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INTRODUCTION: Proteins constitute the functional building blocks of 
life and are central to drug discovery and biotechnology. We now have 
technologies to determine protein sequence and predict protein 
structure at the genomic scale, but this is not the case for protein 
function. Protein function relies on dynamical mechanisms, particu-
larly the transitions between long-lived protein structures (conforma-
tional states) and the association with and dissociation from other 
proteins and ligands (compositional states). The coupling between 
conformational and compositional state changes, and the probability 
of these states under a given set of conditions (temperature, solvation, 
concentration), determine “how proteins work” on a molecular scale. 
Although biophysical experiments and molecular dynamics (MD) 
simulations can reveal such structure-dynamics relationships with 
high accuracy, these methods suffer from low throughput.

RATIONALE: As a step toward solving this throughput challenge, we 
developed a biomolecular emulator (BioEmu) that samples the 
approximate equilibrium distribution of structures of single protein 
chains. BioEmu is a generative deep-learning system that can 
generate thousands of statistically independent structure samples 
per hour on a single graphics processing unit (GPU). BioEmu 
leverages AlphaFold to encode the protein sequence into a rich 
sequence-structure representation, which inputs into a diffusion 
model that efficiently samples three-dimensional structures. BioEmu 
was trained in three stages: It was pretrained on a processed version 
of the AlphaFold database (AFDB) in such a way as to incentivize 
the model to associate each protein sequence with a diverse set of 
structures. Training was continued on a vast dataset of MD 
simulations of thousands of proteins and more than 200 ms of 
aggregate simulation time. And finally, BioEmu was fine-tuned on 
more than 500,000 experimental protein stabilities using a technol-
ogy developed here, property-prediction fine-tuning (PPFT).

RESULTS: We tested BioEmu on a variety of protein systems that 
are dissimilar from training proteins and benchmarked its 
performance on three tasks: (i) Predicting known conformational 
changes including large domain motions, local unfolding  
transitions, and the formation of cryptic binding pockets while 
achieving success rates of sampling the known references of 
between 55 and 90%. (ii) Emulating equilibrium distributions of 
both protein folding and native-state conformational transitions 
that can be generated by high-throughput MD simulation, 
demonstrating errors in free-energy differences below 1 kcal/mol 
and speedups of four to five orders of magnitude. (iii) Predicting 
experimentally measured stabilities of folded states of small 
proteins by directly generating equilibrium ensembles and 
explaining structure-stability relationships of mutants, achieving 
errors below 1 kcal/mol and correlation coefficients greater  
than 0.6 for both absolute folding free energies and folding 
free-energy changes of mutants.

CONCLUSION: BioEmu has various practical use cases, including 
complementing present MD simulation workflows, interpreting 
protein experiments in terms of structural mechanisms, identifying 
binding pockets and allosteric mechanisms in drug discovery, and 
generating ensembles for dynamical protein design. Our demonstra-
tion that the large upfront costs of MD simulation and experimental 
data generation can be amortized and that the prediction error 
decreases with an increasing amount of diverse training data 
indicates a path forward for predicting biomolecular function at the 
genomic scale. 
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Illustration of the BioEmu model and 
workflow. BioEmu generates equilibrium 
protein structure ensembles by combining 
AlphaFold’s sequence representation with 
a diffusion model trained on vast 
simulation and experimental data. These 
ensembles enable rapid computation of 
properties such as protein stability, 
achieving speeds that are orders of 
magnitude faster than MD simulation. 
[Emu illustration by F.N.]
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PROTEIN SIMULATIONS

Scalable emulation of protein 
equilibrium ensembles with 
generative deep learning
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Following the sequence and structure revolutions, predicting 
functionally relevant protein structure changes at scale remains 
an outstanding challenge. We introduce BioEmu, a deep learning 
system that emulates protein equilibrium ensembles by 
generating thousands of statistically independent structures 
per hour on a single graphics processing unit (GPU). BioEmu 
integrates more than 200 milliseconds of molecular dynamics 
(MD) simulations, static structures, and experimental protein 
stabilities using new training algorithms. It captures diverse 
functional motions—including cryptic pocket formation, local 
unfolding, and domain rearrangements—and predicts relative 
free energies with 1 kilocalorie per mole accuracy compared 
with millisecond-scale MD and experimental data. BioEmu 
provides mechanistic insights by jointly modeling structural 
ensembles and thermodynamic properties. This approach 
amortizes the cost of MD and experimental data generation, 
demonstrating a scalable path toward understanding and 
designing protein function.

Proteins and protein complexes are the functional building blocks of 
life and play a central role in drug development and biotechnology. 
Although next-generation sequencing and deep learning–based struc-
ture prediction tools (1–4) have revolutionized access to sequence and 
structure, scalable methods for exploring protein function remain 
elusive. A key driver of protein function is the ability to transition 
between distinct conformational states (i.e., sets of different struc-
tures), often coupled to the binding of ligands or other proteins. For 
example, actin’s ability to form muscle fibers arises from its confor-
mational dynamics, which is regulated by adenosine triphosphate 
(ATP) and adenosine diphosphate (ADP) (Fig. 1A).

