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Abstract - Injector-producer relationships (IPRs) are the key 
knowledge for oilfield optimization, i.e., maximizing oil 
production at the minimum operational cost. The difficulty 
associated with the field optimization is that the underlying 
reservoir structure is unknown and changes continuously over 
time. Inferring IPRs is a large-scale constrained nonlinear 
parameter estimation problem. The state-of-the-art hybrid 
constrained nonlinear optimization (HCNO) method provides 
excellent accuracy for solving this problem but with 
prohibitive computational costs for large oilfields. In this 
paper, we propose a dynamic structure learning and 
parameter estimation approach based on inference in a 
probabilistic graphical model named PETROGRAPH 
Learning (PGL). The learning is initiated by constructing an 
initial factor graph based on a locality principle and is guided 
by belief discrepancies, estimation error, and residual 
correlation analysis. At each iteration, the sum-product 
algorithm is applied to estimate the parameters, and the factor 
graph structure is refined as the input for the next round. The 
iterative learning continues until convergence. Experimental 
results and analysis show that PGL is scalable to the large 
scale of real oilfields with much less running time than that of 
HCNO while providing virtually exact solutions. 

Keywords: structure learning of factor graph, locality 
principle, belief discrepancies, large-scale constrained 
nonlinear optimization, factor graph and the sum-product 
algorithm 

 

1 Introduction 
  The major task of every petroleum company is to 
optimize field performance, i.e., to maximize oil production 
and to reduce operational costs. One of the popular oil 
recovery techniques is waterflooding, which injects water into 
injectors to extract oil. Here, the knowledge about injector-
producer relationships (IPRs), i.e., which injectors contribute 
to which producers, is the key for the field optimization. The 
difficulty associated with the optimization is that the 
underlying structure of oil reservoirs is unknown and it 
continuously changes over time. Recently, a predictive model 

called capacitance-resistive model (CRM) has been proposed 
to investigate the IPRs [1], [2]. The CRM is a nonlinear 
predictive model consisting of two sets of parameters: 
Connectivity and time constants. The connectivity parameters 
quantify contributions of injectors to producers and each time 
constant parameter defines the degree of fluid storage 
between an injector and a producer. Estimating the two sets of 
parameters is a large-scale constrained parameter estimation 
problem for the continuous nonlinear system of equations 
with constraints. 

Recently, a hybrid constrained nonlinear optimization 
(HCNO) approach was developed for the CRM parameter 
estimation [3]. HCNO is based on sequential quadratic 
programming (SQP) in a line search framework. In HCNO, 
the constrained nonlinear time constant parameters are 
estimated so as to convert the constrained nonlinear system to 
a constrained linear system, and subsequently the remaining 
parameters in the constrained linear system are estimated by a 
constrained linear optimization method. Though HCNO 
outperforms the conventional SQP in terms of running time 
and prediction accuracy, there remain two major difficulties. 
First, the performance of HCNO highly depends on an initial 
guess. Second is the high computational cost of HCNO. 
Though not every injector influences every producer in real 
oilfields (i.e., IPRs are sparse), HCNO examines complete 
connectivity, and thus its computational cost is unnecessarily 
high for estimating all the parameters including those for 
actually non-existing connections. 

To achieve further scalability, we propose an approximation 
method of structure learning and parameter estimation based 
on inference in a probabilistic graphical model named 
PETROGRAPH Learning (PGL). In PGL, factor graphs are 
employed as a graphical language to represent the estimated 
IPRs, and the CRM parameters are estimated by applying the 
sum-product algorithm to the factor graphs. PGL initiates the 
learning of the factor graph structure by constructing an initial 
factor graph based on an inductive bias, i.e., locality 
principle. After estimating the CRM parameters using the 
sum-product algorithm, the factor graph structure is updated 
through the investigation of belief discrepancies and 



estimation errors, augmented with residual correlation 
analysis. The updated factor graph becomes the input for the 
next round of learning. The iterative learning process 
continues until convergence. The experimental results and 
analysis confirm the scalability of PGL and show that PGL 
outperforms HCNO in terms of running time for larger 
number of parameters with comparable (i.e. nearly exact) 
prediction accuracy. 

