
Dynamic Structure Learning of Factor Graphs and
Parameter Estimation of a Constrained Nonlinear

Predictive Model for Oilfield Optimization

Hyokyeong Lee1, Ke-Thia Yao2, and Aiichiro Nakano1
1Department of Computer Science, University of Southern California, Los Angeles, CA, USA

(hyokyeol, anakano)@usc.edu
2Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA

kyao@isi.edu

Abstract - Injector-producer relationships (IPRs) are the key
knowledge for oilfield optimization, i.e., maximizing oil
production at the minimum operational cost. The difficulty
associated with the field optimization is that the underlying
reservoir structure is unknown and changes continuously over
time. Inferring IPRs is a large-scale constrained nonlinear
parameter estimation problem. The state-of-the-art hybrid
constrained nonlinear optimization (HCNO) method provides
excellent accuracy for solving this problem but with
prohibitive computational costs for large oilfields. In this
paper, we propose a dynamic structure learning and
parameter estimation approach based on inference in a
probabilistic graphical model named PETROGRAPH
Learning (PGL). The learning is initiated by constructing an
initial factor graph based on a locality principle and is guided
by belief discrepancies, estimation error, and residual
correlation analysis. At each iteration, the sum-product
algorithm is applied to estimate the parameters, and the factor
graph structure is refined as the input for the next round. The
iterative learning continues until convergence. Experimental
results and analysis show that PGL is scalable to the large
scale of real oilfields with much less running time than that of
HCNO while providing virtually exact solutions.

Keywords: structure learning of factor graph, locality
principle, belief discrepancies, large-scale constrained
nonlinear optimization, factor graph and the sum-product
algorithm

1 Introduction
 The major task of every petroleum company is to
optimize field performance, i.e., to maximize oil production
and to reduce operational costs. One of the popular oil
recovery techniques is waterflooding, which injects water into
injectors to extract oil. Here, the knowledge about injector-
producer relationships (IPRs), i.e., which injectors contribute
to which producers, is the key for the field optimization. The
difficulty associated with the optimization is that the
underlying structure of oil reservoirs is unknown and it
continuously changes over time. Recently, a predictive model

called capacitance-resistive model (CRM) has been proposed
to investigate the IPRs [1], [2]. The CRM is a nonlinear
predictive model consisting of two sets of parameters:
Connectivity and time constants. The connectivity parameters
quantify contributions of injectors to producers and each time
constant parameter defines the degree of fluid storage
between an injector and a producer. Estimating the two sets of
parameters is a large-scale constrained parameter estimation
problem for the continuous nonlinear system of equations
with constraints.

Recently, a hybrid constrained nonlinear optimization
(HCNO) approach was developed for the CRM parameter
estimation [3]. HCNO is based on sequential quadratic
programming (SQP) in a line search framework. In HCNO,
the constrained nonlinear time constant parameters are
estimated so as to convert the constrained nonlinear system to
a constrained linear system, and subsequently the remaining
parameters in the constrained linear system are estimated by a
constrained linear optimization method. Though HCNO
outperforms the conventional SQP in terms of running time
and prediction accuracy, there remain two major difficulties.
First, the performance of HCNO highly depends on an initial
guess. Second is the high computational cost of HCNO.
Though not every injector influences every producer in real
oilfields (i.e., IPRs are sparse), HCNO examines complete
connectivity, and thus its computational cost is unnecessarily
high for estimating all the parameters including those for
actually non-existing connections.

To achieve further scalability, we propose an approximation
method of structure learning and parameter estimation based
on inference in a probabilistic graphical model named
PETROGRAPH Learning (PGL). In PGL, factor graphs are
employed as a graphical language to represent the estimated
IPRs, and the CRM parameters are estimated by applying the
sum-product algorithm to the factor graphs. PGL initiates the
learning of the factor graph structure by constructing an initial
factor graph based on an inductive bias, i.e., locality
principle. After estimating the CRM parameters using the
sum-product algorithm, the factor graph structure is updated
through the investigation of belief discrepancies and

estimation errors, augmented with residual correlation
analysis. The updated factor graph becomes the input for the
next round of learning. The iterative learning process
continues until convergence. The experimental results and
analysis confirm the scalability of PGL and show that PGL
outperforms HCNO in terms of running time for larger
number of parameters with comparable (i.e. nearly exact)
prediction accuracy.

