Supplementary Derivations for the Lanczos-Algorithm Lecture

Spectral representation

The eigenvalues and eigenvectors satisfy

$$
\begin{equation*}
\sum_{j=1}^{n} A_{i j} q_{j}^{(\alpha)}=\lambda_{\alpha} q_{i}^{(\alpha)}=\sum_{\beta=1}^{n} q_{i}^{(\alpha)}\left(\lambda_{\beta} \delta_{\beta \alpha}\right), \tag{1}
\end{equation*}
$$

where $\delta_{\beta \alpha}=1 \quad(\alpha=\beta) ; \quad 0 \quad(\alpha \neq \beta)$. Define an orthogonal matrix \mathbf{Q} such that its α-th column is the α-th eigenvector $\mathbf{q}^{(\alpha)}$, i.e., $\mathbf{Q}=\left[\mathbf{q}^{(1)} \mathbf{q}^{(2)} \cdots \mathbf{q}^{(n)}\right]$, and a diagonal matrix Λ such that $\Lambda_{\beta \alpha}=\lambda_{\beta} \delta_{\beta \alpha}$, and Eq. (1) is reduced to a matrix equation,

$$
\begin{equation*}
\mathbf{A} \mathbf{Q}=\mathbf{Q} \Lambda . \tag{2}
\end{equation*}
$$

From the orthonormality of the eigenvector set,

$$
\begin{equation*}
\left(\mathbf{Q}^{T} \mathbf{Q}\right)_{\alpha \beta}=\sum_{i=1}^{n} Q_{i \alpha} Q_{i \beta}=\sum_{i=1}^{n} q_{i}^{(\alpha)} q_{i}^{(\beta)}=\mathbf{q}^{(\alpha)} \bullet \mathbf{q}^{(\beta)}=\delta_{\alpha \beta} \tag{3}
\end{equation*}
$$

where \mathbf{Q}^{T} is the transpose of \mathbf{Q}. Therefore,

$$
\begin{equation*}
\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I} \tag{4}
\end{equation*}
$$

where the identity matrix is defined as $\mathbf{I}_{\alpha \beta}=\delta_{\alpha \beta}$. Multiplying \mathbf{Q}^{T} from the left, then, Eq. (2) becomes

$$
\begin{equation*}
\mathbf{Q}^{T} \mathbf{A} \mathbf{Q}=\Lambda \tag{5}
\end{equation*}
$$

Variational principle: The best approximation to $\mathbf{q}^{(1)}$ is whatever the vector that makes $\rho(\mathbf{x} ; \mathbf{A})$ the smallest.

Once $\mathbf{q}^{(1)}$ is found, the best approximation to $\mathbf{q}^{(2)}$ is whatever the vector $\left\{\mathbf{x} \mid \mathbf{x} \bullet \mathbf{q}^{(1)}=0\right\}$ that makes $\rho(\mathbf{x} ; \mathbf{A})$ the smallest, and so on.
Gram-Schmidt orthogonalization
For a set of un-orthonormalized vectors $\left\{\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}\right\}$, suppose that the first $i-1$ vectors have been orthonormalized to form $\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{i-1}\right\}$, and consider

$$
\begin{equation*}
\mathbf{q}_{i}^{\prime} \leftarrow \mathbf{s}_{i}-\sum_{j=1}^{i-1} \mathbf{q}_{j}\left(\mathbf{q}_{j} \cdot \mathbf{s}_{i}\right) ; \quad \mathbf{q}_{i} \leftarrow \mathbf{q}_{i}^{\prime} / \mid \mathbf{q}_{i}^{\prime} . \tag{6}
\end{equation*}
$$

Then

$$
\begin{aligned}
\mathbf{q}_{j(<i)} \bullet \mathbf{q}_{i}^{\prime} & =\mathbf{q}_{j} \bullet\left[\mathbf{s}_{i}-\sum_{k=1}^{i-1} \mathbf{q}_{k}\left(\mathbf{q}_{k} \bullet \mathbf{s}_{i}\right)\right] \\
& =\mathbf{q}_{j} \bullet \mathbf{s}_{i}-\sum_{k=1}^{i-1}\left(\mathbf{q}_{j} \bullet \mathbf{q}_{k}\right)\left(\mathbf{q}_{k} \bullet \mathbf{s}_{i}\right) \\
& =\mathbf{q}_{j} \bullet \mathbf{s}_{i}-\sum_{k=1}^{i-1} \delta_{j k}\left(\mathbf{q}_{k} \bullet \mathbf{s}_{i}\right)=0
\end{aligned}
$$

i.e., the modified vector is orthogonal to all the low-lying vectors \mathbf{q}_{j}.

Lanczos recursion formula

From the tridiagonality,

$$
\begin{equation*}
\mathbf{A} \mathbf{q}_{i}=a \mathbf{q}_{i-1}+b \mathbf{q}_{i}+c \mathbf{q}_{i+1} . \tag{7}
\end{equation*}
$$

$\mathbf{q}_{i}^{T} \times(7)$

$$
\begin{gather*}
\mathbf{q}_{i}^{T} \mathbf{A} \mathbf{q}_{i}=b \mathbf{q}_{i}^{T} \mathbf{q}_{i}=b \\
\therefore b=\alpha_{i}=\mathbf{q}_{i}^{T} \mathbf{A} \mathbf{q}_{i} \tag{8}
\end{gather*}
$$

$\mathbf{q}_{i-1}^{T} \times(7)$

$$
\begin{align*}
\mathbf{q}_{i-1}^{T} \mathbf{A} \mathbf{q}_{i}=a \mathbf{q}_{i-1}^{T} \mathbf{q}_{i-1} & =a \\
\therefore a=\mathbf{q}_{i-1}^{T} \mathbf{A} \mathbf{q}_{i}=\mathbf{q}_{i}^{T} \mathbf{A} \mathbf{q}_{i-1}(\text { real }) & =\beta_{i-1} \quad(i \geq 2) \tag{9}
\end{align*}
$$

$\mathbf{q}_{i+1}^{T} \times(7)$

$$
\begin{gather*}
\mathbf{q}_{i+1}^{T} \mathbf{A} \mathbf{q}_{i}=c \mathbf{q}_{i+1}^{T} \mathbf{q}_{i+1}=c \\
\therefore c=\mathbf{q}_{i+1}^{T} \mathbf{A} \mathbf{q}_{i}=\beta_{i} \tag{10}
\end{gather*}
$$

Lanczos algorithm (last step)

$$
\left\|\mathbf{r}_{i}\right\|=\left\|\beta_{i} \mathbf{q}_{i+1}\right\|=\beta_{i}\left\|\mathbf{q}_{i+1}\right\|=\beta_{i}
$$

