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ABSTRACT: We present an efficient algorithm for computing the exact
exchange contributions in the Hartree−Fock and hybrid density
functional theory models on the basis of the fast multipole method
(FMM). Our algorithm is based on the observation that FMM with
hierarchical boxes can be efficiently used in the exchange matrix
construction, when at least one of the indices of the exchange matrix is
constrained to be an occupied orbital. Timing benchmarks are presented
for alkane chains (C400H802 and C150H302), a graphene sheet (C150H30), a water cluster [(H2O)100], and a protein Crambin
(C202H317O64N55S6). The computational cost of the far-field exchange evaluation for Crambin is roughly 3% that of a self-
consistent field iteration when the multipoles up to rank 2 are used.

1. INTRODUCTION
Evaluating the electron−electron interaction in mean-field
models, such as the Hartree−Fock method and hybrid density
functional theory, is challenging because the bare electron−
electron interaction is long-range. This is in contrast to the
evaluation of screened interactions in dynamical electron
correlation problems, which has been resolved to a great
extent by local correlation approaches.1−3 In particular,
computation of the exact exchange contributions in the
mean-field models remains an important challenge in quantum
chemistry.4 The exchange matrix elements are defined as
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where μ, ν, λ, and σ label atomic orbitals (AOs). Hereafter, i
and j label occupied orbitals. Dλσ are the density matrix
elements, which become diagonal in the canonical molecular
orbital (MO) representation. There have been extensive studies
to optimize the exchange evaluation: for instance, the LinK
method,5,6 multipole accelerated algorithms,7,8 rigorous integral
screening,9−13 density fitting with local domains,14,15 truncated
or short-range exchange kernels with and without the use of the
resolution-of-the-identity (RI) approximation,16−19 the chain-
of-sphere exchange method based on quadrature,20 the auxiliary
density matrix method,21 the pair-atomic RI approxima-
tion,22−25 and the low-rank decomposition of the exchange
operator.26,27 For systems with sparse density matrices,
combination of suitable integral prescreening and LinK can
further speed up the evaluation of the exchange contribution,
achieving linear scaling.
In this work, we report an efficient algorithm, termed

occupied-orbital fast multipole method for exchange (occ-

FMM-K), for computing the exchange contributions based on
the fast multipole method (FMM), where a system is
partitioned into near-field and far-field regions.28−30 Despite
its tremendous success in Coulomb matrix construction,31−43

FMM has been considered inapplicable to efficient computa-
tion of far-field exchange interactions. Our FMM-based
algorithm for the exact exchange contributions neither relies
on local orbitals nor makes any assumption about the decay
properties of the density matrix (see below), making it
amenable for future extensions of the algorithm to extended
systems with small band gaps and to efficient computation of
response properties. This algorithm is in fact complementary to
existing exchange evaluation methods mentioned in the
previous paragraph as they can be used to efficiently evaluate
the exact integrals for the near-field contribution.
FMM was first introduced a few decades ago for evaluating

the far-field Coulomb interaction energies between classical
charges.28−30 Many quantum chemical programs have since
been developed for the Coulomb matrix evaluation.31−43 In
FMM, one approximates the two-electron Coulomb operator
for separated charge distributions using the scaled regular and
irregular solid harmonics
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in which the factor (−1)l arises from the parity of the associated
Legendre polynomials. The scaled regular and irregular solid
harmonics (often referred to as multipoles and local
expansions) are defined as

Received: August 17, 2017
Published: January 25, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 1228−1234

© 2018 American Chemical Society 1228 DOI: 10.1021/acs.jctc.7b00880
J. Chem. Theory Comput. 2018, 14, 1228−1234

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
SO

U
T

H
E

R
N

 C
A

L
IF

O
R

N
IA

 o
n 

A
ug

us
t 3

1,
 2

01
9 

at
 2

0:
08

:1
8 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.7b00880
http://dx.doi.org/10.1021/acs.jctc.7b00880


ϵ θ=
+ | | !

