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Abstract

We develop a general multiscale method for coupling atomistic and continuum simulations
using the framework of the heterogeneous multiscale method (HMM). Both the atomistic and
the continuum models are formulated in the form of conservation laws of mass, momentum
and energy. A macroscale solver, here the finite volume scheme, is used everywhere on a
macrogrid; whenever necessary the macroscale fluxes are computed using the microscale
model, which is in turn constrained by the local macrostate of the system, e.g. the deformation
gradient tensor, the mean velocity and the local temperature. We discuss how these constraints
can be imposed in the form of boundary conditions. When isolated defects are present, we
develop an additional strategy for defect tracking. This method naturally decouples the
atomistic time scales from the continuum time scale. Applications to shock propagation,
thermal expansion, phase boundary and twin boundary dynamics are presented.
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1. Introduction

Multiscale modeling methods that couple atomistic simulations with continuum
description have attracted a great deal of attention in recent years and have
shown a great deal of promise (Lu and Kaxiras, 2005). As is discussed in E and
Li (2005) and E et al. (2004), most existing methods are based on coarse graining
the energy, the most successful example so far being the quasicontinuum
method (Tadmor et al., 1996). A coarse-grained Hamiltonian is formed,
either through using representative atoms as in the quasicontinuum method
(Tadmor et al., 1996), or through dividing the computational domain into
atomistic and continuum regions as in Abraham et al. (1998). The coarse-
grained Hamiltonian is then minimized to find the equilibrium state, or used in
Hamilton’s equation to model the dynamics of the system (Rudd and Broughton,
1998; Abraham et al., 1998). These methods have been very demonstrated in a
number of applications. The quasicontinuum method, in particular, has been very
successful in studying the structure of isolated defects at zero temperature (Tadmor
et al., 1996).

Another popular idea that has been pursued is based on the domain
decomposition strategy, as in Abraham et al. (1998) and Wagner and Liu (2003).
The computational domain is decomposed in two atomistic and continuum regions
on which the atomistic and continuum models are used, respectively, and some
matching condition is devised for the continuum-atomistic interface (Cai et al., 2000;
E and Huang, 2001, 2002; Wagner et al., 2004).

There seem to be some intrinsic difficulties in extending these methodologies
to study dynamics and finite temperature systems. One most obvious obstacle
is the issue of time scales. Even though the domain decomposition approach
addresses the spatial scale issue, time scales are stilled coupled between the
atomistic and continuum regions. Energy-based methods have the additional
difficulty that free energy at finite temperature is not readily accessible by atomistic
simulations.

The main purpose of the present paper is to provide an alternative multiscale
strategy which is based directly on dynamics, i.e. the universal conservations laws
that are satisfied both at the macroscopic and the microscopic levels. We
demonstrate through a number of examples some features of this new strategy,
including the decoupling of time scales, the ability to deal with thermal effects and of
course, the ability to model dynamics.

To put things into perspective, let us discuss in more detail some of the existing
multiscale methods for solids. We begin with the quasicontinuum method (Shenoy et
al., 1998, 1999; Tadmor et al., 1996; Knap and Ortiz, 2001) (see also Brandt, 2002)
which can be viewed as a way of simulating the nonlinear deformation of crystalline
solids, but using directly models of molecular mechanics instead of continuum
nonlinear elasticity. The basic setup is a finite element method on an adaptively
generated mesh that reflects the local deformation of the material. Near defects such
as cracks or dislocations, the mesh is refined to the atomic scale and the local energy
is computed by summing directly the contribution from each atom nearby. Away
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from defects, the mesh is coarsened to resolve the deformation of the material on a
macroscale, and the contribution to the energy is computed by either using the
Cauchy–Born rule or by summing over small clusters of atoms around a set of
representative atoms (Knap and Ortiz, 2001). Quasicontinuum method has proven
to be a very powerful tool for studying the quasistatic structures of solids at zero
temperature (Miller and Tadmor, 2002).

Also notable was the work of Abraham et al. (1998) and Broughton et al. (1999)
(called MAAD), which couples together three different models: the tight-binding
quantum mechanical model, molecular dynamics and continuum elasticity. The
main step is to construct a Hamiltonian that represents the total energy of the entire
system which can then be used to generate time evolution. This Hamiltonian has a
total of five terms, one for each of the tight-binding, molecular dynamics and
continuum mechanics region, and two for the tight-binding/molecular dynamics and
molecular dynamics/continuum interfaces. The method has been applied to the
simulation of crack propagation in silicon.

Coarse-Grained Molecular Dynamics (CGMD) (Rudd and Broughton, 1998) is
another coarse-graining procedure based on the Hamiltonian formulation. In
CGMD a coarse-grained Hamiltonian is obtained by integrating out from the
canonical ensemble the excess degrees of freedom.

Another issue that has attracted some attention is the matching conditions at
the atomistic–continuum interface. Ideally we would like to impose the so-called
transparent boundary condition so that the presence of the boundary does
not influence the results in the atomistic region as if the microscale simulation
is done in the whole space. In principle for linear problems at least, one can
find exact boundary conditions that fulfill this task, as was discussed by Cai et al.
(2000). Further work along this line was done in Wagner et al. (2004). In
practice, however, it is usually too expensive to find such boundary conditions
since they tend to be nonlocal and memory-dependent. This is especially true
when the atomistic regions change in time, e.g. in order to track a moving defect.
A practical solution was found in the work of E and Huang (2001, 2002) in
which a simplified set of boundary conditions were developed that maximize
the accuracy at the large scale and minimize the total reflection of phonons at the
small scale. These boundary conditions have been used in a coupled atomistic–con-
tinuum scheme and applied successfully to dynamic (in contrast to quasistatic)
simulations of fracture, friction between crystalline surfaces and models of
dislocation dynamics (E and Huang, 2002). However the work in E and Huang
(2002) was restricted to the coupling of linear elasticity with molecular dynamics at
zero temperature.

Other methodologies include the scale decomposition method by Wagner and Liu
(2003), the exponential Cauchy–Born rule for modeling nanotubes (Arroyo and
Belytschko, 2000) and the local Cauchy–Born rule for modeling curved objects such
as membranes, rods and plates (Yang, 2006).

The main task for this paper is to present a general strategy for coupled
atomistic–continuum simulation of the dynamics of crystalline solids at finite
temperature. This is done using the framework of heterogeneous multiscale method
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(HMM for short) (E and Engquist, 2002). HMM is a general strategy for multiscale
modeling. The philosophy of HMM is to start with a macroscale solver and find the
missing macroscale data such as the constitutive laws and kinetic relation by
performing local simulations of the microscale models constrained to be consistent
with the local macroscale state of the system. HMM has been applied to a wide
variety of problems, including homogenization, complex fluids, multiscale ODEs
and interface problems, etc. It offers a general methodology for multiscale modeling,
and it has a number of unique features compared with some other related methods.
For more details see a recent review (E et al., submitted).

