxFF are of the order of
0.2 fs and several important physical analyses require simulations spanning nanoseconds (5 × 106 timesteps). This implies
roughly 1400 hours (58 days) of compute time using PuReMD on a serial platform. These considerations provide compelling
motivation for GPU acceleration of PuReMD. An order of magnitude improvement in speed in a production code would
present tremendous opportunities for a large scientific community.

The highly dynamic nature of interactions and memory footprint, diversity of kernels underlying non-bonded and bonded
interactions, the charge equilibration procedure, the complexity of force functionals, and the high accuracy requirement pose
significant challenges for efficient GPU implementations of ReaxFF. Effective use of shared memory to avoid frequent global
memory accesses and configurable cache to exploit spatial locality during scattered memory operations are essential to
the performance of various kernels. These kernels also need to be optimized to utilize GPUs’ capability to spawn thou-
sands of threads, and coalesced memory operations are necessary to enhance the performance of specific kernels. The high
cost of double precision arithmetic on conventional GPUs must be effectively masked through these optimizations. These
requirements may be traded-off with increased memory footprint to further enhance performance.

In this paper, we present in detail, the design and implementation of all phases of PuReMD on GPUs – including non-
bonded and bonded interactions, as well as the charge equilibration procedure. We carefully analyze and trade-off various
memory and computation costs to derive efficient implementations. Comprehensive experiments with model systems (bulk
water and amorphous silica) on a state-of-the-art GPU hardware are presented to quantify the performance and accuracy of
PuReMD-GPU. Our experiments show over 16× improvement in runtime compared to our highly optimized CPU-only single
core PuReMD implementation on typical GPU-equipped desktop machines (Core i7, 24 GB RAM and NVIDIA C2075 GPU).
These speedups represent important scientific potential for diverse simulations.

2. Atomistic simulations using ReaxFF

Conventional molecular dynamics techniques cannot simulate chemical activity, since reactions correspond to bond
breaking and formation. In ReaxFF, the bond structure of the system is updated at every timestep using a bond order
potential. This dynamic bond structure, coupled with the recomputation of partial charges through charge equilibration rep-
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resents significant added computational complexity for ReaxFF implementations. We summarize various aspects of ReaxFF
here, referring the reader to [6,16] for a detailed description.

In ReaxFF, the bond order between a pair of atoms, i and j reflects the strength of the bond between the two atoms. It
is computed in two steps – in the first step, an uncorrected bond order is computed, and in the second step, it is corrected.
The uncorrected bond order is given by Eq. (1), which uses the types of atoms and their distance:

B Oα′
i j (ri j) = exp
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ri j

r0α

)bα]
(1)

In this equation, α′ corresponds to uncorrected σ–σ , σ–π , or π–π bonds, aα and bα are parameters associated with
the bond type, and r0α is the optimal length for the bond type. The total uncorrected bond order (B O ′

i j) is computed
by summing the σ–σ , σ–π , and π–π bond orders, which may actually be different from its ideal coordination number
(valence). For this reason, it is necessary to correct the bond orders as follows:
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i j) account for 1–3 bond order corrections. Only corrected bond orders are
used in energy and force computations in ReaxFF. Once bond orders are computed, other potentials can be computed in
a manner similar to traditional MD methods. However, due to the dynamic bonding scheme of ReaxFF, potentials must be
modified to ensure smooth potential energy surfaces as bonds form or break.

For the purpose of this discussion, we classify the potential terms into bonded and non-bonded terms. Bonded terms
include two- (bond length), three- (bond angle), four-body (torsion), and hydrogen bond terms. Non-bonded terms include
van der Waals and Coulomb terms. An important consideration here is that all terms, including the Coulomb term, are
typically truncated at 10–12 Å. The total energy of the system is the sum of individual energy terms:

Esystem = Ebond + Elp + Eover + Eunder + Eval + Epen + E3conj

+ Etors + E4conj + E H-bond + Epol + EvdW + ECoulomb (3)

In terms of computational cost, Ebond is computed for each atom with respect to all the atoms it is bonded to. We
maintain a separate list of all bonded atoms for each atom. Since bond interactions take place within a distance of 3–5 Å,
typically, the number of atoms in the bond list of an atom is small. Elp , Eover , and Eunder are correction terms that involve
computations based on the actual coordination number of an atom with respect to its ideal coordination number. The
computation of these terms requires a single pass over the atom list, which is not expensive. Eval , Epen , and E3conj are
computed for pairs of bonds that form a valence angle for each atom. To determine the potential three-body interactions of
the form (i, j,k), we iterate twice over the bond list of the central atom j. This computation may be expensive for highly
coordinated systems. We maintain a list of valence angles for each bond, which is used later for computing Etors and E4conj .
Etors and E4conj are computed for a pair of valence angles between two atoms j and k such that valence angles (i, j,k)
and ( j,k, l) exist. Computationally, this can be expensive as the number of valence angles increases. E H-bond is computed
between a covalently bonded H atom and certain types of atoms within a 6–7 Å cutoff radius. Due to the relatively large
cutoff distance, hydrogen bonds can be expensive to compute, if present. Epol is computed with a single pass over the
atom list. EvdW and ECoulomb are computed for each atom with respect to all its neighboring atoms in a 10–12 Å distance.
Since the list of neighboring atoms within this cutoff distance is typically much larger compared to the number of bonds
of an atom, these two terms are the most expensive to compute. An important and expensive precursor to the ECoulomb
computation is the solution of the charge equilibration problem, which is discussed in detail in Section 4.3.

3. CUDA overview and performance considerations

GPU architectures typically comprise of a set of multiprocessor units called streaming multiprocessors (SMs), each one
containing a set of processor cores called streaming processors (SPs). There are various levels of memory available in GPUs,
including: (i) off-chip global memory, (ii) off-chip local memory, (iii) off-chip constant memory with on-chip cache, (iv) off-
chip texture memory with on-chip cache, (v) on-chip shared memory, and (vi) on-chip registers. Effectively handling data
across the memory hierarchy is essential to application performance.

Global memory is typically large and has high latency, about 400–800 cycles [17]. Shared memory is present at each SM
and has lower latency, 10–20 cycles per access. Each SM has a set of registers used for storing automatic (local) variables.
The constant and texture memories reside in (off-chip) global memory and have an on-chip read-only cache.

Computational elements of algorithms in the CUDA programming model are called kernels. Kernels can be written in
different programming languages. Once compiled, kernels consist of threads that execute the same instructions simultane-
ously — the Single Instruction Multiple Thread (SIMT) execution model. Multiple threads are grouped into thread blocks. All
threads in a thread block are scheduled to run on a single SM. Threads within a block can cooperate using the available
shared memory. Thread blocks are divided into warps of 32 threads. A warp is a fundamental unit of dispatch within a
block. Thread blocks are grouped into grids, each of which executes a unique kernel. Thread blocks and threads have iden-
tifiers (IDs) that specify their relationship to the kernel. These IDs are used within each thread as indices to their respective
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Fig. 1. High level flow chart of the major steps involved in a typical ReaxFF algorithm.

input and output data, shared memory locations, etc. [18]. Control instructions can significantly impact instruction through-
put by causing threads of the same warp to diverge; that is, they follow different execution paths. If this happens, different
execution paths must be serialized, increasing the total number of instructions executed for this warp. When all execution
paths have completed, threads converge back to the same execution path [19].

