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Abstract

HPC trends favor algorithms and implementations that reduce data motion relative to FLOPS. We investigate the use of
lossy compressed data arrays in place of traditional IEEE floating point arrays to store the primary data of calculations.
Simulation is fundamentally an exercise in controlled approximation, and error introduced by finite-precision arithmetic
(or lossy compression) is just one of several sources of error that need to be managed to ensure sufficient accuracy in a
computed result. We describe ZFP, a compressed numerical format designed for in-memory storage of multidimensional
arrays, and summarize theoretical results that demonstrate that the error of repeated lossy compression can be bounded
and controlled. Furthermore, we establish a relationship between grid resolution and compression-induced errors and
show that, contrary to conventional floating point, ZFP reduces finite-difference errors with finer grids. We present
example calculations that demonstrate data reduction by 4x or more with negligible impact on solution accuracy. Our
results further demonstrate several orders-of-magnitude increase in accuracy using ZFP over IEEE floating point and Posits
for the same storage budget.
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approaches are already memory bandwidth and/or capacity
limited, which means that the peak FLOPS achieved in real
calculations is a small fraction of the theoretical peak.
Because of these realities, the HPC physical simulation
community has pivoted to consider algorithms with higher
arithmetic intensity—the FLOPS per byte of data Williams
etal. (2009); Exascale Mathematics Working Group (2014).
For simulations modeled by partial differential equations
(PDEs), high-order discretizations execute more useful
FLOPS per byte because they require both fewer degrees of
freedom (DOFs) for a given level of accuracy and more
operations per degree of freedom. Directly reducing the
number of DOFs is another strategy enabled by adaptive
mesh refinement and/or by moving mesh with features of

I. Introduction

Current trends in computing hardware are diminishing the
primacy of hardware clock speed and peak floating-point
operations per second (FLOPS) as performance predictors
in high-performance computing (HPC) The ASCAC
Subcommittee for the Top Ten Exascale Research
Challenges (2014); Exascale Mathematics Working
Group (2014). The end of Dennard scaling has favored
processors with more computing units as clock speeds have
stagnated Bohr (2007); Borkar and Chien (2011). The
energy associated with floating-point operations has re-
duced to the point that data movement and volatile storage
are now greater concerns in the pursuit of performance Shalf
et al. (2011); Michelogiannakis et al. (2014). Performance
increases are generally coming from more on-node pro-
cessing capabilities as opposed to more nodes. For hybrid
CPU-GPU architectures, one of the primary challenges is
reducing data movement between main and GPU memory,
which could be ameliorated if the data could remain resident
in the memory of the GPU. With a likely future of more
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heterogeneous architectures, moving data to the appropriate
processor at the appropriate phase of the computation will
continue to be a challenge. Many common simulation
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the solution, both of which reduce the resolution require-
ments by concentrating resolution only where it is needed.
An approach that has seen a resurgence is to use less data by
reducing the precision of representations used in the cal-
culation. There are numerous examples of mixed-precision
and reduced-precision implementations to reduce data
storage and motion and to leverage specialized hardware
Abdelfattah et al. (2021). Of course historically, we know
that, with care, many scientific calculations can be done in
single precision, but the potential savings in terms of data
reduction can be no higher than a factor of two going from
double to single precision. Interest in half precision
Markidis et al. (2018) and BFLOAT Burgess et al. (2019);
Kalamkar et al. (2019) has been driven by data science
applications where there may be different trade-offs with
respect to the number of bits used to represent the mantissa
or exponent. Provided that calculations on these lower-
precision types can be stabilized for poorly conditioned
systems, venerable techniques like iterative refinement can
be used to improve the precision of a result while computing
with lower-precision data types Haidar et al. (2017, 2020);
Abdelfattah et al. (2020).

Ideally, we would use the minimum number of bits per
floating-point value to store only as much useful infor-
mation as is present. In fact, while double precision may
provide 15 or more “significant” digits, in reality, many of
these digits do not possess useful information about the
desired solution; in practice, we compute to this precision
because it helps alleviate finite-precision issues. Physical
simulation is the art of controlled approximation: sets of
equations approximate physical theories (to various degrees
of fidelity), discrete systems of equations approximate the
continuous model, these discrete systems often require it-
erative schemes to approximate the system solution, and
these systems are solved on digital computers that ap-
proximate real numbers with finite precision numbers.
Several approximation errors typically corrupt the majority
of the “significant” digits: truncation error from the discrete
approximation, iteration error from the approximate itera-
tive solver, and roundoff error from the use of finite pre-
cision. Add to this the model form errors and uncertainties
in model parameters and initial and boundary conditions,
and a case can be made that, for many scientific and
engineering calculations, it is folly to trust more than
2-3 digits even in double precision.

Thus, for many problems that have and will continue to
motivate the need for HPC, we are storing, moving, and
computing on large amounts of data that have low infor-
mation content. We need to be more bit-efficient, but in a
way that still guarantees correctness and robustness to
roundoff accumulation. There has been a recent revival in
the study of alternative floating-point representations
Gustafson and Yonemoto (2017); Lindstrom et al. (2018);
De Dinechin et al. (2019); Lindstrom (2019); Buoncristiani

et al. (2020). We propose, instead, the use of arrays com-
pressed in small chunks such that memory-efficient random
access is effectively preserved, but similarities in nearby
data can be leveraged for more efficient storage. Lossy
compression can provide significant data reductions while
not sacrificing accuracy if the “lost” data had low infor-
mation content, for example, it represented errors from any
of the other approximations involved in the simulation.
Effectively, we would add a new type of error that would be
dominated by one or more of the other error terms. '
Furthermore, if the data are stored in a compressed form,
decompressed incrementally as needed into IEEE double
precision in cache for calculation, and re-compressed before
being returned to main memory, one gains the benefit of
storing and moving much less data while preserving the
calculation benefits of double precision. Of course, de-
compression can be done into any floating-point repre-
sentation, so this process separates the concern of storage
size from the concern of finite-precision arithmetic in an
easily managed way. Thus, we demonstrate that an approach
based on a compressed data array type, with calculations in
double precision, is more bit efficient than using single
precision without a significant loss of accuracy or the
complications of computing at lower precision.