To discuss how the HMM philosophy can be applied to the modeling of solids, we
first distinguish two different classes of multiscale problems. The first class, called
type A problems, are problems with isolated defects, such as cracks, dislocations and
phase boundaries. In these problems, coupling with microscale models is needed near
the defects in order to accurately model properties of the defects. The second class,
called type B problems, are problems for which constitutive relations are missing,
and have to be obtained from the microscale models.

For both types of problems, our fundamental macroscopic model is the
conservation laws of mass, momentum and energy. Therefore the first step
in coupling with molecular dynamics is to express molecular dynamics in the
same form. Since the macroscale model is a system of conservation laws, we
choose as the macroscale solver popular methods that have been developed for
solving conservation laws. In this paper we will work with finite volume
methods. But other methods, such as discontinuous Galerkin method can also
be used.

When implementing the selected macroscale solver, we immediately face the
problem that not all the data that we need are available to us. These missing
data could be the constitutive relations for type B problems, or the structural
information for the defects for type A problems. We therefore estimate these data by
performing local MD simulations. The MD simulations are constrained so that they
are consistent with the local macrostate of the system. A very crucial component of
our method is how to enforce such constraints. These will be discussed in later
sections.

For type A problems we need to deal separately with the defects. In this case we
distinguish two different cases according to whether there is scale separation between
the time scale for the dynamics of the defect, Td; and the time scale for the relaxation
of the defect structure, T r: If Td is much larger than T r; we can effectively treat the
problem as a type B problem, by extending the macroscale model to include the
dynamics and the local environment of the defects. The resulting algorithm is a
multiscale defect tracking procedure. If Td is comparable with T r; we model the
whole time history of the defects using the atomistic model. In this case, our
methodology resembles that of adaptive model refinement (see Fig. 8).

Next we first describe the macroscopic and microscopic models that will be used in
our method. The rest of the paper is then divided into two parts: type B problems in
Section 3, where we deal with constitutive deficiency, and type A problems in Section
4 where we consider isolated defects.
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2. Macroscopic and microscopic models

In atomistic models such as molecular dynamics (MD), the system is described by
the position and momentum of each individual atom in the system. The dynamics of
the atoms obey Newton’s law:

_xi ¼ vi,

mi _vi ¼ "rxiV , ð1Þ

where mi denotes the mass of the ith atom, and V ðx1;x2; . . . ;xN Þ is the interatomic
potential. For simplicity we will first focus on the case of pairwise interaction
potential, f; even though pairwise potentials are usually inadequate for modeling
solids. Extension to general potentials are discussed in the appendix. We emphasize
that neither the numerical method nor the numerical results is limited to pair
potentials.

The continuum models are usually expressed as a set of partial differential
equations (PDEs) in the form of conservation laws. For instance in Eulerian
coordinates, we can write the conservation of mass (r), momentum (q) and energy
(E) in the following form:

qtrþ rx & q ¼ 0,

qtq"rx & s ¼ 0,

qtE þ rx & J ¼ 0. ð2Þ

Here qt indicates the time derivative in a fixed coordinate, s is the stress tensor and J
is the energy flux.

For solids it is more convenient to work with Lagrangian coordinates. Denote by
x0 the reference coordinate of the solid and x ¼ x0 þ uðx0; tÞ; the position
after deformation, with u being the displacement. Then the conservation laws take
the form:

qtA" rx0v ¼ 0,

qtq"rx0 & r ¼ 0,

r0qteþ rx0 & j ¼ 0. ð3Þ

Here A; v; e are the deformation gradient, velocity and total energy per
particle respectively, r0 is the initial density, r is the first Piola–Kirchhoff stress
tensor and j is the energy flux. The first equation in Eq. (3) describes the time
evolution of the deformation; the second and third equations are conservation of
momentum and energy, respectively. In continuum mechanics, for instance
Landau (1986), these equations are supplemented by the empirical constitutive
relations for stress and energy fluxes. Our concern in the present paper is to develop
multiscale strategies that bypass these empirical constitutive laws when their
accuracy is in doubt.

Our basic starting point for coupling MD with the continuum model is to express
MD in the form of Eqs. (2) and (3). For this purpose, we define the following
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empirical distributions (Irving and Kirkwood, 1950):

erðx; tÞ ¼
X

i

midðx" xiðtÞÞ, (4a)

eqðx; tÞ ¼
X

i

miviðtÞdðx" xiðtÞÞ, (4b)

eEðx; tÞ ¼
X

i

1

2
miv

2
i þ

1

2

X

jai

fðxiðtÞ " xjðtÞÞ

" #

dðx" xiðtÞÞ, (4c)

where dð&Þ is the delta function. From Eq. (1), we have

qterþ rx & eq ¼ 0,

qteq"rx & es ¼ 0,

qt eE þ rx & eJ ¼ 0, ð5Þ

where the fluxes are given by

esabðx; tÞ ¼ "
X

i

miviavibdðx" xiðtÞÞ

"
1

2

X

i

X

jai

f aðxi " xjÞðxib " xjbÞ

'
Z 1

0
dðx" ðxj þ lðxi " xjÞÞÞdl, ð6aÞ

eJðx; tÞ ¼
X

i

vi mi
1

2
v2i þ

1

2

X

jai

fðxi " xjÞ

" #

dðx" xiðtÞÞ

þ
1

4

X

jai

ðvj þ viÞ & fðxj " xiÞðxi " xjÞ

'
Z 1

0
dðx" ðxj þ lðxi " xjÞÞÞ dl. ð6bÞ

Here fðxi " xjÞ ¼ ðf 1; f 2; f 3Þðxi " xjÞ is the force between the ith and jth particles. To
derive Eq. (6), the following fact is useful:

rx & ðxi " xjÞ
Z 1

0
dðx" ðxj þ lðxi " xjÞÞÞdl

! "
¼ dðx" xjÞ " dðx" xiÞ.

One can compute the spatial average of the stress defined in Eq. (6) over some
domain O , which yields

"
1

jOj

X

xi2O
mivi ( vi þ

1

2

X

i

X

jai

fðxi " xjÞ ( ðxi " xjÞcij

 !
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with cij being the fraction of the ij bond that lies inside of the domain (for periodic
system, cij ) 1). This is immediately recognized to be the virial stress. The
momentum equation in Eq. (5) indicates that the virial stress measures the
momentum flux, not just the mechanical force between different material points,
which is represented in the Cauchy stress. See Zhou (2003) and Cormier et al. (2001)
for further discussions.