ϕ
| |

−O
r

l m
Pr( )

( )
(cos )el m m

l

l m
im

, ,
(4a)

ϵ θ= − | | ! ϕ
+ | |M

l m
r

P er( )
( )

(cos )l m m l l m
im

, 1 , (4b)

in which r is written in spherical coordinates (r, θ, ϕ) on the
right-hand side. Pl,m is the associated Legendre polynomial, and
ϵm is a phase factor that is 1 if m ≥ 0 and (−1)m otherwise.
The main idea of this work is to use FMM for computing

only the exchange matrix elements that have (at least) one
occupied-orbital index, taking advantage of the fact that the
only matrix elements that are required to find the mean-field
solution are Kμi,

∑ μ= |μK j ji2 ( )i
j (5)

In other words, the virtual−virtual block of the exchange matrix
Kab is not strictly necessary. This is because self-consistent
solutions minimize the mean-field energy with respect to orbital
rotations between occupied orbitals i and virtual orbitals a,
parametrized in terms of the exponential of an anti-Hermitian
matrix κia, at which the following energy gradients are made
zero:

κ
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E
h J K2

1
2ia

ia ia ia
(6)

Note that the final energy can be computed from Kij. The use of
the partial exchange matrix [eq 5] has been reported in a recent
work by Manzer et al., who have introduced the so-called occ-
RI-K algorithm.25 As shown below, this trick is essential for
utilizing a hierarchy of boxes with upward and downward
translation of multipoles in the evaluation of far-field exchange
contribution using FMM algorithm. We report an efficient,
parallel implementation of the algorithm, which is publicly
available as part of the BAGEL package.44,45

2. THEORY
When two basis-function pairs, ϕμ(r1)ϕν(r1) and ϕλ(r2)ϕσ(r2),
are sufficiently separated, the electron repulsion integrals (eq 2)
can be approximated using eq 3 as

∑ ∑μν λσ| = − − ′μν λσ
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The multipole integrals over atomic-orbital basis functions are
defined as

∫ ϕ ϕ= −μν
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X
,

,
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The approximated integrals eq 7 now depend only on the
multipole integrals and the separation between the expansion
centers, X and X′. In our FMM implementation, the expansion
centers are taken to be the center of the Cartesian box to which
the basis pair belongs (note that X is unique to each pair of μ
and ν).
When constructing the Coulomb matrix, the Coulomb

potential at center X, X( )l m, , due to the charge distributions
associated with all distant basis function pairs ϕλ(r2)ϕσ(r2) is
evaluated as follows. First, we contract the density matrix
elements Dλσ and the multipoles associated with ϕλ(r2)ϕσ(r2)

that are centered at X′ (Ol′, m′
λσ,X′) to define multipole tensors Ol′,m′

X′

for each box containing these distributions. Then, these
multipole tensors are multiplied by the local expansions to
give X( )l m, ,
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Note that the quantity X( )l m, is defined for each of the boxes
and includes all the distant Coulomb interactions. Using this,
the far-field part of the Coulomb matrix is computed as

∑=μν
μνJ O X( )

lm
l m l m

Xff
,

,
,

(10)

The Coulomb matrix elements associated with the neighboring
charge distributions, that is, the near-field region, where the
multipole expansion is no longer valid, are evaluated using
standard algorithms. The cost of computing the near-field part
is linearly scaling with respect to system size.
The summation in eq 9 is efficiently performed using a

hierarchy of boxes that are constructed by first partitioning the
system of interest into a number of boxes, each of which is
further divided into smaller boxes and so on. This hierarchical
structure allows the distant contributions to be computed at the
coarse-grained levels (or higher levels, with larger and fewer
boxes), and translated to the lower levels using the spherical
harmonics addition theorem for scaled regular and irregular
solid harmonics. The standard FMM algorithm consists of
three steps: First, the multipoles are computed at the lowest
level and translated upward28,31,40
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X X X X
, , ,

p c p c
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where Xp and Xc are the center of the parent and child boxes,
respectively, and l ≤ Lmax. Second, the local expansions are
obtained by translating the multipoles within the same level. To
do so, each box has an interaction list that enumerates the non-
neighboring boxes at the same level whose parents are its
parent’s neighbor. It reads31,40

