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We present a hybrid quantum-classical algorithm for the time evolution of out-of-equilibrium thermal
states. The method depends on classically computing a sparse approximation to the density matrix and,
then, time-evolving each matrix element via the quantum computer. For this exploratory study, we
investigate a time-dependent Ising model with five spins on the Rigetti Forest quantum virtual machine and
a one spin system on the Rigetti 8Q-Agave quantum processor.
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Whether at the microscopic or the cosmological scale, a
major challenge in physics is understanding the real-time
evolution of nonequilibrium quantum systems. Classic
examples of our limited knowledge in this area are hadro-
nization of the quark-gluon plasma produced in heavy-ion
collision and the expansion of the early Universe. While, in
principle, these problems are amenable to numerical
approaches on classical computers, the exponentially large
state space of quantum systems coupled with the numerical
sign problem in both fermionic systems [1] and real time [2]
render such calculations intractable.
The promise of quantum computers is that the computa-

tional complexity of such problems can be reduced from
exponential to polynomial. This potential improvement is
twofold: one can represent the entanglement of quantum
states directly and sign-problem free real-time calculations
are possible. At present, we are restricted to fewer than 50
non-error-corrected qubits, which greatly restricts the class
of problems we can attempt to simulate. Despite these
present limitations, calculations in systems of interest in
nuclear physics [3,4], quantum field theory [5], condensed
matter [6], and quantum chemistry [7,8] have been
achieved with as few as two qubits. Typically, these
calculations have relied upon hybrid algorithms that couple
a few-qubit quantum computer solving a problem of
exponentially bad classical computational complexity to
a larger classical computer.
In this paradigm, we present, in this Letter, the evolving

density matrices on qubits (EρOQ) algorithm, a hybrid
quantum-classical technique for computing nonequilibrium
dynamics of many-body quantum systems. In particular, we
show how to compute the density matrix of a Hamiltonian
H0, with inverse temperature β and, then, evolve this mixed
state in real time by a different (potentially time-dependent)
HamiltonianH1. The algorithm proceeds by computing, on
a classical computer, a stochastic approximation to the
density matrix ρ ¼ e−βH0 , via the density matrix quantum
Monte Carlo algorithm [9]. This approximate density
matrix is passed to a quantum computer element by

element, which performs time evolution with a different
Hamiltonian H1, and then computes observables with the
time-evolved density matrix ρðtÞ ¼ e−iH1tρeiH1t.
Past theoretical work on computing thermal physics

with a quantum computer has focused on performing the
thermal-state preparation on the quantum processor
[10,11]. EρOQ differs from these approaches in allowing
the computation of the thermal state to remain on the
classical computer, using the quantum processor only for
the classically intractable time evolution. With this divi-
sion, the problem of evolving a mixed state on a quantum
computer is reduced to the problem of evolving multiple
pure states.
In this Letter, we implement our algorithm for a 1D Ising

chain with N ≤ 5 sites. The real-time evolution of this
system has a long history of study on classical computers,
starting with [12]. Since then, it has been used as a
benchmark for developing time-dependent methods in
quantum systems [13–16].
Below, we describe the hybrid quantum-classical algo-

rithm EρOQ in full detail. Results using the Rigetti Forest, a
quantum virtual machine (QVM) [17], and Rigetti’s 8-qubit
quantum processor (QPU) 8Q-Agave, are presented.
The first step of EρOQ produces a stochastic, sparse

approximation to the density matrix using the density
matrix quantum Monte Carlo algorithm (DMQMC) [9],
which we briefly summarize here. The DMQMC is closely
related to diffusion Monte Carlo methods [18], in which
a population of imaginary particles called “psips” in
Ref. [18]. explore the configuration space of a system
through random walks in imaginary time β ¼ it. Each psip
is associated to a position basis state, and in the limit of
large β, the density of psips approximates the ground state
wave function. In DMQMC, the psips explore the space of
basis operators, and after evolution by a finite β, the density
of psips approximates the density matrix at inverse temper-
ature β.
The density matrix ρðβÞ ¼ e−βH may be defined as the

solution to the symmetric Bloch equation
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dρ
dβ