Similarly when Lagrangian coordinates are used, we define

erðx0; tÞ ¼
X

i

midðx0 " x0i Þ,

evðx0; tÞ ¼
X

i

viðtÞdðx0 " x0i Þ,

eqðx0; tÞ ¼
X

i

miviðtÞdðx0 " x0i Þ,

eeðx0; tÞ ¼
1

2

X

i

miv
2
i þ

X

jai

fðxiðtÞ " xjðtÞÞ

" #

dðx0 " x0i Þ ð7Þ

and

erabðx0; tÞ ¼ "
1

2

X

iaj

f aðxi " xjÞðx0ib " x0jbÞ

'
Z 1

0
dðx0 " ðx0j þ lðx0i " x0j ÞÞÞdl,

ejðx0; tÞ ¼
1

4

X

iaj

ðvi þ vjÞ & fðxj " xiÞðx0i " x0j Þ

'
Z 1

0
dðx0 " ðx0j þ lðx0i " x0j ÞÞÞdl, ð8Þ

then we have

qteq"rx0 & er ¼ 0,

r0qteeþ rx0 &ej ¼ 0. ð9Þ

Again one may compute the average of the stress over certain domain O0 (in the
reference coordinate):

1

jO0j

X

ioj

fðxj " xiÞ ( ðx0i " x0j Þcij.

This agrees with the virial expression of Piola–Kirchhoff stress.
Physically one can think of Eqs. (2) and (3) as being the ensemble averages of

Eqs. (5) and (9). Near crystal defects or free surface, the expressions in Eqs. (8) and
(6) might not provide an accurate measure of the stress or the energy flux, as has
been discussed in Zimmerman et al. (2004). However the conservation laws (5) and
(9) always hold.
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Remark. Note that one can rewrite the energy flux as

ej ¼ "v & erþej0
with v being the mean velocity andej0 the heat flux, which has the same expression asej
but with vj replaced by vj " v: With this modification, one can always perform MD
simulations with zero total momentum because the pressure (or stress) is invariant
under translation.

The above discussion suggests a new coupling strategy in the HMM framework
at the level of fluxes: the macroscopic variables can be used as constraints for
the atomistic system, the needed constitutive data (the fluxes), can be obtained
from the atomistic model via ensemble/time averaging after the microscale
system equilibrates. In the following section, we will show how this strategy can
be implemented.

3. Type B problem—atomistic-based constitutive modeling

Traditionally continuum models of solids are based on empirical constitutive
relations. Linear elasticity is a good example of such empirical models, in which the
atomistic information is lumped into very few parameters, the elastic moduli, that
depend on the symmetry properties of the material. However, in many cases the
accuracy of these empirical constitutive relations are insufficient, and one way to
improve the accuracy is to use constitutive information obtained directly from
atomistic models.

There are two ways of implementing such a procedure. The first is to assume a
functional form for the constitutive relation and use precomputed data from the
atomistic model to determine the parameters. This approach is preferred if the
constitutive relation depends on few parameters so that a limited set of precomputed
data is sufficient for constructing the constitutive model. The second approach is to
compute the needed constitutive information ‘‘on the fly’’ from the atomistic model
as the simulation proceeds, as in the Car–Parrinello method (Car and Parrinello,
1985). This approach is preferred if the constitutive relation depends on a large set of
parameters so that precomputing becomes inefficient. The potential disadvantage of
this approach is that redundant calculations might be performed in the course of
extracting constitutive information using the microscale model. This problem can be
reduced by adopting strategies that make use of the constitutive information that has
already been computed, as in the semi-empirical methods discussed in E and
Engquist (2002). The first approach is usually referred to as serial coupling. The
second approach is usually referred to as concurrent coupling. In any case, a very
important component in both approaches is to set up atomistic calculations so that
information on constitutive relations can be obtained. In this section we will address
this question. We will organize our discussion around concurrent coupling, since
there are additional issues there that have to be addressed. But most of the proposed
methodologies also apply to serial coupling.
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3.1. Methodology

Following the HMM framework, we will discuss how to select the macroscale
solver and how MD simulations are set up to provide the needed constitutive
information.

For clarity, we restrict most of the discussions to one-dimensional continuum
models (the atomistic models can be in any dimension). Extension to high-
dimensional continuum models is mostly straightforward and will be briefly
explained later.

3.1.1. Macroscale solver
Our basic macroscopic model is a set of conservation laws. Although there are a

variety of methods available for solving conservation laws (LeVeque, 1992;
Godlewski and Raviart, 1996), many of them involve computing the Jacobian of
the flux functions, which dramatically increases the computational complexity in a
coupled multiscale method when the constitutive relation has to be extracted from
atomistic models. One exception is the central scheme of Lax–Friedrichs type, such
as Nessyahu and Tadmor (1990) which is formulated over a staggered-grid. In the
following we will focus on this macroscale solver. However, we should emphasize
that the use of staggered grid is only a matter of convenience, not necessity.

For convenience, we rewrite the conservation laws in the generic form:

wt þ fx ¼ 0, (10)

where w denotes the conserved quantities, and f is some (unknown) flux function.
We first lay out a staggered grid as indicated in Fig. 1.

The first-order central scheme represents the solutions by piecewise constants,
which are the average values over each cell:

wn
k ¼

1

Dx

Z xkþ1=2

xk"1=2

wðx; tnÞdx.
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Here Dx is the size of the cell. Integrating Eq. (10) over ½xj ; xjþ1+ ' ½tn; tnþ1Þ leads to
the following:

wnþ1
kþ1=2 ¼

wn
k þ wn

kþ1

2
"

Dt
Dx

ðfnkþ1 " fnkÞ, (11)

where

fnk ¼
1

Dt

Z tnþ1

tn
fðxk; tÞdt.

This is then approximated by numerical quadrature such as the mid-point formula.
A simple choice is fnk,fðxk; tnÞ:

The stability of such schemes, which usually manifests itself in the form of a
constraint on the size of Dt; can be easily appreciated from considering the adiabatic
case when f ¼ fðwÞ: if we choose the time step Dt small enough, the waves generated
from the cell interface fxkþ1=2g will not arrive at the grid points fxkg at the next time
step, and therefore the solution as well as the fluxes at the grid points will not change
until the next time step.

With this specific macrosolver, we illustrate the HMM procedure, which is shown
schematically in Fig. 1. At each time step, scheme (11) requires as input the fluxes at
grid point xk: These flux values are obtained by performing local MD simulations
that are constrained by the local macrostate variables ðr; q; EÞ (or (A; v; e) in
Lagrangian coordinates). After the MD system equilibrates, we estimate the fluxes
by time/ensemble averaging.