∑= − − ′
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in which X and X′ are the center of the box and that associated
with those in the interaction list, respectively. Finally, the local
expansions are translated downward,28,31,40

∑=
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The local expansions containing the far-field interactions for all
of the boxes at the lowest level are then collected to construct

X( )l m, in eq 9.
In this work, we have extended this algorithm to

computation of partial exchange matrix elements (eq 5). Our
new algorithm is termed occ-FMM-K. The molecular integrals
that contribute to the occupied exchange matrix are written
using the multipole approximation as

∑ ∑μ | = − − ′μ

′ ′
+ ′ + ′ ′ ′
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where MO transformed multipole integrals are defined as
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It is important to stress that one of the multipoles in eq 14 is
fully transformed to the MO basis; therefore, its size remains
the same at the coarse-grained level, allowing us to evaluate it
using the FMM algorithm with a hierarchy of boxes. This step
is necessary for FMM algorithm to be used in the evaluation of
far-field exchange contribution, as the multipole tensor of the
parent box is constructed by summing up the multipole tensors
of the children. Without transforming to the MO basis, this
cannot be achieved, which is the reason why FMM is
traditionally considered incompatible with exchange evaluation,
and only a simple multipole approximation without the
hierarchy structure has been used in exchange evaluation.
The traditional FMM algorithm is modified as follows (see

graphical explanation in Figure 1). First, for each box at the
lowest level, we compute Ol,m

μν,X and transform them to the MO
basis, Ol,m

ij,X, using eq 15. We then compute X( )l m
ij
, that is

analogous to eq 9,
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Note that the summation over X′ in this equation is essential
for utilizing the translations in FMM discussed above. When
computing X( )l m

ij
, , we use the same algorithm as the

traditional FMM, namely, those based on eqs 11−13 for each
pair of i and j
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The occupied-orbital exchange matrix is then computed as

∑ ∑=μ
μK O X( )i

j lm
l m

j
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jiXff

,
,

,
(18)

The near-field contributions to the occupied-orbital exchange
matrix can be computed simultaneously with those to the
Coulomb matrix with marginal additional costs.

There are a number of parameters required to perform FMM
calculations, and some are dependent on the system of interest.
The number of levels or depth (Ns) in FMM is typically chosen
to be 4 or 5, such that the length of the smallest box is about
3.0 bohr. This number determines the total number of boxes as
well as the size and number of boxes at the lowest level and,
therefore, affects the efficiency of FMM. The definition of the
near- and far-field regions depends of a number of parameters,
for which interested readers can refer to refs 32, 40, and 35.
Our implementation makes explicit use of contracted basis
functions to optimize the computation of the electron repulsion
integrals in the near-field region. The definition of the extent of
each distribution used to determine the near- and far-field
regions is described in refs 46 and 47. The “well-separatedness”
index (ws) is typically chosen to be 0 such that two charge
distributions are considered non-overlapping if the distance
between their centers is greater than the sum of their extents.
However, this parameter can be tuned depending on the
definition of the extents and the systems studied.

3. NUMERICAL RESULTS

In this section, we first show the convergence of the Coulomb
and exchange energy contributions with respect to multipole
ranks. We then present the parallel scaling of our algorithm,
followed by the timing data using the optimized parameters.