Of course, multiple issues must be addressed to justify
broad adoption of compressed data types. Floating-point
data is not easily compressed, so a suitable lossy floating-
point compression algorithm with rapid random access is
needed. Practitioners need confidence that repeated com-
pression and decompression of solution data within the core
numerics of a calculation can be done with controllable error
that ensures both accuracy and stability. Compressed data
arrays have a clear benefit by, in effect, increasing the
memory capacity, which is particularly beneficial for GPUs
with limited high-bandwidth memory. We have more am-
bitious aspirations, however, to overcome bandwidth lim-
itations, which will require large data reductions while, at
the same time, the overhead of (de)compression must not
offset potential gains. We will review and extend progress in
each of these areas to justify our primary thesis of this paper:
Compressed data types are a technology suitable and with
substantial benefits for a significant class of HPC appli-
cations, which warrants additional attention and invest-
ment from the community.

Specifically, we focus on the ZFP floating-point com-
pressed array Lindstrom (2014), which is an efficient
storage representation well-suited to the task. Unlike most
contemporary floating-point compressors Lindstrom and
Isenburg (2006); Burtscher and Ratanaworabhan (2007);
Lakshminarasimhan et al. (2011); Yang et al. (2015); Liang
et al. (2018); Ainsworth et al. (2019); Ballester-Ripoll et al.
(2020); Li et al. (2023), which sequentially compress whole
or large portions of arrays, ZFP supports on-demand ran-
dom access to small blocks of data that are (de)compressed
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independently inline with the computation. ZFP allows
these blocks to be compressed to a user-specified number of
bits, which simplifies random access and memory man-
agement and gives the user a knob to tune the accuracy
needed for each array in the application. Development of
ZFP originated in an earlier study that demonstrated the
viability of using a lossy-compressed representation of
simulation state Laney et al. (2013). While this study
demonstrated empirically that lossy compression could be
used with acceptable levels of error, this work relied on
conventional streaming compressors Lindstrom and
Isenburg (2006); Wegener (2013) to perform decompres-
sion of whole arrays, to advance the solution one time step,
and then to re-compress the state.

Although motivated by the potential for compression to
reduce memory bandwidth usage, streaming compression
when used this way increases data movement, as large
arrays are (de)compressed from RAM to RAM with little or
no cache reuse. In contrast, ZFP supports fine-grained
random access to small chunks of uncompressed data on
the order of one or a few hardware cache lines, which makes
it possible to limit data motion to between RAM and
cache—in compressed form—and to realize a net decrease
in overall data movement. Such inline compression is
relatively new in HPC. We are aware of only three com-
peting approaches: the inline compression scheme of Fu
et al. Fu et al. (2017), which in effect amounts to turning
32-bit floats into 16-bit fixed-point values via a normali-
zation step (a form of scalar quantization); the vector
quantization approach of Trojak and Witherden Trojak and
Witherden (2021), which is limited to 3-component vector-
valued data and a fixed 1.5x compression ratio; and Blaz
Martel (2022), a block-based compression scheme for 2D
arrays that fixes storage at 360 bits per block of 8 x 8§ values
(or 5.625 bits/value). We instead propose the use of more
general floating-point compressors that allow for random
access with incremental (de)compression and arbitrary
compression ratios specified by the user, and we restrict our
investigation to ZFP because of its data locality property
and because of recent work that established theoretical
errors bounds for lossy ZFP compression Diffenderfer et al.
(2019); Fox et al. (2020).

In the following sections, we review recent results of the
mathematical analysis of the ZFP compression algorithm,
including an analysis that demonstrates the stability and
control of the error from lossy (de)compression done re-
peatedly in the core of two common classes of numerical
algorithms, and provide new results on ZFP error conver-
gence. These theoretical results are supported by several
numerical experiments involving ZFP compressed arrays in
physical simulation codes that show that data reductions by
factors of four or higher can be achieved without appre-
ciable loss of accuracy. This collection of results makes a
strong case that compressed data representations are a

feasible and potentially significant technology for better
data efficiency in the inner numerical loops in HPC
simulation.

2. Compressed floating-point arrays

ZFP implements multidimensional compressed arrays for
representing predominantly continuous scalar fields, such as
those that typically arise in PDE solutions. Although dis-
continuities like shocks and material interfaces may be
present in such fields, they tend to be confined to lower-
dimensional manifolds, with most of the field being at least
C° continuous and spatially correlated. Autocorrelation—
correlation between adjacent values on a grid—is a
source of redundancy for conventional uncompressed
number representations, where adjacent scalar values often
share sign, exponent, and several leading mantissa bits. ZFP
achieves compression by finding and removing such cor-
relations and by discarding in a controlled way trailing
mantissa bits often contaminated with error.