As is standard for hyperbolic problems, one can use piecewise linear representa-
tion of the solutions to achieve better accuracy,

wðxÞ ¼ wk þ qxwkðx" xkÞ; x 2 ðxk"1=2; xkþ1=2+. (12)

Slope limiters can be used to suppress unphysical oscillations if necessary. For
instance, a commonly used limiter is the ‘minmod’ limiter:

qxwk ¼ minmod
wkþ1 " wk

Dx
;
wk " wk"1

Dx

# $
, (13)

where the function

minmodðt1; t2Þ ¼ 1
2ðsgnðt1Þ þ sgnðt2ÞÞðjt1j þ jt2jÞ

is applied to each component. Other limiters can be found in standard textbooks (Le
Veque, 1992; Godlewski and Raviart, 1996). A convenient second-order macroscale
solver consists of two half-steps:

w
nþ1=2
k ¼ wn

k "
Dt
2Dx

qxfnk,

wnþ1
kþ1=2 ¼

wn
k þ wn

kþ1

2
þ

Dx
8

ðqxwn
k " qxwn

kþ1Þ "
Dt
Dx

ðfnþ1=2
kþ1 " f

nþ1=2
k Þ.
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In the first half-step, the gradient for the flux fk is again evaluated via a simple slope
limiter, i.e.

qxfk ¼ minmod
fkþ1 " fk

Dx
;
fk " fk"1

Dx

% &
.

Generalization to high dimensions is straightforward. In the two-dimensional case
with conservation laws:

wt þ fx þ gy ¼ 0, (14)

where the first-order scheme on staggered (rectangular) grid is given by

wnþ1
jþ1=2;kþ1=2 ¼

1

4
ðwn

j;k þ wn
jþ1;k þ wn

j;kþ1 þ wn
jþ1;kþ1Þ

"
Dt
2Dx

ðfnjþ1;k " fnj;k þ fnjþ1;kþ1 " fnj;kþ1Þ

"
Dt
2Dy

ðgnj;kþ1 " gnj;k þ gnjþ1;kþ1 " gnjþ1;kÞ. ð15Þ

In our work, we often use the high-order central schemes developed by Nessyahu
and Tadmor (1990).

3.1.2. Reconstruction
Next we discuss the steps involved in setting up the MD to estimate the local

fluxes. The first step in setting up the MD simulation is to reconstruct MD
configurations that are consistent with the local macrostate variables.

Given the local macroscopic state A; v;E; we first determine the shape of the MD
cell from the local deformation tensor. This is illustrated in Fig. 2. Consider the
situation of a Bravais lattice and let E be a basis for the undeformed cell. The new
cell is generated by the basis vectors ~E ¼ AE: This is equivalent to setting up a linear
displacement field. The potential energy U of this configuration and the kinetic
energy associated with the mean velocity is subtracted from the total energy E to give
us the thermal energy, and this gives the temperature. Knowing the mean and
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variance of the velocity distributions, we initialize the particle velocities by the
Maxwell–Boltzmann distribution.

We should remark that if the local relaxation time is very short, then there is not
much difference in the performance of different initialization procedures, as long as
the initial configuration has the correct crystal structure. However, as the relaxation
time increases, there can be considerable advantage in using the previously computed
microscopic state as the initial configuration for the new MD simulation. Of course
the previously computed microscopic state has to be modified in order to be
consistent with the current macrostate. This can be done as follows:

(1) the configuration is deformed linearly to be consistent with the current
deformation gradient;

(2) the average velocity is rescaled to the current average velocity;
(3) the temperature is changed using the same procedure as discussed above to

obtain the required total energy.

In the MD simulations, we use the standard Verlet method for MD with a neighbor
list (Frenkel and Smit, 2002).

3.1.3. Boundary conditions
Boundary conditions have to be imposed on the microscopic system in order to

guarantee consistency with the local macroscale variables. In the case when the
system is homogeneous (constant mean velocity, temperature and deformation
gradient), the most convenient boundary condition is the periodic boundary
condition. The MD cell is first deformed according to the deformation gradient A
(see Fig. 3) and periodically extended to the whole space.
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The periodic boundary condition excludes the possibility of accounting for
inhomogeneous effects such as effects of thermal gradients, strain gradients, etc.
These will be discussed in a future publication.

3.1.4. Estimating the data
From the MD data, we can compute the microscopic fluxes using the formulas in

Eq. (8). The final step is to average the microscopic fluxes to obtain the fluxes needed
by the macroscopic scheme.

The simplest approach is to perform a simple time average of the microscopic
fluxes after the MD system is equilibrated. However we can often improve the
quality of the averaging by using a more sophisticated kernel, for example,

hAiK ¼ lim
t!þ1

1

t

Z t

0
K 1"

s

t

# $
AðsÞds; KðyÞ ¼ 1" cosð2pyÞ. (16)

This kernel K gives less weight to the transient period and therefore faster
convergence. In Fig. 4 we show a typical result of time averaging for pressure
obtained from the molecular dynamics simulation and we compare the results
from straightforward time averaging and averaging using the kernel KðyÞ: The
introduction of the kernel obviously accelerates the convergence.

This kernel and more general kernels are discussed in Engquist and Tsai (in press)
and Cancès et al. (2004).

In Fig. 4, we can see that for this example the macroscale fluxes can be reliably
estimated after about 1000 MD times steps, independent of the size of the macro
time step. This is a key feature of the method introduced here and HMM in general.
By coupling the macro and micromodel at the level of data estimation, we
automatically decouple the micro-time-scales from the macrotime scales. Other
examples may require different number of microsteps. But still this is independent of
the macro-time-scale.

The decoupling of micro- and macro-time-scales in the method proposed here is
different from methods that are developed for modeling rare events (Voter and Chin,
1987). For the method proposed here, even though the MD simulation time is short
compared to the macroscale time scale, it could still be very long compared with the
micro-time-steps if the relaxation of the microscopic system involves overcoming
substantial energy barrier.

How should we choose the size of the MD system and the duration of the MD
simulation? The size of the atomistic system has to be carefully chosen. It should be
as small as the accuracy requirement allows. Usually the correct size is determined
beforehand by a number of test runs. Cormier et al. (2001) have shown a number of
examples demonstrating the finite size effect. A series of numerical experiments have
been conducted for systems of varying sizes V ¼ L3 to study the finite size effect.
Plotted in Fig. 5 is a result on the finite size error. The exact value was obtained from
a simulation for large L. For a given L, we measure the stress component t11 by time
averaging for sufficiently long time to eliminate the relaxation and sampling error.
The error decays as the system size increases, consistent with the naive guess L"1:5

from the central limit theorem.
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In the multiscale setting, more factors have to be taken into consideration to
balance the overall accuracy and efficiency. Ideally one should develop systematic
procedures for change the size of the MD system as well as systematic stopping
criteria for MD, once the necessary macroscale data have been estimated to the
desired accuracy. This is not yet done, and remains to be a general problem for
HMM. Currently we adopt a more ad hoc strategy by performing some numerical
experiments in the precomputing stage.

An error analysis of the overall method can be found in E and Li (2004).
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3.2. Numerical results

3.2.1. Shock propagation in a two-dimensional Lennard– Jones system
In this example, the system is described at the atomistic level by a two-dimensional

Lennard–Jones potential:

fðrÞ ¼ 4!
s
r

# $12
"

s
r

# $6
% &

.