3.1. Convergence with Respect to Multipole Ranks.
We examined the convergence of the Hartree−Fock energy
with respect to the ranks of multipole expansions, Lmax

J and
Lmax
K , for two graphene sheets C150H30 and C96H24. We chose

these systems because the exchange contributions in graphene
sheets have been shown to be slowly decaying with distance
and proved to be more challenging than systems frequently
used in FMM studies, such as hydrocarbon chains, polyglycine,
and water clusters.7 The def2-SVP basis set was used. Note that
the vanishing gap is observed as the sheet gets larger, and
Hartree−Fock has been known to overestimate band gaps in
molecular systems. We set the FMM parameters to be Ns = 5,
ws = 0.0 for C150H30 and Ns = 5, ws = −0.1 for C96H24. The
Schwarz integral screening and SCF convergence thresholds
were set to 1.0 × 10−8. In the reference calculation, the
multipole expansions were truncated at Lmax

J = 15 and Lmax
K = 5

for the far-field Coulomb and exchange interactions,
respectively. The convergence was analyzed by comparing the
reference energy and that computed from the Fock operator

Figure 1. Schematic representation of the occ-FMM-K algorithm for constructing Kμi
ff using the translation relations up and down the FMM

hierarchy. Step 2 is the essence of occ-FMM-K.
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constructed using the reference MO coefficients and different
values for Lmax

J and Lmax
K . The results for C150H30 are shown in

Table 1. Similar results were obtained for C96H24.
48 The errors

decay quickly for both the Coulomb and exchange contribu-
tions as higher-rank multipoles are included. However, since
the magnitude of the far-field exchange contribution (∼4 mEh)
is a few orders of magnitude smaller than that of the far-field
Coulomb contribution, Lmax

K can be smaller than Lmax
J , thus

significantly reducing the computational cost at almost no loss
in accuracy. It is worth noting that the error in the far-field
exchange contributions is around 1 μEh with Lmax

K = 2 for this
challenging system. From these results, we concluded that the
multipole series should be truncated at Lmax

J = 10 for the
Coulomb interaction and at Lmax

K = 2 for the exchange
interaction to achieve μEh accuracy.
3.2. Parallel Scalability. Our algorithm can be trivially

parallelized with very high efficiency, making it useful for large-
scale problems. We measured the strong parallel scaling using
the graphene sheets C96H24 and C150H30. The FMM parameters
used for these calculations were Ns = 5, ws = 0, Lmax

J = 10, and
Lmax
K = 2. The Schwarz integral screening threshold was set to

1.0 × 10−8. The results are shown in Figure 2. Calculations

were performed using the def2-SVP basis set on a 64-node
computer cluster, where each compute node consists of 2 Xeon
E5-2650 CPUs (Sandy Bridge 2.0 GHz). Total timings for an
SCF iteration and timings for the far-field exchange evaluation
were averaged over the first 5 iterations. The cost of the far-field
exchange evaluation for C96H24, which was about 10% of the
total cost per SCF iteration, was 188 s with 1 compute node,

and reduced to 99, 52, 29, 15, 10, and 9 s using 2, 4, 8, 16, 32,
and 64 compute nodes. The timings for C150H30 were 216, 111,
62, 37, 21, and 16 s using 2, 4, 8, 16, 32, and 64 compute nodes.
For C96H24, the strong scalings from 1 to 64 compute nodes for
an SCF iteration and far-field exchange evaluation were found
to be 61% and 33%, respectively. Those for C150H30 from 2 to
64 nodes were 66% and 42%.
The good scaling for the far-field exchange evaluation is due

to the fact that the transformation of the multipole tensors from
the AO basis Ol,m

μν,X to the occupied MO basis Ol,m
ij,X in step 2 of

the occ-FMM-K algorithm (Figure 1) can be done
independently in batches of occupied-orbital index j. As a
result, the upward and downward translations of the multipoles
and local expansions in the occupied MO basis in steps 3−5 are
well distributed. The construction of the partial exchange
matrix from the multipoles and local expansions (eq 18) is also
similarly parallelized. Larger systems would exhibit better
parallel scaling because the matrices become large enough that
the peak performance of linear algebra routines is achieved even
when a large number of nodes are used. The near-field
Coulomb and exchange contributions are calculated with exact
four-center integrals at the moment and accounts for most of
the differences between the total timing for an SCF iteration
and the time taken for the far-field exchange evaluation.