Each SM executes multiple blocks simultaneously to hide the memory access latency. Our development platform, the
Tesla C2075 SM can run up to 8 blocks simultaneously. Each SM has a finite number of registers and limited amount of
shared memory. The availability of these resources dictate the total number of warps that can be scheduled on each SM.
Increasing either the shared memory used by each thread block, or the number of registers, decreases the occupancy of the
kernel and vice-versa. Occupancy of the kernel is defined as the ratio of number of active warps to maximum active warps.
The maximum number of active warps varies depending on the GPU model.

Memory operations are handled per half-warp (16 threads). If all threads access non-consecutive memory locations, then
multiple memory reads/writes are issued. In the worst case, up to 16 memory operations may be issued. If all threads access
consecutive memory locations, then fewer memory operations are issued. In the best case, just one memory read/write is
issued if all the data fits on the memory bus. This coalesced memory access plays a vital role in the performance of the
kernel.

Each floating-point arithmetic operation involves rounding. Consequently, the order in which arithmetic operations are
performed is important. During parallel execution of kernels, the order of operations is potentially changed. Therefore float-
ing point operation results obtained on GPUs may not match those obtained from a sequential CPU run bit-by-bit [19,20].
We refer readers to [20] for detailed discussion on floating-point arithmetic on NVIDIA GPUs.

4. PuReMD-GPU design

We describe PuReMD-GPU in detail and discuss major design decisions in its implementation. PuReMD-GPU is derived
from the serial version of PuReMD [12], which is targeted towards typical desktop environments. Fig. 1 presents key func-
tional blocks and control flow in the PuReMD-GPU implementation. We identify the following algorithmic components of
PuReMD: initialization, generating neighbors, computing bond orders, energy, and forces, and recomputing partial charges on
atoms. Each of these components is considerably more complex compared to a non-reactive classical MD implementation.
It is this complexity that forms the focus of our GPU implementation.

4.1. Initialization

During initialization, PuReMD and PuReMD-GPU construct a number of data structures used in subsequent processing.
These include the neighbor list, the bond list, hydrogen bond list, and coefficients of charge equilibration (QEq) matrix. Note
that the relations underlying the lists are themselves symmetric, i.e., if atom x is a neighbor of atom y, then atom y is
also a neighbor of atom x. Likewise, if atom x has a bond with atom y, atom y also has a bond with atom x; and so on.
This symmetric relation may be stored redundantly, i.e., both copies of the symmetric relation are stored for computational
efficiency. Alternately, this data may be stored non-redundantly, i.e., only one copy of the symmetric relation is stored (by
convention, the ordered pair from lower to higher indexed atom). The latter is done for memory efficiency, while the former
is important for exposing more parallelism at the expense of additional memory. In PuReMD, where each process uses a
strictly sequential execution model for its share of computations, the non-redundant storage option is preferred. However,
PuReMD-GPU stores redundant versions of all lists. This greatly simplifies implementation while yielding better performance
at the cost of increased memory footprint.

The first step in the initialization process for both PuReMD and PuReMD-GPU is to estimate the number of entries in the
neighbor list, bond list, hydrogen bond list, and the QEq matrix. These estimates are used to dynamically allocate memory;
the actual memory allocated is an overestimate to avoid repeated reallocations. In the course of the simulation, if the actual
memory utilization hits a high-water mark, corresponding data structures are reallocated.
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4.1.1. Computing neighbor lists
Both PuReMD and PuReMD-GPU first construct the list of neighbors for each atom in the input system. Other data

structures are rebuilt at each step from the neighbor list. A typical atom may have several hundred atoms in its neighbor
list.

In ReaxFF, both bonded and non-bonded interactions are truncated after a cut-off distance (which is typically 4–5 Å
for bonded interactions and 10–12 Å for non-bonded interactions). Given this truncated nature of interactions, we use a
procedure based on “binning” (or link-cell method) [21]. First, a 3D grid structure is built by dividing the simulation domain
into small cells. Atoms are then binned into these cells based on their spatial coordinates. It is easy to see that potential
neighbors of an atom are either in the same cell or in neighboring cells that are within the neighbor cut-off distance rnbrs
of its own cell. The neighbor list for each atom is populated by iterating over cells in its neighborhood and testing whether
individual atoms in neighboring cells are within the cutoff distance. Using this binning method, we can realize O(k) neighbor
generation complexity for each atom, where k is the average number of neighbors of any atom. It is important to note that
the cell size must be carefully selected to optimize performance.

In PuReMD-GPU the processing of each atom may be performed by one or more threads. The case of a single thread per
atom is relatively straightforward. Each thread runs through all neighboring cells of the given atom and identifies neighbors.
These neighbors are inserted into the neighbor list of the atom. Since shared data structures (cells and their atoms) are
only read and there are no shared writes in this case, no synchronization is required. The case of multiple threads per
atom, on the other hand requires suitable partitioning of the computation, as well as synchronization for writes into the
neighbor list. This process is illustrated in Fig. 2 for the case of four threads per atom. Each thread takes as argument the
atom-id for which it computes neighbors. This atom-id is used by all threads to concurrently identify neighbor cells. Each
of these neighbor cells is processed by the threads in a lock-step fashion. In the case of four threads, every fourth atom in
a neighbor cell is tested by the same thread; i.e., thread 0 is responsible for testing whether atoms 0, 4, 8, and so on are in
the neighbor list, thread 1 is responsible for testing atoms 1, 5, 9, . . . . In this scenario, one may note that atoms 0, 1, 2, and
3 of the first neighbor cell will be processed concurrently by threads with ids 0, 1, 2, and 3 in the first step; atoms 4, 5, 6,
and 7 are processed concurrently by threads 0, 1, 2, and 3, in the second step respectively, and so on.

Since the threads themselves are executed in a synchronized SIMT fashion, a single SIMT execution step of four threads
results in an integer-vector of length 4. A one in this vector corresponds to the fact that the atom in the cell belongs to the
neighbor list. At this point, all atoms that have 1’s in this vector must be inserted into the neighbor list concurrently, which
requires synchronization. This (potential) concurrent write is handled by computing a prefix sum of the integer vector. The
prefix sum vector gives each thread the offset for inserting into the neighbor list. Once this offset is computed, all writes are
to independent locations in the shared memory. The writes are performed and the next block of atoms in the same neighbor
cell is processed. In this way, computation proceeds until all atoms in all neighbor cells are processed. The pseudocode for
this computation is described in Algorithm 1. CUDA function sync_threads, which is a thread barrier for all threads in a
thread-block, is used to synchronize threads working on the same atom. Lines 2, 3 and 4 compute my_atom, corresponding
cell my_cell, and lane_id, which is a number between 0 and threads_per_atom. All threads working on an atom
loop through the neighboring cells of my_cell checking for the cutoff distance. If this condition is satisfied, each thread
picks an atom from cell’s atom list and checks whether my_atom and atom are neighbors on line 15. Threads that gener-
ate a neighbor elect a designated thread (thread with least thread-id) to compute the offset within the neighbor list relative
to the end_index (where the previous sets of writes into the neighbor list ended) on line 18. Newly generated neighbors
are inserted into the neighbor_list using the offset and a designated thread updates the end_index on line 20. Each
thread increments the iteration count and picks up the next atom from cell at lines 22 and 23. Single Instruction Multiple
Thread execution model of CUDA runtime guarantees that all threads execute the same control instruction (lines 7 through
23) within the current block. At the end of the main loop on lines 25 and 26 end_index is updated in the neighbor list
for each atom.