All the results shown below are expressed in terms of the reduced units, e.g.
ffiffiffiffiffiffiffiffi
m=!

p

for the velocity, !=kB for the temperature, etc. The initial condition is set up as
follows: For the xo0 half plane, we impose an uniform deformation gradient A1;1 ¼
0:99; and for the other half plane, the deformation gradient is zero. The system starts
from zero velocity and uniform temperature: T ¼ 0:3: From the continuum
viewpoint, this is an example of the popular Riemann problem.

Evidently at the continuum level, we may assume that the solution is one
dimensional. The continuum equations then reduce to

qt!11 " qxv1 ¼ 0,

r0qtv1 þ qxs11 ¼ 0,

r0qteþ qxðs11v1Þ ¼ 0. ð17Þ
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We apply the multiscale procedure discussed above to this problem with the second
order central scheme as the macroscale solver. The numerical results are shown in
Fig. 6. At t40; one observes two shocks separated by a contact discontinuity (the
velocity is continuous at the contact discontinuity).

Notice that the solution uðx; tÞ to the conservation laws is self-similar: for any
l40; uðlx; ltÞ is also a solution if uðx; tÞ is. This suggests a way of verifying the
numerical solution of the multiscale method: we can perform a small scale full
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atomistic simulation and then rescale the MD solutions to the scale of the multiscale
solution. This rescaled MD solution can then be compared with the HMM solution.
The result is shown in Fig. 6. We see that for velocity and strain, the MD solution
fluctuates around the HMM solution, as expected. But for the displacement field,
which is an integrated quantity, we see direct agreement.

3.2.2. Thermal expansion
In the second example, we study the effect of thermal expansion. Our atomistic

model is a three-dimensional Lennard–Jones solid in a face-centered cubic
(FCC) lattice. We set up the example so that the macroscale behavior is two-
dimensional. Initially the material is at rest with homogenous temperature
distribution T ) 0:1:We then increase the temperature in the middle instantaneously
to T ¼ 0:4: This results in a thermal expansion that propagates outward. We
solve Eq. (3) by the two-dimensional central scheme described above. In Fig. 7
we display the numerical results for the temperature distribution as well as the
velocity field. One clearly observes that the material is expanding outward as the
heat is spread out.

4. Dealing with isolated defects—type A problems

We now turn to another class of problems that can be treated using multiscale
methods, the problem of isolated defects. These are type A problems according to
the classification in E and Engquist (2002). Solids often contain a variety of defects,
such as vacancies, dislocations, twin boundaries and grain boundaries. To a large
extent, the structure and dynamics of these defects determine the properties of
the solid.

A common idea for the multiscale modeling of defects is to use atomistic models
near defects and continuum models away from defects, e.g. in a domain
decomposition framework. MAAD is a good example of such an approach. The
HMM philosophy, on the other hand, suggests a strategy that is closer to
the strategy of adaptive model refinement (Garcia et al., 1999; Oden and Vemaganti,
2000).

4.1. Adaptive model refinement: methodology

The idea of adaptive model refinement is to start with a macroscale model on a
macrogrid (which might be locally refined) in the entire computational domain and
couple with a more refined model locally near the defects. For the present problem,
the macroscale model is the same as before, namely the conservation laws. The
macroscale solver can also be chosen as before, i.e. central type of finite volume
schemes. But when it comes to computing the fluxes, the cells (more precisely, the cell
boundaries where flux evaluation is carried out) are divided into two types: cells that
contain defects and cells that do not contain defects. In cells that do not contain
defects we evaluate the fluxes using either empirical constitutive relations or the
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method discussed in the previous section. In cells that do contain defects we compute
the fluxes using MD.

To formulate the procedure of coupling MD with the continuum models near
defects, we distinguish two different situations depending on whether there is scale
separation between the time scale for the dynamics of the defects and the time
scale for the local relaxation of the defect structure. We denote the former by Td and
the latter by T r:

If Td is much larger than T r; as is the case in the example of one-
dimensional elastic bar discussed below, we can extend the macroscale model
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to include the moving speed of the defect. The macroscale scheme then contains
two components: a solver for the conservation laws (a central type finite volume
scheme or discontinuous Galerkin method) and defect tracking. The data to be
measured from MD include the fluxes, the defect velocity and the local environ-
ment of the defect. This procedure naturally decouples the two time scales T r

and Td:
If Td is comparable to T r; then the time history of the defect structure is

important for its future dynamics. In this case we will have to track the entire
history of the local atomistic structures near the defect. There is no decoupling of
time scales since there is no time scale separation. This situation often arises
when dealing with small-size materials. Fig. 8 illustrates the procedure for both
of these cases.

4.2. Defect tracking

When T r5Td; we can extract information on the dynamics of the defect from
local MD simulations, and use it to advance the defects over macro-time-steps. At
the same time the macrosolver needs to be modified near the interface to take into
account the defect structure. This defect tracking procedure is similar in spirit to the
front tracking algorithms in computational fluid dynamics (Glimm et al., 2002,
1998), except that the speed of front is not obtained from macroscopic jump
conditions but from molecular dynamics.

The defect tracking procedure is illustrated in Fig. 9. Here we only show how to
treat surface defect, and we restrict the discussion to the one-dimensional case.
Suppose that at time tn the interface is located at zn; which is inside the kth cell.
Assume that zn4xk and without loss of generality, assume that the propagation
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speed cnX0: Let

Inl ¼ fðx; tÞjx 2 ðxk"1=2; z
n þ cnt+; t 2 ðtn; tnþ1+g,

Inr ¼ fðx; tÞjx 2 ðzn þ cnt;xkþ3=2+; t 2 ðtn; tnþ1+g.

We also use wn
k"1 and wn

k to represent the numerical solutions (cell average) on
ðxk"1=2; zn+ and ðzn;xkþ3=2+; respectively.

(1) Remember that our basic macroscale model is still a system of conservation
laws, integrate a generic conservation law qtwþ qxf ¼ 0 over the region Inl and Inr ;
we get:

ðznþ1 " xk"1Þwnþ1
k"1=2 " wn

k"1 Dx=2" wn
kðz

n " xk"1=2Þ

þ ðf" " cnw
"ÞDt" fnk"1 Dt ¼ 0

and

ðxkþ1 " znþ1Þwnþ1
kþ1=2 " wn

kþ1ðxk"1=2 " znÞ þ fnkþ1 Dt" ðfþ " cnw
þÞDt ¼ 0.

Here, w- and f- denote the macrostates on the right/left of the interface and the
corresponding fluxes. From the well-known Rankine–Hugoniot condition, we
should have

fþ " cnw
þ ¼ f" " cnw

". (18)

(2) In order to predict the moving speed of the interface, cn; and estimate the data
fþ; f";wþ;w"; which are needed to advance the system to the next macro-time-step,
we perform a local MD simulation at the interface. The macrostates wn

k"1 and wn
k are

used to initialize the atomistic system, and to impose boundary conditions. The
results of such simulations are analyzed to estimate the quantities we need.