The main contribution of this paper is the new nonlinear
constrained parameter estimation method for oilfield
optimization, which embodies a novel dynamic graph-
structure learning approach to achieve a significant speedup
over the current state-of-the-art while providing virtually
exact solutions. This paper thereby provides the first scalable
solution applicable to the large problem size of real oilfields.
To the best of our knowledge, this is the first time that a
constrained nonlinear system is represented by a graphical
model, whose structure is dynamically learned, and the
constrained nonlinear parameters are inferred by the
probabilistic graphical model. The messages are shown to
converge to a stable equilibrium over time in the loopy
probabilistic graphical model as advocated in Ref. [13], while
finding a satisfactory solution.

2 Problem Statement
 The capacitance-resistive model (CRM) is a constrained
nonlinear model that predicts the production rates for given
injection rates. In CRM, the the estimated production rate of
producer j at time step tn is given by

, (1)

where L is the total number of injectors, Δtk is the time
interval between tk and tk-1, πij is the connectivity that
specifies the fraction of injection rate of injector i flowing
into producer j, ii(k) is the injection rate of injector i at time
step k, and τij is a time constant. The optimal CRM parameters
are the ones that minimize the estimation error of production
rates. Thus, the parameter estimation problem is to minimize
the objective function,

, (2)

where the parameters are collectively denoted by

,

qj(tn) is the actual production rate of producer j at time tn, J is
the total number of producers, and N is the total number of
time steps. The training error is measured using the sum of
square errors. The two sets of parameters are subject to the
following constraints:

, (3)

, (4)

, (5)

where i = 1, 2, …, L, j = 1, 2, …, J, πlb = 0 and πub = 1. The
lower bound τlb and the upper bound of τub are specified by
domain experts.

3 Petrograph Learning
3.1 Factor Graph and the Sum-Product

Algorithm
 A factor graph is a graphical model that visualizes the
structure of the factorization of a complicated global function
and dependency among variables [10]. When the complicated
global function factors into a product of simpler local
functions, computational efficiency can be derived by
exploiting the factorization of the global function. For
example, let be a function of five
variables, and suppose that can be expressed as a product
of five factors.

(6)

The factor graph for Eq. (6) is as follows:

Fig. 1. Factor graph for Eq. (6)

The sum-product algorithm is a generic message passing
algorithm operating in factor graphs and computes either
exactly or approximately various marginal functions derived
from the global function. The summary for by borrowing
the notation from [10] is

, (7)

where is the marginal function associated with
 and the summation is over all the variables but

. The summary for can be rewritten as the product of

messages from neighboring nodes and each message consists
of sum-of-products

, (8)

where and

3.2 Graphical Representation
 We represent the objective function, Eq. (2), together
with the constraints, Eqs. (3)-(5), by a factor graph. Fig. 2
shows an example of a simple field consisting of 2 injectors
and 2 producers (2 × 2 field) along with the corresponding
factor graph, where a circle with an arrow represents an
injector, a triangle represents a producer, and dotted lines
stand for true connectivity.

The factor graph in Fig. 2(b) consists of three types of
variable nodes and three types of factor nodes. Fei (i = 1, 2) is
a factor node for injector i to force the equality constraint to
πij (j = 1, 2) parameters. Fei uses a joint probability table of
uniform distribution. Yij is a variable node for the
subproduction rate made by injector i and producer j. Fij is a
factor node with a joint probability table of the three variable
nodes, πij, τij, and Yij. The joint probability distribution for Fij
is uniform. Fj is a factor node with the joint probability table
of the subproduction variable nodes for producer j. The joint
probability table is computed using Boltzmann distribution
that takes root mean squared error (RMSE) between the
observed and the estimated production rates as input. Variable
nodes for observable data are not presented in the factor
graph, and thus variables nodes for injection and production
rates are not included in the factor graph. Instead, injection
and production rates are implicitly included in Fij and Fj,
respectively. The size of the joint probability table for Fj
increases as the number of injectors connected to producer j
increases, and discretization intervals become smaller. To
maintain the table of a reasonable size, we keep only top-k
entries with relatively higher probabilities based on the
observation that the probabilities of most of the entries are
very close to 0.