The main contribution of this paper is the new nonlinear 
constrained parameter estimation method for oilfield 
optimization, which embodies a novel dynamic graph-
structure learning approach to achieve a significant speedup 
over the current state-of-the-art while providing virtually 
exact solutions. This paper thereby provides the first scalable 
solution applicable to the large problem size of real oilfields. 
To the best of our knowledge, this is the first time that a 
constrained nonlinear system is represented by a graphical 
model, whose structure is dynamically learned, and the 
constrained nonlinear parameters are inferred by the 
probabilistic graphical model. The messages are shown to 
converge to a stable equilibrium over time in the loopy 
probabilistic graphical model as advocated in Ref. [13], while 
finding a satisfactory solution.  

2 Problem Statement 
 The capacitance-resistive model (CRM) is a constrained 
nonlinear model that predicts the production rates for given 
injection rates. In CRM, the the estimated production rate of 
producer j at time step tn is given by 

,     (1) 

where L is the total number of injectors, Δtk is the time 
interval between tk and tk-1, πij is the connectivity that 
specifies the fraction of injection rate of injector i flowing 
into producer j, ii(k) is the injection rate of injector i at time 
step k, and τij is a time constant. The optimal CRM parameters 
are the ones that minimize the estimation error of production 
rates. Thus, the parameter estimation problem is to minimize 
the objective function, 

,       (2) 

where the parameters are collectively denoted by 

, 

qj(tn) is the actual production rate of producer j at time tn, J is 
the total number of producers, and N is the total number of 
time steps. The training error is measured using the sum of 
square errors. The two sets of parameters are subject to the 
following constraints: 

,                  (3) 

,              (4) 

,             (5) 

where i = 1, 2, …, L, j = 1, 2, …, J, πlb = 0 and πub = 1. The 
lower bound τlb and the upper bound of τub are specified by 
domain experts. 
 
3 Petrograph Learning 
3.1 Factor Graph and the Sum-Product 

Algorithm 
 A factor graph is a graphical model that visualizes the 
structure of the factorization of a complicated global function 
and dependency among variables [10]. When the complicated 
global function factors into a product of simpler local 
functions, computational efficiency can be derived by 
exploiting the factorization of the global function. For 
example, let  be a function of five 
variables, and suppose that can be expressed as a product 
of five factors. 

(6) 

The factor graph for Eq. (6) is as follows: 

 
Fig. 1. Factor graph for Eq. (6) 

 
The sum-product algorithm is a generic message passing 
algorithm operating in factor graphs and computes either 
exactly or approximately various marginal functions derived 
from the global function. The summary for  by borrowing 
the notation from [10] is 

,                    (7) 

where  is the marginal function associated with 
 and the summation is over all the variables but 

. The summary for  can be rewritten as the product of 



messages from neighboring nodes and each message consists 
of sum-of-products 

,             (8) 

where and 

 

3.2 Graphical Representation 
 We represent the objective function, Eq. (2), together 
with the constraints, Eqs. (3)-(5), by a factor graph. Fig. 2 
shows an example of a simple field consisting of 2 injectors 
and 2 producers (2 × 2 field) along with the corresponding 
factor graph, where a circle with an arrow represents an 
injector, a triangle represents a producer, and dotted lines 
stand for true connectivity. 

The factor graph in Fig. 2(b) consists of three types of 
variable nodes and three types of factor nodes. Fei (i = 1, 2) is 
a factor node for injector i to force the equality constraint to 
πij (j = 1, 2) parameters. Fei uses a joint probability table of 
uniform distribution. Yij is a variable node for the 
subproduction rate made by injector i and producer j. Fij is a 
factor node with a joint probability table of the three variable 
nodes, πij, τij, and Yij. The joint probability distribution for Fij 
is uniform. Fj is a factor node with the joint probability table 
of the subproduction variable nodes for producer j. The joint 
probability table is computed using Boltzmann distribution 
that takes root mean squared error (RMSE) between the 
observed and the estimated production rates as input. Variable 
nodes for observable data are not presented in the factor 
graph, and thus variables nodes for injection and production 
rates are not included in the factor graph. Instead, injection 
and production rates are implicitly included in Fij and Fj, 
respectively. The size of the joint probability table for Fj 
increases as the number of injectors connected to producer j 
increases, and discretization intervals become smaller. To 
maintain the table of a reasonable size, we keep only top-k 
entries with relatively higher probabilities based on the 
observation that the probabilities of most of the entries are 
very close to 0. 