Technologies in use now that quantitatively probe such conforma-
tional transitions and their coupling with binding states are not scal-
able. Single-molecule experiments can provide the full equilibrium 
distributions of observables such as intramolecular distances (5) but 
require bespoke molecular constructs and time-consuming data col-
lection. Cryo–electron microscopy (cryo-EM) can resolve multiple 
conformational states of biomolecular complexes and their proba-
bilities (6), but these experiments are time-consuming and costly. 
Molecular dynamics (MD) simulation is, in principle, a universal tool 
that allows both the structure and dynamics of biomolecules to be 
explored at all-atom resolution. However, biomolecular force fields are 
far from perfect, and the sampling problem makes studying protein 

folding or association with MD a feat of epic computational costs—
even with special-purpose supercomputers or enhanced sampling 
methods (7, 8). Machine-learned (ML) coarse-grained MD models have 
an opportunity to achieve similar accuracy as all-atom MD at two to 
three orders of magnitude lower computational cost (9, 10) but are 
still under development.

The grand challenge to complete our understanding of protein func-
tion thus motivates the development of a technology that can elucidate 
protein conformational states and binding states, as well as their as-
sociated probabilities. This technology should ideally achieve an ac-
curacy comparable to that of a converged MD simulation, or a cryo-EM 
experiment with multiconformation analysis, but it should only re-
quire a few hours of wall-clock time and cost no more than a few 
dollars per experiment. Boltzmann generators (11) have demonstrated 
that physics-based generative ML models can sample equilibrium dis-
tributions of arbitrary molecular energy functions; however, scaling 
such approaches to large macromolecules while maintaining high 
sample efficiency is challenging. Concurrently, data-based generative 
ML models, such as diffusion models, are now widely used in protein-
structure prediction and design (2, 4). Such models (12–14), as well as 
perturbation-based derivatives of AlphaFold (15, 16), have also been 
shown to be capable of generating distinct protein structures and can 
be combined with MD simulation to alleviate the sampling problem 
(17). As of yet, generative ML systems have mainly demonstrated an 
ability to qualitatively sample distinct protein conformational states. 
A demonstration that generative ML can quantitatively match equi-
librium ensembles and predict experimental observables is critical 
going forward (18).

Model
We developed a biomolecular emulator called BioEmu—a generative 
deep-learning system designed to approximately sample from the equi-
librium distribution of protein conformations. BioEmu uses a similar 
model architecture as Distributional Graphormer (DiG) (12) but em-
ploys a distinct training approach. Starting from the input protein 
sequence, single and pair representations of the sequence are com-
puted using the AlphaFold2 evoformer (1). This sequence representation 
serves as input to a denoising diffusion model that generates protein 
structures (Fig. 1, B and C, and materials and methods). Sequence 
encoding is performed only once per protein, and an efficient integra-
tion scheme enables structure generation in as few as 30 to 50 denoising 
steps (fig. S11 and materials and methods). As a result, 10,000 inde-
pendent protein structures from the learned equilibrium distribution 
can be sampled within minutes to a few hours on a single graphics 
processing unit (GPU), depending on their size.

A major challenge in training BioEmu is the absence of a single 
high-quality data source for protein equilibrium distributions, owing 
to the aforementioned challenges with experimental methods and MD 
(19). We therefore integrated training data from different, complemen-
tary sources. BioEmu was pretrained on a clustered version of the 
AlphaFold database (AFDB) using a data augmentation strategy that 
encourages it to sample diverse conformations (Fig. 1, D and E, and 
materials and methods). In a second stage, we continued training the 
model on more than 200 ms of all-atom MD data of thousands of small 
to medium-sized proteins (Fig. 1D, table S1, and materials and methods). 
To mitigate the sampling problem, MD data were reweighed toward 
equilibrium using either Markov state models (20) or weights from 
experimental data, when possible (materials and methods). Finally, 
we fine-tuned the model on 500,000 sequences of the MEGAscale 
dataset (21), a large-scale, homogeneous collection of in vitro protein 
stability measurements (Fig. 1D). As the MEGAscale dataset does not 
contain structures, we developed a new algorithm called property-
prediction fine-tuning (PPFT) that can efficiently incorporate experi-
mental measurements into diffusion model training (see section 
“Predicting protein stabilities” and materials and methods). To ensure 
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generalization, we filtered our training set such that no protein had 
more than 40% sequence similarity to a predefined holdout set, includ-
ing all reported test proteins of at least 20 residues or longer. The term 
“BioEmu” refers to the fine-tuned model, trained on AFDB, MD simula-
tions, and experimental protein-stability measurements. Subsequent 
results used this model unless otherwise indicated.

