
A New Spin on the Fast Multipole Method for
GPUs: Rethinking the Far-Field Operators

Arijus Lengvenis
Jülich Supercomputing Centre

Jülich, Germany
a.lengvenis@fz-juelich.de

Holger Dachsel
Jülich Supercomputing Centre

Jülich, Germany
h.dachsel@fz-juelich.de

Laura Morgenstern
Durham University

Durham, UK
l.morgenstern@durham.ac.uk

Ivo Kabadshow
Jülich Supercomputing Centre

Jülich, Germany
i.kabadshow@fz-juelich.de

Abstract—The Fast Multipole Method (FMM) is an optimally
efficient algorithm for solving N-body problems: a fundamental
challenge in fields like astrophysics, plasma physics and molecular
dynamics. It is particularly suited for computing 1/r potentials
present in Coulomb and gravitational particle systems. Despite
the near-field phase being trivially parallelisable, the far-field
phase of the 1/r FMM currently lacks an efficient, massively
parallel GPU algorithm fitting for the era of Exascale computing.
Current state-of-the-art approaches either favor highly parallel
but inefficient expansion shift operators or asymptotically ef-
ficient but poorly parallelisable rotation-based ones. Recently,
a breakthrough was made with the re-evaluation of a rota-
tion operator variant called fast rotation, which dramatically
increases caching effectiveness and marries the advantages of
both methods. Thus, this paper incorporates this approach to
create fast rotation-based operators that facilitate an efficient
far-field algorithm for the FMM on GPUs. Additionally, a warp-
centric data access scheme is co-developed alongside a matching
octree design, which yields coalesced memory access patterns
for the bottleneck operators of the far-field phase. The fast
rotation algorithm is enhanced with a cache-tiling mechanism,
maximising GPU cache utilisation. Compared to the state-of-the-
art GPU FMM far-field implementation, our algorithm achieves
lower running times across the board and a 2.47x speedup
for an increased precision simulation, with the performance
improvement growing as precision increases, providing concrete
proof of efficacy for dense particle systems.

Index Terms—Fast Multipole Method, GPU Programming,
Parallel Algorithms

I. INTRODUCTION

A. Motivation

THE Fast Multipole Method (FMM), hailed as one of
the top ten algorithms of the 20th century [1], [2],

has revolutionised the field of N-body simulations, which
aim to compute forces and potential fields within particle
systems. Since its conception in the late 1980s, FMM has
become a staple in computational physics and engineering,
used in a vast array of topics from molecular dynamics [3],
[4] to astrophysics [5], [6]. It achieves the optimal O(N)
time complexity coupled with a memory-efficient octree data
structure and error-control parameters set a priori with support
for open or periodic-boundary conditions for flexible and
accurate simulations [7], [8]. Finally, this algorithm only
requires managing localised spatial dependencies unlike other
methods, which have to perform expensive all-to-all operations
every timestep [9]. These properties make it an incredible

candidate for modern-day high performance computing (HPC)
systems for running a large variety of inputs. One of the most
ubiquitous use cases for this algorithm is simulating 1/rk

potentials between particles generalised for any k, such as
the Coulomb or gravitational interactions [10]. For this set of
problems, the FMM can be optimised further, achieving higher
performance thresholds than for the general case [11]–[13].
Thus, many major molecular dynamics (MD) libraries utilise
the 1/r FMM for this purpose [3], [14]. Nevertheless, one of
the most prominent bottlenecks of current designs of the 1/r
FMM for MD or plasma physics simulations, especially for
GPU computing, is the subpar strong scaling performance of
the far-field phase compared to Fast Fourier Transform (FFT)-
based methods like PME [4], [15]–[20]. Thus, this paper aims
to mitigate this issue.

Current research reveals two popular variants of the 1/r
FMM far-field phase: the P4 shift which has a O(p4) prefactor
time complexity (the complete time complexity is O(Np4))
but is massively parallelisable [22], and the rotation-based,
which possesses a more efficient prefactor time complexity
of O(p3) [23], but does not lend itself to parallelisation
effectively. Here p is the multipole order parameter which
directly affects the accuracy as well as energy conservation
properties of the simulations, which is important for many
use cases [3]. Unfortunately, rotation-based FMM does not
scale well in a parallel setting for dense systems due to the
need to compute, store and load many expensive and large
Wigner matrices, cannot be effectively stored in cache and
thus introduce a significant overhead [25]. This problem is
further exacerbated when considering GPU implementations,
leading to severe memory bottlenecks during runtime, and
leaving hardware underutilised. Thus, GPU implementations
of this approach ended up with a high crossover point with
optimised versions of P4 shift FMM [4], [21], [24].

Hence, the fast rotation-based operators are a crucial devel-
opment in addressing this problem [13], [37]. This approach
adapts the classical rotation algorithm to use only a single
Wigner matrix without affecting the prefactor complexity
which can be pre-computed before runtime. Consequently, this
solves the major bottleneck of rotation-based FMM, as fitting
and reusing a single universally applicable Wigner matrix in
cache frees a large fraction of it to be used elsewhere, which
paves the way for an efficient and strong scaling algorithmic

789

2025 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/25/$31.00 ©2025 IEEE
DOI 10.1109/IPDPS64566.2025.00075

20
25

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
79

-8
-3

31
5-

32
37

-6
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
S6

45
66

.2
02

5.
00

07
5

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

Aurora Frontier El Capitan

0

50

100

84.40% 88.28% 97.78%

Fr
ac

tio
n

of
pe

ak
pe

rf
or

m
an

ce
(%

)

GPU
CPU

Fig. 1: The compute distribution of three supercomputing
clusters with GPU nodes selected from the top five of the
TOP500 list from November 2024 [35]. The vast majority of
floating-point performance comes from the GPU hardware.

implementation for the GPU.
Given the substantial floating-point (FP) performance of

modern GPUs, optimising the FMM for these platforms could
unlock a generational leap in computational capability. This is
particularly important as modern HPC systems are beginning
to adopt many more GPU nodes. In some cases, nearly 98%
of their double precision FP performance capabilities exist in
the form of GPU resources, which can be seen in Fig. 1,
which increases to 99% when considering single precision.
The need for increasingly powerful supercomputing systems
continues to grow, especially in light of modern AI research,
however, due to the decline of Moore’s law, this increase is
maintained through horizontal scaling rather than vertical, as
seen in Fig. 2. This leads to a large demand for powerful
clusters with many GPU nodes, which necessitates massively
parallel and efficient GPU algorithm research, a fact that is
further confirmed by emerging massive collaborative initiatives
like ExCALIBUR [36] and Gromex [26].