¼ −
1

2
ðHρþ ρHÞ; ð1Þ

with the initial condition ρð0Þ ¼ 1. The symmetric formu-
lation of the Bloch equation results in an algorithm that
naturally preserves the Hermiticity of ρ, up to stochastic
fluctuations. The DMQMC stochastically implements the
first-order Euler difference approximation to Eq. (1), with
the density matrix represented by the collection of psips. To
each psip is associated a basis operator jbpihapj and a sign
χp, determining the sign of the psip’s contribution to the
density matrix. The approximate density matrix ρ̃ ≈ ρ is
given by a sum over all psips: the contribution to the
density matrix of each psip p is χpjbpihapj. Thus, ρ̃ is
given by

ρ̃ ¼
X

p

χpjbpihapj: ð2Þ

To simplify the communication between the quantum and
classical parts of the algorithm, we choose the computa-
tional bases of the classical and quantum computers to be
the same.
The evolution of Eq. (1) begins by randomly placing psips

along the diagonal of the density matrix, all with the positive
sign χ ¼ 1. This implements the desired initial condition for
Eq. (1). The densitymatrix is then evolved in discrete steps of
Δβ, with β=Δβ steps taken.At each step, every psipp (which
is associated with the jbpihapj term of ρ̃) performs four
operations derived by considering a finite-time-step approxi-
mation to Eq. (1): (1) The psip may spawn a new psip on
another site in the same column, jcihapj where c ≠ bp, with
probability 1

2
jhcjHjbpijΔβ. (2) Similarly, the psip may

spawn a new psip onto another site in the same row,
jbpihcj where c ≠ ap, with probability 1

2
jhapjHjcijΔβ.

(3) If hapjHjapi þ hbpjHjbpi > 0, then the psip is
removed from the simulationwith probability 1

2
jhapjHjapiþ

hbpjHjbpijΔβ. (4) Alternatively, when hapjHjapiþ
hbpjHjbpi < 0, the psip is cloned, producing another psip
on the same site. This occurs with probability
1
2
jhapjHjapi þ hbpjHjbpijΔβ.
When the β=Δβ executions of these four steps have

completed, the resulting collection of psips gives an
approximation to ρðβÞ via Eq. (2). The efficiency of this
algorithm is produced by the fact that ρ̃may be very sparse,
where the exact density matrix ρ is not. For an N-site
system, the density matrix ρ has at least 2N nonzero entries,
and typically of order 22N, we expect sufficiently accurate
expectation values to be obtainable with a population of
psips which scales only polynomially with N. For a fixed
N, expectation values computed with ρ̃ will converge to the
exact answer as P → ∞ like 1=

ffiffiffiffi
P

p
, where P is the number

of psips used. We observed the convergence to the exact ρ
for several different N.

With the approximate density matrix ρ̃ determined, time-
dependent expectation values are evaluated on a quantum
processor. A time-dependent expectation value is given
by

hOðtÞi ¼ TrOe−iH1tρeiH1t

Trρ
; ð3Þ

where H1, the Hamiltonian used for time evolution, is
distinct from the H0 Hamiltonian used to define the density
matrix. Substituting the Hermitized approximate density
matrix ρ → 1

2
ðρ̃þ ρ̃†Þ, we see that the expectation value

may be approximated by a sum over psips

hOðtÞi

≈
1

Trρ̃

X

p

Tr

�
1

2
Oe−iH1t½χpjbpihapj þ χ̄pjapihbpj�eiH1t

�
:

ð4Þ

From Eq. (4), it can be seen that the decomposition of the
density matrix into psips allows one to time-evolve each
psip independently as a pure state, avoiding the difficulty of
constructing a mixed state on a quantum processor.
psips for which ap ¼ bp are termed “diagonal.”