(2) 2 injectors × 2 producers field

(b) Factor graph for (a)

Fig. 2. 2 × 2 field and its factor graph

3.3 Structure Learning and Parameter
estimation

 In PGL, the construction of a factor graph and parameter
estimation is dynamic and it consists of two phases: Belief
propagation over the factor graph using the sum-product
algorithm; and update of the factor graph by inserting nodes
and edges. Algorithms 1 and 2 show the procedures. The
initial factor graph is constructed based on a locality
principle. The locality principle in the IPRs problem is that a
producer is most likely influenced by the immediately
neighboring injectors. In the initial factor graph, each
producer is thus only connected to the closest injector based
on the physical distance. Euclidean distance is used to
calculate the distance between injectors and producers. The
initial factor graph thus constructed could contain actually
non-existing edges, but those edges are eventually identified
by PGL. The learning starts with the initial factor graph. At
the 1st round of learning, the sum-product algorithm is applied
to compute the marginal probability distributions of the
variable nodes. Once the messages converge after the 1st
round, the injector-producer pairs missing actual edges need
to be identified. A naive approach would be the exhaustive
combinatorial search and to perform the message passing
repeatedly until a stopping criterion is satisfied. However, this
method does not scale to a large number of injectors. We
instead employ a greedy forward search to avoid the very
expensive computations. The search consists of following
three steps:

• Step1: For every injector i and producers
connected to the injector, determine whether the
most probable value for πij identified by the message
from Fei to πij is not the same as that identified by
the message from Fij to πij.

• Step2: For every producer j, determine whether
there are producers whose estimation errors are not
less than a prescribed error threshold.

• Step3: Among injectors selected in Step1 and
producers selected in Step2, determine whether there
are injector-producer pairs whose injection rates are
positively and significantly correlated with the
difference between the observed and the estimated
production rates.

When there is any missing edge between injector i and
producers, a belief discrepancy is observed such that the most
probable value πij identified by the message from Fei to πij is
different from that identified by the message from Fij to πij,
where j represents the indices of all producers that are
connected to injector i. Algorithm 1 is the pseudocode that
identifies those injectors.

Algorithm 1. findFreeInjectors(πDiscrete, msgFeiToπij,
msgFijToπij, L, J)
1. out = { }
2. for i = 1 to L
3. for each p connected to injector i
4. [maxFei, idx1] = max(msgFeiToπij (i, p, :)
5. [maxFij, idx2] = max(msgFijToπij i, p, :)
6. if πDiscrete(idx1) > πDiscrete(idx2)
7. out ← out {i}
8. return

A high estimation error of a producer implies that the
producer has missed contributions from injectors that are
supposed to be connected to it. Thus, producers with missing
connections with injectors can be detected by investigating
the estimation errors of those producers. Now we have found
injectors and producers with missing edges, but we still do
not know which injectors are supposed to be connected to
which producers. The last observation is that producers with
high estimation errors have residuals between the observed
and the estimated production rates. The idea is that the
residual indicates the lack of contributions from injectors for
the producer, thus a positive correlation (e.g. ≥ 0.3) between
the set of injection rates of injector i and the residual is used
to determine the injector-producer pairs. Algorithm 2 shows
the pseudocode for the update of the factor graph structure
and parameter estimation.

Algorithm 2. PGL
1. Input:
2. injData, q, JPs
3. P: all producer ids
4. πDiscrete, τDiscrete: discrete values
5. Output:
6. πGuess, τGuess, G

7. Begin
8. freeInjectors ← { }, freeProducers ← { }
9. numRound ← 0, done ← FALSE
10. [connInjIds, G] ← getClosestInjectorInitG(P)
11. while ~done
12. if numRound > 0
13. changed ← FALSE
14. for each pp in freeProducers
15. if ~isempty(freeInjectors)
16. [maxCorr, injId] = max(corr(freeInjectors,
 injData, q(pp) – (pp)))
17. if maxCorr ≥ TOL_CORR
18. connInjIds(pp) ← connInjIds(pp) {injId}
19. changed ←TRUE
20. initializeMessages(connInjIds, pp)
21. if ~changed
22. break
23. [mpπij, mpτij, msgFeiToπij, msgFijToπij] ←
 SumProductFlooding(JPs, G, TOL_DIFF)
24. [πGuess, τGuess] ← computeExpectation(
 πDiscrete, τDiscrete, mpπij, mpτij)
25. freeInjectors ← findFreeInjectors(πDiscrete,
 msgFeiToπij, msgFijToπij, L, P)
26. freeProducers ← findFreeProducers(πGuess,
 τGuess, injData, q, TOL_ERR)
27. update G by πGuess and τGuess
28. ← estimateProduction(πGuess, τGuess,
 injData)
29. numRound ← numRound + 1
30. if max(calcTrainingError(, q)) < TOL_ERR
31. done ← TRUE