B. Research Objective & Contributions

This project addresses a few key problems within state-of-
the-art research in far-field FMM algorithms, with the main
research objective being enabling an efficient and massively
parallel 1/rk potential far-field algorithm using fast rotation-
based operators on GPUs by following intra-SM optimisa-
tion. Intra-SM, or intra-streaming multiprocessor, optimisation
entails improving the strong scaling performance within the
parallelisation hierarchy of a single SM. Unlike inter-SM
optimisation, which would focus on multi-GPU and com-
munication framework designs for the algorithm, this paper
focuses on optimising hardware utilisation for a single GPU
without introducing any inter-SM dependencies so that, in
the future, it could be independently parallelised to as many
GPUs as necessary. Therefore, the goal of this paper will be to
optimise the memory access patterns and layout to minimise

2005 2010 2015 2020 2025 2030

1 Tera

1 Peta

1 Exa

1 Zetta

Pe
ta

flo
p

E
ra

(
20

08
)

E
xa

flo
p

E
ra

(
20

22
)

Year

Pe
rf

or
m

an
ce

(F
L

O
PS

)

Total Cluster Performance
Performance per Core

Fig. 2: The trend of Moore’s law compared to the total per-
formance in HPC clusters. Performance per core (or vertical
scaling) fails to grow fast enough to meet demand, thus, HPC
clusters employ many more cores (or horrizontal scaling) to
keep up.

memory and latency bottlenecks while maintaining the optimal
prefactor time complexity.

The efficiency of the solution would be quantitatively eval-
uated and compared against the state-of-the-art GPU FMM
implementation [4] via execution time. Finally, CUDA was
chosen as the programming language due to its maturity and
explicit control over low-level concepts like warps [29]. This
provides tighter control over the underlying hardware when
implementing the algorithm, potentially leading to greater
performance. Finally, in some cases, resources exist which can
transpile the code into different architectures like HIP, making
the code more portable [40], [41].
The novel contributions introduced by this paper are as fol-
lows:

• A GPU-optimised 1/r FMM far-field implementation for
dense systems with periodic-boundary conditions written
in CUDA.

• A ”hybrid-centric” memory access algorithm for the
fast-rotation operators, which minimises memory fetches
while enabling branchless load-balanced thread execu-
tion.

• A new dense octree design complementing the hybrid-
centric access model, affording grid-agnostic contiguous
memory access.

• A cache-tiled fast rotation algorithm fully utilising the
CUDA cache memory hierarchy.

II. BACKGROUND & RELATED WORK

A. Fast Multipole Method Background

The FMM is structured into two parts: a near-field phase
and a far-field phase. The near-field phase, often referred to as
the P2P (particle-to-particle) operator, computes interactions
via direct particle-particle summation, handling the spatially
close pairs of particles where far-field approximations would
not converge, leading to undefined behaviour. The far-field

790

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

phase, on the other hand, relies on hierarchical multipole and
local expansions encoded in an octree data structure, ensuring
that interactions between well-separated regions of space can
be used to approximate all other interactions efficiently.

Formally, the 1/|a − b| potential can be expanded into
spherical harmonic representations of multipole (ωlm) and
local (µlm) expansions [32]:

1

|a− b|
≈

p∑
l=0

l∑
m=−l

ωlm(a)µlm(b) , (1)

where p is the order of the expansion and ωlm, µlm are
basis functions of multipole and local expansions respectively,
dependent on position vectors a,b and expansion indices l,m.
These expansions can be factorised as:

ωlm(a) =
al

(l +m)!
Plm(cosα)e−imβ , (2)

µlm(b) =
(l −m)!

bl+1
Plm(cos θ)eimϕ , (3)

where Plm are associated Legendre polynomials correspond-
ing to rotations around the y-axis, and the exponential terms
encode rotations in the xy-plane. The angles (α, β) and (θ, ϕ)
correspond to coordinate rotations that align the expansions
between source and target boxes.

Due to the relative algorithm optimisation complexity, a
significant body of research currently exists contributing to
efficient direct summation algorithms present in P2P on GPUs
[33], [34]. The proportion of work that P2P is allocated
is controlled by varying the octree depth or decreasing the
well-separateness parameter ws, which defines the minimum
distance where octree boxes are considered to be part of the
local neighbourhood. Given that the far-field phase lacks a
strong-scaling design, most users shift the majority of the
work towards P2P to get the best wall-clock performance.
The optimal parameter set for any given input for a certain
precision can be computed beforehand by giving the number
of FLOPs [32], which cannot be utilised due to the imbalance
in hardware utilisation between the phases. Therefore, having a
highly efficient far-field algorithm could improve the efficiency
of the overall FMM algorithm by balancing the workload
between both phases.

For the scope of this paper, the far-field design will focus
on 1/rk FMM, and the simulation space will be represented
as a dense octree with periodic-boundary conditions, where
all expansions part of the octree are stored in memory. The
latter assumption significantly simplifies any parallel algorithm
by making the octree resemble a hierarchical grid while
maintaining the usefulness of the solution for homogeneous
inputs, popular in MD and plasma physics [27]. With a dense
octree, the overall time and space complexity of the far-field
stage is Θ(N +8d), where 8d represents the number of boxes
on the lowest level of the octree. Since each box is considered
at most a constant number of times by each operator, it is more
intuitive to analyse the far-field operators while considering
the prefactor time complexity per box defined in terms of the

Fig. 3: The Wigner matrix data structure is used for performing
rotations, where each cube represents a real number.

multipole order p. Considering practical use cases, we claim
that 6 ≤ p ≤ 18 is enough for accurate simulations.

B. Rotation-based FMM

The FMM operators can be split into two groups – particle-
based operators (i.e. P2M and L2P, P for particle, and M and L
for multipole and local expansions, respectively) as well as the
E2E (expansion-to-expansion) operators (i.e. M2M, M2L and
L2L). The particle-based operators have a relatively low O(p2)
prefactor time complexity, while the E2E operators have either
a O(p4) or O(p3) prefactor time complexity, depending on
the underlying algorithm. Each E2E operator aims to achieve
the same goal – re-expand a source expansion at the centre
of the target box. This process is described by the shifting
(or translation) algorithm, which defines this procedure for a
multipole or local moment. The P4 shift algorithm considers
every term in the source expansion and performs a convolution
operation with a O(p2) sized operator. This implies a direct
multiplication of terms, leading to quadratic complexity in
the number of terms in an expansion, i.e. O(p4) prefactor
complexity. However, there exists a special case where the
size of the operator collapses to a O(p) size, and the algorithm
improves to a O(p3) prefactor time complexity. This occurs
when the z-axis of the source expansion aligns with the target’s
centre. Thus, expansion rotation generalises this idea to align
the z-axis of the source expansion towards any point in space
to afford significantly cheaper translation operations [23].

This rotation requires a z-axis rotation and a y-axis rotation
in spherical coordinates. The y-axis rotation is represented as
large Wigner matrix data structures, which can be seen in
Fig. 3. To perform a single translation operation, two Wigner
matrices have to be computed, corresponding to the forward
and backward angle rotation. Since these data structures
have O(p3) memory complexity, storing many of them in
cache becomes practically infeasible. This motivates expansion
binning, as some expansions will undergo the same rotation
relative to their target [25], amortising the cost of computing
and storing the large data structures in cache. However, M2L
requires a large number of shifts to be performed for each
source expansion, as each source can be part of many different
target expansions, which results in many redundant reads and
writes with this process to maintain an active cache. Therefore,
even by optimising the order of operations and cache-tiling,
fitting enough expansions and their associated Wigner matrices

791

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

in cache results in overflow or thread divergence, which causes
significant memory congestion and warp stalling, respectively,
leading to a poorly scaling algorithm. Consequently, the strong
scaling for the GPU implementations using this approach
plateaus quickly as the kernels become severely memory-
bound.