Sampling conformational changes related to protein function
We consider the ability to qualitatively sample distinct, biologically 
relevant conformations as a foundation for building a quantitative 
equilibrium sampler. Therefore, we first tested whether BioEmu could 
predict known conformational changes and compared this capability 
with AFCluster (15), AlphaFlow (13), DiG (12), and uniform multiple-
sequence alignment (MSA) subsampling (22) as representative base-
line methods (materials and methods). To benchmark BioEmu’s ability 
to capture functionally relevant structural variability, we curated four 
benchmark sets comprising around 100 proteins with experimentally 
validated transitions (figs. S1 to S4). The first set, OOD60, assesses 
sequence generalization. The remaining three sets target specific types 
of conformational change: domain motions, local unfolding transi-
tions, and cryptic pocket formations.

OOD60 is designed to test strong generalization: Its proteins were 
deposited in the Protein Data Bank (PDB) after the AlphaFold2 cutoff 

date and share no more than 60 and 40% sequence similarity with the 
AlphaFold2 monomer model and BioEmu training sets, respectively. 
OOD60 includes various challenging cases such as large-scale confor-
mational changes induced by binding with other biomolecules (fig. S1). 
BioEmu significantly outperformed all baselines on this benchmark 
(fig. S7). For the other benchmarks, BioEmu matched or exceeded 
baseline performance, except in predicting apo states of cryptic pock-
ets, where AFCluster performed best. The performance gap was espe-
cially pronounced for proteins outside the AlphaFold2 training set 
(fig. S7).

The domain motion benchmark consists of proteins that undergo 
large-scale motions as part of their functional cycle (Fig. 2A). In the 
open-close transition of adenylate kinase, the closed state brings the 
substrates together to catalyze the ATP + AMP ⇌ 2ADP reaction. 
Single-molecule experiments have confirmed that opening and closing 
occurs reversibly on timescales of tens of microseconds when the sub-
strates are bound (23). BioEmu predicts a range of open and closed 
states, including close matches with crystallographic structures. A 
second example is the open-close transition of LAO-binding protein, 
which is required to bind and release lysine, arginine, and ornithine 
for transport across membranes as part of the ATP-binding cassette 
protein family. Another interesting example of domain motions is that 
of the receptor module that regulates the concentration of cyclic 

Fig. 1. Overview of model and architecture. (A) Actin as a representative example of protein function driven by conformational changes. Actin filament formation depends on 
an open-close transition of monomers, which is controlled by ADP and ATP binding. (B) Given a protein sequence, BioEmu samples protein structures from an approximate 
equilibrium distribution, from which properties such as free-energy differences can be computed. [Emu illustration by F.N.] (C) ML model architecture consisting of protein 
sequence encoder, denoising diffusion model, and score model. The protein structure is represented using coarse-grained backbone frames. (D) Data integration and model 
training pipeline. (E) Data processing pipeline for pretraining. MLP, multilayer perceptron; repr., representation; feat., features.
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di–guanosine monophosphate (cyclic-di-GMP) in bacteria. In this case, 
one domain undergoes a large-scale rotation and repacks to the other 
domain with a completely different contact pattern. See fig. S2 for 
19 further examples. Overall, BioEmu predicted 83% of the reference 
experimental structures with ≤3-Å root mean square deviation 
(RMSD) (Fig. 2A), indicating the model’s ability to predict which pro-
tein regions are rigid and which are flexible, as well as which resulting 
motions can occur.

Next, we considered local unfolding transitions, in which part of a 
protein chain unfolds or detaches from its main structure as part of a 

signaling pathway (Fig. 2B). Predicting local unfolding challenges the 
model to correctly rank the relative stabilities of a protein’s fold. A 
famous example of local unfolding is Ras p21, a protein whose mutants 
are often linked to cancer development; the local unfolding of Ras p21 
is a conformational switch that signals cell growth (24). In its active 
state, stabilized by binding guanosine triphosphate (GTP), the switch 
II region forms a short α helix, which partially unfolds in the inactive 
guanosine diphosphate (GDP)–bound state. Rhomboid intramembrane 
protease is a more complex case that involves domain swapping. Its 
monomeric form features a globular conformation, whereas in its 

Fig. 2. BioEmu samples functionally distinct protein conformations. (A) Large-scale domain motions. (B) Local unfolding or unbinding of parts of the protein. (C) Formation 
of cryptic binding pockets that are not present in the apo ground state. The left column shows the coverage of pretrained and fine-tuned BioEmu models, defined as the 
percentage of reference structures that are sampled by at least 0.1% of samples within a given distance. Global and local RMSD are used for domain motions and cryptic pocket
formation benchmarks, respectively, and the fraction of native contacts for local unfolding. Successful coverage of reference states is defined by probability density left of and 
below the dashed lines in the energy landscape plots of (A) and (C) and outside the dashed lines in (B). BioEmu sampled structures are shown in green, PDB structures in gray, 
and key secondary structure elements in blue. CaM, calcium-calmodulin dependent; LAO, lysine arginine ornithine. See table S4 for 12-letter PDB codes and original citations.
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dimeric form, the central β sheet unfolds and the helices of the two 
monomers bind to each other. Finally, CaM kinase II presents an au-
toinhibition mechanism, wherein the N terminus binds into the active 
site. BioEmu correctly predicted the local unfolding of these structure 
elements and sampled 70% of the folded and 81% of the locally un-
folded states across 20 protein examples (Fig. 2B and fig. S3).