The first step is to locate the interface. Notice that the Riemann problem has self-
similar solutions, i.e., the solutions can be written as uðx; tÞ ¼ WðZÞ; Z ¼ x=t:
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Therefore, we can divide the x–t domain into a number of zones,

Zl ¼ fjjZloxj=tpZlþ1g,

for a set of discrete values fZlg: Since a priori we know the range of the solution at
different sides, e.g. the order parameters (in the case of phase transformation, it can
be identified by the values of the strain), we can easily detect the zone, say Zm that
contains the interface. We then estimate the quantities in Eq. (18) in the adjacent
zones Zm"1 and Zmþ1 by space/time average. Since Eq. (18) should be satisfied across
the phase boundary, we select the speed c that best fits the jump condition (e.g. by
least-square procedure).

In higher dimensions, the interface is represented by piecelinear curves or surfaces.
The evolution of the interface is determined by a one-dimensional finite difference
solver which involves the left and right states at the two sides the interface (Glimm
et al., 1998). A library has been built which offers code for public access FronTier
(http://galaxy.ams.sunysb.edu/FTdownload/). Extending this procedure to dealing
with high co-dimensional defects such as point defects and dislocations still remains
to be done.

4.3. Boundary conditions

Since the local MD system is no longer homogeneous, we need to modify the
boundary condition that needs to be imposed on the MD system. Here we propose a
simple boundary condition using the idea of border regions. For other related work
on boundary conditions, we refer to Cai et al. (2000) and E and Huang (2001).

The first step is to extend the atomistic system by appending atoms to the
border of the MD simulation cell. The border region is divided into bins as indicated
in Fig. 10.

Next we define macroscale variables, namely displacement, velocity and
temperature, on the bins by interpolating from their values on the macrogrid. We
denote these continuum values at the boundary by ðub; vb;TbÞ:
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Fig. 10. Boundary conditions imposed on the atomistic system: the border region is divided into bins and
Nose–Hoover is applied to each bin.
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To obtain the boundary condition for MD, we separate out the mean from the
fluctuating part, i.e. we rewrite the position and velocity of the atoms in the border
region as

xj ¼ xð0Þj þ xð1Þj ; vj ¼ vð0Þj þ vð1Þj .

The macrocomponents, xð0Þj and vð0Þj ; are computed from ub and vb; by inter-
polation if necessary. For the micropart, xð1Þj and vð1Þj ; we apply Nosè Hoover
thermostat on each bin using temperature values from Tb; again using interpolation
if necessary.

Various validation studies were conducted on this form of boundary condition.
Here we report one result: the validation of Fourier law. The experiments are done
on a 40' 40' 5 aluminum system with EAM potential (Ercolessi and Adams,
1994). The temperature at the boundary is determined by linear profile with a
specified temperature gradient rT and an average value. Fourier law states that

j ¼ "krT

with k being the heat conductivity. The boundary condition described above was
used with ub ¼ 0; vb ¼ 0: A temperature gradient is imposed by different values of Tb

at the two ends. In Fig. 11 we show the results from a series of numerical experiments
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with different temperature gradient applied. One can clearly see the linear
dependence of the heat flux on the gradient. Furthermore by linear fitting we have
estimated the heat conductivity from these data. The average temperature of the
system is 100K, and the thermal conductivity is approximately k ¼ 250 (W/m/K),
which agrees reasonably well with experimental data k ¼ 234 (W/m/K).

A key issue about MD boundary conditions is the reflection of phonons at the
boundary. To test this, we used the boundary condition described above on the
Frenkel–Kontorova model studied in this context in E and Huang (2001, 2002). Our
results agree very well with those of E and Huang (2001, 2002).

4.4. Phase transformation

Next we apply the methods we have developed to study phase transformation in
solids. Under stress or temperature change certain materials undergo phase
transformation. A typical example is martensitic transformation, in which the
material transforms from the more symmetric austenite phase to a less symmetric
martensite phase. In the process of this transformation, the material displays a
variety of microstructures. Much work has been done to understand these structural
phase transformation, both at the atomistic and continuum level (Ball and James,
1992; Luskin, 1996; Li, 2001; Pinsook and Ackland, 2000; Becquart et al., 1993). For
static problems, the Ball–James continuum theory (Ball and James, 1987, 1992)
works with a postulated free energy function which below the transition temperature
must have multiple minima due to the presence of several stable variants which are
related to each other by symmetry. A consequence of this is that the variational
problem does not have a minimizer. Nevertheless, it has been shown that the
minimizing sequences contain valuable information on the microstructure. This has
also motivated some very interesting numerical work (see e.g. Luskin, 1996; Li,
2001).

The situation for dynamics appears to be quite different. There at the continuum
level it seems necessary to introduce additional mechanism as in the work of Slemrod
(1983), or constitutive relation, called the kinetic relations, for the dynamics of the
phase boundary, as is done in the work of Abeyaratne and Knowles (1991) and
Purohit and Bhattacharya (2003). It is therefore of interest to understand the
atomistic origin of these kinetic relations.

We will start with an investigation of a one-dimensional model which reflects a
number of typical features in more general structural phase transformation. This
simple model has inspired a great deal of work on the understanding of the energetics
and kinetics of phase transformations (Abeyaratne et al., 2000; Abeyaratne and
Knowles, 1991; Bhattacharya, 2003; Truskinovsky and Vainchtein, 2003; Purohit
and Bhattacharya, 2003). We will present a defect tracking method to resolve the
dynamics of the phase boundary, which bypasses empirical mobility laws. The phase
boundary is reconstructed and evolved by a local atomistic simulation for short time,
and we extract the necessary data in order to evolve the phase boundary to the next
macro time step. Finally we apply this procedure to study twin boundary dynamics
in a Ni–Al alloy system.
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4.4.1. A simple one-dimensional model
The simplest model that exhibits phase transformation is a one-dimensional elastic

bar, which can be modeled at the microscopic level by a chain of atoms connected by
springs:

m €xj ¼ f0ðxjþ1ðtÞ " xjðtÞÞ " f0ðxjðtÞ " xj"1ðtÞÞ, (19)

where f is the potential of the springs. The initial position of the jth atom is denoted
by x0j :

To study phase transformation, we assume that the spring energy has a bi-stable
form. For example:

fðrÞ ¼

1

r
þ r2=2; 0orp1;

1

2
r2 " rþ 2; 1orp2;

5r" r2 " 4; 2orp3;
19

2
þ

1

2
r2 " 4r; r43:

8
>>>>>>>>><

>>>>>>>>>:

(20)

The two wells at r ¼ 1; 4 represent the two different metastable states.
To investigate the dynamics of the phase boundary, we perform the following

numerical simulation. Initially the particles are at rest and are equally spaced with
distance r ¼ 1; i.e. in the first well. Then we start to pull the left-most particle with a
constant speed. The dynamics that emerges is shown in Fig. 12. First of all, a sound
wave is generated that propagates to the right. If the pulling speed is above some
critical value, the particles will have enough kinetic energy to overcome the potential
barrier and jump to the second well. This results in a phase boundary that
propagates to the right.