The advent of fast rotation aims to utilise a single Wigner
matrix called the flip operator [37] to perform any arbitrary
rotation with two 1-dimensional rotations instead of a single
2-dimensional one. The flip operator’s angle is set to π

2 , which
results in roughly half of the values becoming zero, effectively
halving the size of the data structure, thus the number of
FLOPs required to rotate an expansion. Hence, despite this
requiring two z- and y-axis rotations to achieve any arbitrary
angle, due to the low complexity and overhead of z-rotations,
this equates to roughly the same number of FLOPs. Further-
more, this data structure can be pre-computed at compile-time
and used for rotating all expansions universally simultaneously
for both forwards as well as backwards rotations. This new
spin on rotation has already inspired research into how it
could be used for designing massively parallel GPU rotation-
based FMM operators [13]. The resulting M2M operator
was highly scalable and performant; however, it was a toy
example without utilising an octree or managing the implicit
dependencies defined by the operators, especially M2L.

C. Current GPU Implementations

As previously mentioned, the latest research for GPU FMM
algorithms revolves around P4 shift [4], [21] and rotation-
based FMM [25]. There are also kernel-independent solutions
which sacrifice some performance optimisation for general-
isability of potentials [9], [38], [39]. Some of these have
O(p3 log p) prefactor time complexity kernels [22], which
have a higher complexity than fast rotation and introduce
additional errors which the error control cannot account for
[32]. For 1/r FMM, there exists a O(p2 log p) time complexity
FFT-based kernel [11], but it introduces additional errors,
which removes the ability to compute a strict error bound
on the computation. Finally, modern research is focusing on
AI-based simulation models, which offer orders of magnitude
speedup for inputs during inference [30], [31]. Unfortunately,
no error bounds exist for these solutions, and this undermines
the accuracy of long-horizon simulations, which makes it less
useful for scientific applications.

Garcia et al. have attempted an implementation using
rotation-based FMM in CUDA [25]. However, the crossover
point in terms of p for the performance improvement compared
to the P4 shift FMM is relatively high. Thus, the current state-
of-the-art implementation, which is also available through
GROMACS [3], [28], is by Kohnke et al. [4]. It heavily
optimises the P4 shift algorithm, providing intra-expansion and
inter-expansion parallelism via dynamic parallelism, which
scales very well. However, given the high time complexity
of this algorithm, the implementation still slows down signif-
icantly as p increases. Regarding a fast rotation-based FMM,
there are very few implementations of this, even on CPU. This

P2M

M2M

M2L

L2L

L2P

Particles
to Octree

Forward
Rotation

Octree to
Potentials

Translation
M2M

Translation
M2L

Translation
L2L

Backward
Rotation

E2E

Fig. 4: Architecture diagram describing the rotation-based far-
field phase of the FMM. The fast rotation algorithm affords
using the same Wigner matrix for all E2E operators, enabling
optimisations which will be introduced and exploited through-
out the proposed methodology.

paper has chosen a library called FMsolvr that has designed
a 1/r FMM with fast rotation operators [12]. This solution
utilises the new flip operator with SIMD vectorisation, which
is achieved by reorganising expansions on the fly. This design
has become the foundation for an efficient CUDA-based fast
rotation algorithm because as far as this paper is aware – there
are currently no fast rotation-based GPU implementations of
the far-field phase of the FMM.

III. METHODOLOGY

This section will discuss the design process of the optimised
memory layout and access model for the E2E operators
enabled by fast rotation. A high-level architecture diagram of
the algorithm can be seen in Fig. 4, which highlights how data
is processed by each operator and showcases how fast rotation
improves the generalisability of the E2E operators.

A. Memory Access Models

The first and most crucial aspect to consider is the memory
access pattern for all threads within the context of the E2E
operators. Parallelising the fast rotation algorithm with respect
to a single expansion can lead to work imbalance between
threads as well as additional communication required to syn-
chronise data dependencies for different parts of the routine.
As such, this paper has chosen thread-independent expansion
processing, where any single thread is responsible for its
unique set of expansions. The downside of this parallelisation
pattern is that for low depths or shallow octrees where there
are few expansions to work with, hardware could become
underutilised. However, given that the number of elements per
level increases exponentially, this downside becomes marginal
when the octree has d > 3 by utilising operator overlapping.

792

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

(a) Target-centric (b) Source-centric

(c) Operator-centric

Fig. 5: Illustration of the different data access parallelisation
approaches. Each one optimises a different aspect of the
operator - minimising writes (a), minimising reads (b) and
maximising contiguous memory accesses (c).

This optimisation increases the amount of independent tasks
concurrently available to the GPU due to M2L having at least
189 source-target pairs to compute per box for ws = 1.

The fast rotation algorithm takes a source expansion and a
target expansion as input. For the M2M operator, the source
expansions are multipole expansions of boxes (denoted ω) on
level i that are re-expanded at the center of their direct ancestor
ω on level i− 1 within the octree. Thus, the input boxes can
be referred to as child boxes, which are shifted towards the
center of the target parent box residing on the level above
within the octree and accumulated together. Conversely, L2L
performs the opposite operation of distributing the parent local
expansions (denoted µ) on a level i to their children boxes µ
on level i+1. Finally, for M2L the source expansions are the
well-separated local neighbourhood of ω on level i that need
to be translated to a target box local expansion.

Given that each E2E operator can be abstracted to perform-
ing fast rotation operations from a set of sources to a set of
targets, three unique parallelisation paradigms that optimise
the access patterns for each one emerge. Let us call an access
pattern target-centric when the sources belonging to the same
target expansion are processed concurrently, which can be seen
in Fig. 5a. This places the first parallelisation loop over the
target expansions and then the inner one over the source boxes
from which the associated target expansions are taken. Let us
call an access pattern source-centric when the targets to which
a source belongs are processed concurrently, as can be seen
in Fig. 5b. This is the analogous opposite of target-centric
by swapping the parallelisation loops. Finally, let us call an
access pattern operator-centic where the same relative source
expansion per target expansion (or vice-versa) is processed
concurrently, which can be seen in Fig. 5c. This is done by
iterating over all unique relative source-target transformations
for each source or target box. This access pattern exploits the
symmetrical property that all input boxes undergo the same
fast rotation operations within their spatial neighbourhood,

which is ensured by assuming a dense octree with periodic-
boundary conditions.

Intuitively, the target-centric approach is ideal for the M2M
operator, which would allow for all child ω part of the same
parent ω to be processed concurrently, accumulated in cache
and written in one global memory transaction, thus minimising
memory congestion. An analogous argument can be made for
the L2L operator with the source-centric model, as this would
explicitly cache the parent µ, allowing for efficient reading
of the data. Lastly, the M2L operator favours both target-
and source-centric memory access models, as both could be
applied concurrently for minimising the total number of global
memory accesses. However, it would become infeasible to fit
all partially completed expansions at the same time in cache,
as this would scale proportionally with O(4d). Nevertheless,
the performance of a purely source-centric or target-centric
M2L would have to be assessed empirically.