ZFP allows applications to store arrays in memory in
compressed form with fine control over memory footprint or
accuracy, for example, for representing the state arrays in
simulation, data analysis, and visualization. ZFP decom-
presses data on demand in small chunks to a conventional
number type like IEEE floating point, on which compu-
tations can be done, and compresses modified chunks back
to memory. ZFP supports both lossy and lossless com-
pression but has been tuned for the lossy use case with the
assumption that compression-induced errors—which are
analogous to floating-point roundoff errors—can be kept
significantly smaller than other sources of error. As we shall
see, ZFP typically provides a level of accuracy per bit stored
that far exceeds conventional number representations like
IEEE 754. As such, ZFP offers both reduced storage and
bandwidth and improved accuracy for a given memory
footprint. Moreover, ZFP provides a “continuous” storage
size knob for mixed-precision implementations through a
single data type and API, unlike mixed-precision im-
plementations that require specialized code to handle het-
erogeneous scalar types.

ZFP has evolved substantially since its first release
Lindstrom (2014). In this section, we describe ZFP CODEC
S5—the compressed representation supported in ZFP since
version 0.5.0 (released in 2016). We first give a brief
overview of the ZFP compressed block representation and
then describe its fixed-rate array data structures.

2.1. Compression scheme

Unlike early compression work done in the visualization
community Ning and Hesselink (1992); Schneider and
Westermann (2003), which focused on the use case of
write-once, read-many, ZFP was designed to support fine-
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grained random access reads and writes with symmetric
performance. Toward this end, ZFP partitions d-dimen-
sional floating-point arrays into blocks of 4/ values each, for
example, a 3D block holds 4 x 4 x 4 values. Each block is
encoded independently to a finite-length bit string in con-
stant time, allowing random access reads and writes at block
granularity. For arrays whose dimensions are not multiples
of four, ZFP pads any partial blocks with values from the
same block in a manner that promotes compression. Thus,
we focus our discussion on the encoding of individual
blocks.

The ZFP compression scheme for floating-point blocks
can be described as a sequence of distinct steps, which are
outlined in detail in Diffenderfer et al. (2019). First, ZFP
employs a block-floating-point transform, where each
value within a block is represented as a (¢ + 1)-bit two’s
complement signed integer that is scaled by a single per-
block exponent, e. Here ¢ € {30, 62}, depending on
whether single- or double-precision data with k£ € {24, 53}
mantissa bits is being encoded. The block-floating-point
transform is essentially lossless, though the alignment to a
common exponent may incur loss of some least significant
bits if the values in the block differ sufficiently in
magnitude. *

For smooth data, the integer values are often highly
correlated and share several leading bits. Such redundancy
is eliminated using a decorrelating linear transform that is
applied once along each dimension. The goal of this
transform is to eliminate any covariance between the values
in a block and to produce transform coefficients that are
small in magnitude, allowing a more compact encoding.
Several such transforms have been proposed in the com-
pression literature, of which the discrete cosine transform
(DCT) is perhaps the best known. In Lindstrom (2014), it
was shown how many of these transforms are part of a
family that can be characterized by a single parameter. ZFP
CODEC 5 is based on a parameter choice that gives rise to
orthogonal basis functions that are tensor products of Gram
polynomials Barnard et al. (1998) of increasing degree. For
computational efficiency, ZFP uses a slight modification to
this basis that allows the transform to be implemented using
only integer additions, subtractions, and arithmetic right
shifts via a sequence of lifting steps Daubechies and
Sweldens (1998). This choice of basis was made with
care to ensure that the transform coefficients decay rapidly
with grid resolution—a property we will explore further
below.

Transform coefficients indexed in 3D by (i, j, k) are then
sequentially ordered by expected magnitude using a pre-
determined ordering. As discussed below, we expect the
coefficient magnitude to decrease with increasing i +j + £,
which we use as a sort key. This reordering essentially
provides a generalization of the 2D zig-zag ordering em-
ployed by JPEG Wallace (1992).

Following reordering, the two’s complement coefficients
are converted to their negabinary representation. Negabi-
nary uses as base —2 instead of the usual base +2 employed
in binary representation. The purpose of this conversion is
to ensure that small-magnitude coefficients are represented
with many leading zero-bits, whereas two’s complement
uses leading zeros or leading ones depending on sign.

The binary coefficient matrix of 4 (¢ + 2)-bit negabinary
values is then transposed so that each row corresponds to a
bit plane—a set of bits for the 47 values that have the same
place value—with each column representing a coefficient.
Due to the previous coefficient ordering and negabinary
conversion, small coefficients appear on the left and large
ones on the right in this matrix, such that rows near the top
tend to have many leading zero-bits. The matrix is then
encoded losslessly one bit plane at a time, from top to
bottom and from right to left, using a simple variable-length
code. This code represents any sequence of leading zero-bits
using a single bit, which enables compression. The leading
one-bit and any trailing bits are encoded verbatim and are
interleaved with a small number of additional control bits
needed for the variable-length code.

Finally, the resulting bit stream for the block is optionally
truncated to meet a termination criterion, such as a pre-
scribed compressed size or error tolerance. Any truncated
bits are replaced with zeros. The effect of this truncation is
analogous to rounding in the IEEE floating-point repre-
sentation and is the main source of loss in accuracy when
converting numerical data to ZFP. Next, we will discuss one
of several different approaches to bit stream truncation.

2.2. Compressed-array data structure

Based on the ZFP block representation, ZFP provides C++
classes for in-memory compressed storage of multidi-
mensional arrays. These arrays appear and behave much
like conventional uncompressed representations (e.g.,
C/C++ arrays, STL vectors). Using operator overloading,
the details of compression and decompression are entirely
hidden from the user, who interacts with the arrays as
though each array element were directly addressable. ZFP
arrays provide access to elements in several ways: via
multidimensional indexing, via linear (flattened) sequential
indexing, and via iterators, proxy pointers, and views. Thus,
converting an existing application to make use of ZFP
arrays can be as simple as replacing standard array storage
with this alternative type.

