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Supplementary Derivations for the Lanczos-Algorithm Lecture 
 
Spectral representation 
The eigenvalues and eigenvectors satisfy 
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where 
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"#$ =1 ($ = #); 0 ($ % #).  Define an orthogonal matrix Q such that its α-th column 
is the α-th eigenvector q(α), i.e., 
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Q = [q(1)q(2)Lq(n)], and a diagonal matrix Λ such that 
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"#$ = %#&#$ , and Eq. (1) is reduced to a matrix equation, 
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From the orthonormality of the eigenvector set, 
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where QT is the transpose of Q. Therefore, 
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Q
T
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where the identity matrix is defined as 

! 

I"# = $"# . Multiplying QT from the left, then, Eq. (2) 
becomes 
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Variational principle: The best approximation to q(1) is whatever the vector that makes ρ(x; A) 
the smallest. 

Once q(1) is found, the best approximation to q(2) is whatever the vector 
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{x | x •q
(1)

= 0} that 
makes ρ(x; A) the smallest, and so on. 

Gram-Schmidt orthogonalization 
For a set of un-orthonormalized vectors   
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{s1,K,s
n
}, suppose that the first i−1 vectors have been 

orthonormalized to form   
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{q1,K,qi"1} , and consider 
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i.e., the modified vector is orthogonal to all the low-lying vectors qj. 
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Lanczos recursion formula 
From the tridiagonality, 
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Aqi = aqi"1 + bqi + cqi+1. (7) 
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Lanczos algorithm (last step) 
 

! 

ri = "iqi+1 = "i qi+1 = "i  

 