B. Hybrid-centric Access Algorithm

The downside of using either a target-centric and source-
centric approach for M2L (and to a lesser extent M2M and
L2L) is that it could potentially cause non-coalesced memory
accesses, as there are at least 189 source expansions that
undergo a translation with respect to any target, when ws = 1.
Each translation follows the same fast rotation algorithm with a
different set of z-rotation angles as well as translation operator
coefficients stored in auxiliary arrays. Given the small memory
footprint of these data structures, these can easily fit into
shared memory, however, they can still contribute towards
memory congestion due to bank conflicts. However, it is
nearly impossible to access all input sources for all target
expansions in a coalesced manner in global memory for a
given space-filling curve (SFC). Therefore, this will lead to a
severe memory bottleneck if not addressed.

The solution to this is to use the operator-centric model,
which, if combined with an appropriate octree memory layout,
would provide coalesced memory accesses. However, this
approach implemented naı̈vely can come at the cost of vastly
increased memory congestion, as every source and target
expansion would be read and accumulated to 189 times,
respectively, without benefiting from caching. This raises the
question: does there exist a model which combines the memory
access efficiency of either target-centric or source-centric with
the data locality of operator-centric for all E2E operators?

To answer this question, we introduce the hybrid-centric
model, displayed in high-level pseudocode in Fig. 6. This
model aims to combine the benefits of two of the previously
mentioned approaches, namely operator-centric as well as
either target-centric or source-centric. The algorithm at line 1
computes the relative source (or target) neighbourhood stencil
for the operator, i.e. a relative set of points describing the box
centers of all boxes part of the operator-specific interaction set.
Since all E2E operators follow this pattern, it affords a way
to generalise and describe all source-target box interactions
for any operator. The thread block is subdivided into warps
by explicitly storing the lane and warp IDs for each thread

793

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Hybrid-Centric Memory Access Algorithm for
M2L (Target-Centric Variant)

1: sourceKernel← compute neighbourhood kernel(id)
2: numSources← len(sourceKernel)
3: laneId← threadId % warpSize
4: warpId← threadId / warpSize
5: numWarps← blockDim / warpSize
6: for i← laneId to n step warpSize do
7: targetExpansion← initialise empty mu()
8: for j← warpId to numSources step numWarps do
9: sourceExpansion← fetch omega(i,sourceKernel[j])

10: fast rotation(targetExpansion,sourceExpansion)
11: sharedMem[laneId]← accumulate(targetExpansion)
12: end for
13: write mu(i,sharedMem[laneId])
14: end for

Fig. 6: High-level pseudo-code describing the architecture of
the hybrid-centric (target-centric variant) E2E operator design.
Lanes within a warp process the same target µ expansion, but
each warp processes a unique source ω expansion relative to
the target. This causes threads within a single warp to behave
in a operator-centric way, as every thread part of the same
warp will be working on the same relative translation. On
the other hand, all warps combined behave in a target-centric
manner, concurrently processing many source expansions with
respect to the same target.

(lines 3 − 5). This is then used to iterate over warpSize
batches of boxes, where each lane would be working on the
same relative source translation to their target (line 6), while
each warp would process a unique set of source expansions
from the neighbourhood stencil (line 8). The batch of target
expansions can thus be cached in shared memory to enable
highly efficient accumulation operations before flushing the
completed µ to global memory.

This results in all threads within a warp working on ex-
pansions that undergo the same relative transformation, as
in the operator-centric model, and all threads within warps
corresponding to the same lane working on the same target
(or source) expansion, as in target-centric (or source-centric).
This design is ideal, as locally operator-centric accesses ensure
coalesced memory operations for the input expansions, while
globally target/source-centric approach reduces the number of
redundant memory accesses by caching and reusing relevant
data as well as ensures that all threads in a warp will access
the same rotation and translation data leading to no bank
conflicts. This access pattern retains independent warp-level
thread execution for the fast rotation algorithm and affords
efficient reduction routines to aggregate data. For operators
where the neighbourhood stencil is small, like for M2M and
L2L, the definition of warpSize can be adapted to allow
multiple warps to span a single batch, increasing the number
of source-target pairs to be processed per iteration. This makes
the hybrid-centric algorithm flexible for any E2E operator
and grid combination. Thus, this framework brings together a

Fig. 7: The expansion data structure for p = 4. Each block
represents a complex number.

best-of-both-worlds design while not overburdening the shared
memory resources, as well as minimising stalling overhead by
naturally vectorising warp-wise execution.

C. Octree Design

Current implementations of the FMM use complex-valued
triangular matrix data structures to represent both types of
expansions in a uniform way, showcased by Fig. 7. This allows
a general form of fast rotation to be employed, which can
take either multipole or local expansions as input and pro-
cesses them indiscriminately, excluding the special translation
algorithm associated with each operator.

The expansion data structure is comprised of complex coef-
ficient values, each needing to be processed in a specific way.
However, elements corresponding to the same index within
any expansion undergo the same transformations. Therefore,
the data access pattern would benefit from transposing the
containers to have elements with the index adjacent in mem-
ory. Some existing libraries implement a stacked transposed
expansion memory layout [13], where a batch of expansions
the size of the SIMD width of the system is reordered on the
fly for efficient cache line utilisation. However, the necessity
to actively perform these reorderings to facilitate vectorised
operations incurs overhead, which can be avoided.

Instead of batching the expansions during runtime, our
solution would initialise all elements in the transposed format
on all levels of the octree. Therefore, any contiguous subset of
expansions would be accessible in a coalesced manner without
doing any additional work. Another advantage of this is that
this memory layout is grid size agnostic, which enables the
flexibility to adapt the grid between each level of the octree
for each operator independently.

The next design aspect concerns the ordering of the expan-
sions within any level of the octree dictated by the SFC. This
is crucial as this affects the efficiency of cache line reads from
global memory. The goal is to align the memory layout with
the access patterns of the operator-centric access scheme to
maintain all of the benefits that come with it.

Thus, this paper introduces the child-centric slabs SFC
ordering, illustrated in Fig. 8. This expansion ordering utilises
the important property of slab-wise ordering: given a slab-
wise array A, a contiguous sub-array of elements a ∈ A of
size n, any other contiguous sub-array b ∈ A of size n will
be element-wise equidistant. That is:

794

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

0

0

2

2

0

0

2

2

1

1

3

3

1

1

3

3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Fig. 8: Memory layout of the octree within memory compared
to the spatial layout. Each expansion corresponding to a unique
child relative to its parent (colour) is placed contiguously in
memory sorted slab-wise by its parent box index.

d(a0, b0) = d(a1, b1) = · · · = d(an, bn) (4)

where d is the distance between any two elements in
memory. This property enables coalesced memory access for
operator-centric access patterns, as due to this property any
contiguous set of target (or source) expansions, the relative
source (or target) expansions will thus also be adjacent in
memory. To the best of our knowledge, there is no other SFC
which exhibits this property for all boxes other than slabs or
a variation of slabs.