Under the hood, ZFP makes use of a small write-back
software cache of decompressed blocks in IEEE format to
avoid the need to compress and decompress blocks upon
every read or write access. If the application access pattern
exhibits reasonable locality, as in stencil operations and
streaming passes over the data, the need for compression
(which may introduce loss) can be kept to a minimum. Note
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that a block is compressed back to persistent storage when
evicted from the cache only if it has been modified, that is,
following one or more write accesses. For all results pre-
sented in this paper, we use the default cache size of /B
blocks, where B is the total number of blocks in the array.

As exploited in Lindstrom (2014), bit stream truncation
to a fixed number of bits (as specified by the user) allows for
straightforward random access to blocks with no additional
data structures required to track their memory locations.
ZFP fixed-rate arrays allow the user to specify the rate—the
number of bits of compressed storage per array element—in
increments of as little as 2> 29, for example, 1/8 bit for 3D
(d = 3) arrays. Although ZFP has been extended to also
support variable-rate arrays that allocate bits more intelli-
gently over the domain, we here focus only on its fixed-rate
arrays.

ZFP’s support for random access is due to a unique
combination of design choices that sets it apart from other
compressors: (1) ZFP is nonstatistical and therefore does not
require learning, encoding, and updating data statistics (e.g.,
probability table, Huffman tree, dictionary, data-dependent
basis, etc.) when array elements change in computations. (2)
ZFP operates on tiny, independent blocks of data smaller
than filter stencils commonly used in wavelet and other
multiresolution compressors. (3) ZFP uses embedded bit
plane coding that allows it to truncate per-block compressed
streams at any point to fit within a prescribed bit budget,
thus simplifying random access by fixing the compressed
block size. Such truncation is analogous to rounding in
conventional floating point.

The use of very small data blocks—a distinguishing
feature of ZFP—is also of key importance in achieving a net
reduction in data movement. If small enough, decompressed
blocks can fit in hardware registers or cache after being
fetched in compressed form from main memory or higher-
level caches. For example, a 2D ZFP block decompressed to
double precision occupies 128 bytes—one or two cache
lines. Streaming compressors usually employ far larger
chunks (if at all) to hide per-chunk overhead in computation
(e.g., thread creation, (de)compressor initialization, data
transfer) and storage (to index variable-length chunks).
Example default or suggested chunk sizes range from 1 MB
in ZARR Miles et al. (n.d.) to 2 MB in IDX2 Hoang et al.
(2021) to 128 MB in SPERR Li et al. (2023). At best, such
large chunks limit caching to second or higher levels of
cache; at worst, chunks are decompressed to main memory,
thus only increasing data movement.

3. Lossy compression error behavior

A natural concern about the use of a lossy compressed
representation is whether the repeated actions of decom-
pression and recompression introduce a compounding error
that corrupts the solution, causes the simulation to become

unstable, or systematically biases results in some way. To
ensure the reliable use of ZFP in HPC simulation, it is
essential to establish bounds for the compression error
incurred by encoding blocks of floating-point numbers and
to demonstrate that the error in the arithmetic operations
performed while computing with the decoded ZFP arrays is
also bounded. For functions typical for physical simula-
tions, this latter requirement ensures that the fundamental
axiom of floating-point arithmetic Trefethen and Bau (1997)
is satisfied with respect to using ZFP.

3.1. Bounding ZFP compression errors

It is already established that the floating-point representa-
tion of some real number a, denoted fl(a), satisfies the
absolute error bound | f1(a) — a| < &,,4cnlal, Where €,,,4, 1S the
machine epsilon. It follows that the error introduced b
representing a d-dimensional array of real numbers, x € R",
satisfies ||fI(X) — X|lo < €macnl|X]|-» Which describes the
maximum absolute error in the floating point representation
of the array data. Equivalent error bounds have been de-
veloped for compressing blocks of floating point data using
ZFP. Let xzpp denote the decoded compressed block array.
The bound then takes the form

()

where ¢zpp is a parameter, analogous to &,,,.s, that bounds
the relative compression error. It corresponds to the pa-
rameter K, from Diffenderfer et al. (2019) and is dependent
on the dimensionality of the input data, d; the number of bit
planes encoded by ZFP, §; and the Lipschitz constant of the
near-orthogonal transform used by ZFP, k; = (7/4) Q79— 1)

d
EzFp = (14—5) <5k Eeﬂ + & (1 + 2@) (1+ kLrS,,)} + ek>,
@)

where €,,=2'"", 8,,=1 + €, and k and q are fixed by the
number of bits in the data type to be compressed.

As g > kand as k> f almost always, ZFP errors tend to be
dominated by the O(€s) term associated with bit stream
truncation, with § either specified directly by the user or
controlled indirectly through a prescribed bit rate. The
O(¢g,) error term associated with block-floating-point
conversion from IEEE FP and roundoff error in the de-
correlating transform, and the larger O(¢;) term for con-
version back to IEEE FP are usually many orders of
magnitude smaller.