As a final class of conformational changes, we considered the forma-
tion of pockets that are absent in the apo PDB structure but can form 
to bind a small molecule (Fig. 2C). Such “cryptic” binding pockets can 
be discovered with high-performance MD simulation (25, 26), but the 
millisecond timescales often involved in the spontaneous opening of 
such pockets make MD on commercial hardware rarely viable for in 
silico drug-discovery pipelines. We curated 34 cases of experimentally 
validated formation of cryptic binding pockets from the literature 
(fig. S4). The sialic acid binding factor presents a case where a large 
opening in the apo state can partially close and form a binding site 
for the ligand. Fascin is a four-domain protein where two domains can 
rotate with respect to each other to reveal a binding site. In Glu PRPP 
amidotransferase, part of the chain is unfolded in the apo state and 
can fold into a structure that completes the binding site for the ligand. 
To ensure capturing subtle changes, we defined success by a very strict 
1.5-Å RMSD threshold to the apo and holo reference structures. 
Surprisingly, the model had a strong preference for holo states, suc-
cessfully predicting the cryptic pocket in 86% of cases, whereas it only 
succeeded in predicting 56% of the apo structures, indicating further 
room for improvement (Fig. 2C). We hypothesize that the model may 
be picking up a bias implicit in the embeddings—proteins may have 
only one or a few apo structures deposited in the PDB, but it is com-
mon to find multiple structures of the same protein with different 
small molecules bound.

To conclude, we conducted several tests to confirm that BioEmu’s 
multiconformation prediction is a hallmark of generalization rather 
than memorization of sequence-structure pairs. BioEmu’s ability to 
predict multiple conformations depends only weakly on the sequence 
similarity between the query molecule and the training set, with the 
clearest trend seen for domain motions where the final performance 
is reached at 30% sequence similarity (fig. S5 and materials and meth-
ods). As our test proteins contain examples that overlap with the 
AlphaFold2 training set, we ablated whether multiconformation pre-
diction performance stems from trivial extraction of the information 
already present in the AlphaFold2 evoformer embeddings. To this end, 
we trained an end-to-end version of the model that uses MSA informa-
tion directly, instead of pretrained embeddings, on a training set that is 
at most 40% similar in sequence to any protein belonging to the mul-
ticonformation benchmarks. The resulting model showed similar per-
formance in the previously mentioned multiconformation benchmarks 
to that of the fine-tuned BioEmu (fig. S6 and materials and methods).

Emulating MD equilibrium distributions
A major motivation for developing BioEmu was to overcome the well-
known sampling problem in MD: Simulating the full range of protein 
conformations and estimating their equilibrium probabilities often 
requires extensive MD simulations, on the order of 100 μs to 10 ms 
(7, 8, 27). These timescales are necessary to capture rare but function-
ally important transitions, yet achieving them is computationally de-
manding, if not prohibitive, even with specialized supercomputers (28) 
or large-scale distributed simulations integrated using statistical mod-
els (8, 29). Here, we assessed BioEmu’s ability to emulate the equilib-
rium distribution that would be sampled with extensive MD simulations. 
To this end, we amassed all-atom simulations of proteins with a total 
aggregated simulation time of more than 200 ms (table S1), which 
were used for fine-tuning BioEmu (Fig. 1D).

Before analyzing the model trained on the full dataset, we first tested 
whether our machine-learning architecture and training protocol per-
mit learning to emulate long-timescale MD equilibrium distributions. 

To this end, we used D. E. Shaw Research (DESRES) simulations of 12 
fast-folding proteins generated on the Anton supercomputer (7). For 
each protein, we fine-tuned a separate model on the other 11 proteins 
and evaluated it on the held-out 12th, an approach known as leave-
one-out cross-validation (see materials and methods). This setup en-
sures that each test case is evaluated independently of its training data 
and avoids bias from arbitrary train-test splits in this small dataset. 
As expected, the AFDB-pretrained model predicted the native state 
but performed poorly in sampling the full free-energy surface (fig. S9). 
Surprisingly, however, the “DESRES–fine-tuned models,” each trained 
on only 11 fast folders, predicted free-energy surfaces on the held-out 
proteins that closely matched the MD ground truth (Fig. 3A and fig. 
S9). For all proteins, the model predicted both the native as well as 
the unfolded states with similar shapes on the free-energy landscape. 
In many cases, several or all folding intermediates visible on the two-
dimensional (2D) free-energy surface were predicted (Fig. 3A and 
fig. S9): For beta-beta-alpha protein (BBA), both MD and the DESRES–
fine-tuned models predicted the existence of an intermediate with the 
α helix formed and the β sheet broken. For protein G, both MD and 
the DESRES–fine-tuned model sampled intermediates with half of 
the β sheet still formed, whereas the other half and most of the helix 
were broken. For homeodomain, MD and the model agreed in the 
prediction of an intermediate with only one helix turn unwound, 
whereas the unfolded states still featured some degree of helical pro-
pensity. There was excellent agreement of the predicted secondary 
structure propensities with the MD data (Fig. 3A). Quantitatively, the 
mean absolute error between the MD and model 2D free-energy land-
scapes was only 0.74 kcal/mol, ranging from 0.30 kcal/mol for BBA to 
1.63 kcal/mol for λ-repressor, which is on the order of differences expected 
from two different classical MD force fields (30, 31).