3.3. Timing Data. The performance of our occ-FMM-K
implementation is assessed for a number of molecular systems
(shown in Figure 3) using the def2-SVP basis set. The results
are compiled in Table 2. The parameters used in all of the
timing benchmark calculations are ws = 0, Lmax

J = 10, and Lmax
K =

2. We used Ns = 5 for the graphene sheet and crambin, Ns = 4
for the water cluster, while for the alkane chains, we fixed the
smallest box size at the lowest level to be 3.0 bohr. The Schwarz

Table 1. Convergence of the Energy with Respect to Multipole Ranks Lmax
J and Lmax

K for the Graphene Sheet C150H30 Using the
def2-SVP Basis Seta

Lmax
J no far-field exchange Lmax

K = 0 Lmax
K = 1 Lmax

K = 2 Lmax
K = 3 Lmax

K = 4

0 −72782.004 −72785.684 −72785.818 −72785.811 −72785.811 −72785.811
1 −3717.595 −3721.276 −3721.409 −3721.402 −3721.402 −3721.402
2 −9.862 −13.543 −13.677 −13.670 −13.669 −13.669
3 20.290 16.610 16.476 16.483 16.483 16.483
4 2.832 −0.849 −0.982 −0.976 −0.975 −0.975
5 3.425 −0.256 −0.390 −0.383 −0.382 −0.382
6 3.786 0.106 −0.028 −0.021 −0.021 −0.021
7 3.812 0.132 −0.002 0.005 0.005 0.005
8 3.809 0.128 −0.005 0.002 0.002 0.002
9 3.807 0.127 −0.007 0.000 0.000 0.000
10 3.807 0.126 −0.007 0.001 0.000 0.000

a.Errors are shown in mEh with respect to the reference energy, E − Eref, computed using Lmax
J = 15 and Lmax

K = 5 (Eref = −5694.58434391 Eh).

Figure 2. Timings for graphene sheets C96H24 and C150H30 using def2-
SVP and the parameters NS = 5, Lmax

J = 10, and Lmax
K = 2. Each

compute node consists of 2 Xeon E5-2650 CPUs (Sandy Bridge 2.0
GHz). Figure 3. Systems used for timing benchmarks in this work.
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integral screening threshold was set to 1.0 × 10−8. In principle,
the sets of the FMM parameters used for the evaluation of far-
field Coulomb and exchange contributions can be different. We
have not yet investigated how the parameters besides Lmax can
be optimized to achieve maximum efficiency without loss of
accuracy. It is, however, expected that the optimal parameters
used for the Coulomb interaction will be different from those
used for the exchange interaction as the Coulomb interaction is
longer-range, and the cost of evaluating the Coulomb
contribution is significantly smaller. This will be investigated
in the future.
We included the one-dimensional alkane chains C200H402 and

C400H802 as examples, because FMM is known to perform most
efficiently for one-dimensional systems (even though the far-
field exchange contributions to the total energies for these
particular systems are negligible). This efficiency is due to the
fact that the fraction of boxes in the near field does not change
with system size in one-dimension. From a 200-carbon chain
(4810 basis functions) to a 400-carbon chain (9610 basis
functions), the total timing for an SCF iteration increased from
1.5 to 5.5 min. In the first case C200H402, the cost of computing
the far-field exchange contribution was only a fraction of that
for the near-field contributions, amounting to 24% of the total
timing per SCF interaction. Evaluation of the exchange
contribution becomes more costly for the longer chain
C400H802, taking 50% of the total timing per SCF iteration.
The cost of computing the far-field Coulomb contribution was
small.
Next we performed a calculation for a two-dimensional

graphene sheet C150H30. As mentioned previously, this is
considered among the most challenging systems for exchange
computation, because the exchange interaction decays slowly
with distance. Note that this example was the largest two-
dimensional system used in the benchmarks by Burant and
Scuseria7 for their NFX method that accounts for the far-field
exchange contributions by simply increasing the size of the
near-field FMM. For this example, the cost of the far-field
exchange evaluation using our algorithm was around 0.3 min,
which was 12% of the total cost for an SCF iteration (2.5 min).
The remaining cost is largely due to the near-field four-center
integral evaluation and diagonalization of the Fock matrix.
Finally, the timings are reported for a water cluster (H2O)100