Expectation values hapjOðtÞjapi of diagonal psips may be
evaluated straightforwardly on a quantum computer because
they can be represented easily as a pure state. In contrast,
nondiagonal psips must be diagonalized before evaluation
on a quantum processor. For real charges χp, a Hermitized

psip is diagonal in the basis jupi ¼ ð1= ffiffiffi
2

p Þ½japi þ jbpi�,
jvpi ¼ ð1= ffiffiffi

2
p Þ½japi − jbpi�. Such states are easily prepared

on a quantum computer—we use a single ancillary qubit that
is discarded after state preparation. Working in this basis (a
different basis for each psip), the contribution to hOðtÞi of the
nondiagonal psips becomes

hOðtÞi

≈
1

Trρ̃

X

p

½hupjeiH1tOe−iH1tjupi− hvpjeiH1tOe−iH1tjvpi�:

ð5Þ

In this form, the expectationvalue is a sum of quantities, each
amenable to computation with a quantum computer. For a
given set of psips specifying ρ̃, a separate instance of a
general program is run on the quantum processor for each
psip.Eachprogramcontains the samecode for timeevolution
and measurement, but a different sequence of operations for
preparing the pure states. For nondiagonal psips, two
programs must be executed, one for jupi and one for jvpi,
while the diagonal psips require only one. Each program has
the following steps: (1) Prepare the state jupi (or jvpi);
(2) Time-evolve withH1 for a fixed time t via Trotterization;
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(3) Measure O, and any other observables of interest
simultaneously.
For nearly all Hamiltonians of physical interest,

the diagonal basis of the Hamiltonian is not efficiently
accessible, and the time-evolution operator eiH1t must be
approximated by Trotterization. This is accomplished
by decomposing the Hamiltonian into terms easily diagon-
alized: H1 ¼ Hx þHz. The time-evolution operator is
then eiH1t ¼ ðeiHxΔteiHzΔtÞt=ðΔtÞ þOðΔtÞ. In the case of

Eq. (6), we Trotterize with Hx ¼ −μx
P

iσ
ðiÞ
x and Hz ¼

−Jz
P

hijiσ
ðiÞ
z σðjÞz − μz

P
iσ

ðiÞ
z .

In this Letter, the observable of interest (transverse
magnetization) may be measured by changing basis from
the z to the x basis (a rotation of each qubit), and measuring
all qubits simultaneously.
We will use the z basis as our computational basis. For a

diagonal psip, the state japi is prepared by beginning with
j00 � � �i, and performing a NOT gate on qubit i if the spin at
site i is down in the z basis. For a nondiagonal psip, we
introduce an ancillary qubit to be placed in the state j0i þ
eiθp j1i (if preparing jupi) or j0i − eiθp j1i (if preparing jvpi.
This is done by initializing the ancillary to j0i, and applying
a Hadamard gate followed by a phase rotation of either θp
or θp þ π. With the ancillary qubit prepared, the ith qubit is
flipped with a CNOT gate, conditional on the ancillary.
Finally, the ancillary is disentangled from the rest of the
system via further CNOT gates and discarded.
Once each psip has been evaluated by the quantum

processor, the results are summed together (on the classical
computer) via Eq. (5) to calculate the expectation value of
the thermal state.
In additional to the classical polynomial scaling of this

algorithm, each psip corresponds to one or two calculations
on the quantum computer. Thus, the number of calculations
required on the quantum computer is expected to be
polynomial in N as well. Because of Trotterization, each
calculation on the quantum computer requires OðT=ΔtÞ
gates, with a constant of proportionality dependent on the
Hamiltonian being simulated.
As a demonstration of the algorithm, we simulate a 1D

time-dependent Ising spin chain with one coupling constant
and two independent magnetic fields [12–16]. The general
Hamiltonian for this class of system is

HðtÞ¼−JzðtÞ
X

hiji
σðiÞz σðjÞz −μxðtÞ

X

i

σðiÞx −μzðtÞ
X

i

σðiÞz ; ð6Þ

where JzðtÞ is the coupling constant between the z axis
aligned spin component of nearest neighbors, and μxðtÞ and
μzðtÞ denote time-dependent magnetic fields aligned with
the x and z axes, respectively. We take the spin chain to
have periodic boundary conditions. In this Letter, we will
work in units where the inverse temperature is β ¼ 1, and
restrict ourselves to a constant coupling JzðtÞ ¼ 1 and

longitudinal magnetic field μzðtÞ which is 0 for the N ¼ 5
system and 1 for the N ¼ 1. The transverse magnetic field
is permitted to be time-dependent.
The time-dependent observable we measure is the