To illustrate the application of the multiscale method on this problem, consider
the following example. Initially the macroscopic state of the system is described by
two constant states separated by a phase boundary: the state on the left ðA; v; eÞ ¼
ð4:0277;"0:9977; 2:7734Þ corresponds to the second well and the state on the right
ðA; v; eÞ ¼ ð1:0; 0; 1:5Þ corresponds to the first well. These two states are obtained
from the previous experiments. Meanwhile the system is pulled from the right at a
constant speed v ¼ 0:4; which will create an additional elastic wave going to the left.
The boundary conditions qxn ¼ 0; qxT ¼ 0 are applied during the simulation.

As the system is being pulled from the right, an elastic wave is generated at the
right boundary and propagates to the left. The phase boundary in the middle
propagates to the right. A right-moving weak shock is also generated at the phase
boundary. At a later time the shock waves from the right impinges on the phase
boundary. The shock-phase boundary interaction generates a reflected and a
transmitted shock, and at the same time changes the speed of the phase boundary.
As discussed in Section 3.2, due to the simple setup, it is feasible to compare the
results of the multiscale method to that of a direction MD simulation. The MD
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system is set up in a similar way, and rescaled properly for the comparison. This is
shown in Fig. 13.

In this simulation we have used 400 macrogrid points and the system is advanced
in time for 100 steps with Dt=Dx ¼ 0:05: In each local MD system around the phase
boundary, an atomistic system consisting of 1000 atoms is evolved for 1000 time
steps. The numerical results are shown in Fig. 14.

4.4.2. Twin boundary dynamics in Ni–Al alloy
Next we apply the multiscale method with defect tracking to study the dynamics of

twin boundary in a Ni62:5Al37:5 alloy. As the atomistic model, we use the EAM
potential developed by Voter and Chen (1987), which is specifically designed for
Ni–Al alloys. At this percentage twin boundaries have been observed both
experimentally (Chakravorty and Wayman, 1976; Nishiyama, 1978) and in atomistic
simulations (with this EAM potential) (Becquart et al., 1993). In particular the EAM
potential has predicted a tetragonal structure with three variants. The corresponding
strain matrices can be written as

U1 ¼

Z1 0 0

0 Z2 0

0 0 Z2

0

B@

1

CA; U2 ¼

Z2 0 0

0 Z1 0

0 0 Z2

0

B@

1

CA; U3 ¼

Z2 0 0

0 Z2 0

0 0 Z1

0

B@

1

CA.

(21)
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We choose the cubic structure with lattice constant a0 ¼ 2:871 (A as the reference
configuration. The parameters Z1 and Z2 can be thought of as being the stretch along
the principal axis illustrated in Fig. 15. The values of these parameters are obtained
from MD simulation: Z1 ¼ 1:2263 and Z2 ¼ 0:9061:

To form a compatible interface between two martensitic variants the deformation
gradient A1 and A2 have to satisfy the relation:

A2 " A1 ¼ a( n, (22)

where n is the normal vector of the interface.
For convenience we arrange the material so that the twin plane coincides with the

y–z plane. The deformation corresponding to the undeformed variant I and variant
II are:

A1 ¼

ffiffi
2

p
Z1Z2ffiffiffiffiffiffiffiffiffi
Z2
1
þZ2

2

p 0 0

Z21"Z22ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðZ2

1
þZ2

2
Þ

p
ffiffiffiffiffiffiffiffiffi
Z2
1
þZ2

2

p
ffiffi
2

p 0

0 0 Z2

0

BBBB@

1

CCCCA
; A2 ¼

ffiffi
2

p
Z1Z2ffiffiffiffiffiffiffiffiffi
Z2
1
þZ2

2

p 0 0

Z22"Z21ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðZ2

1
þZ2

2
Þ

p
ffiffiffiffiffiffiffiffiffi
Z2
1
þZ2

2

p
ffiffi
2

p 0

0 0 Z2

0

BBBB@

1

CCCCA
. (23)

This is depicted in Fig. 16.
Both experimental and theoretical studies of martensitic phase transformation

(Ball and James, 1992) reveal that martensites tend to form twins in the process of
phase transformation. But the dynamics has been much less discussed. Here we will
use our multiscale method to investigate twin boundary dynamics. The movement of
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the twin boundary can be driven by a shear stress applied at the boundary. In our
experiment we set up the system with two variants with a single twin boundary in the
middle. In order to generate a shear stress, we move the left boundary downward
with a constant speed. The boundary on the right is fixed.

Since the twin boundary simply moves in x direction, and the continuum
quantities do not have appreciable change in y and z directions, we can simplify the
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continuum equations:

qtA11 " qxv1 ¼ 0,

qtA21 " qxv2 ¼ 0,

r0qtv1 þ qxs11 ¼ 0,

r0qtv2 þ qxs21 ¼ 0. ð24Þ

For simplicity we have neglected the energy equation in this system. Instead we
constrain the system to be at constant temperature. Other components of A are
assumed not to change in time.

Away from the twin boundary, we perform local MD simulations to estimate the
stress as we did in type B problems. Each such simulation involves 20' 20' 5
atomic units and 2000 steps of time integration. The central (11) is applied on the
macrogrid, which consists of 40 cells. In all the MD simulations the time step is taken
to be dt ¼ 0:003 ps: Near the twin boundary we apply the defect tracking technique
to estimate the moving speed of the twin boundary and the local strain and stress. In
each such MD calculation, we evolve a system with 120' 16' 16 atomic units for
1200 time steps. To monitor the macroscale quantities, we set up two strain gauges
near the phase boundary. In these gauges we sample the local strain, stress and
velocity by averaging over a box consisting of 6' 6' 6 atom units. From these
sampled data, we can estimate the moving speed of the twin boundary from Eq. (18)
by a least-square approximation. Periodic boundary conditions are applied in the y
and z directions. At the left and right boundary, we apply boundary condition using
the techniques discussed in Section 4.3. These boundary conditions help to maintain
the strain and velocity on the both sides and prevent elastic waves to be reflected
from the boundary and interfere with the twin boundary dynamics.