Computing with ZFP arrays requires performing
floating-point arithmetic operations on the decoded com-
pressed floating-point arrays. The entries of a decoded array
are just floating-point numbers. However, the result of the
arithmetic operation is some real number that needs to be

llxzep — x|, <ezee|lx|l...,
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representable in floating-point form. The fundamental ax-
iom of floating-point arithmetic requires that the error of the
floating-point arithmetic operation is no worse than the error
incurred in representing its result as a floating-point number.
In other words, the relative error in floating-point arithmetic
operations is bounded by & where ¢ depends on the im-
plementation used for representing floating-point numbers.
If the result of some arithmetic operation, *, acting on
decoded ZFP arrays x and y, is stored in a ZFP parray w, then
from equation (1), we have that:

[wzep — (x*p)|[,, Sezee || (x %) |- 3)

In other words, all floating-point arithmetic operations on
ZFP arrays are exact up to a relative error of &zgp.

As the error bound in Equation (1) represents a single
instance of using ZFP arrays for data representation and the
error bound in Equation (3) represents a single operation on
ZFP arrays, they provide a basis for error analysis of the use
of ZFP arrays in simulations. HPC simulations typically
require the repeated application of a linear or nonlinear
advancement operator, say g, to a state variable in an it-
erative manner defined by "' = g(x’), given an initial state
x". When the state variable x’ is represented using ZFP
arrays, this iterative process needs to result in a bounded
sequence of state variables. Leveraging Equations (1) and
(3), theoretical bounds for the /™ iterate of sequences
computed with ZFP arrays, {x,p}.., have been estab-
lished Fox et al. (2020). Under the hypothesis that g is either
Lipschitz continuous with Lipschitz constant in (0, 1) or a
Kreiss bounded matrix, two common properties for ad-
vancement operators, these bounds have the form

ey — XL, <Olezee) Y [1¥].. “4)

Jj=0

Note that, if the iterates x,, are replaced by a sequence
computed using a floating-point representation, such as
IEEE 754, €4, would replace ezpp in the bound equation (4).
The validity of these theoretical bounds has been empirically
tested and verified in Diffenderfer et al. (2019); Fox et al.
(2020), providing not only assurances on the reliable use of
ZFP arrays in HPC simulations, but a means to tune the
compression error to below the level of other numerical errors
(typically truncation error, but any well-bounded error would
suffice). In this way, maximum compression can be achieved
without loss of meaningful data, and for deterministic solutions,
quantities of interest can be computed to the same formal level
of accuracy with lossy compression as without.

3.2. Bias in ZFP compression errors

Empirical studies on the distribution of error introduced
by ZFP revealed that, by implementing a minor

modification in ZFP, the error distributions are effec-
tively unbiased Hammerling et al. (2019). For example,
the data in Figure 1 demonstrate how this minor mod-
ification, denoted zrp-ROUND in Hammerling et al.
(2019), essentially eliminates bias in the error distri-
bution of climate data when using ZFP. Theoretical re-
sults on bias in the error distribution of ZFP, based on the
distribution of the input data, would instill further
confidence by establishing that any bias is bounded near
zero. Further, these efforts could lead to probabilistic
error bounds that are tighter than the existing worst-case
error bound, in Equation (1), at some confidence level.
By extending the error bound analysis framework from
Diffenderfer et al. (2019) to account for the distribution
of the input data, theoretical bounds on the expected
value of the difference between the original data and the
same data represented using ZFP can be established,
thereby theoretically bounding the bias. This approach
has been pursued in a separate study Fox and Lindstrom
(2024), where more details can be found. The bias result
is important because it ensures accuracy for problems
that exhibit chaotic behavior, where small differences
lead to exponentially diverging solution trajectories. In
such calculations, the principal quantities of interest are
computed from ensembles of calculations and are sta-
tistical in nature, so accuracy would suffer from sys-
tematic lossy compression biases.

3.3. ZFP error convergence

The error analysis so far has been independent of the
discretization of the domain. As the mesh size is reduced
and the number of degrees of freedom increases, the
number of data accesses and lossy operations (cf.
rounding operations) will increase, so it is informative to
understand how this error grows with system size. Thus,
we provide a new result on the convergence properties of
ZFP errors for functions defined on uniform grids of
increasing resolution.
Consider a 1D block

() ) ) (2

where f(x) is a thrice-differentiable function discretized on a
uniform grid with step size 4. The third-order Taylor ex-
pansion of f{x) around x = 0 gives f = 7d + O(h*) with

48 —72 54 27 7(0)
po L4 24 6 1| | SO
T 48|48 24 6 1] | fo)n?
48 72 54 27 F0)R

(6)
We now apply the ZFP decorrelating transform given by
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averages of surface temperature). X, Y, Z, and W denote four
random variables, each of which corresponds to one of the
four locations within a 1D ZFP block. When using zfp-
ROUND Hammerling et al. (2019), the error distribution is
centered around zero. Figure source: Fox and Lindstrom
(2024).
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Because AT is upper triangular (a consequence of our chosen
basis, 4), we have as i transform coefficient |c;| = O(h') as
h — 0 forie {0, 1,2, 3}. Due to ZFP’s separable basis
in higher dimensions, this result generalizes in a straight-
forward way via tensor products. For example, in three

dimensions, |c; 1| = O( (Av)'(AyY (82)") = O(h*i*%),

assuming Ax = Ay = Az = h.

As a result of our ordering of coefficients, for example,
by i + j + k in 3D, coefficients will appear sorted by
magnitude for small enough /% (assuming nonvanishing
derivatives of f). This, in turn, implies that each row of the
binary coefficient matrix being encoded begins with some
number of zeros, with fewer zeros for successive rows. Each
such leading sequence of zeros, regardless of length, is
encoded using exactly one bit that “terminates” the row
(recall that rows are encoded from right to left).