4.1.2. Computing bond list, hydrogen-bond list and QEq matrix
Both PuReMD and PuReMD-GPU maintain redundant bond lists, i.e., bond information is maintained by both atoms at

either end of a bond. PuReMD iterates over the neighbor list of each atom and generates the bond lists of both the current
atom and neighboring atom at the same time, since neighbor lists are non-redundant. In the serial PuReMD code, this
is relatively easy, since we can safely modify the bond lists of both atoms at the same time without having to worry
about synchronization. In PuReMD-GPU, since neighbor lists are redundantly stored, computation at each atom is only
responsible for inserting into the lists of its own atom. The concurrency in constructing bond lists, hydrogen bond lists, and
the QEq matrix can be viewed along two dimensions: (i) the three tasks (bond lists, hydrogen bond lists and one QEq entry)
associated with each atom pair can be performed independently; (ii) the processing of each atom pair (the source atom and
the atom in the neighbor list) can be performed independently. Indeed, both of these elements of concurrency can also be
used. The base implementation of the first form creates three kernels for each atom – one for bond list, one for hydrogen
bond list, and one for QEq. However, this implementation does not yield good performance because the neighbor list is
traversed multiple times, leading to poor cache performance. For this reason, we roll all three kernels into a single kernel
which handles all three lists. With this kernel, one may still partition the neighbor list, as was done in our implementation
of neighbor list construction. However, there are several key differences here – the quantum of computation associated with
an atom pair is larger here, since the combined kernel is more sophisticated. On the other hand, the number of atom pairs
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Fig. 2. Neighbor list generation in PuReMD-GPU.

is smaller, since the neighbor list is smaller than the potential list of neighbors in cells examined in the previous case.
Finally, there are subtle differences in synchronizations. For instance the number of synchronized insertions into the lists is
much smaller (the number of bonds is relatively small). For these reasons, PuReMD-GPU relies on a single kernel for each
atom and all processing associated with an atom. Traversal through the entire neighbor list and insertions are handled by a
single thread.
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Algorithm 1: Multiple threads per atom kernel for neighbor list generation.
Data: atoms
Result: neighbor list’s of all the atoms

1 thread_id = blockIdx.x * blockDim.x + threadIdx.x;
2 my_atom = GetAtomId (blockIdx.x, threadIdx.x, threads_per_atom);
3 lane_id = thread_id & (threads_per_atom −1);
4 my_cell = get_cell (my_atom);
5 end_index = get_end_index (my_atom, neighbors_ list);
6 sync_threads ();
7 foreach cell in the neighboring cells of my_cell do
8 if cell is within cutoff distance of my_cell then
9 total_iterations = get_iterations (# of atoms in cell, threads_per_atom);

10 iterations = 0;
11 nbr_gen = false;
12 start = starting atom of cell;
13 atom = start + lane_id;
14 while iterations less than total_iterations do
15 if atom and my_atom are far neighbors then
16 nbr_gen = true;

end
17 if nbr_gen then
18 designated thread computes the offset (relative to end_index) in the neighbor list for each thread of this atom;
19 insert atom in the neighbor list of my_atom;
20 update end_index based on # of neighbors generated by all the threads for atom;

end
21 nbr_gen = false;
22 iterations ++;
23 atom += threads_per_atom;

end
end

end
24 sync_threads ();
25 if lane_id == 0 then
26 set_end_index (my_atom, end_index, neighbor_ list);

end

4.2. Implementation of bonded interactions

Bonded interactions in ReaxFF consist of bond order, bond energy, lone pair, over- and under-coordination, three-body,
four-body and hydrogen bond interactions. All these interactions, except hydrogen bond, iterate over the bond list of each
atom to compute the effective force and energy due to respective interactions. In addition to iterating over the bond list,
the three-body interactions kernel generates the three-body list, which is used by the four-body interactions kernel during
its execution. Hydrogen bond interaction iterates over the hydrogen bond list to compute effective force and energy E H-bond ,
if hydrogen bonds are present in the system.

The number of entries in the bond list for each atom is small compared to the number of entries in the neighbor list and
hydrogen bond list. Allocating multiple threads per atom (to iterate over the bond list of each atom) would result in a very
few coalesced memory operations. This would imply creation of a large number of thread blocks, where each thread block
performs the computations of only a few atoms, resulting in poor overall performance of the kernel. For this reason, we use
a single thread per atom for bond order, bond energy, lone pair, over- and under-coordination, three-body, and four-body
interaction kernels.

The three-body interaction kernel is complex. It requires the use of a large number of registers and contains several
branch instructions which can potentially cause thread-divergence. The available set of hardware registers in a GPU is shared
by the entire SM. Consequently, if a kernel uses a large number of registers, the number of active warps (groups of schedu-
lable threads in a block) is limited. Our experiments with this kernel showed that in typical cases, we could only achieve
an effective occupancy (ratio of active to maximum schedulable warps) of 25.3% out of the maximum possible occupancy of
33%. The limiting factor for the performance of this kernel is the number of registers used per thread (64 registers/thread).
Allocating multiple threads per atom increases the total number of blocks for this kernel, and, as a consequence, decreases
the kernel’s performance as the system size increases.

For three-body interactions, a thread assigned to the central atom j iterates twice over the bond list of j to generate
the three-body list for it. Using multiple threads per atom increases the number of thread blocks to be executed and in
each of these thread blocks, each thread spends a number of cycles to fetch spilled variables from global memory, which
decreases the kernel’s performance. Due to occupancy limitations discussed earlier, larger number of thread blocks cannot
be scheduled onto SMs. Similar issues arise for the four-body interactions kernel as well. For these reasons, PuReMD-GPU
creates one thread per atom kernels for both the three-body and four-body interactions. We present detailed results in
Section 5 demonstrating these overheads and motivating our eventual design choices.
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Algorithm 2: Multiple threads per atom kernel for hydrogen-bonds interaction.
Data: atoms, hydrogen-bond list, bond list
Result: updated hydrogen-bond list and forces on atoms and hydrogen-bond energy of the system