average transverse magnetization, given by

hmxðtÞi≡ 1

N

X

i

σðiÞx ðtÞ: ð7Þ

As discussed in the previous section, this quantity is easily
measured on the quantum processor.
For the purposes of this exploratory study, we compute

hmxðtÞi for two cases: the N ¼ 5 spin chain on the Rigetti
Forest QVM to empirically test the algorithm’s correctness,
and the single-spin case on the Rigetti 8Q-Agave quantum
computer to study the sources of uncertainty arising in a
physical quantum processor.
Without the additional sources of error inherent in a QPU,

we are able to access larger systems on the QVM.We evolve
the N ¼ 5 spin system with the Hamiltonian described by
Eq. (6) with μxðt ¼ 0Þ ¼ 1 and μxðt > 0Þ ¼ −1. The longi-
tudinal magnetic field is μz ¼ 0. For this calculationwe use a
Trotterization time step ofΔt ¼ 0.1. The imaginary time step
wasΔβ ¼ 0.04 for evolving the psipswith 5000 initial psips.
Shown in Fig. 1 is hmxðtÞi, in statistical agreement with the
exact result.
When run on an ideal quantum processor, as simulated by

Rigetti Forest, EρOQ has two sources of uncertainty, both
statistical: the approximation of ρ by a finite number of psips,
and the intrinsic measurement noise on the quantum proc-
essor. These sources of error are easily accounted for with
standard methods such as bootstrapping as we do in this
Letter. Note, though, that the errors are correlated since the
same set of psips (i.e., the same approximation to the density
matrix) is used for all values of t.

FIG. 1. The transverse magnetization hmxðtÞi for a N ¼ 5 site
spin chain with coupling Jz ¼ 1, and an initial μxð0Þ ¼ 1 and
β ¼ 1, which is evolved with μxðt > 0Þ ¼ −1. Results from the
Forest QVM are shown by red circles and the exact result is
denoted by the solid black line.
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We use the eight-qubit quantum processor 8Q-Agave to
simulate a single spin, thermalized in a transverse magnetic
field μxðt ¼ 0Þ ¼ 1, and time evolved in a flipped magnetic
field μxðt ¼ 0Þ ¼ −1. The longitudinal magnetic field is
taken to be constant: μz ¼ 1. For this calculation we use a
Trotterization time step of Δt ¼ 0.2. The imaginary time
step was Δβ ¼ 0.04, with 1000 initial psips. The results of
this execution of the algorithm are presented in Fig. 2, again
in good agreement with the exact result.
The physical 8Q-Agave, unlike the simulated Forest, is

not an ideal quantum processor, and has several additional
sources of error that must be accounted for. Most promi-
nently, measurements have so-called readout noise. When
measuring a qubit, there is some probability that the
opposite state will be read, instead. If one assumes this
readout noise is symmetric between the two states and
independent of the gates used before a measurement is
taken (empirically the case at our level of precision), this
reduces the measured magnitude of hmxðtÞi by a constant
factor, which can be corrected for by rescaling. In Fig. 2, we
rescale hmxðtÞi by hmð0Þi, which appears to sufficiently
remove the effect of readout noise.
Other sources of error, more difficult to correct for, are

also present. For instance,when a parametrized gate (such as
a one-qubit phase gate) is requested with angle θ, the actual
gate implemented may have angle θ þ ϵðθÞ, producing a
systematic bias in all results using that value of θ. This and
other unanticipated sources of systematic error may be
accounted for by performing a calibration run with a simpler
Hamiltonian (diagonal in the computational basis). For this
Letter, we use H0

1 ¼ −μzσz: the error bars estimated for
Fig. 2 are the quadrature average of the difference between
the simulated results for H0

1 and the exact answer.
In this work, we have presented EρOQ, a hybrid

classical-quantum algorithm for simulating out-of-

equilibrium dynamics of thermal quantum systems, apply-
ing it to a simple system on both a quantum virtual machine
and a quantum processor. EρOQ first computes an approxi-
mation of the density matrix on a classical computer,
evading the need to compute thermal physics or prepare
a mixed state on a quantum computer. The density matrix is
then passed to a quantum processor to compute the time
evolution, thus, avoiding the sign problem associated with
real-time calculations on a classical computer.
Going forward, this algorithm could be applied to

problems of greater physical interest. While the hadroniza-
tion of the quark-gluon plasma or reheating in the early
Universe will require larger quantum processors than exist
at present, any thermal quantum system for which a single
pure state can be evolved on a quantum computer is
accessible at no additional quantum computing complexity.
The nonlinear response of low-dimensional systems like
spin chains and graphene as well as the response of small
nuclei to neutrino scattering [3,4] should be possible on
near-future resources. In order to do this, a better charac-
terization of the errors present on today’s physical quantum
computers will be necessary—a general concern for all
quantum algorithms.