(ref 48.) and a small protein Crambin C202H317O64N55S6 to
assess the performance of our algorithm for three-dimensional
systems. The latter was previously used to benchmark the DFT
and DLPNO-CCSD(T) methods.3,49,50 The cost of far-field
exchange evaluation was 32% and 3% of that of an SCF
iteration for the water cluster and crambin, respectively. Similar
to the previous examples, a large portion of the remaining cost
is attributed to the near-field four-center integral evaluation.
These results, together with the excellent parallel scaling of

our algorithm, are highly encouraging. It is also worth noting

that (1) the cost of the near-field computation can be further
reduced using, for example, the RI approximation; and (2) the
use of localized orbitals and screening of occupied-orbital pairs
would significantly reduce the cost of the far-field exchange
evaluation. The memory requirement for large calculations is
determined at the moment by the size of the multipole and
local expansion tensors for each box at the lowest level.

4. CONCLUSION

In this Article, we introduced an efficient FMM-based
algorithm (named occ-FMM-K) for evaluating the exact
exchange matrix elements that contribute to the energy and
orbital-rotation gradient at the mean-field level. This is done by
constructing the partial exchange matrix Kμi, where all matrix
elements have at least one occupied-orbital index. The
multipole and local expansion tensors are first transformed
into the occupied-orbital basis. The upward and downward
translations of these tensors are then performed in exactly the
same manner as conventional FMM for the Coulomb
interaction. Efficient parallelization and the fact that there is
no assumption on the sparsity of the density or multipole
matrices make this algorithm attractive for large and extended
systems, especially those with small band gaps. It is important
to note that existing exchange algorithms which take advantage
of this sparsity are expected to perform as well in
nondelocalized systems.
There are, however, a number of ways to further improve our

algorithm, which currently scales cubically with system sizes.
First, it is possible to reduce the cost of the far-field exchange
evaluation for many systems by using localized molecular
orbitals and screening occupied-orbital pairs. This would
significantly mitigate the cost of storage and basis trans-
formations. Our preliminary results show that scaling can be
improved (see Supporting Information). Second, the expensive
near-field integral evaluation can be replaced by an algorithm
based on the RI approximation. In addition, extensions of our
algorithm to complete active space self-consistent field
(CASSCF) and configuration interaction singles (CIS) should
be straightforward. These improvements and extensions will be
investigated in the near future.
Another direction is application of occ-FMM-K with large

basis sets, which is currently hampered due to a technical
reason (i.e., numerical instability with the current implementa-
tion). This is interesting, because the cost of the upward and
downward translations in the occ-FMM-K algorithm (steps 3
and 4 in Figure 1) only depends on the number of occupied
orbitals (and not the number of basis functions), implying that
our algorithm is expected to be more competitive for larger
basis sets. The FMM algorithms, however, become less effective
when highly diffuse functions are present, and so does the occ-
FMM-K algorithm. This will be addressed in future works.

Table 2. Wall Time (min) for Calculating the Far-Field Exchange and Coulomb Contributions Using the FMM Algorithmsa

system atoms electrons basisb far-field K far-field J near-field diag. SCF iter.

alkane chain C200H402 602 1602 4810 0.36 0.10 0.66 0.44 1.50
alkane chain C400H802 1202 3202 9610 2.76 0.61 1.59 1.94 5.50
graphene sheet C150H30 180 930 2250 0.26 0.09 1.98 0.15 2.52
water cluster (H2O)100 300 1000 2400 0.75 0.53 0.64 0.23 2.54
crambin C202H317O64N55S6 644 2522 6187 1.38 0.16 38.75 0.99 41.23

aThe timings for near-field and diagonalization, as well as the total timing for an SCF iteration are also shown. 128 Xeon E5-2650 CPUs (Sandy
Bridge 2.0 GHz, total 1024 cores) with InfiniBand QDR were used. bThe def2-SVP basis set was used.
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