Furthermore, the reason for splitting each child box into
separate sub-arrays is related to the asymmetry of the M2L
operator. The neighbourhood stencil for any box in M2L de-
pends on the relative positioning of the child box with respect
to the centre of the parent box. As such, applying operator-
centric on a slab-wise ordering can yield uncoalesced memory
access due to boxes corresponding to the same transformation
being in vastly different locations in memory. The solution
to this would be to split the eight children for all parent
boxes and process them as independent operators. This child-
centric split of the octree maintains the aforementioned slabs
property while also ensuring efficient M2L execution when
considering non-periodic-boundary accesses. Therefore, the
sum of all the benefits mentioned above is maintained at little
to no additional computational, memory or synchronisation
overhead.

D. Cache Hierarchy Optimisation

The fast rotation algorithm is composed of three distinct
parts: z-rotation, y-rotation and a translation, described in a
high-level in Fig. 9. For each iteration, a source expansion
undergoes two z-rotations and two y-rotations in an alternating
order. Afterwards, translation is performed, after which the
reverse set of z and y rotations is done to restore the alignment.
The auxiliary data structures that facilitate the rotations and
translation are pre-computed and stored in constant memory

in z y z y trans y z y z out

Fig. 9: High-level depiction of the fast rotation algorithm. Each
box represents a step in the fast rotation algorithm. All steps
are performed by reading the entire expansion (represented by
triangles below each step) directly from global memory and
storing the result there. A red outline denotes that the data is
read from global memory.

or cached in shared memory. For the z-rotations, two angles
ϕ and θ are computed from the relative distance vector R,
pointing from the centre of the source box to the centre
of the target box, and stored in constant memory. These
angles are used to compute eikϕ and eikθ on the fly for
0 ≤ k ≤ p. Importantly, the same angles can then be used
in complex conjugate form to rotate the expansion backward.
The translation operators are vectors of size p+1 and 2p+1
for M2M/L2L and M2L respectively, that utilises the relative
distance vector R and is computed in the recursive form
tn = Rtn−1

n and ntn−1

R respectively. These vectors are stored
in constant memory for M2M/L2L and in shared memory for
M2L. Lastly, the flip operator is fetched from a pre-computed
constant memory table at compile-time, which is loaded into
the constant cache at run-time that is optimised for broadcast
access patterns. However, it should be noted that modern GPUs
have a constant cache size of 64KB, so careful consideration
of data size requirements must be made.

For the hybrid-centric algorithm, we can also store the
neighbourhood stencil maps in constant memory. These denote
the relative coordinates of each neighbour with respect to
the target box. For M2M and L2L, this neighbourhood can
be simplified without the need to store the neighbourhood
stencil, as every child box belonging to the same parent box
will be evenly spaced out within the child-centric SFC. For
M2L, storing all 316 relative 3D coordinates is necessary
corresponding to the union of all M2L neighbourhood stencils.
Furthermore, to be able to effectively access the angles and
distance vectors, pointer maps for each index within the neigh-
bourhood stencil must also be initialised. Overall, combining
everything together results in about 62KB of constant memory
for running the far-field phase up to p = 17 for ws = 1.
This could be further optimised in the future by reducing the
flip operator, computing it on the fly or moving it to texture
memory instead.

E. Cache-Tiling Mechanism

The effective utilisation of L1 cache via shared memory
is crucial for reducing latency bottlenecks within any kernel.
The fast rotation algorithm involves reading each expansion
coefficient O(p) times, which, if cached effectively, could
significantly increase compute throughput. Therefore, research
was made into efficient cache utilisation for storing expansion
data for every thread.

795

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

Storing a single expansion data structure of order p requires

2r
(p+ 1)(p+ 2)

2
− r(p+ 1) = r(p+ 1)2 (5)

bytes of memory, where r is the number of bytes per floating
point variable. There are p+1 rows and columns of complex
values in the triangular matrix, except for the first row, which is
populated only with real values. Given that each thread works
with expansions independently, the memory required to store
everything simultaneously is given by 2tr(p + 1)2 where t
is the number of threads per SM. Additionally, the shared
memory buffer used to cache a batch of expansions in the
hybrid-centric algorithm requires an additional wr(p + 1)2,
where w is the warp size. Hence, the total memory requirement
becomes:

r(2t+ w)(p+ 1)2. (6)

Assuming a block size of 256 threads, a warp size of 32 and
a multipole order of p = 16, the total bytes required per block
would be 628, 864 bytes, significantly exceeding the L1 cache
capacity of any currently existing GPU. This limitation implies
that storing full expansion data structures in shared memory
concurrently for all threads is impossible. However, this limit
could be further improved by processing the expansions piece-
wise.

It is important to notice that the y-rotation requires only
column-wise dependencies for rotating an expansion, implying
that only a single column’s values can be loaded in cache.
Additionally, since the z-rotation operates element-wise, it
introduces no extra dependencies, and in cases where a y-
rotation is immediately followed by a z-rotation, these can
be combined into one to save on shared memory bandwidth.
Finally, the translation step for all operators requires row-wise
dependencies, which necessitates having additional auxiliary
global memory arrays to store the forward-rotated and trans-
lated expansions to transition from a column-wise to row-wise
and back to column-wise cache-tiling approaches, respectively.
Consequently, we only require a column vector the size of
the largest expansion column/row for running the entire fast
rotation routine, which reduces the shared memory cost from
quadratic in p to linear:

r(2t+ w)(2p+ 1). (7)

This optimisation reduces the shared memory requirements to
71, 808 bytes for the previous example, which is manageable
by most modern GPUs.

The two auxiliary global memory buffers for storing inter-
mediate expansions incur a small enough memory footprint
that they can at least fit into L2 cache during execution,
reducing latency further. The inner loops of each step can
now be handled entirely in shared memory utilising column
vectors, which can be switched to global memory when the
amount of shared memory required exceeds the available L1
cache resources. This fast rotation memory model redesign,
visualised in Fig. 10, not only brings a sizeable speedup when

in z y z y trans y z y z out

Fig. 10: Optimised fast rotation algorithm by exploiting the
CUDA cache memory hierarchy. The connected boxes with a
thick black line imply that they can be condensed into one,
reducing the number of shared memory operations.

TABLE I: Default parameters for the benchmarking process.

Parameter Value

p Multipole order 11
d Depth 7
ws Well-separatedness 1
n # of Particles / box 4

Threads per Block 256
Number of Blocks 528
Warp Size 32
Source-centric M2L True
FP32 True
GPU GH200

enough shared memory is present but also improves cache
utilisation in the general case.

IV. RESULTS & EVALUATION

A. Benchmarking Platform

The benchmarking process was done on a nvidia GH200
Grace Hopper Superchip system and was tested on systems
with V100 and A100 GPUs. All input data was generated
randomly using a uniform particle distribution. The accuracy
and precision of the results were compared against the verified
CPU FMSolvr solution, ensuring that the values were always
within the same order of magnitude.