 
(2) 2 injectors × 2 producers field 

 

 
(b) Factor graph for (a) 

Fig. 2. 2 × 2 field and its factor graph 

3.3 Structure Learning and Parameter 
estimation 

 In PGL, the construction of a factor graph and parameter 
estimation is dynamic and it consists of two phases: Belief 
propagation over the factor graph using the sum-product 
algorithm; and update of the factor graph by inserting nodes 
and edges. Algorithms 1 and 2 show the procedures. The 
initial factor graph is constructed based on a locality 
principle. The locality principle in the IPRs problem is that a 
producer is most likely influenced by the immediately 
neighboring injectors. In the initial factor graph, each 
producer is thus only connected to the closest injector based 
on the physical distance. Euclidean distance is used to 
calculate the distance between injectors and producers. The 
initial factor graph thus constructed could contain actually 
non-existing edges, but those edges are eventually identified 
by PGL. The learning starts with the initial factor graph. At 
the 1st round of learning, the sum-product algorithm is applied 
to compute the marginal probability distributions of the 
variable nodes. Once the messages converge after the 1st 
round, the injector-producer pairs missing actual edges need 
to be identified. A naive approach would be the exhaustive 
combinatorial search and to perform the message passing 
repeatedly until a stopping criterion is satisfied. However, this 
method does not scale to a large number of injectors. We 
instead employ a greedy forward search to avoid the very 
expensive computations. The search consists of following 
three steps: 



• Step1: For every injector i and producers 
connected to the injector, determine whether the 
most probable value for πij identified by the message 
from Fei to πij is not the same as that identified by 
the message from Fij to πij. 

• Step2: For every producer j, determine whether 
there are producers whose estimation errors are not 
less than a prescribed error threshold. 

• Step3: Among injectors selected in Step1 and 
producers selected in Step2, determine whether there 
are injector-producer pairs whose injection rates are 
positively and significantly correlated with the 
difference between the observed and the estimated 
production rates. 

When there is any missing edge between injector i and 
producers, a belief discrepancy is observed such that the most 
probable value πij identified by the message from Fei to πij is 
different from that identified by the message from Fij to πij, 
where j represents the indices of all producers that are 
connected to injector i. Algorithm 1 is the pseudocode that 
identifies those injectors. 

Algorithm 1. findFreeInjectors(πDiscrete, msgFeiToπij, 
msgFijToπij, L, J) 
1. out = { } 
2. for i = 1 to L 
3.    for each p connected to injector i 
4.       [maxFei, idx1] = max(msgFeiToπij (i, p, :) 
5.       [maxFij, idx2] = max(msgFijToπij i, p, :)  
6.       if πDiscrete(idx1) > πDiscrete(idx2) 
7.          out ← out {i} 
8. return 

A high estimation error of a producer implies that the 
producer has missed contributions from injectors that are 
supposed to be connected to it. Thus, producers with missing 
connections with injectors can be detected by investigating 
the estimation errors of those producers. Now we have found 
injectors and producers with missing edges, but we still do 
not know which injectors are supposed to be connected to 
which producers. The last observation is that producers with 
high estimation errors have residuals between the observed 
and the estimated production rates. The idea is that the 
residual indicates the lack of contributions from injectors for 
the producer, thus a positive correlation (e.g. ≥ 0.3) between 
the set of injection rates of injector i and the residual is used 
to determine the injector-producer pairs. Algorithm 2 shows 
the pseudocode for the update of the factor graph structure 
and parameter estimation. 