Now consider what happens when we halve /4. In d
dimensions, this implies a scaling of a coefficient
|Cz,,zz,“ ld| _ O(hi1+iz+'“+id) by 27(i1+iz+'“+id) Conse-
quently, we expect n; ;. =i +i+ - +ig fewer
significant bits in its negabmary representation. If coeffi-
cients already appear in sorted order, those new n;, ;, .,
zero-bits are each absorbed into a single row terminator bit
and incur no coding cost, except for the n35_ 3 =3 d bits
(corresponding to the leftmost column in the coefficient
matrix), since a single leading zero still incurs a one-bit cost.
These bits that have been “freed” when /4 was halved can
thus be used to increase the precision by encoding additional
bit planes up to the bit budget implied by the prescribed rate.

Let us now determine the number of freed bits, n(d), per
d-dimensional block:

33 3
(ZZ le+lz+ +ld>—3d

i1=0 iy ig=

3 49
=2d4' —3d=3d[——1).
2d 3d 3d(2 )

Amortized over 47 coefficients in a block, each coefficient
consequently gains a precision of 3d(2~' — 4~%on average
when 4 is halved, and the compression error therefore
decays as O(h342"'4)) as h — 0. Below, we demonstrate
the agreement of our theory with empirical observations.

)

4. Numerical results

To illustrate the effectiveness of the ZFP data compression
approach for PDE discretization, we focus here on the total
error in a variety of PDE-based simulations. The discussion
begins by investigating the error in a high-order finite
difference approximation of the first derivative, and pro-
ceeds to results of solving various PDEs (some using high-
order methods) with ZFP and other number formats. To
probe the class of physically important problems whose
solutions contain singular features, we then investigate a
problem of a shock wave in air impacting a cylindrical
inclusion of helium. Note that wave and shock propagation
problems are challenging tests because the resulting nu-
merical methods have very low dissipation, which would
otherwise damp and, thus, help to control errors.
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4.1. Experimental setup

We used public implementations of ZFP 1.0.0 Lindstrom
and Morrison (2022), Blaz 1.1 Martel (2021), and
SoftPosit 0.4.1 Leong (2018). For the serial CPU per-
formance results, we used a MacBook Pro with Apple
M2 Max cores and DDRS5 RAM, a Linux desktop
equipped with Intel Xeon E5-2680 CPUs and
DDR4 RAM, and LLNL’s Lassen supercomputer, with
IBM POWERY cores and DDR4 RAM. For these ex-
periments, we used ZFP’s fixed-rate capability via its
compressed-array C++ classes with double-precision
arithmetic and default software cache size of 29v/N ar-
ray elements for a d-dimensional array with N total el-
ements. The CUDA experiments were run on LLNL’s
Pascal and Lassen systems with NVIDIA P100 and
V100 GPUs, respectively, and on NERSC’s Perlmutter
with A100 GPUs. We used ZFP’s default rounding mode,
which as previously discussed may slightly bias and
inflate compression errors.

4.2. Notation

We use subscripts for partial derivatives, for example,
u, = oulox. Vu =u,, + u,, denotes the Laplacian (sum of
second partial derivatives). As should be clear from context,
we also use subscripts to index values on a Cartesian grid
and superscripts to denote iteration number, for example,
u; ; is the value at grid location (7, /) in the n'™ iteration. For

isotropic grids, we use 4 to denote grid spacing.

4.3. Relative behaviors of errors

Our discussion begins by investigating the fundamental
operation of derivative approximation via differences. Re-
gardless of the particular flavor of PDE discretization technique
(e.g., FEM, FD, FV), the end effect is to replace a differential
operator with a difference operator applied to data. Therefore,
consider data given by u(x, y, z) = sin 2zx sin 27y sin 277z on a
uniform spatial grid x; = jh, y, = kh, z,= Ih, for (x,y,z) € [0, 1)*.
The x-derivative, O,u, is then approximated on the dual grid
(i.e., the “half points”) using 8™ order centered finite differ-
ences and the L,-error is computed over the domain. All
arithmetic is done using 80-bit extended precision regardless of
storage type. The results are presented in Figure 2. Also in-
cluded in the figure are results using standard 64-bit doubles
and 32-bit floats. The usual analysis with standard floating
point axioms indicates that the error will decay as ~ A*, until
the condition of the problem, which grows as ~ 4, becomes
large enough that roundoff errors dominate (4~ 2~ for double
precision). Reference lines indicating these growth rates are
included in the figure, and the observations for standard
floating point calculations are exactly in line with this theory.
However, for the ZFP result we see a third growth rate

-=-32-bit float -=-64-bit double

28-bit zfp

compression error

L, error in u(x, y, z)

" 0(h8) truncation error

g, e
T O(h™") roundoff error

210 279 28 27 26 2 274 23

grid spacing h

Figure 2. Finite difference error in first partial derivative of u(x, y,
Z) = sin 27zx sin 27y sin 27z as a function of grid spacing, h, for 32-
bit IEEE and 28-bit ZFP fixed-rate arrays. The total ZFP error is
the sum of truncation error, compression error due to truncating
the ZFP stream, and roundoff error in the conversion to IEEE
double precision.

corresponding to ZFP-induced “compression error’”” associated
with bit stream truncation (see previous section). The com-
pression error decays as ~ 134 i the ZFP represen-
tation of u itself, and as ~ 392" =4)=1 in its first derivative
estimate. In 3D (d = 3), the compression error in O,u decays as
~ B*'9%* which is in excellent agreement with the observed
error. This is a remarkable result—whereas IEEE roundoff
error in derivative estimates increases with grid resolution,
ZFP compression error decreases. Because computations with
ZFP currently rely on conversion to an arithmetic type like
IEEE, this error reduction is eventually reversed once IEEE
double-precision roundoff error dominates (& ~ 27°).