We compared the computational costs of MD data generation and 
BioEmu in GPU-hours (on a NVIDIA Titan V; Fig. 3A, top right). For all 
BioEmu results shown here, we drew 10,000 samples, which incurred 
computational costs of less than 1 GPU-minute for Chignolin to around 
1 GPU-hour for λ-repressor. For MD, we considered the cost for generat-
ing the DESRES simulations, whose lengths were chosen to include 
roughly 10 folding-unfolding transitions. The MD costs then ranged from 
2000 GPU-hours for Chignolin to more than 100,000 GPU-hours for 
NTL9, resulting in a speedup of BioEmu over MD of four to five orders 
of magnitude. We also note that for most proteins shown here, perform-
ing sufficiently long MD simulations to directly observe folding and 
unfolding in single trajectories is still not possible on consumer-grade 
hardware but instead requires a much more complex methodological 
framework (29, 32).

The main BioEmu model was fine-tuned on more than 200 ms of MD 
simulations with Amber force fields at or near a temperature of 300 K 
(table S1). We chose to combine data from slightly different simula-
tion conditions because each of these MD models is inherently im-
perfect, and we regarded experimental data as being more reliable 
for weighing between conformations (Fig. 1D). Differences in the 
simulation conditions of our own generated data were intentional; 
for example, AMBER ff99sb-disp (33) was chosen to avoid spuriously 
misfolded states produced by other force fields in the context of 
protein folding (materials and methods). A large fraction of training 
data, 46 ms, is dedicated to 1100 CATH domains, common building 
blocks of protein structure (34) (materials and methods). We desig-
nated 17 CATH systems with a simulation time of more than 100 μs 
as a test set and report statistics comparing MD and model distribu-
tions (Fig.  3B, fig.  S10, and materials and methods). Similar to 
DESRES simulations, BioEmu predicts the native state with local 
fluctuations and typically several other substates and structures 
sampled by MD. Most secondary structure propensities matched well 
(Fig. 3B). We observed a free-energy mean absolute error over the 
converged test set of 0.9 kcal/mol, which was again comparable to 
the differences expected between different MD force fields.
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To understand whether our model’s ability to sample accurate equi-
librium distributions is limited by training data or model expressivity, 
we trained three models with the same architecture as BioEmu from 
scratch, using only 1, 10, and 100% of the CATH systems in the training 
dataset. We observed decreased free-energy errors and an increased cov-
erage of the conformations sampled by MD as the amount of training 
proteins increased (Fig. 3B, bottom right), suggesting that the model can 
be further improved by adding more training data. Notably, the fine-
tuned model’s error on the same test set was further reduced to 0.9 kcal/
mol, demonstrating the potential benefit of pretraining and integrating 
multiple datasets even if they do not use identical simulation conditions.

Finally, we evaluated BioEmu for two case studies that involve larger 
proteins: complexin II (134 amino acids) and tetraspanin CD9 (225 
amino acids). Complexin II is an intrinsically disordered protein (IDP) 
from the neurotransmitter release apparatus (35). IDPs tend to be 
difficult to sample with MD; however, BioEmu can efficiently emulate 
a flexible ensemble of complexin II structures (Fig. 3C) while reproduc-
ing known secondary structure elements such as the central and ac-
cessory helices (35, 36). Achieving convergence of IDPs of this size with 
all-atom MD is unpractical. At an order of magnitude higher compu-
tational cost than with BioEmu, we conducted ~5 μs of MD simulations 
with all-atom MD, which are most likely not converged but already 