The far-field FMM benchmark involved measuring the time
taken to run the complete GPU routine, including data struc-
ture initialisation and particle sorting, as the far-field kernel
execution time. Memory allocation, copying and de-allocation
times were excluded since, in a simulation environment, these
would only need to be run once, and thus their overhead would
become inconsequential given sufficient iterations. Once the
particle data is loaded onto the GPU, the entire timestep
routine can be run without leaving the device. Finally, the eval-
uation figures show the average run times over ten timesteps
with a default set of parameters unless mentioned otherwise,
described in Tab. I.

B. Bottleneck Analysis

The primary bottleneck of the far-field algorithm, as ex-
pected, is the M2L operator, which contributes to 95.7%
of the total run-time performance for the parameters shown
in Tab. I. An examination of the profiling data reveals that

796

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Achieved compute and memory throughput com-
pared to theoretical peak given by the Nsight Compute (NCU)
profiler on the GH200 for parameters in Tab. I with a fully
occupied grid of 528 blocks and 256 threads per block.

Operator Compute (%) Memory (%)

P2M 54.94% 78.85%
M2M 70.90% 50.22%
M2L target 70.06% 36.33%
M2L source 75.74% 29.72%
L2L 66.58% 26.74%
L2P 64.56% 17.46%

0 5 10 15 20 25 30
0

2

4

6

Number of warps

E
xe

cu
tio

n
tim

e
(s

)

Perfect scaling (d = 7, p = 17)
Perfect scaling (d = 8, p = 6)
Warp scaling (d = 7, p = 17)
Warp scaling (d = 8, p = 6)

Fig. 11: Plot varying the number of threads per block launched
for a grid with 2 blocks per SM. For high depth d = 8, p = 6
parameters, additional warps help alleviate latency bottlenecks
compared to high multipole order d = 7, p = 17 parameters.
The perfect scaling lines show how the solution would scale
if it was perfectly compute-bound.

the M2L kernels are predominantly compute-bound (refer to
Tab. II), despite the uncoalesced memory writes resulting from
periodic-boundary conditions. This implies that the proposed
memory access patterns and layout have eliminated most of
the memory bottlenecks, allowing the CUDA cores to work
efficiently with minimal stalling. This is the best-case scenario
for an efficient GPU kernel, as managing compute-boundness
in an HPC system is preferable over memory or latency-
boundness. Furthermore, the solution scales independently
with the number of SMs, as no inter-block dependencies have
been introduced, facilitating seamless inter-SM parallelism.

The observation of compute-boundness is further reinforced
by the thread scaling analysis in Fig. 11. Increasing the
number of warps per block does not lead to measurable
performance gains, as CUDA cores quickly become saturated.
Without memory or latency constraints, additional threads
offer minimal performance benefits. Conversely, for certain
parameter sets (e.g., d = 7, p = 17), we observe a significant

4 6 8 10 12 14 16
10−1

100

101

Multipole order p

E
xe

cu
tio

n
tim

e
(s

)

FMSolvr global (FP64)
FMSolvr shared (FP64)
FMSolvr global (FP32)
FMSolvr shared (FP32)

Fig. 12: Log plot showcasing the run-time improvements of
utilising shared memory for the fast rotation steps. The dashed
plots indicate the run-time of using global memory column
vectors instead of shared memory for all E2E operators. As p
increases, the L1 cache allocated for shared memory resources
also increases until it overflows, resulting in execution times
matching the global memory version.

1024 512 256 128 64 32

0

2

4

6

Number of blocks

E
xe

cu
tio

n
tim

e
(s

)

FMSolvr (d = 7, p = 17)
FMSolvr (d = 8, p = 6)

132 264 528 1056 2112 4224
Number of threads per block

Fig. 13: Plot showing the optimal grid configuration for a set
number of threads per block. For high multipole order d = 7,
p = 17, the optimal is 528 blocks with 256 threads per block,
while for high depth d = 8, p = 6, the optimal becomes 1056
blocks with 128 threads per block.

increase in execution time when the warp count reaches 13.
At full occupancy, the solution is slower compared to using
fewer warps, indicating that another bottleneck exists.

The reason for this ”bump” in execution time is predomi-
nantly due to the kernel exceeding the total L1 cache capacity
of the SM, specifically for storing the cache-tiled column

797

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10

10−6

10−4

10−2

100

102

Octree depth d

E
xe

cu
tio

n
tim

e
(s

)

CPU FMSolvr
GPU FMSolvr Ablated
CPU FMSolvr Adjusted

GPU FMSolvr

Perfect scaling 8d

Fig. 14: Log plot describing the scaling properties of FMSolvr
far-field solutions by varying depth d, while other parameters
are taken from Tab. I. The test at d = 9 has over 536 million
particles in the simulation.

0 5 10 15
10−4

10−3

10−2

10−1

100

Multipole order p

E
xe

cu
tio

n
tim

e
(s

)

SOTA (FP64)
SOTA (FP32)

FMSolvr (FP64)
FMSolvr (FP32)

Fig. 15: Log plot comparing the proposed far-field operators
versus the state-of-the-art (SOTA) [4] for single and double
precision at d = 5 with 100 particles per box and averaged
over 100 timesteps. The proposed solution on the GH200 is
unilaterally faster for all values of p for both precisions.

vectors in shared memory used to process the expansions,
which is showcased in Fig. 12. This is particularly visible for
double precision, as we see bumps at p = 7 and p = 14, where
the amount of shared memory used per block reduces the oc-
cupancy and finally exceeds the total L1 cache capacity of the
SM, respectively. However, this implies that this bump is not
an artifact of the solution becoming slower, but a consequence
of losing access to shared memory. Without utilising shared
memory at all, the scaling trend would follow the dashed
plot, which is significantly slower. Therefore, this validates our

V100 A100 GH200
0

1

2

3

32 64 32

Sp
ee

du
p

(S
O

TA
/

FM
So

lv
r)

FP32 p = 4

FP32 p = 12

FP64 p = 4

FP64 p = 12

Fig. 16: Plot describing the relative speedup versus the state-
of-the-art (SOTA) for p = 4 and p = 12 and single and double
precisions on the V100, A100 and GH200 for d = 5 with 100
particles per box and averaged over 100 timesteps.

cache-tiling strategy and entails that maximising the utilisation
of the available shared memory is the key for maintaining a
performance advantage as p increases. One way to resolve
this would be to utilise intra-expansion parallelism, where
multiple threads would work on a single shared column vector
concurrently. This would introduce additional synchronisation
overhead and potential for load imbalance but would main-
tain a more stable execution-time slope overall. Otherwise,
reducing the number of threads per SM will also increase the
threshold of when the solution is forced to move to global
memory, which can be applied with minimal performance
losses, as seen in Fig. 11.

In terms of optimising grid configurations, many smaller
blocks are favoured against fewer large blocks, as can be seen
in Fig. 13. This is because any target-centric operators (P2M,
M2M) have block-wide synchronisation overhead, and source-
centric M2L has synchronisation for updating the shared read
buffer in parallel, which entails favouring a larger number
of independent blocks. On the other hand, warp scheduling
overhead is more prevalent for higher values of p due to the
increased fraction of execution time spent on processing the
expansions. Therefore, we chose 528 blocks for our testing as
it provided a better average-case trade-off between these stalls.