Algorithm 2. PGL 
1. Input: 
2.    injData, q, JPs 
3.    P: all producer ids 
4.    πDiscrete, τDiscrete: discrete values 
5. Output: 
6.    πGuess, τGuess, G 

7. Begin 
8.    freeInjectors ← { }, freeProducers ← { } 
9.    numRound ← 0, done ← FALSE 
10.  [connInjIds, G] ← getClosestInjectorInitG(P) 
11.  while ~done 
12.     if numRound > 0 
13.        changed ← FALSE 
14.        for each pp in freeProducers 
15.         if ~isempty(freeInjectors) 
16.             [maxCorr, injId] = max(corr(freeInjectors,  
                    injData, q(pp) – (pp))) 
17.             if  maxCorr ≥ TOL_CORR 
18.                connInjIds(pp) ← connInjIds(pp) {injId} 
19.                changed ←TRUE 
20.             initializeMessages(connInjIds, pp) 
21.        if ~changed 
22.           break 
23.     [mpπij, mpτij, msgFeiToπij, msgFijToπij] ← 
          SumProductFlooding(JPs, G, TOL_DIFF) 
24.     [πGuess, τGuess] ← computeExpectation( 
          πDiscrete, τDiscrete, mpπij, mpτij) 
25.     freeInjectors ← findFreeInjectors(πDiscrete, 
          msgFeiToπij, msgFijToπij, L, P) 
26.     freeProducers ← findFreeProducers(πGuess, 
          τGuess, injData, q, TOL_ERR) 
27.     update G by πGuess and τGuess 
28.     ← estimateProduction(πGuess, τGuess, 
          injData) 
29.     numRound ← numRound + 1 
30.     if max(calcTrainingError( , q)) < TOL_ERR 
31.        done ← TRUE 

The factor graph is updated by adding new πij, τij, Yij and Fij, 
and updating Fei and Fj at each round. The partially updated 
factor graph is the input for the message passing at the next 
round. The messages for the updated factor graph are 
initialized for the next round as well. findFreeProducers() 
finds producers whose estimation errors are not less than 
TOL_ERR. The convergence criterion of the sum-product 
algorithm is that the maximum difference between two 
consecutive marginal probabilities of all πij and those of all τij 
is not larger than the difference threshold (TOL_DIFF). The 
exit condition is any of the two criteria: (1) the maximum 
estimation error among producers is less than the error 
threshold (TOL_ERR); (2) there is no change between two 
consecutive sets of selected injectors. The goodness-of-fit of 
the estimated factor graph and the parameters is determined 
by the estimation error. Since the factor graph is a connected 
graph, flooding message passing scheme is used. 

4 Experimental Results 
4.1 Experimental Setting 
 The performance of PGL is compared with HCNO 
(hybrid constrained nonlinear optimization) in Ref. [3]. 
Synthetic data are used to verify the accuracy of the solution 



using the ground truth, i.e., location of higher permeability. In 
this way, we can eliminate the uncertainty in deriving πij and 
τij parameters from either real oilfield or reservoir simulation 
data. The prediction accuracy is measured by RMSE for the 
test data, running time, and accuracy of locating injector-
producer connectivity. 80% of data is used for training, while 
the remaining 20% is used as the test data. The joint 
probability tables for the factor nodes are generated using the 
training data. Table I shows the field name, field type, field 
size (number of injectors × number of producers), the number 
of time steps, and the number of parameters to be estimated. 

Table I. Field name, field type, size, number of time steps, and number of 
parameters 

Field Type Size TS Param 
Field1 
Field2 
Field3 
Field4 

Homogeneous 
Heterogeneous 
Homogeneous 
Heterogeneous 

5 × 4 
5 × 4 
8 × 8 
8 × 8 

160 
160 
160 
160 

40 
40 

128 
128 

 

Fig. 3 shows the field configuration of the four fields. The 
(red) circles stand for injectors and the (black) squares do for 
producers. The grey lines in Field2 and Field4 indicate the 
higher permeability, whereas the permeability in Field1 and 
Field3 is uniform over the field. In the homogeneous fields 
(Field1 and Field3), the contribution (i.e. connectivity) of an 
injector is evenly distributed for all the neighboring producers 
and the injector has almost no influence on distant producers. 
The connectivity between the injector-producer pairs with the 
higher permeability is stronger than that of any other pairs. πlb 
is 0 and πub is 1, and the discretization interval for πij is 0.1 
and that for τij is set to 4. τlb and τub are set to 0.0001 and 20, 
respectively. For HCNO, randomly generated 10 initial 
guesses are used. A set of initial guesses is used for Field1 
and Field2, and the other set of initial guesses is used for 
Field3 and Field4. 