Fig. 3. BioEmu achieves fast emulation of all-atom MD equilibrium distributions. (A) DESRES fast-folding proteins. From left to right are representative structures (green, 
model; gray, MD; blue, regions of interest), free-energy surfaces over slowest time-lagged independent components (TIC) (54), secondary structure propensities, computational 
cost for MD (magenta, full DESRES data; yellow, single folding-unfolding roundtrip) versus model (cyan, 10,000 samples), and mean absolute error (MAE) of free-energy differences  
and fraction of unphysical model samples. (B) CATH domains. Structures, free-energy surfaces, and errors are as in (A). Shown at the bottom right is data scaling for the 
specialized CATH-only model with free-energy MAE and state coverage as a function of training data. The cyan star indicates BioEmu. (C) Complexin II: Structures, helix content, 
and radius of gyration (Rg) as predicted by BioEmu versus two all-atom force fields. (D) Tetraspanin CD9 results from BioEmu and MD (37). Shown is the open-closed transition, 
represented as a histogram in logarithmic scale of small and large extracellular loop (SEL-LEL) contacts, as defined in (37). Two-dimensional principal components (PC) analysis 
of exp(−dij) of Ca-Ca distances dij between SEL and LEL. The open star marks the experimental structure (6k4j).
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display qualitatively different behavior: The AMBER ff14sb force field 
produced a very rigid compact structure with a small radius of gyration 
and little to no variation in secondary structure content, whereas 
AMBER ff99sb-disp tended to destabilize known secondary structure 
elements (Fig. 3C).

Tetraspanin CD9, the second case study, plays a role in cell adhesion 
and fusion (Fig. 3D). The large extracellular loop of CD9 is part of our 
OOD60 test set (fig. S1) in which our pretrained model samples both 
crystallographic reference structures (PDB entries 6rlo and 6rlr), 
whereas the BioEmu model fine-tuned on MD data samples 6rlo but 
discards 6rlr. This is consistent with the observation that both struc-
tures exist in crystal environments; however, 6rlr cannot be realized 
in a folded monomeric protein and is therefore correctly discarded 
when fine-tuning BioEmu (fig. S12, A to C). We also sampled the full-
length CD9 structure, which has less than 40% sequence similarity to 
both the BioEmu and AlphaFold training sets (Fig. 3D). In agreement 
with MD simulations of previous work (37), BioEmu predicted the 
widely open state 1 and closed state 2 and similar contact distributions 
between the small and large extracellular loops as reported in (37). A 
principal components analysis revealed that BioEmu and MD sample 
similar sets of conformations (Fig. 3D). MD predicts an experimentally 
unknown metastable closed state 3, which is unstable in BioEmu. 
BioEmu samples closed structures (state 2) that are very similar to the 
experimental structure 6k4j (1.9-Å RMSD), whereas the closest MD 
sample has an RMSD of 4.6 Å to the crystal structure (fig. S12D).

Predicting protein stabilities
Understanding protein stability is crucial for various applications in 
molecular biology, drug design, and biotechnology. From a modeling 
point of view, predicting a protein’s stability is a specific case of pre-
dicting the equilibrium probabilities of its different conformational 
states, and these all arise from the same underlying biophysics. We 
therefore wanted to train BioEmu so that the proportion of samples 
in folded and unfolded states matches the experimentally measured 
protein stability. We classify protein structures as folded or unfolded 
based on their fraction of native contacts and define the folding free-
energy as ΔG = Gfolded − Gunfolded (materials and methods). To facilitate 
protein stability prediction, BioEmu was trained on 502,442 mutant 
sequences generated from 361 wild types, a subset of the more than 
674,000 experimental measurements in the MEGAscale dataset (ma-
terials and methods) (21). We evaluated BioEmu on a test set of ran-
domly chosen mutants from 95 wild types. For a subset of 271 wild-type 
proteins and 21,458 mutants, we additionally conducted a total of 25 ms 
of all-atom MD simulations of the folded and unfolded states (materi-
als and methods). To address MD sampling and force-field issues, we 
weighed the folded and unfolded samples based on the experimentally 
measured protein stabilities (materials and methods). To accelerate 
training convergence and leverage the large number of MEGAscale 
measurements, we developed the PPFT algorithm (Fig. 4A and materi-
als and methods), which integrates experimental expectation values, 
such as protein stabilities, into diffusion model training without re-
quiring protein structures. PPFT uses fast approximate sampling with 
only eight denoising steps, which we observed to be sufficient to con-
fidently predict whether each sampled structure will be classified as 
folded or unfolded. By comparing the mean foldedness of sampled 
structures with experimental measurements and backpropagating the 
error, our model could be efficiently trained to match experimental 
protein stabilities.

BioEmu achieved a mean absolute error of less than 0.9 kcal/mol 
and a Spearman correlation coefficient of approximately 0.6 for the 
MEGAscale test proteins (Fig. 4B). The BioEmu ensembles also cor-
related well with stability changes of point mutants, as measured by 
the change of folding free energy ΔΔG, achieving mean absolute errors 
of less than 0.8 kcal/mol and a Spearman correlation coefficient above 
0.6 (Fig. 4C). Errors of approximately 1 kcal/mol were achieved for test 

proteins that had 40% sequence similarity with the training set, but 
the best performance was obtained for test sets that included se-
quences with 50% or greater similarity (Fig. 4, B and C). As there are 
only 361 distinct wild-type sequences in the MEGAscale training data, 
it is likely that generalization performance can be further improved 
with a training dataset that is more diverse in protein sequence space.