4.4. Example: The Poisson equation

Having established the error behavior of ZFP for a single
roundtrip of compression and decompression, we now
evaluate how compression errors impact the solution
accuracy in iterative solvers and time-dependent PDEs,
where such errors may cascade over time. Particularly,
we focus on roundoff and compression errors involved in
finite-difference computations of first up to fourth
derivatives.

We begin by comparing ZFP accuracy with alternative
number representations of the iterative solution u(x, y) to the
Poisson equation

Uy + Uy, Zf(x,y) =V x? +y2 (10)

on [—1, 1T%, where we have chosen f{x, y) to be a radially
symmetric function that increases linearly by radius. Hence,
its contours are uniformly spaced concentric circles. Absent
boundary conditions, the solution is
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1 3
u(x.y) = 502 +57), (a1

as can easily be verified. We use this as ground truth and
then impose matching Dirichlet boundary conditions. With
prescribed boundaries, we then initialize the iterative solver
on the interior (—1, 1)* of the domain using transfinite
interpolation

uo(xay) :u(x,l)+u(1,y)—u(l,l) (12)
This yields a rough approximation to the solution. To
discretize the PDE, we use second-order finite differences

L Uimry — 2Ui + Ui

xx = hz > (133)
o — 2u; L
ty = T, (13b)

Our approach is to solve for u;; by fixing u at all other grid
points. For simplicity, we use a Jacobi update scheme where
we solve for u™*! at each grid point by fixing the values »” in
the previous iteration, n:

n+1

U =

(w0 + ey 0y 1 = ().
(14)

While such a scheme exhibits very slow convergence, we
favor a simple solver to allow for a straightforward com-
parison between number representations. For example, a
more sophisticated multigrid solver would require making
numerous decisions about coarsening, smoothing, coarse-
grid solver, etc., plus auxiliary numerical data structures.
For comparison with Blaz, which does not expose an API
for accessing individual array elements or for evaluating the
stencils in Equation (14), we here take the approach of
decompressing u” to a temporary double-precision array,
advancing the solution one iteration using double-precision
arithmetic, and then compressing the result, u""'. (As
discussed in the introduction, this approach was also taken
in Laney et al. (2013), which we will depart from below
when evaluating ZFP’s compressed-array primitives.) Thus,
compression and rounding errors will be introduced by each
approximate number representation once per iteration.

FNI

4.4.1. Stationary compression. Before evaluating the accu-
racy of iterates, we first examine how the roundoff errors
associated with reduced precision or compression of the
ground-truth solution u impact the accuracy not only of u
but also the L, norm of its gradient, || Vu/||, and its Laplacian,
V2u, computed using finite differences. We note that while u
is C? continuous, it is highly nonlinear and not necessarily
easily compressible. Still, we expect u to be fairly well
represented in reduced precision, with challenges posed by
the increasing condition numbers associated with the first

and second differential operators. This is confirmed by
Figure 3, which for several representations shows distorted
(noisy) contours and, for Vu, complete loss in accuracy for
the 16-bit scalar formats and for Blaz. This failure is simply
due to insufficient precision to resolve differences.

To compare with Blaz’s 5.625 bits/value, we evaluate
ZFP at 5.5 bits/value—the closest ZFP rate supported. Here
the ZFP Laplacian exhibits some slight asymmetry. We
attribute this to the asymmetry in the negabinary repre-
sentation ( f'and —f differ in precision by one bit) and to the
necessary linear ordering of coefficients that favors one
dimension over the other. A similar but far more pro-
nounced asymmetry is also seen in Blaz.

Figure 4 quantitatively plots as a function of grid size the
error in V?u estimated using fourth-order accurate differ-
encing. We here expect ZFP compression errors to follow
O(h*/®). We generally observe a shallow but slightly
positive error slope, whereas roundoff errors for the IEEE
and Posit scalar types follow O(h~2). These results clearly
demonstrate the benefit of using ZFP for finite differences,
with even 8-bit ZFP surpassing both 32-bit floats and Posits
in accuracy for fine enough grids (large N).

4.4.2. lterative solution. Based on the above results, we
expect several formats to be unusable for solving this
second-order PDE. This is also confirmed by Figure 5,
which visualizes approximations to V2 after a little more
than 2,000 iterations, well before convergence. We note
that, as in the static compression case of Figure 3, 12-bit
ZFP appears visually identical to full 64-bit double preci-
sion and further improves on 32-bit single precision, which
again exhibits grainy noise-like artifacts in contours. We
note that the grid has here been reduced to 1024 x 1024 to
speed up computations for the many iterations needed.