The factor graph is updated by adding new πij, τij, Yij and Fij,
and updating Fei and Fj at each round. The partially updated
factor graph is the input for the message passing at the next
round. The messages for the updated factor graph are
initialized for the next round as well. findFreeProducers()
finds producers whose estimation errors are not less than
TOL_ERR. The convergence criterion of the sum-product
algorithm is that the maximum difference between two
consecutive marginal probabilities of all πij and those of all τij
is not larger than the difference threshold (TOL_DIFF). The
exit condition is any of the two criteria: (1) the maximum
estimation error among producers is less than the error
threshold (TOL_ERR); (2) there is no change between two
consecutive sets of selected injectors. The goodness-of-fit of
the estimated factor graph and the parameters is determined
by the estimation error. Since the factor graph is a connected
graph, flooding message passing scheme is used.

4 Experimental Results
4.1 Experimental Setting
 The performance of PGL is compared with HCNO
(hybrid constrained nonlinear optimization) in Ref. [3].
Synthetic data are used to verify the accuracy of the solution

using the ground truth, i.e., location of higher permeability. In
this way, we can eliminate the uncertainty in deriving πij and
τij parameters from either real oilfield or reservoir simulation
data. The prediction accuracy is measured by RMSE for the
test data, running time, and accuracy of locating injector-
producer connectivity. 80% of data is used for training, while
the remaining 20% is used as the test data. The joint
probability tables for the factor nodes are generated using the
training data. Table I shows the field name, field type, field
size (number of injectors × number of producers), the number
of time steps, and the number of parameters to be estimated.

Table I. Field name, field type, size, number of time steps, and number of
parameters

Field Type Size TS Param
Field1
Field2
Field3
Field4

Homogeneous
Heterogeneous
Homogeneous
Heterogeneous

5 × 4
5 × 4
8 × 8
8 × 8

160
160
160
160

40
40

128
128

Fig. 3 shows the field configuration of the four fields. The
(red) circles stand for injectors and the (black) squares do for
producers. The grey lines in Field2 and Field4 indicate the
higher permeability, whereas the permeability in Field1 and
Field3 is uniform over the field. In the homogeneous fields
(Field1 and Field3), the contribution (i.e. connectivity) of an
injector is evenly distributed for all the neighboring producers
and the injector has almost no influence on distant producers.
The connectivity between the injector-producer pairs with the
higher permeability is stronger than that of any other pairs. πlb
is 0 and πub is 1, and the discretization interval for πij is 0.1
and that for τij is set to 4. τlb and τub are set to 0.0001 and 20,
respectively. For HCNO, randomly generated 10 initial
guesses are used. A set of initial guesses is used for Field1
and Field2, and the other set of initial guesses is used for
Field3 and Field4.

 (a) Field1 (b) Field2

 (c) Field3 (d) Field4

Fig. 3. Well locations and true higher permeability (grey lines) of four fields

4.2 Results
 The performance of the two algorithms, HCNO and
PGL, is compared in terms of running time and test error. The
running time of HCNO is the search time until convergence,
and that of PGL is the message passing and edge search time
until an exit condition is satisfied. As a comparison, we also
include some results for the most commonly used base
algorithm, conventional sequential quadratic programming
(SQP) in line search framework, which is the baseline of
HCNO as described in Ref. [3].

Table II shows the running time of HCNO and PGL, where
HCNO(mean) is the average running time of the 10 initial
guesses.