 
               (a) Field1                            (b) Field2 

 
                 (c) Field3                               (d) Field4 

Fig. 3. Well locations and true higher permeability (grey lines) of four fields 

4.2 Results 
 The performance of the two algorithms, HCNO and 
PGL, is compared in terms of running time and test error. The 
running time of HCNO is the search time until convergence, 
and that of PGL is the message passing and edge search time 
until an exit condition is satisfied. As a comparison, we also 
include some results for the most commonly used base 
algorithm, conventional sequential quadratic programming 
(SQP) in line search framework, which is the baseline of 
HCNO as described in Ref. [3]. 

Table II shows the running time of HCNO and PGL, where 
HCNO(mean) is the average running time of the 10 initial 
guesses. 

Table II Running times (Sec) of HCNO and PGL 
Field HCNO (Mean) PGL 

Field1 
Field2 
Field3 
Field4 

3.26 
2.60 

802.32 
867.79 

10.16 
2.68 

261.07 
69.54 

 

We observe that the running time of PGL is much less than 
that of HCNO for larger number of parameters. For even 
larger fields, the scalability of HCNO and PGL can be 
analyzed as follows. The complexity of HCNO is determined 
by the convergence rate, the number of quadratic 
programming (QP) subproblem iterations, and the number of 
constrained linear least squares iterations. Let n be the 
number of injectors and m be the number of producers. In 
practical situations, m is on the order of n, and we set m = n in 
the asymptotic analysis. The number of QP subproblem 
iterations per SQP iteration is mainly determined by the 
number of inequality constraints because an active-set method 
is used to solve the QP subproblem. Thus, the number of QP 
subproblem iterations per SQP iteration is 2n2. The number of 
constrained linear least squares iterations is 2n2 + n. The 
number of SQP iterations is mainly determined by the 
convergence rate. quasi-Newton methods typically converge 
Q-superlinearly, thus the number of SQP iterations is 
determined by the convergence rate. The worst case 
complexity of HCNO is thus ln2, where l is the number of 
SQP iterations determined by the convergence rate. 
Therefore, the complexity of HCNO is O(ln2). On the other 
hand, PGL begins with disjoint O(n) subgraphs, and for 
practical sparse graphs in which the number of edges is O(n), 
the iterative learning of the factor graph structure should 
terminate after O(k) iterations assuming that a new edge per 
injector is added per iteration, where k is the maximum 
degree of any node. For real physical large reservoirs, we 
expect k to be a small constant k << n. Consequently, the 
complexity of PGL can be made O(kn). We thus expect that 
PGL is scalable to the large problem size of real oilfields. It 
should also be noted that PGL based on a locality principle 



and message passing is readily amenable to parallel 
computing. 

To demonstrate the accuracy of the proposed method, Fig. 4 
shows the observed and estimated production curves by the 
three methods: Base algorithm, HCNO, and PGL. 

 
(a) Base 

 
                     (b) HCNO                                       (c) PGL 

Fig. 4. Observed and estimated production curves of Producer7 in Field4 

In Fig. 4, the (black) solid curves stand for the observed 
production rates and the (red) dotted curves stand for the 
estimated production rates. The vertical lines indicate the 
separation between training and prediction curves. The 
portions of the curves to the left of the vertical lines are 
estimations by training and those to the right are prediction 
curves. Each figure represents the overall training and 
prediction curves across all producers by each method. The 
three figures clearly show that the training and test errors of 
the base algorithm are significantly higher than those of 
HCNO and PGL, while there is no significant difference in 
the test errors of HCNO and PGL, i.e., both PGL and HCNO 
predictions are virtually indistinguishable from the ground-
truth. 

Table III shows that the test errors of HCNO and PGL are 
comparable and are orders-of-magnitude smaller than the 
most commonly used base SQP algorithm. 

Table III Test Error (RMSE) 
Field Base (Mean) HCNO (Mean) PGL 

Field1 
Field2 
Field3 
Field4 

8308.90 
9208.90 
1402.56 
552.57 

24.64 
44.70 
44.01 

147.64 

18.76 
82.93 
43.92 
33.86 

 

Fig. 5 shows that true higher permeability and the estimated 
permeability for Field4. 