1 shared-memory sh_atom_force[];
2 shared-memory sh_hbond_energy[];
3 thread_id = blockIdx.x * blockDim.x + threadIdx.x;
4 my_atom = GetAtomId (blockIdx.x, threadIdx.x, threads_per_atom);
5 lane_id = thread_id & (threads_per_atom −1);
6 if my_atom is a hydrogen atom then
7 my_bond_list = empty list;
8 foreach bond in bond_list of my_atom do
9 if the other atom in bond is not hydrogen-atom append it to the my_bond_list;

end
10 foreach my_bond in my_bond_list do
11 max_iterations = get_max_iter (threads_per_ atom, # of hydrogen_bonds for my_atom);
12 iterations = 0;
13 my_hbond = start_index (my_atom, hydrogen_ bond_list) + lane_id;
14 my_bond_neighbor = my_bond->neighbor;
15 while iterations < max_iterations do
16 my_hbond_neighbor = my_hbond->neighbor;
17 if my_bond_neighbor != my_hbond_neighbor then
18 compute derivatives and update hydrogen bond accordingly;
19 sh_hbond_energy[threadIdx.x] = compute hydrogen-bond energy;
20 sh_atom_force[threadIdx.x] = compute force on my_atom;

end
21 iterations ++;
22 my_hbond += threads_per_atom;

end
end

23 perform parallel reduction on sh_atom_force and sh_hbond_energy arrays;
24 and compute resultant force on my_atom and hydrogen_bond energy contributed by my_atom;

end

Hydrogen bond interaction, if present, is the most expensive of all the bonded interactions. This kernel iterates over the
hydrogen bond list. Since the cutoff distance for hydrogen bond interactions is typically 6–7.5 Å, the number of hydrogen
bond entries per atom can be quite large. This indicates that multiple threads per atom would yield better performance
because of coalesced global memory accesses. The pseudocode for hydrogen bonds computation is described in Algorithm 2.
Lines 1, 2 declare shared memory arrays used in the reduce operation to compute the force on each atom and hydrogen
bond energy contributed by each atom. Lines 8 and 9 iterate over bond_list and build my_bond_list, which is a
list of bonds between a hydrogen atom and a non-hydrogen atom. All threads assigned to an atom start at the main loop
on line 10. This loop iterates over the my_bond_list. Each thread picks up a unique hydrogen bond (my_hbond) and
computes hydrogen bond energy and force on my_atom, which is stored in shared memory. Each thread then picks up the
next hydrogen bond (my_hbond) on line 22. SIMT semantics of the CUDA runtime ensure that all the threads in a thread
block execute the same control instruction simultaneously within the loop between lines 10 and 22. Line 23 performs a
parallel reduce operation in shared memory to compute the effective force on each atom.

Eliminating bond order derivative lists. All bonded potentials (including the hydrogen bond potential) depend primarily on the
strength of the bonds between the atoms involved. Therefore, all forces arising from bonded interactions depend on the
derivative of the bond order terms. A close examination of Eq. (2) suggests that B O ij depends on all the uncorrected bond
orders of both atoms i and j, which could be as many as 20–25 in a typical system. This also means that when we compute
the force due to the i– j bond, the expression dB O ij/drk evaluates to a non-zero value for all atoms k that share a bond
with either i or j. Considering the fact that a single bond takes part in various bonded interactions, the same dB O ij/drk
expression may need to be evaluated several times over a single timestep. One approach to efficiently computing forces due
to bond order derivatives is to evaluate the bond order derivative expressions at the start of a timestep and then use them
repeatedly as necessary. Besides the large amount of memory required to store the bond order derivative list, this approach
also has implications for costly memory lookups during the time-critical force computation routines.

We eliminate the need for storing the bond order derivatives and frequent look-ups to the physical memory by delaying
the computation of the derivative of bond orders until the end of a timestep. During the computation of bonded potentials,
coefficients for the corresponding bond order derivative terms arising from various interactions are accumulated into a
scalar variable dEdB O ij . After all bonded interactions are computed, we evaluate the expression dB O ij/drk and add the

force dEdB O ij × dB O ij
drk

to the net force on atom k directly. This technique enables us to work with much larger systems by
saving considerable memory and computational cost.

Atomic operations to resolve the dependencies. CUDA runtime does not support built-in atomic operations on double-precision
variables. Atomic operations on double precision variables are slow because 64-bit floating point numbers require two



S.B. Kylasa et al. / Journal of Computational Physics 272 (2014) 343–359 351

single-precision atomic operations (one operation for each of the 32-bit words). Atomic operations are performed in memory
controllers and hardware caches; the associated hardware is shared by each SM, and if all the threads access the same
memory location on a multiprocessor they are effectively serialized [22,23]. This may significantly impact the performance
of a kernel that makes heavy use of atomic operations with double-precision variables. Therefore we use additional memory,
which we discuss next, in resolving all dependencies and race conditions in PuReMD-GPU.

Using additional memory to resolve the dependencies. To resolve concurrent updates to energies, forces, and intermediate deriva-
tives by multiple threads, PuReMD-GPU uses additional memory to avoid costly atomic operations. For this purpose, bond
list and hydrogen bond list structures have been augmented with temporary variables. During bonded interactions, tempo-
rary results are stored in these augmented variables. After the interaction is processed, a separate kernel is launched that
iterates over the bond list and hydrogen bond list to compute the final result. Multiple threads per atom kernels employ
shared memory to store intermediate results and a designated thread for each atom updates the global memory, where the
final result is stored. All algorithms discussed in this section use the additional memory approach over atomic operations.
All the experiments reported in Section 5 are based on the additional memory implementation, unless otherwise mentioned
for that specific experiment.

4.3. Charge equilibration (QEq) solve

Unlike conventional MD techniques, where charges on atoms are static, in ReaxFF, charges are redistributed periodically
(most commonly at each timestep). This is done through a process called charge equilibration, which assigns charges to
atoms so as to minimize electrostatic energy of the system, while keeping net charge constant. The mathematical formula-
tion of this process can be written as:

Minimize E(q1 . . .qN) =
∑

i

(
Ei0 + χ0

i qi + 1
2

H0
iiq

2
i

)

+
∑

i< j

(Hijqiq j) (4)

subject to qnet =
N∑

i=1

qi (5)

Here, χ0
i is the electronegativity and H0

ii the idempotential or self-Coulomb of i. Hij corresponds to the Coulomb interaction
between atoms i and j.

To solve these equations, we extend the mathematical formulation of the charge equilibration problem by Nakano et al.
[24]. Using the method of Lagrange multipliers to solve the electrostatic energy minimization problem, we obtain the fol-
lowing linear systems:

−χk =
∑

i

Hiksi (6)

−1 =
∑

i

Hikti (7)

Here, H denotes the QEq coefficient matrix, which is an N by N sparse matrix, N being the number of atoms in the
simulation. The diagonal elements of H correspond to the polarization energies of atoms, and off-diagonal elements contain
the electrostatic interaction coefficients between atom pairs. χ is a vector of size N , comprised of parameters determined
by the types of atoms in the system. s and t are fictitious charge vectors of size N , which arise in the solution of the
minimization problem. Finally, partial charges, qi ’s, are derived from the fictitious charges based on the following formula:

qi = si −
∑

i si∑
i ti

ti (8)

subject to qnet = 0 (9)

We solve the linear systems in Eq. (6) and Eq. (7) using an iterative solver based on the GMRES algorithm [25,26] with
a diagonal preconditioner. PuReMD-GPU uses CUBLAS library from NVIDIA for various vector operations to realize a high
performance GMRES implementation. The implementation of the sparse matrix-vector multiplication (SpMV), which is the
most time consuming kernel in GMRES, follows the compressed sparse row (CSR) storage based algorithm presented in [27].
Each row of the sparse matrix uses multiple threads to compute the product of the row with the vector, and temporary
sums are stored in shared memory. Note that this corresponds to a highly optimized 2-D partitioning of the sparse matrix.