To check whether BioEmu makes physically reasonable predictions 
outside the MEGAscale set of proteins, we tested it on proteins that 
are known to be very stable or unstable. We first selected stable pro-
teins from ProThermDB (38) with a ΔG <−8 kcal/mol (materials and 
methods). Our model consistently sampled these proteins in their 
folded states with a fraction of native contacts that always exceeded 
0.65 (Fig. 4D). To test whether our model systematically predicts IDPs 
as unfolded, we used the CALVADOS test set (39). Most proteins sam-
pled displayed a radius of gyration (Rg) similar to that of random coil 
structures and mostly larger than that of typical folded proteins 
(Fig. 4E). Unlike other models (40, 41), ours has not been directly 
trained on IDPs; nonetheless, it provides zero-shot predictions of Rg 
that correlate well with experimental measurements (Fig. 4E).

In comparison to black-box methods that predict protein stability 
directly from sequences (42–45), BioEmu has competitive or superior 
prediction accuracy. However, in contrast to a black-box prediction 
of ΔG, we can analyze the structure ensemble generated by our model to 
reveal insights on mutation-caused stability changes. To illustrate this 
point, in Fig. 4F, we show mutants of the design protein HHH_rd1_0335 
and PDB entry 2JWS. In HHH_rd1_0335, the mutation I7P (Ile7→Pro) 
leads to a destabilization of the first helix, as indicated by the model’s 
prediction of a ΔΔG of 1.8 kcal/mol compared with the experimental 
2.1 kcal/mol. The analysis shows a decrease in average helicity that 
particularly affects the helix where the mutation is located. For 2jws, 
the mutation I24D (Ile24→Asp) in the middle helix results in partial 
unfolding, with the model predicting a ΔΔG of 2.1 kcal/mol, which 
closely matches the experimental value of 2.9 kcal/mol. This mutation 
replaces a hydrophobic residue with a negatively charged aspartate, 
disrupting core stability and leading to a localized structural change. 
These analyses highlight BioEmu’s ability to correlate predictions of 
thermodynamics with structural causes, which is not possible with 
black-box prediction models.

Discussion
In this work, we introduce BioEmu, a generative machine-learning sys-
tem that can approximately sample the equilibrium distributions of 
proteins and through that explore two key aspects of molecular func-
tion: protein conformations and their equilibrium probabilities. We have 
shown that the system can sample experimentally known structures of 
proteins undergoing a variety of conformational changes, approximate 
the equilibrium distributions of extensive MD simulations, and predict 
experimentally measured protein stabilities within errors of 1 kcal/mol. 
The cost of running inference is on the order of 1 GPU-hour per compu-
tational experiment, which is many orders of magnitude less than run-
ning MD simulations, even if enhanced sampling methods are invoked, 
and orders of magnitude cheaper than experiments that can provide 
detailed structure-function relationships. Nonetheless, there are further 
opportunities to reduce BioEmu’s inference cost. Conditional flow-
matching (46) can be used to generate protein structures using even 
fewer integration steps (47). The computational cost of evaluating the 
transformer network in the score model (Fig. 1C) can potentially be 
reduced by leveraging sparse or low-rank attention mechanisms.

BioEmu and MD simulation are complementary: Our system was 
trained on large amounts of MD simulation data for soluble proteins, 
and within this scope, it has shown that it can approximate MD distribu-
tions at a tiny fraction of the MD simulation costs. However, BioEmu is 
not designed to generalize beyond this scope; for example, membrane 
environments and small-molecule ligands are not represented in either 
the model or the training data, and reliable predictions cannot be 
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assumed when such factors play a key role in the process. By contrast, 
MD can be readily generalized to such conditions, though it remains 
constrained by the sampling problem. Our system can be used to gener-
ate an approximation to the equilibrium distribution, and MD trajecto-
ries can be launched from a BioEmu ensemble to obtain chemically 
accurate all-atom structures, refine the distribution, and even compute 
dynamical properties. We therefore do not expect emulators such as 
BioEmu to make MD simulation obsolete; rather, we anticipate that MD 
will increasingly serve as a data generation and validation tool. A similar 
shift of roles is already in progress for other simulator-emulator pairs 
such as quantum chemistry methods and machine-learned force fields.

An important limitation of BioEmu is that it generates distribu-
tions entirely empirically, whereas MD simulation uses potential 
energy functions, which are connected to equilibrium distributions 

and expectation values by statistical mechanics. If direct access to a 
reduced potential energy function u(x) was available that is consis-
tent with the generated distribution by p(x) ∝ e−u(x), it could be used 
for reweighting and making rigorous enhanced sampling simulations 
available through the emulator. BioEmu can potentially also be im-
proved by going beyond score matching and using energy or forces 
information from MD force fields at training time, as considered in 
Boltzmann generators (11) and variational force matching (9, 48).