 
                       (a) HCNO                                      (b) PGL 

Fig. 5. True higher permeability and estimated permeability 

The grey lines in Fig. 5 stand for the true higher permeability 
and the black lines stand for the estimated permeability. The 
length and width of the black lines indicate the magnitude of 
the connectivity parameters. As shown in the figure, the true 
permeability is also well estimated by both HCNO and PGL 
methods. The contribution of the locally connected injectors 
is evenly distributed among the neighboring producers and 
the higher permeability across wells is also well estimated. 

5 Related Work 
 Much research has been done in structure learning of 
Markov network (MN) or Markov random field (MRF) and 
Bayesian network (BN). We here focus on the structure 
learning directly related to factor graphs and parameter 
estimation. Factor graphs subsume both MNs and BNs in the 
sense that every MN or BN can be written as a factor graph of 
the same size [4]. Empirical entropy estimates were used to 
select an approximate Markov blanket (MB) for each 
variable, and then the parameter estimation algorithm was 
used to estimate parameters and identify which factors were 
likely to be irrelevant. It was shown that the class of factor 
graphs with bounded factor size and bounded connectivity 
could be learned in polynomial time and polynomial number 
of samples with the assumption that the data was generated 
by a network in the class. Mirowski and LeCun proposed a 
method for training dynamic factor graphs (DFG) with 
continuous latent state variables [12]. A DFG included factors 
modeling joint probabilities between hidden and observed 
variables, and factors modeling dynamical constraints on 
hidden variables. Given a training observation sequence, the 
optimal state sequence was found by minimizing the energy 
using a gradient-based minimization method. Second, the 
parameters of the model were updated using a gradient-based 
procedure so as to decrease the energy. The two steps were 
repeated over all training sequences. 

Steepest descent was used in estimating parameters in factor 
graphs [5]. By showing that steepest descent can be combined 
with the sum-product algorithm, they demonstrated that 
steepest descent would be elegantly combined with other 
summary propagation algorithms. Korl and Loeliger 
estimated the autoregressive parameters using the sum-
product algorithm and factor graphs [9]. A state-space form 
was derived for the AR model, and then the messages were 
propagated over the corresponding factor graph. A parallel 



inference algorithm on large factor graphs was proposed in 
the distributed memory setting of computer clusters [6], [7]. 
Graph-partitioning was incorporated to distribute the work. 
The vertex with highest residual was updated because 
updating a vertex with no residual wastes process cycles. A 
parallel implementation was designed for the loopy belief 
propagation algorithm for factor graphs [11]. They found 
three main parameters susceptible to be defined by the user; 
scheduling policies, stopping criteria, and initial message 
values. The scheduling policies are a rule-based scheduling 
such that a node sends messages to the neighbor nodes after 
receiving a fixed number of messages or receiving messages 
from all the nodes identified in SndSet. The stopping criteria 
are that the algorithm stops after certain number of iterations 
or a maximum given number of messages. The user can 
manually define the function values for each factor node. 
Electromyographic (EMG) signals were decomposed into its 
components using factor graph and the sum-product 
algorithm [8]. The discrete-time model of EMG signals were 
represented by a factor graph and the sum-product algorithm 
operated by passing messages forward and backward in the 
loopy factor graph. 

6 Conclusions 
 We have developed an approach for dynamic 
construction of graphs and parameter estimation using factor 
graphs and the sum-product algorithm. Instead of starting 
with a fully connected graph for the given constrained 
nonlinear system, the graph structure was built incrementally 
by learning from belief discrepancies, estimation error, and 
correlation analysis. As the number of wells increased, the 
running time of PGL became less than that of the state-of-the-
art HCNO method. The prediction accuracy of PGL was 
comparable to that of HCNO and was virtually 
indistinguishable from the ground-truth. The three 
regularizations prevented the greedy forward search from 
including actually non-existing edges in the factor graph. We 
have demonstrated that the approach of the probabilistic 
inference in the loopy graph structure was successful in 
estimating parameters of the constrained nonlinear model. 
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