Fig. 19 shows the numerical results at the macroscale level after 40 macro-time-
steps. As the twin boundary propagates, two elastic waves are generated and move
away from the twin boundary.
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Fig. 16. Arrangement of the atoms in the cubic and tetragonal structure on the f0 0 1g plane: the
deformation of the cubic phase is taken to be identity, while the two martensitic variants have deformation
gradient given by Eq. (23).
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To better understand the mechanism of twin boundary propagation, we plot in
Fig. 17 some results from the local MD at the twin boundary. We first select an
arbitrary plane of atoms and examine their positions at the initial and final times of
the MD. Different variants of the twin are easily identified as rectangle lattices with
different orientation, as indicated in Fig. 16. We see that at the end of the MD, the
twin boundary has clearly moved forward (in a layer by layer fashion).

Next we examine what happens on the twin plane as it propagates forward. For
that purpose we plot the atomic positions of the atoms on the twin plane. Fig. 18
clearly suggests that the twin plane moves by a nucleation and propagation
mechanism, very much similar to the mechanism of epitaxial growth of crystals.
New variants are first nucleated and form islands on the twin plane. The edges
of the islands then propagate out and induce the transformation on the whole plane.
In analogy with epitaxial crystal growth, it is of interest to ask whether or when twin
boundary dynamics proceeds via layer by layer growth or via island growth.

On the twin plane (y–z plane in Fig. 18), the atoms in light color belong to the
layer behind the twin plane, which is in the original variant. In Fig. 1, most of the
atoms on the plane are still in the first variant. They are identified by the fact that
they are closer to their left neighbors in the next layer (the light color atoms). Those
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that are further away from their left neighbors are the new variants. One can see that
the transformation will not proceed to the next layer until the current layer is
completely transformed. The can be explained by the geometric constraint (22): if
some new variants appear in the next layer before the current layer is fully
transformed, the twin boundary will be tilted from a continuum point of view, which
will then violate condition (22) (Fig. 19).

5. Conclusion

We have presented in this paper a fairly general simulation tool that couples
efficiently atomistic and continuum models for crystalline solids. This method allows
us to perform dynamic simulations with thermal effects, in which the atomistic
models are used to model defects as well as constitutive relations. Even though we
based our discussion on the framework of HMM, the specific algorithmic details are
useful for any other coupling strategies, including serial coupling simulations in
which the constitutive information is obtained in a precomputing step.

There are some relatively straightforward and not so straightforward extensions
that one can envision. First of all, we concentrated on a finite volume macroscale
solver in the present paper, but extension to finite element methods, particularly in a
discontinuous Galerkin framework, should be possible. Next, one should be able to
include the effect of viscous dissipation due to strain gradients. The strategy would
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be analogous to the one for thermal gradient effects. We should also be able to
replace the molecular dynamics by more refined models such as quantum-mechanical
models. The additional work needed is not substantially more than those in Carter
(2000), Abraham et al. (1998) and Broughton et al. (1999).

Many aspects of real materials are neglected in the present paper. These include:
defect nucleation, defect–defect interaction, and complex defect structures. While in
principle they can be handled by the method developed in this paper, there are many
practical issues that need to be addressed. As an example, let us discuss defect
nucleation. The adaptive model refinement methodology should be able to handle
defect nucleation. Once a macroscale cell is identified for potential defect nucleation,
the model is locally refined to level of MD, and defect nucleation can be
accommodated. Once the defect is sufficiently mature, it can be translated to a
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continuum representation. There are at least two obstacles that need to be overcome.
One is the criterion for identifying potential defect nucleation sites. This can be
defect-dependent. The other is the translation of the defect from atomistic to
continuum representation. These issues are common to all multiscale methods, not
just HMM. They need to be resolved before multiscale methods become truly useful.
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Appendix. More general interatomic potentials

We have provided the microscopic definition of the stress and heat flux for pair
potentials such as hard sphere, Lennard–Jones and Morse potential. The HMM
procedure can be generalized to other potentials. The only different part is the
expression for the stress tensor and energy flux, which is provided here for potentials
that contains three body interactions, EAM potentials and on site potentials.

Three body interaction: this includes Stillinger–Webber and Tersoff potentials. For
three body interaction, we write the energy as

V3ðxi; xj ;xkÞ ¼ V ðjxi " xjj; jxj " xkj; jxk " xijÞ.

The force exerted on the ith atom is written as
X

j;kai

f ijk

with summation over distinct indices j and k. After some tedious calculation, one can
verify that f ijk can be decomposed into two parts: f ijk ¼ f ð1Þijk þ f ð2Þijk with the property
that f ð1Þijk ¼ f ð1Þjik and f ð2Þijk ¼ f ð2Þkji : Then the stress and energy flux are

erðx0; tÞ ¼
1

2

X

i;j;k

fð1Þijk ( ðx0i " x0j Þ

'
Z 1

0
dðx0 " ðx0j þ lðx0i " x0j ÞÞÞdl

þ
1

2

X

i;j;k

fð2Þijk ( ðx0i " x0kÞ

'
Z 1

0
dðx0 " ðx0k þ lðx0i " x0kÞÞÞdl ð25Þ
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and

ejðx0; tÞ ¼
1

4

X

i;j;k

ðvi þ vjÞ & f
ð1Þ
ijk ðx

0
i " x0j Þ

'
Z 1

0
dðx0 " ðx0j þ lðx0i " x0j ÞÞÞdl

þ
1

4

X

i;j;k

ðvi þ vkÞ & f
ð2Þ
ijk ðx

0
i " x0kÞ

'
Z 1

0
dðx0 " ðx0k þ lðx0i " x0kÞÞÞdl. ð26Þ

EAM potentials: EAM (Embedded-atom method) has recently become the most
popular candidate of interatomic potentials for metals. It includes a pair potential
and an EAM energy that depends on local electron density,

E ¼
1

2

X

i

X

j

fðrijÞ þ
X

i

F ti ðr̄iÞ; r̄i ¼
X

jai

rtj ðrijÞ.

Here ti indicates the atom type and rij ¼ xi " xj with rij being the magnitude.
Then the stress and the heat flux are expressed as

r ¼ "
X

i

X

j4i

ðf0
titj
ðrijÞ þ F 0

ti
ðr̄iÞr

0
tj
ðrijÞ þ F 0

tj
ðr̄jÞr

0
ti
ðrijÞÞ

rij ( r0ij
rij

'
Z 1

0
dðx0 " ðx0j þ lðx0i " x0j ÞÞÞdl

and

j ¼
1

4

X

i

X

jai

ðvi þ vjÞðf0
ti tj
ðrijÞ þ F 0

ti
ðr̄iÞr

0
tj
ðrijÞ þ F 0

tj
ðr̄jÞr

0
ti
ðrijÞÞ

rij ( r0ij
rij

'
Z 1

0
dðx0 " ðx0j þ lðx0i " x0j ÞÞÞdl.

External potential: some problems involve an external potential that contains an
on-site term: V1ðxiÞ: In this case, source terms in the form of

X

i

f idðx0 " x0i Þ and "
X

i

f i & vidðx0 " x0i Þ,

should be added to the right-hand side of the second and third conservation laws in
Eq. (9), respectively.
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