Individual timesteps in ReaxFF must be much shorter than those in classical MD methods (less than a femtosecond).
Therefore the geometry of the system does not change significantly between timesteps. This observation implies that so-
lutions to Eq. (6) and Eq. (7) in one timestep yield good initial guesses for the solutions in the next timestep. Indeed, by
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Algorithm 3: Multiple threads per atom kernel for Coulombs and van der Waals forces.
Data: atoms, far neighbors list
Result: Coulombs and van der Waals forces

1 shared-memory sh_atom_force[];
2 shared-memory sh_coulombs[];
3 shared-memory sh_vdw[];
4 thread_id = blockIdx.x * blockDim.x + threadIdx.x;
5 my_atom = GetAtomId (blockIdx.x, threadIdx.x, threads_per_atom);
6 lane_id = thread_id & (threads_per_atom −1);
7 start = start_index (my_atom, far_neighbors_ list);
8 end = end_index (my_atom, far_neighbors_list);
9 my_index = start + lane_id;

10 while my_index < end do
11 if far_neighbor_list[my_index] is within cutoff distance then
12 sh_vdw[threadIdx.x] = compute van der Waals force;
13 sh_coulombs[threadIdx.x] = compute coulombs force;
14 sh_atom_force[threadIdx.x] = compute force on my_ atom;

end
15 my_index += threads_per_atom;

end
16 perform parallel reduce operation in shared memory to compute;
17 final coulombs and van der Waals forces and update force on my_atom;

making linear, quadratic or higher order extrapolations on the solutions from previous steps, we obtain better initial guesses
for solving the QEq problem. The combination of an efficient GMRES implementation, an effective diagonal preconditioner
as well as good initial guesses yield a highly optimized solver for the charge equilibration problem. We present detailed
performance results in Section 5.

4.4. Implementation of nonbonded forces

Nonbonded forces include Coulomb and van der Waals force computations which are computed by iterating over the
neighbor list of each atom. Each atom may have several hundred neighbors in its neighbor list. In order to exploit the
spatial locality of the data and coalesced reads/writes on global memory, multiple threads per atom are used in this kernel.
Algorithm 3 summarizes our implementation of nonbonded forces.

Lines 1, 2 and 3 declare shared memory to store intermediate force values. Lines 7 and 8 mark the beginning and end
of my_atom’s neighbor list. The while loop at line 10 performs the force computations for the atom. Each thread operating
on the neighbor list of an atom works on distinct neighbors indicated by the variable my_index. SIMT execution model
of CUDA runtime ensures that all the threads in a thread block execute the same control instruction simultaneously within
the while loop between lines 10 and 15. Line 16 performs a parallel reduction in the shared memory to compute the final
forces for each atom.

Use of lookup tables. PuReMD uses lookup tables for computing nonbonded interactions due to the larger number of inter-
actions within the cutoff radius, rnonb . These tables are used to approximate the complex expressions through cubic spline
interpolation. This is a common optimization technique used by many MD codes, which yields significant performance
improvement with relatively little impact on accuracy [12]. When using GPUs, however, global memory latency is several
hundreds of cycles, compared to a few cycles for local memory access. The larger memory footprint of lookup tables pre-
cludes their storage in local memory. Even when stored in global memory, lookup tables limit memory available to other
kernels and data structures. For this reason, lookup tables do not yield significant performance improvements on GPUs. On
the contrary, PuReMD’s performance deteriorates significantly if lookup tables are not used as discussed in Section 5.

5. Experimental results

In this section, we report on our comprehensive evaluation of the performance, stability, and accuracy of PuReMD-GPU.
All simulations are performed on a testbed consisting of two Intel Xeon CPU E5606 processors (four cores per processor)
operating at 2.13 GHz with 24 GB of memory, running the Linux OS, and equipped with a Tesla C2075 GPU card. All
arithmetic in PuReMD-GPU is double precision. The peak double precision floating point performance of the C2075 GPU is
515 Gflops [28]. The PuReMD code is compiled using GCC 4.6.3 compiler with the following options – “-funroll-loops -fstrict-
aliasing -O3”. PuReMD-GPU is compiled in the CUDA 5.0 environment with the following compiler options “-arch=sm_20
-funroll-loops -O3”. Fused Multiplication Addition (fmad) operations are used in PuReMD-GPU implementation.

We use bulk water (H2O) and amorphous silica (SiO2) model systems for in-depth analysis of accuracy and performance,
since they represent diverse stress points for the code. Bulk water systems of various sizes containing 6540 atoms, 10,008
atoms, 25,050 atoms, 36,045 atoms and 50,097 atoms have been used. Amorphous silica systems used has consisted of 6000
atoms, 12,000 atoms, 24,000 atoms, 36,000 atoms and 48,000 atoms. We use a timestep of 0.1 femtoseconds, a tolerance of
10−10 for the QEq solver and the NVT ensemble at 300 K in all our simulations.
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Fig. 3. Time per timestep for the water systems.

Table 1
Speedups achieved with bulk water systems of various sizes. Speedups of PuReMD-GPU over the PuReMD code running on a single CPU core and all 8 cores
available on the testbed are shown.

System size One core 8 cores

Look-up tables No look-up tables Look-up tables No look-up tables

6540 7.1 13.6 2.1 2.8
10,008 7.6 13.0 2.2 2.9
25,050 9.1 16.0 2.0 2.8
36,045 9.2 16.4 2.1 2.9
50,097 8.2 16.6 2.1 2.9

The key result of our development effort is the significant speedups achieved on a single GPU card. Our detailed simu-
lations demonstrate speedups of up to 16× over a highly optimized single core CPU run by leveraging the algorithms and
optimizations described in Section 4.

5.1. Performance and scalability of PuReMD-GPU

We use bulk water systems of different sizes to demonstrate the performance improvements and scalability achieved by
using PuReMD-GPU in ReaxFF simulations. In Fig. 3, we show the total time taken per step for our model water systems,
and Table 1 gives the corresponding speedups. We achieve speedups of up to 16× compared to the PuReMD code running
on a single CPU core and almost 3× speedup compared to execution on all 8 cores available on the testbed system. We also
observe that as the system size increases, the effective speedup increases too, which points out to better scaling properties
of our GPU implementation compared to the CPU versions. In Fig. 3 and Table 1, we also present the performance data from
PuReMD and PuReMD-GPU with and without the use of lookup tables. We observe in our performance tests that PuReMD’s
performance is significantly degraded if lookup tables are not used, whereas PuReMD-GPU’s performance remains inert to
this change due to the reasons discussed in Section 4.4. In particular, the relative ratios of computation to memory access
favor increased computation on GPUs as compared to CPU-only implementations that can benefit from fewer computations
resulting from the use of lookup tables.