Table II Running times (Sec) of HCNO and PGL
Field HCNO (Mean) PGL

Field1
Field2
Field3
Field4

3.26
2.60

802.32
867.79

10.16
2.68

261.07
69.54

We observe that the running time of PGL is much less than
that of HCNO for larger number of parameters. For even
larger fields, the scalability of HCNO and PGL can be
analyzed as follows. The complexity of HCNO is determined
by the convergence rate, the number of quadratic
programming (QP) subproblem iterations, and the number of
constrained linear least squares iterations. Let n be the
number of injectors and m be the number of producers. In
practical situations, m is on the order of n, and we set m = n in
the asymptotic analysis. The number of QP subproblem
iterations per SQP iteration is mainly determined by the
number of inequality constraints because an active-set method
is used to solve the QP subproblem. Thus, the number of QP
subproblem iterations per SQP iteration is 2n2. The number of
constrained linear least squares iterations is 2n2 + n. The
number of SQP iterations is mainly determined by the
convergence rate. quasi-Newton methods typically converge
Q-superlinearly, thus the number of SQP iterations is
determined by the convergence rate. The worst case
complexity of HCNO is thus ln2, where l is the number of
SQP iterations determined by the convergence rate.
Therefore, the complexity of HCNO is O(ln2). On the other
hand, PGL begins with disjoint O(n) subgraphs, and for
practical sparse graphs in which the number of edges is O(n),
the iterative learning of the factor graph structure should
terminate after O(k) iterations assuming that a new edge per
injector is added per iteration, where k is the maximum
degree of any node. For real physical large reservoirs, we
expect k to be a small constant k << n. Consequently, the
complexity of PGL can be made O(kn). We thus expect that
PGL is scalable to the large problem size of real oilfields. It
should also be noted that PGL based on a locality principle

and message passing is readily amenable to parallel
computing.

To demonstrate the accuracy of the proposed method, Fig. 4
shows the observed and estimated production curves by the
three methods: Base algorithm, HCNO, and PGL.

(a) Base

 (b) HCNO (c) PGL

Fig. 4. Observed and estimated production curves of Producer7 in Field4

In Fig. 4, the (black) solid curves stand for the observed
production rates and the (red) dotted curves stand for the
estimated production rates. The vertical lines indicate the
separation between training and prediction curves. The
portions of the curves to the left of the vertical lines are
estimations by training and those to the right are prediction
curves. Each figure represents the overall training and
prediction curves across all producers by each method. The
three figures clearly show that the training and test errors of
the base algorithm are significantly higher than those of
HCNO and PGL, while there is no significant difference in
the test errors of HCNO and PGL, i.e., both PGL and HCNO
predictions are virtually indistinguishable from the ground-
truth.

Table III shows that the test errors of HCNO and PGL are
comparable and are orders-of-magnitude smaller than the
most commonly used base SQP algorithm.

Table III Test Error (RMSE)
Field Base (Mean) HCNO (Mean) PGL

Field1
Field2
Field3
Field4

8308.90
9208.90
1402.56
552.57

24.64
44.70
44.01

147.64

18.76
82.93
43.92
33.86

Fig. 5 shows that true higher permeability and the estimated
permeability for Field4.

 (a) HCNO (b) PGL

Fig. 5. True higher permeability and estimated permeability

The grey lines in Fig. 5 stand for the true higher permeability
and the black lines stand for the estimated permeability. The
length and width of the black lines indicate the magnitude of
the connectivity parameters. As shown in the figure, the true
permeability is also well estimated by both HCNO and PGL
methods. The contribution of the locally connected injectors
is evenly distributed among the neighboring producers and
the higher permeability across wells is also well estimated.

5 Related Work
 Much research has been done in structure learning of
Markov network (MN) or Markov random field (MRF) and
Bayesian network (BN). We here focus on the structure
learning directly related to factor graphs and parameter
estimation. Factor graphs subsume both MNs and BNs in the
sense that every MN or BN can be written as a factor graph of
the same size [4]. Empirical entropy estimates were used to
select an approximate Markov blanket (MB) for each
variable, and then the parameter estimation algorithm was
used to estimate parameters and identify which factors were
likely to be irrelevant. It was shown that the class of factor
graphs with bounded factor size and bounded connectivity
could be learned in polynomial time and polynomial number
of samples with the assumption that the data was generated
by a network in the class. Mirowski and LeCun proposed a
method for training dynamic factor graphs (DFG) with
continuous latent state variables [12]. A DFG included factors
modeling joint probabilities between hidden and observed
variables, and factors modeling dynamical constraints on
hidden variables. Given a training observation sequence, the
optimal state sequence was found by minimizing the energy
using a gradient-based minimization method. Second, the
parameters of the model were updated using a gradient-based
procedure so as to decrease the energy. The two steps were
repeated over all training sequences.