Although BioEmu samples approximate equilibrium distribution, 
it does not model protein dynamics, which is done by MD and other 
methods (49), nor does its training incorporate dynamical information 
as it does for Markov state models (20). A pragmatic approach to 
generate a dynamic ensemble is to predict starting points with BioEmu 
and launch MD simulations from them. A starting point for a more 

Fig. 4. Prediction of experimentally measured protein stabilities. (A) PPFT algorithm for fine-tuning a pretrained diffusion model to match experimentally measurable 
properties such as the protein’s stability. (B) Comparison of experimental measurements of folding free energies (21) with model predictions, generated by direct sampling and 
counting of folded and unfolded states for test proteins, the mean absolute error (MAE), and the Spearman correlation coefficient as a function of the sequence similarity 
between test and training proteins. The gray shaded region represents an error range of ±1 kcal/mol. (C) Same as (B) for the change in folding stability upon point mutation. 
(D) Validation that very stable proteins that are not included in the MEGAscale experimental dataset are consistently predicted as folded. Bars and shading indicate the 
minimum, maximum, and distribution of sampled values, respectively. (E) Validation that IDPs reported in (39) and (41) are predicted as unfolded. Comparison of the radius of 
gyration (Rg) for model (orange crosses), experimental measurement (blue dots), and Flory scaling (55). (F) Analysis of the effect of two destabilizing mutants on the folded 
structures as predicted by the model: HHH_rd1_0335 with mutation I7P and 2JWS with mutation I24D. See table S4 for 12-letter PDB codes and original citations. WT, wild type.
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principled methodology that can both model dynamics and exploit 
dynamical information in the training data is the implicit transfer 
operator approach (50).

We have demonstrated that by using the PPFT method developed 
here, BioEmu can be efficiently fine-tuned on experimental data. In 
this work, we have chosen to do that for protein stabilities using the 
MEGAscale dataset because it presents a very favorable trade-off of 
large data scale and quantitative reliability. However, in principle, 
PPFT can be used to fine-tune BioEmu and other diffusion models to 
match any set of experimental observables, including nuclear magnetic 
resonance data, small-angle x-ray scattering, fluorescence measure-
ments, and so on. Being able to fine-tune the generated ensemble to 
arbitrary experimental data is an important advantage compared with 
MD force fields: These can also be tuned to fit experimental data (51), 
but the processes that give rise to the experimental observables must 
be sampled during the training process, a task that is tedious or even 
unfeasible for observables that involve complex rare events, such as 
folding free energies.

A widely used feature of AlphaFold is its ability to predict confidence 
in an output structure, and a similar confidence module for BioEmu 
would be highly desirable. Training a confidence module is relatively 
straightforward in AlphaFold, which serves a single prediction task 
(structure) and relies on a single ground truth dataset (the PDB), 
whereas equilibrium structure ensembles serve multiple downstream 
tasks and observables and no universal ground truth dataset is avail-
able. Confidence prediction or uncertainty quantification of arbitrary 
observables thus remains an important future research direction and 
may leverage ongoing research in the deep-learning community (52). 
Even a rough notion of model confidence in observables, such as free-
energy differences, could be exploited to improve training data effi-
ciency: In the MD community, Markov state models and other kinetic 
models have been used to guide MD data production in an active learn-
ing loop (8, 53), and a similar approach could be implemented to have 
BioEmu request new MD or experimental data that are most likely to 
increase model confidence.

Another limitation of the present system is that it emulates single 
protein chains under a fixed thermodynamic condition of 300 K. A 
proper emulator for proteins requires conditioning on experimentally 
and biologically relevant parameters such as temperature and pH and 
needs to be able to model multiple interacting molecules, as proteins 
rarely have a function on their own. We envision two ways of achieving 
this: (i) training on additional MD simulation data at relevant ther-
modynamic ranges and (ii) incorporating relevant additional experi-
mental data (e.g., melting curves for temperature) into fine-tuning 
strategies.

An important future direction is to extend BioEmu’s modalities 
by incorporating multiple protein chains and ligands, which are 
already included in recent biomolecular structure prediction sys-
tems (2, 4). Presently, oligomer and ligand binding state are implicit, 
which may cause biases in the training data to show up in the 
sampled distribution. A hallmark of this may be BioEmu’s prefer-
ence to predict holo over apo structures in the cryptic pocket bench-
mark (Fig. 2C). Such biases in the sampling distribution can be 
avoided by explicitly conditioning the prediction of the structure 
ensemble to ligands, which is, however, hampered by the lack of 
training data. Although we have shown that the ability to accurately 
emulate the equilibrium distributions of small proteins increases 
with more training data, the sampling problem limits MD as a data-
generation engine. The development of highly scalable experimental 
techniques is key for training machine-learning models that can 
predict conformational and binding states of large biomolecular 
complexes, as well as the subtle differences of binding affinities that 
underlie biomolecular function.

Our results demonstrate that the large upfront costs of MD simulation 
and experimental data generation can be amortized by a deep-learning 

emulator whose prediction error decreases with an increasing amount 
of high-quality training data. This indicates a path forward for predict-
ing biomolecular function at the genomic scale.

Materials and methods are available in the supplementary materials.
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