We note that factors such as the number of threads used per atom and the thread block size are important for obtaining
the best performance with PuReMD-GPU. For our tests with the bulk water systems and amorphous silica systems, multiple
threads per atom are used for kernels with high degree of available parallelism such as neighbor generation, hydrogen
bonds, the SpMV in QEq, Coulomb and van der Waals interaction kernels, while a single thread per atom was used for all
other kernels. Specifically, neighbor generation kernel uses 16 threads per atom; hydrogen bonds, Coulomb interactions, van
der Waals interactions and SpMV kernels use 32 threads per atom. Thread block size for all kernels is set to 256 except
for the SpMV kernel, which uses a thread block size of 512. The effect of the number of threads and thread block size on
performance are discussed in detail in Sections 5.4 and 5.5.

5.2. Performance and scalability across systems

Apart from the bulk water systems, we have also used amorphous silica systems of different sizes to test the performance
of PuReMD-GPU. Amorphous silica which is in solid phase at 300 K is chemically very different than a bulk water system
which is a liquid. In silica (SiO2), each Si atom makes 4 bonds and each O atom makes 2 bonds. However, in bulk water
(H2O), while O still makes 2 bonds, H makes a single bond only. Therefore bonded interactions, especially the three-body
and four-body interactions, become more expensive in the amorphous silica system. Also the number of the atoms in the
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Fig. 4. Time per timestep for silica systems.

Table 2
Speedups achieved with amorphous silica systems of various sizes. Speedups of PuReMD-GPU over the PuReMD code running on a single CPU core and all
8 cores available on the testbed are shown.

System size One core 8 cores

Look-up tables No look-up tables Look-up tables No look-up tables

6000 5.8 9.6 1.7 2.0
12,000 5.9 10.1 1.7 2.0
24,000 6.5 10.9 1.6 2.1
36,000 6.6 11.4 1.5 2.0
48,000 6.6 11.4 1.6 2.0

nonbonded interaction cutoff radius is different between the two systems. Finally, there are no hydrogen bonds in the silica
system. As a result, we hope that the comparison of performance results obtained from these two different systems can
provide clues to the reader about the performance portability of PuReMD-GPU across diverse systems.

As can be seen in Fig. 4 and Table 2, compared to the baseline PuReMD results on CPUs, PuReMD-GPU yields performance
improvements and scalability similar to those observed with bulk water systems. However, speedups achieved with silica
systems are lower than the water systems (11× vs. 16× and 2× vs. 3×). The main reason for the lower speedups with
silica systems is the four-body interactions. Due to the high number of bonds associated with each atom in a silica system,
four-body interactions constitute a significant fraction of the total running time in these systems (see Table 3). Even with the
use of auxiliary memory in the bond list, atomic operations cannot be avoided in this kernel. This is because of the following
reason: assuming that atoms (i, j, k, l) participate in a four-body interaction, we store three-body interactions among atoms
(i, j, k) and atoms ( j, k, l) in the three-body list where atoms j and k are central atoms. The thread processing the four-body
interactions for atom j needs to update the force on atom l while processing this interaction. We use an atomic operation
in this case to avoid maintaining another data structure for resolving this dependency. Avoiding this atomic operation may
improve the performance of this kernel at the expense of additional memory usage for systems where four-body interactions
are dominant. However, this may significantly increase the complexity of the kernel too. Because overheads due to the use
of additional local variables and increased use of shared memory can be computationally expensive. For these reasons, we
have decided to use atomic operations for the force updates in four-body interactions.

5.3. Detailed performance analysis

Table 3 presents a detailed performance comparison of PuReMD and PuReMD-GPU implementations. In all cases, ker-
nels associated with nonbonded interactions, which include Coulomb and van der Waals forces, charge equilibration (QEq)
procedure and initialization (contains the QEq matrix construction), are the most expensive ones. This is expected because
nonbonded interactions are typically effective at a larger distance than bonded interactions (10–12 Å vs. 4–5 Å). However,
these kernels contain a higher level of parallelism that can be exploited by GPUs compared to bonded interactions. There-
fore much of the overall speedup we observe with PuReMD-GPU comes from the acceleration of nonbonded interaction
computations. For example, we obtain more than 40× speedup for Coulomb and van der Waals force computations in both
of our model systems. Of all the bonded interactions, hydrogen bond interaction is typically the most expensive one, if
present. This is because it contains a bonded H atom interacting with nonbonded atoms as far as 6–7 Å away. Hydrogen
bond computations are also easily parallelizable and we see good speedups with the use of GPUs in this kernel. Hydrogen
bond computations are followed by three-body and four-body interactions in terms of computational complexity. For rea-
sons discussed above, four-body interactions and to some degree the three-body interactions dominate the total running
time for the bonded interactions in silica systems. Bond-order, bond-energy and lone-pair interactions are simpler kernels,
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Table 3
Timings for various computational components of a single time-step for the Water-6540 system and Silica-6000 systems. All the timings are in milliseconds.
Tcpu is the time required for the single core CPU run with PuReMD. Tgpu is the time taken by PuReMD-GPU. Tov shows the overhead incurred on the GPU,
and is already included in Tgpu .

Computation Water-6540 Silica-6000

Tcpu Tgpu Tov Tcpu Tgpu Tov

Neighbor generation 117 14 – 85.3 11.9 –
Initialization 232.8 31.1 12.0 163.0 10.8 0.6
Bond orders 4.1 0.5 – 10.9 0.7 –
Bond energies 2.4 0.2 0.03 4.5 0.3 0.03
Lone pair intr. 2.7 0.8 0.1 4.8 1.2 0.1
Three-body intr. 37.4 5.9 0.4 113.5 13.2 0.6
Four-body intr. 34.7 8.1 0.5 252.8 58.9 0.9
Hydrogen bonds 133.1 6.2 1.3 0.05 0.9 0.5
Charge equilibration 589.9 43.0 − 97.5 21.9 –
Coulomb/van der Waals 1001.9 24.2 0.1 587.2 14.9 0.1

costing only a fraction of the total running time. However, the speedups obtained for these kernels are not as impressive
as the nonbonded interaction kernels. As the GPU technology becomes more advanced and supports even higher degrees of
concurrency, we anticipate that the bonded interaction kernels may become bottlenecks which may require further perfor-
mance optimization work for bonded interaction kernels.

In Table 3, we also give the overheads associated with various computations in the GPU implementation. As described
in Section 4, some overheads are incurred in certain kernels of PuReMD-GPU in order to expose more parallelism in those
kernels. It is evident from the detailed performance data that the overhead incurred by most kernels is much less than the
cost of (essential) computations in those kernel, thus resulting in good speedups. The exceptions are the initialization and
hydrogen bond kernels which require relatively high computational overheads.

Neighbor generation does not require any additional computations over the PuReMD implementation, since it is imple-
mented as a single kernel. The initialization step, during which bond list, QEq matrix and hydrogen bonds list are generated,
uses separate post processing kernels to make the bond and the hydrogen bond lists symmetric. Bond list is made symmet-
ric in PuReMD-GPU in two stages. First, the bond list is generated during the initialization step and then a separate kernel
iterates over it to update pointers so that bond (i, j) and bond ( j, i) point to each other. A similar approach is taken for
hydrogen bond list construction as well.