H. L. and S. L. are supported by the U.S. Department of
Energy under Contract No. DE-FG02-93ER-40762. The
authors would further like to thank Rigetti for their
assistance and access to their resources, Forest and
8Q-Agave.

*hlamm@umd.edu
†srl@umd.edu

[1] M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 170201
(2005).

[2] A. Alexandru, G. Basar, P. F. Bedaque, S. Vartak, and N. C.
Warrington, Phys. Rev. Lett. 117, 081602 (2016).

[3] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen,
T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P.
Lougovski, Phys. Rev. Lett. 120, 210501 (2018).

[4] A. Roggero and J. Carlson, arXiv:1804.01505.
[5] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris,

R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J.
Savage, Phys. Rev. A 98, 032331 (2018).

[6] A. Macridin, P. Spentzouris, J. Amundson, and R. Harnik,
Phys. Rev. Lett. 121, 110504 (2018).

[7] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin,
M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J.
Powell, M. Barbieri et al., Nat. Chem. 2, 106 (2010).

[8] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E.
Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong,
and I. Siddiqi, Phys. Rev. X 8, 011021 (2018).

[9] N. S. Blunt, T. W. Rogers, J. S. Spencer, and W.M. C.
Foulkes, Phys. Rev. B 89, 245124 (2014).

[10] F. G. S. L. Brandao andM. J. Kastoryano, arXiv:1609.07877.
[11] E. Bilgin and S. Boixo, Phys. Rev. Lett. 105, 170405

(2010).
[12] F. Carboni and P. M. Richards, Phys. Rev. 177, 889 (1969).

FIG. 2. The rescaled (see text) transverse magnetization
hmxðtÞi=hmxð0Þi for a single spin, with initial μxð0Þ ¼ μzð0Þ ¼
1 and β ¼ 1.0, which is evolved with μxðt > 0Þ ¼ −1. The results
from Rigetti’s 8Q-Agave QPU are shown in red circles while the
exact result is denoted by the solid black line.

PHYSICAL REVIEW LETTERS 121, 170501 (2018)

170501-4

https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1103/PhysRevLett.117.081602
https://doi.org/10.1103/PhysRevLett.120.210501
http://arXiv.org/abs/1804.01505
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1103/PhysRevLett.121.110504
https://doi.org/10.1038/nchem.483
https://doi.org/10.1103/PhysRevX.8.011021
https://doi.org/10.1103/PhysRevB.89.245124
http://arXiv.org/abs/1609.07877
https://doi.org/10.1103/PhysRevLett.105.170405
https://doi.org/10.1103/PhysRevLett.105.170405
https://doi.org/10.1103/PhysRev.177.889


[13] D. Gobert, C. Kollath, U. Schollwöck, and G. Schütz, Phys.
Rev. E 71, 036102 (2005).

[14] M. Žnidarič, T. Prosen, and P. Prelovšek, Phys. Rev. B 77,
064426 (2008).

[15] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401
(2004).

[16] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.
Mech. (2004) P04005.

[17] R. S. Smith, M. J. Curtis, and W. J. Zeng, arXiv:1608
.03355.

[18] J. B. Anderson, J. Chem. Phys. 65, 4121 (1976).

PHYSICAL REVIEW LETTERS 121, 170501 (2018)

170501-5

https://doi.org/10.1103/PhysRevE.71.036102
https://doi.org/10.1103/PhysRevE.71.036102
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1088/1742-5468/2004/04/P04005
http://arXiv.org/abs/1608.03355
http://arXiv.org/abs/1608.03355
https://doi.org/10.1063/1.432868