C. Comparison Against Other Solutions

Initially, we conducted baseline performance tests with the
FMSolvr implementations when varying the depth parameter
d, as seen in Fig. 14. The FMSolvr CPU version was run on
the GH200 CPU without any vectorisation or parallelisation
enabled; however, even under the optimistic assumption of
ideal parallel scaling of the CPU implementation, our solution
remains 11.58× faster. The next test was an ablation analysis
of the proposed GPU-based far-field approach to observe some
of the accumulated improvements over time. Utilising source-
centric M2L versus target-centric yields a 29% improve-
ment due to fewer synchronisation statements required by

798

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

the source-centric solution, coupled with significantly reduced
register pressure. The L1 cache-tiling mechanism for the fast
rotation algorithm provided a 104% improvement, and storing
the flip matrix into constant memory yielded a 17% improve-
ment versus global memory. Overall, the current version with
operator overlapping and improvements to sorting is about
17.16× faster compared to a baseline approach employing
only the hybrid-centric memory access model and child-centric
octree memory layout.

Subsequent comparisons involve benchmarking our solution
against the current state-of-the-art (SOTA) Kohnke et al.
GPU FMM far-field phase implementation [4]. It should be
noted that our solution does not currently include the lattice
operator, timings for which were also excluded from the com-
peting implementation. However, this operator is inherently
a O(p4) operator which parallelises efficiently, and since it
only operates on a single box, it does not meaningfully affect
execution time. Therefore, it was excluded from this paper.
Furthermore, all of our tests thus far have included memory
initialisation and particle sorting, which would be part of
every timestep of the FMM. However, SOTA’s implementation
performs sorting on the CPU and copies this data to the GPU
instead, making the performance difference between these two
solutions significantly greater than is presented in the plots. For
the sake of a fair, academically interesting comparison between
the newly designed operators, we have chosen to only compare
the timings of the far-field operator kernels. Nevertheless, in
Fig. 15, it can be seen that for all measured values of p for
d = 5, our solution on the GH200 for both single and double
precision is uniformly faster than SOTA. Furthermore, due to
the superior O(p3) prefactor time complexity of our solution
versus their O(p4), the difference in execution time grows as
p increases.

It should be noted that for d = 4, our solution becomes
faster than the SOTA approach starting at a crossover point of
p = 14 for single precision (and remains consistently faster
for double precision), which increases as d decreases due
to the aforementioned hardware utilisation overhead. It was
not possible to directly compare at d > 5 due to SOTA’s
implementation limitations. Comparing the performance on
other GPU hardware, as seen in Fig. 16, similar performance
trends can be seen on other GPUs as well. Only the V100, due
to having significantly less L1 cache per SM, running with
double precision and p = 12 induces a performance overhead
due to the aforementioned bump, making it 12% slower
than SOTA. However, adopting intra-expansion parallelisation,
as employed by Kohnke et al., could mitigate these issues
by consolidating shared memory usage, thereby alleviating
cache pressure. Intra-expansion parallelisation techniques used
within P4 shift can be adopted by fast rotation operators
since the expansion data structure and dependencies remain
the same.

V. CONCLUSION

This paper validated an efficient algorithm design for the
far-field phase specialised for dense systems with 1/rk poten-

tials of the Fast Multipole Method on a GPU, which main-
tains a O(p3) prefactor time complexity within a GPU-aware
framework. It outperforms the state-of-the-art GPU FMM far-
field implementation consistently across all tested values of
p at depth d = 5 [4]. For example, for p = 12 for single
precision FP variables, it is 2.47× faster, with the performance
improvement continuing to grow due to the lower prefactor
complexity. This paper validated the use of fast rotation
operators for a massively parallel FMM. The new algorithm
uses a hybrid-centric memory access algorithm, significantly
optimising the trade-off between the number of redundant
memory accesses and efficient coalesced temporal memory
access. This is coupled with a novel child-centric octree design
that additionally provides contiguous memory access patterns
for maximising cache lane utilisation without the need for
explicit batching or active data structure transposition. Finally,
the entire CUDA cache hierarchy is utilised, maximising data
reuse for the cache-tiled fast rotation algorithm, resulting in a
compute-bounded algorithm.

This work not only contributes to the research of massively
parallel 1/r FMM designs on GPUs, but these concepts also
benefit other parallel algorithm architectures. Through close
interdisciplinary development between mathematicians and
computer scientists, this paper identified the major bottlenecks
of the algorithm and utilised existing literature to resolve
them. Future improvements could include adopting intra-
expansion parallelisation strategies to address current bottle-
necks, specifically the high cache pressure and suboptimal
GPU hardware utilisation for shallow trees. Furthermore, this
new design could spark a massively parallel sparse far-field
for the FMM, which would involve solving fundamental load-
balancing and data access problems, which would also enable
efficient open-boundary conditions. Furthermore, additional
research to improve the accuracy of the FMM, especially for
single precision execution, and affording lower values of p to
reach the same results would be an important path forward.
The algorithm exploits almost all of the concepts that make a
parallel program fast under the CUDA programming model,
implying a design that fits the hardware from the ground up.
We believe that these insights lay a strong foundation for future
advancements for the FMM – one which embraces strong
scaling with an asymptotically efficient foundation to boot.
This far-field solution, coupled with an existing P2P operator
and an MPI framework, could run on large HPC machines and
compete with other state-of-the-art N-body solvers, setting a
new standard fit for the era of Exascale computing.

REFERENCES

[1] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”
J. Comput. Phys., vol. 73, no. 2, pp. 325–348, 1987.

[2] B. A. Cipra, “The Best of the 20th Century: Editors Name Top 10
Algorithms,” SIAM News, vol. 33, no. 4, p. 2, 2000. [Online]. Available:
https://archive.siam.org/news/news.php?id=637.

[3] M. J. Abraham, T. Murtola, R. Schulz, et al., “GROMACS: High
performance molecular simulations through multi-level parallelism from
laptops to supercomputers,” SoftwareX, vol. 1, pp. 19–25, 2015.

[4] B. Kohnke, C. Kutzner, and H. Grubmüller, “A GPU-accelerated fast
multipole method for GROMACS: performance and accuracy,” J. Chem.
Theory Comput., vol. 16, no. 11, pp. 6938–6949, 2020.

799

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

[5] J. Jiménez-Vicente and E. Mediavilla, “Fast multipole method for gravi-
tational lensing: application to high-magnification quasar microlensing,”
Astrophys. J., vol. 941, no. 1, p. 80, 2022.

[6] M. Schaller, J. Borrow, P. W. Draper, et al., “Swift: A modern highly-
parallel gravity and smoothed particle hydrodynamics solver for astro-
physical and cosmological applications,” Mon. Not. R. Astron. Soc.,
2024.

[7] H. Dachsel, “Corrected Article: ’An error-controlled fast multipole
method’ [J. Chem. Phys. 131, 244102 (2009)],” J. Chem. Phys., vol.
132, no. 11, 2010.

[8] K. N. Kudin and G. E. Scuseria, “Revisiting infinite lattice sums with
the periodic fast multipole method,” J. Chem. Phys., vol. 121, no. 7, pp.
2886–2890, 2004.