All force computation kernels require the use of a separate kernel, which causes a small overhead, to compute the
overall energy contribution of that interaction. For example, bond energy requires a separate kernel to compute Ebond of the
system; lone-pair interaction needs 3 such kernels to compute Elp , Eover , and Eunder; three-body interactions kernel needs
to perform a reduction to compute Eang , Epen , and E3coa; four-body interactions kernels needs to do the same for computing
Etor and E4con; hydrogen-bond kernel has the overhead of computing E H-bond and finally nonbonded forces kernel incurs
the same overhead for computing ECoulomb and EvdW . An additional post-processing step is used for the lone-pair forces to
compute the net force on each atom due to 3 different kinds of interactions involved. Similarly, during the processing of
both the three-body and four-body interactions, a post-processing step is used for computing the net force on each atom, as
well as the intermediate derivatives, due to different kind of interactions involved. Finally, two separate kernels are used for
post-processing in the hydrogen bond computations, one to iterate over the hydrogen bond list and another one to iterate
over the bond list to compute the net force on each atom due to this interaction.

5.4. The effect of thread block size on performance

GPU kernel performance is a function of block size, as well as resources (shared memory and registers) available at
each SM. The Tesla C2075 GPU has a 32 KB register file and 48 KB of shared memory per block. To hide memory access
latency, CUDA switches between blocks, which means that a single SM can run up to 8 blocks of threads (this may vary
depending on the GPU used), provided that it has the needed resources. Each resident or active block is assigned its own
set of resources, facilitating fast switch among the resident blocks on the SM. Each block is bound to the multiprocessor on
which it is scheduled to execute until its completion. Recall that the occupancy of a CUDA kernel is defined as the ratio
of active warps to maximum number of active warps. Occupancy is limited by the resource constraints on the SM (shared
memory usage per block, number of registers used per block, and block-size). Kernels with low occupancy have a harder
time hiding latency. Consequently, it is desirable to have high occupancy in order to achieve better performance, especially
for memory-bound applications. Kernels with fewer threads in a block may have high occupancy, but the performance
degrades because the SM cannot schedule enough instructions to hide latency (only 8 blocks can be scheduled at any point
of time). As a result, the SM waits on the instructions to complete before scheduling the rest of the blocks. Larger number
of threads limits the occupancy because of resource constraints, decreasing the performance of the kernel.

For the Water-6540 system, Fig. 5 shows the timings of each of the kernels in PuReMD-GPU (timing for bonded interac-
tions are accumulated into a single number) with different thread-block sizes. As discussed in Section 3, each thread-block
may contain a maximum of 1024 threads (may vary with the compute compatibility of the GPU) and should always be a
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Fig. 5. Effect of block size on the performance of kernels in computations with the Water-6540 system.

Table 4
Effect of multiple threads per atom on the kernel performance for Water-6540 system. All the timings are in miliseconds.

Kernel Threads per atom

1 2 4 8 16 32

Water-6540 system Neighbor gen. 23.1 16.2 13.9 13.7 14.7 22.2
Three-body intr. 6.1 6.4 5.7 6.3 9.3 13.9
Four-body intr. 8.1 11.2 11.7 13.3 17.8 24.9
Hydrogen bonds 7.6 6.6 6.1 5.7 5.9 6.2
Charge Eq. 193.0 100.0 74.5 58.9 53.9 54.7
Nonbonded forces 30.4 28.5 26.8 24.5 23.9 24.3

Water-36045 system Neighbor gen. 127.2 85.6 73.2 73.7 80.1 120.5
Three-body intr. 23.0 25.3 25.5 31.9 47.3 71.9
Four-body intr. 39.9 55.7 59.7 69.7 98.4 138.9
Hydrogen bonds 38.0 32.8 31.1 30.4 31.6 33.1
Charge Eq. 1132.9 562.8 329.5 220.0 183.8 178.5
Nonbonded forces 162.4 148.6 136.9 132.1 128.7 132.5

multiple of 32, because kernels always issue instructions in warps (32 threads). For example, if the block size is 50 threads,
the GPU will still issue instructions to 64 threads resulting in under utilization of the GPU cores. We observe that the per-
formance of kernels can vary significantly with block size. As explained above, the thread-block sizes for our model systems
have been hand-tuned for best performance. In general, the optimal thread-block size will change depending on the system
being studied and the specifications of the underlying GPU card. An automatic tuning method to ensure ideal performance
in general is among the future work planned for PuReMD-GPU.

5.5. Single vs. multiple threads per atom

Another important factor that affects performance is the use of single vs. multiple threads per atom in the implementa-
tion of GPU kernels. Table 4 presents the timings associated with using different number of threads per atom for the most
expensive kernels in PuReMD-GPU. Overall, we observe that using multiple threads per atom yields significant performance
gains (ranging from about 20% to 6×) for kernels which contain several interactions per atom such as neighbor generation,
hydrogen bond computations, charge equilibration (QEq) and nonbonded force computations. The performance gains can be
attributed to better leveraging of coalesced memory operations and effective use of shared memory to process intermedi-
ate results. For the larger Water-36045 system, the performance gains in these kernels are higher, especially for the QEq
computations.

However, in bonded force computations where there are few number of interactions per atom, using multiple threads
can actually lead to worse performance. This can be seen from the performance data for three-body and four-body inter-
actions in Table 4. In these cases, if multiple threads per atom are used, a large number of thread blocks are created. This
situation adversely affects the performance of these kernels due to low kernel occupancy. As noted above, performance
results presented in this paper have been obtained by using 16 threads per atom during neighbor generation, 32 threads
per atom in hydrogen bond, charge equilibration and nonbonded force computations, while using a single thread per atom
in all other kernels.
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Table 5
Timings for each interaction when using atomic operations vs. additional memory to resolve
dependencies for the Water-6540 system. All the timings are in miliseconds.

Computation Atomic ops. Additional memory

Bond orders 0.5 0.5
Bond energies 7.6 0.2
Lone pair intr. 122.1 0.8
Three-body intr. 265.3 6.0
Four-body intr. 55.9 8.1
Hydrogen bonds 157.5 6.2
Nonbonded forces 24.2 24.2

Table 6
Memory footprint for the Water-6540 and Silica-6000 systems. All memory footprints are given in MBs at system initialization. They may grow as the
simulation progresses.

Data-structure Water-6540 Silica-6000

PuReMD PuReMD-GPU PuReMD PuReMD-GPU

Neighbor list 75.1 150.1 43.3 86.5
Hydrogen bond list 7.1 32.8 4.5 13.7
QEq matrix 25.0 54.4 14.0 32.8
Bond list 27.7 42.6 26.0 40.1
Three-body list 9.7 5.2 27.0 20.0

Total memory 144.6 285.1 114.8 193.2

5.6. Use of atomic operations vs. additional memory

In Table 5, we compare the timings for each of the bonded and nonbonded interaction kernels when atomic operations
vs. additional memory approaches are used for concurrent updates to global memory locations. We observe from this table
that the performance of all of the kernels is significantly improved by the additional memory approach for reasons discussed
in Section 4.2. As we show in Section 5.7, the use of additional memory causes the memory footprint of PuReMD-GPU to be
larger than that of PuReMD, but the performance gains are significant enough to justify the increase in memory footprint.