Steepest descent was used in estimating parameters in factor
graphs [5]. By showing that steepest descent can be combined
with the sum-product algorithm, they demonstrated that
steepest descent would be elegantly combined with other
summary propagation algorithms. Korl and Loeliger
estimated the autoregressive parameters using the sum-
product algorithm and factor graphs [9]. A state-space form
was derived for the AR model, and then the messages were
propagated over the corresponding factor graph. A parallel

inference algorithm on large factor graphs was proposed in
the distributed memory setting of computer clusters [6], [7].
Graph-partitioning was incorporated to distribute the work.
The vertex with highest residual was updated because
updating a vertex with no residual wastes process cycles. A
parallel implementation was designed for the loopy belief
propagation algorithm for factor graphs [11]. They found
three main parameters susceptible to be defined by the user;
scheduling policies, stopping criteria, and initial message
values. The scheduling policies are a rule-based scheduling
such that a node sends messages to the neighbor nodes after
receiving a fixed number of messages or receiving messages
from all the nodes identified in SndSet. The stopping criteria
are that the algorithm stops after certain number of iterations
or a maximum given number of messages. The user can
manually define the function values for each factor node.
Electromyographic (EMG) signals were decomposed into its
components using factor graph and the sum-product
algorithm [8]. The discrete-time model of EMG signals were
represented by a factor graph and the sum-product algorithm
operated by passing messages forward and backward in the
loopy factor graph.

6 Conclusions
 We have developed an approach for dynamic
construction of graphs and parameter estimation using factor
graphs and the sum-product algorithm. Instead of starting
with a fully connected graph for the given constrained
nonlinear system, the graph structure was built incrementally
by learning from belief discrepancies, estimation error, and
correlation analysis. As the number of wells increased, the
running time of PGL became less than that of the state-of-the-
art HCNO method. The prediction accuracy of PGL was
comparable to that of HCNO and was virtually
indistinguishable from the ground-truth. The three
regularizations prevented the greedy forward search from
including actually non-existing edges in the factor graph. We
have demonstrated that the approach of the probabilistic
inference in the loopy graph structure was successful in
estimating parameters of the constrained nonlinear model.

7 Acknowledgment
 This work was partially supported by the Center for
Interactive Smart Oilfield Technologies at the University of
Southern California.

8 References
[1] M. Sayarpour, E. Zuluaga, C. S. Kabir, L. W. Lake,
“The Use of Capacitance-Resistive Models for Rapid
Estimation of Waterflood Performance and Optimization”.
SPE Annual Technical Conference and Exhibition, 2007.

[2] M. Sayarpour, “Development and Application of
Capacitance-Resistive Models to Water/CO2 Floods”. PhD.
Thesis.

[3] H. Lee, K. Yao, O. Okpani, A. Nakano, I. Ershaghi,
“Hybrid Constrained Nonlinear Optimization to Infer
Injector-Producer Relationships in Oil Fields”. Int’l J.
Computational Science, vol. 4, no. 1, pp. 1-22, 2010.

[4] P. Abbeel, D. Koller, A. Y. Ng, “Learning Factor Graph
in Polynomial Time & Sample Complexity”. Uncertainty in
Artificial Intelligenc, 2005.

[5] J. Dauwels, S. Korl, and H.-A. Loeliger, “Steepest
Descent on Factor Graphs”. IEEE ITSOC Information Theory
Workshop on Coding and Complexity, 2005.

[6] J. E. Gonzalez, Y. Low, C. Guestrin, D. O'Hallaron,
“Distributed Parallel Inference on Large Factor Graphs”.
Uncertainty in Artificial Intelligence, 2009a.

[7] J. Gonzalez, Y. Low, C. Guestrin, “Residual Splash for
Optimally Parallelizing Belief Propagation”. J. Machine
Learning Research, vol. 5, pp. 177-184, 2009b.

[8] V. M. Koch and H.-A. Loeliger, “Decomposition of
Electromyographic Signals by Iterative Message Passing in a
Graphical Model”. Conf. IEEE Engineering in Medicine and
Biology Society, 2004.

[9] S. Korl, H.-A. Loeliger, “AR Model Parameter
Estimation: From Factor Graphs to Algorithms”. Int'l Conf.
Acoustics, Speech, and Signal Processing, 2004.

[10] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger,
“Factor Graphs and the Sum-Product Algorithm”. IEEE
Trans. Information Theory, vol. 47, no. 2, pp. 498-519, 2001.

[11] A. Mendiburu, R. Santana, J. A. Lozano, E. Bengoetxea,
“A Parallel Framework for Loopy Belief Propagation”.
Workshop on Parallel Bioinspired Algorithms in conjunction
with Genetic and Evolutionary Computation Conference,
2007.

[12] P. Mirowski, Y LeCun, “Dynamic Factor Graphs for
Time Series Modeling”. European Conf. Machine Learning
and Principles and Practice of Knowledge Discovery in
Databases, 2009.

[13] J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, 1988.