[9] E. Agullo, B. Bramas, and O. Coulaud, *ScalFMM: A parallel, C++-
based FMM-library*, 2014. [Online]. Available: https://solverstack.
gitlabpages.inria.fr/ScalFMM/.

[10] J. Board and L. Schulten, “The fast multipole algorithm,” Comput. Sci.
Eng., vol. 2, no. 1, pp. 76–79, 2000.

[11] W. D. Elliott and J. A. Board, Jr., “Fast Fourier transform accelerated
fast multipole algorithm,” SIAM J. Sci. Comput., vol. 17, no. 2, pp.
398–415, 1996.

[12] L. Morgenstern, D. Haensel, A. Beckmann, and I. Kabadshow, “NUMA-
Awareness as a Plug-In for an Eventify-Based Fast Multipole Method,”
in *Proc. Int. Conf. Comput. Sci.*, 2020, pp. 428–441.

[13] A. Lengvenis, “Where FMM and GPUs Collide: A whirlwind tale of how
the rotation operator finds its match,” Jülich Supercomputing Centre,
[unpublished] Tech. Rep., 2023. Supervised by Dr. Ivo Kabadshow.

[14] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W.
M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S.
J. Plimpton, “LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales,” Comput.
Phys. Commun., vol. 271, p. 108171, 2022.

[15] T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N log(N)
method for Ewald sums in large systems,” J. Chem. Phys., vol. 98, no.
12, pp. 10089–10092, 1993.

[16] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G.
Pedersen, “A smooth particle mesh Ewald method,” J. Chem. Phys., vol.
103, no. 19, pp. 8577–8593, 1995.

[17] M. J. Harvey and G. De Fabritiis, “An implementation of the smooth
particle mesh Ewald method on GPU hardware,” J. Chem. Theory
Comput., vol. 5, no. 9, pp. 2371–2377, 2009.

[18] J. Xu, W. Ge, Y. Ren, and J. Li, “Implementation of particle-mesh Ewald
(PME) on graphics processing units,” Chin. J. Comput. Phys., vol. 27,
no. 4, pp. 548, 2010.

[19] A. Arnold, F. Fahrenberger, C. Holm, et al., “Comparison of scalable
fast methods for long-range interactions,” Phys. Rev. E, vol. 88, no. 6,
p. 063308, 2013.

[20] A. Iupinov, “Implementation of the Particle Mesh Ewald method on a
GPU,” Tech. Rep., 2016, p. 11.

[21] L. A. Barba and R. Yokota, *ExaFMM: An open-source library for
fast multipole methods*, 2011. [Online]. Available: https://www.bu.edu/
exafmm/

[22] L. Greengard, ”The rapid evaluation of potential fields in particle
systems”, MIT Press, 1988.

[23] C. A. White and M. Head-Gordon, “Rotating around the quartic angular
momentum barrier in fast multipole method calculations,” J. Chem.
Phys., vol. 105, no. 12, pp. 5061–5067, 1996.

[24] N. A. Gumerov and R. Duraiswami, “Fast multipole methods on graphics
processors,” J. Comput. Phys., vol. 227, no. 18, pp. 8290–8313, 2008.

[25] A. G. Garcia, A. Beckmann, and I. Kabadshow, “Accelerating an
FMM-based Coulomb solver with GPUs,” in *Software for Exascale
Computing-SPPEXA 2013-2015*, Springer, 2016, pp. 485–504.

[26] B. Kohnke, T. R. Ullmann, A. Beckmann, I. Kabadshow, D. Haensel,
L. Morgenstern, et al., “Gromex: a scalable and versatile fast mul-
tipole method for biomolecular simulation,” in Software for Exas-
cale Computing-SPPEXA 2016-2019, Springer International Publishing,
2020, pp. 517–543.

[27] E. A. Toivanen, S. A. Losilla, and D. Sundholm, “The grid-based fast
multipole method–a massively parallel numerical scheme for calculating
two-electron interaction energies,” Phys. Chem. Chem. Phys., vol. 17,
no. 47, pp. 31480–31490, 2015.

[28] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS:
A message-passing parallel molecular dynamics implementation,” Com-
put. Phys. Commun., vol. 91, no. 1-3, pp. 43–56, 1995.

[29] NVIDIA Corporation, *CUDA C++ Programming Guide*,
2022. [Online]. Available: https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html. Accessed: 2024-03-30.

[30] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A.
Stuart, and A. Anandkumar, “Neural Operator: Learning Maps Between
Function Spaces With Applications to PDEs,” J. Mach. Learn. Res., vol.
24, no. 89, pp. 1–97, 2023. [Online]. Available: http://jmlr.org/papers/
v24/21-1524.html

[31] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, A. Stuart, K. Bhat-
tacharya, and A. Anandkumar, “Multipole graph neural operator for
parametric partial differential equations,” Adv. Neural Inf. Process. Syst.,
vol. 33, pp. 6755–6766, 2020.

[32] I. Kabadshow and H. Dachsel, “The error-controlled fast multipole
method for open and periodic-boundary conditions,” in *Fast Methods
for Long-Range Interactions in Complex Systems, IAS Series*, vol. 6,
pp. 85–114, 2011.

[33] L. Nylons, M. Harris, and J. Prins, “Fast n-body simulation with CUDA,”
in *GPU Gems*, vol. 3, pp. 62–66, 2007.

[34] H. B. Li, “A CUDA Implementation of the All-Pairs N-Body Algorithm,”
Appl. Mech. Mater., vol. 711, pp. 308, 2014.

[35] TOP500, *TOP500 List - November 2024*, 2024. [Online]. Available:
https://top500.org/lists/top500/2024/11/. Accessed: 2025-02-25.

[36] UKRI Excalibur Project, *Excalibur Projects*, 2024. [Online]. Avail-
able: https://excalibur.ac.uk/projects. Accessed: 2024-04-09.

[37] W. Dehnen, “A fast multipole method for stellar dynamics,” 2014.
[Online]. Available: arXiv:1405.2255 [astro-ph.IM].

[38] D. Malhotra and G. Biros, “PVFMM: A parallel kernel independent
FMM for particle and volume potentials,” Commun. Comput. Phys.,
vol. 18, no. 3, pp. 808–830, 2015.

[39] B. Bramas, “TBFMM: A C++ generic and parallel fast multipole method
library,” J. Open Source Softw., vol. 5, no. 56, p. 2444, 2020.

[40] Admin Magazine, “Porting CUDA to HIP,” 2023. [Online].
Available: https://www.admin-magazine.com/HPC/Articles/
Porting-CUDA-to-HIP. Accessed: 2023-04-10.

[41] N. Kondratyuk, V. Nikolskiy, D. Pavlov, and V. Stegailov, “GPU-
accelerated molecular dynamics: State-of-art software performance and
porting from Nvidia CUDA to AMD HIP,” Int. J. High Perform. Comput.
Appl., vol. 35, no. 4, pp. 312–324, 2021.

800

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 26,2025 at 20:40:27 UTC from IEEE Xplore. Restrictions apply.