5.7. Memory footprint of PuReMD and PuReMD-GPU

Table 6 presents memory usage of various data structures used in PuReMD and PuReMD-GPU. Neighbor list memory
usage in PuReMD-GPU is doubled, compared to PuReMD. This is because PuReMD-GPU maintains redundant neighbors in
this list as described in Section 4.1.1. Bond list and hydrogen bond list data structures (in PuReMD-GPU) are augmented
with additional memory to store temporary results during various computations to help resolve race conditions, hence
the increased memory usage by these lists compared to PuReMD. Separate kernels process this auxiliary memory, utilizing
coalesced global memory access and shared memory resulting in better performance as shown in Section 5.6. QEq matrix
storage is also doubled in PuReMD-GPU, because both upper and lower triangular parts of the symmetric matrix are stored
which is not the case in PuReMD. PuReMD-GPU computes the three-body list size in each iteration of the simulation, while
PuReMD estimates its size at the beginning of the simulation. Not all bonds participate in three-body interactions, and
computing the offsets, start and end indices of each bond in the three-body list gives a tighter bound on the memory
allocated to this list allowing us to limit the memory used in three-body list for PuReMD-GPU at the expense of a slight
increase in computational load.

5.8. Accuracy of PuReMD-GPU

We perform extensive validation tests of PuReMD-GPU’s accuracy compared to PuReMD. Table 7 presents the deviation
in various energies between PuReMD and PuReMD-GPU at start and after 10,000 and 100,000 steps. The minor deviations
observed in the table are attributed to the fact that arithmetic operations on the GPU are not performed in the same
order as the CPU. Figs. 6(a) and 6(b) provide a comparison of total energy of Silica-6000 and Water-6540 systems between
PuReMD and PuReMD-GPU implementations. From these figures, it is evident that (i) there are no systematic total energy
drifts for either system in either implementation; and (ii) the total energy for the two systems starts to converge as the
simulation progresses.

6. Related efforts

The first-generation ReaxFF implementation of van Duin et al. [6] demonstrated the validity of the method in the context
of various applications. Thompson et al. [29] successfully ported this initial implementation, which was not developed for
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Table 7
Absolute values of the difference in various energies between PuReMD and PuReMD-GPU after zero, ten thousand and hundred thousand steps of simulation
on Water-6540 and Silica-6000 systems. All values are scaled by the observed variation in the corresponding energy term, i.e. [⟨(E − ⟨E⟩)2⟩]0.5 where ⟨E⟩
means the time average of the energy term E . At the beginning of the simulation the energies between CPU and GPU match perfectly to the machine
precision and due to numerical errors they start drifting away slowly as the simulation progresses.

Energy After 0 steps After 10 K steps After 100 K steps

Water-6540 Silica-6000 Water-6540 Silica-6000 Water-6540 Silica-6000

Ebe <10−16 <10−16 6.2 × 10−6 1.1 × 10−4 2.3 × 10−2 1.5 × 10−2

Eov + Eun <10−16 <10−16 1.4 × 10−6 6.9 × 10−6 4.8 × 10−2 1.2 × 10−2

Elp <10−16 <10−16 5.4 × 10−8 4.3 × 10−4 1.3 × 10−3 2.8 × 10−3

Eang + Ecoa <10−16 <10−16 1.5 × 10−5 1.9 × 10−5 1.8 × 10−2 4.4 × 10−3

E H-bond <10−16 – 3.6 × 10−6 – 1.2 × 10−1 –
ETor + Econj <10−16 <10−16 1.6 × 10−5 2.3 × 10−4 1.2 × 10−2 1.8 × 10−2

Evdw <10−16 <10−16 3.4 × 10−6 2.1×10−4 5.0 × 10−2 3.4 × 10−3

Ecoul <10−16 <10−16 2.4 × 10−5 7.8 × 10−5 4.7 × 10−2 4.6 × 10−3

Epol <10−16 <10−16 2.4 × 10−5 7.8 × 10−5 4.6 × 10−2 4.7 × 10−3

Fig. 6. Comparison of total energy of Water-6540 and Silica-6000 systems between PuReMD and PuReMD-GPU implementations upto 100 K time steps.

a parallel environment, into the parallel MD simulation package LAMMPS [21]. Except for the charge equilibration part, the
REAX package in LAMMPS is based on the original FORTRAN code of van Duin [6]. In [12], we describe the serial version
of PuReMD (sPuReMD), which features novel algorithms and numerical techniques to achieve excellent performance, and
a dynamic memory management scheme to minimize the memory footprint in reactive molecular dynamics simulations.
We demonstrate that sPuReMD is 5–7× faster than the REAX package on diverse systems such as bulk water, hexane, and
PETN crystal, while using a fraction of the memory used by REAX [12]. The parallel PuReMD code extends the capabilities
of sPuReMD to massively parallel distributed memory architectures. PuReMD exhibits excellent scalability, and it has been
shown to achieve 3–5× speed-up over the parallel REAX code on hundreds of processors [13]. PuReMD has been used by
us and by other research groups on diverse systems, ranging from strain relaxation in Si–Ge nanobars [30] to water–silica
systems [31]. Recently, PuReMD has been ported to LAMMPS as the User-Reax/C package, where it is used by hundreds of
users worldwide under the GPL license [32]. The above efforts summarize the ReaxFF implementations available publicly as
open source code. In [33], Nomura et al. report on a parallel ReaxFF implementation in Fortran 90.

Zheng et al. have recently reported a GPU-enabled implementation of ReaxFF, GMD-Reax [34]. This is the closest effort
in literature to the PuReMD-GPU code presented in this paper. GMD-Reax is reported to be up to 6× faster than the
User-Reax/C package in LAMMPS. GMD-Reax is not available over the public domain, so a direct comparison is not possible.
However, it is noteworthy that GMD-Reax uses single-precision arithmetic, in the costly charge equilibration computations.
Single precision arithmetic is considerably faster than corresponding double precision operations on GPUs. The use of single
precision floating point arithmetic, however, significantly degrades the accuracy of typical MD trajectories and for this reason
most widely-used MD codes forego the increased speed of single precision in factor of the increased accuracy of double
precision. Our code has been verified through extensive tests, as well as through independent tests performed by Prof. van
Duin’s group. Currently, PuReMD-GPU represents the only publicly available GPU-enabled implementation of ReaxFF.

7. Concluding remarks and ongoing work

In this paper, we presented the design, implementation, and comprehensive benchmarking of PuReMD-GPU, a publicly
available code for reactive molecular dynamics simulations using ReaxFF. Using a variety of data structures, algorithms, and
optimizations, our code achieves over an order of magnitude improvement in performance using a state-of-the-art GPU
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hardware. We validate the stability and accuracy of our code on diverse systems. Our code provides the community with a
unique resource that enables long time simulations (up to nanoseconds) of small- to medium-sized systems (10 K atoms)
on workstation class machines equipped with GPUs.
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