4.5. Example: The heat equation

Our Jacobi-based iterative approach to solving the Poisson
equation bears a strong resemblance to the heat equation,

(15)

with explicit time integration. Here time, ¢, takes the place of
iteration number, but with the added complication of having
to take small enough time steps to satisfy the CFL stability
condition. Using fourth-order accurate derivatives in space
and second-order time derivatives, the PDE is discretized as

= V(U + Uyy),

At
Ta Mgt

= v(uxx + u),y)—|—

At
?Vz (”XXXX + ity + ”yy,vY) +,

(16)
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Figure 3. lllustration of the impact of rounding/compression errors on finite-difference derivative estimates of the function

ulx,y) = 1/9(x* +y*)*2. The plots show (9u)'/* = /3][Vu[] = V2u = \/x? + y2 based on second-order finite differences
computed for various numerical representations of u on [— I, 1] with uniform, isotropic grid spacing h = 2~'". The increasing condition
numbers, {O(1), O(h~"), O(h=2)} (top to bottom), of the differential operators cause rounding errors to be magnified and reveal the
benefits of 12-bit ZFP even over 32-bit single precision. The ideal solution has concentric, evenly spaced circular contours (contours
are not shown for the worst approximations).
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Figure 5. Contour plots of Vu corresponding to an intermediate
Figure 4. Error in 4"-order Laplacian estimate versus grid size (not-yet-converged) solution to the Poisson equation V2u(r) =
for various number representations. ||r|| based on an iterative Jacobi solver. 12-bit ZFP is qualitatively
identical to 64-bit double precision; alternative representations

. . exhibit moderate to severe artifacts.
where we use standard central difference stencils Fornberg

(1988). We use Neumann boundary conditions,
u(~13) = u(1y) = (e, —1) = (1) =0, (17) () = uly. O)exp( (K + K1), (19)

enforced by reflecting u across the boundary, and initial

e In other words, the shape of u(x, y, f) does not change; only
conditions

the amplitude does. Using higher-order finite differencing,
(18) roundoff error dominates even for modest grid resolutions.

We use 256 x 256 grid points with 8 ghost layers on each
on the domain Q = [—1, 1]>. We obtain as analytical side to accommodate Blaz and ZFP. This gives isotropic
solution grid spacing # = 1/128. We set v =1, k, = k, = 7/2.

u(x,y,0) = sin(kx)sin(k,y)
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As with the Poisson equation, the state u is represented
using various number representations and is (de)com-
pressed once per time step. All arithmetic is performed in
full double precision, and we also keep the time advanced
solution %! in double precision before converting it to the
storage representation at the end of each iteration.

Figure 6 shows two snapshots of u at early and late times.
Even though the increment Au and u” are each easily
represented in double and even reduced precision, their
magnitudes differ greatly. Because the CFL condition
requires a small time step Az < h%/(4v) = 27'°, the ratio
Au/u < (7*/2)At<7 x 107> In other words, when advancing
the solution, the representation requires at least log,(|ul/|Au|)
bits of mantissa, or about 14 bits, to resolve any differences
between " and «""". As 16-bit IEEE and Posits both provide
less accuracy, «" "' =" + Au" rounds to ", and the solution is
never advanced, as is evident from the figure. On the con-
trary, even at a rate of 5.5 bits/value (slightly less than Blaz),
ZFP provides a reasonable solution after as many as
20,000 time steps (bottom panel) and in spite of accumulated
roundoff error. Blaz, on the other hand, introduces diagonal
drift in the solution early on (perhaps due to truncation of
higher-order cross terms), until around 7,600 time steps,
when it introduces NaNs. We have no explanation for this
behavior, as all computations involved are well-conditioned.

Figure 7 plots the L, error in u over time for various
representations. Notably, 16-bit ZFP is more accurate than
32-bit IEEE and Posits; 32-bit ZFP coincides with double
precision.

Whereas the Poisson equation illustrates challenges in
estimating accurate second derivatives using reduced-
precision representations, the heat equation demon-
strates how lack of precision causes difficulties with time
integration. Among the low-precision representations,
only ZFP at 8 bits/value handles this second challenge
gracefully.

4.6. Example: The wave equation

The approach taken so far of decompressing the entire state
before advancing and compressing it once per iteration
actually increases data movement. Not only do we incur that
same data movement to and from DRAM as we would when
representing the solution uncompressed, but we also have to
account for the additional data movement incurred by the
(de)compression steps. The ZFP representation was de-
signed specifically to reduce data movement by (de)com-
pressing tiny blocks of data on demand that uncompressed
occupy a single or a few hardware cache lines, thereby
avoiding subsequent accesses to DRAM. Below, we eval-
uate ZFP’s compressed-array data structures that perform
on-demand compression, decompression, and software
caching of uncompressed data, with lossy compression
occurring only when a previously modified block is evicted

Figure 6. Solutions to the heat equation at early (top) and late
(bottom) times. Blaz introduces NaNs early, while |6-bit IEEE
and Posits cannot resolve the small temporal changes required for
solver stability, effectively “freezing” the solution.
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1E-10
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B f
1E-13
[} 4096 8192 12288 16384 20480 24576 28672 32768
time step

Figure 7. Error in heat equation solution over time with respect
to the continuous analytical solution.

from the software cache, for example, due to a cache
conflict. For an N, x N, 2D array, we use the default
software cache size of 4, /N, N, elements rounded up to the
next integer power of two.

We begin our evaluation by solving the wave equation.
Here, we use the 6M-order accurate discretization described
in Banks and Henshaw (2012) and adopt the surface wave
test problem from the same. Specifically consider the wave
equation in two space dimensions,

(20a)

2 2
Uy = Cx Upy + € Uy,

u(x,,0) =u’(x,y), u(x,»,0)=1"(x,y), (20b)
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u,(x,0,1) = au(x,0,1), (20c)

where ¢, and ¢, are real valued wave speeds, and o € R. This
system supports traveling surface wave solutions,

u(x,y,t) = Ae® cos(kx+ wt), 1)

where A is the wave amplitude, and o satisfies the dispersion
¢x*k? — ¢,2a?. Note the additional constraint
S u(x,0,1) dx = 0 is enforced to eliminate the exponentially
growing mode with £ = 0. As in Banks and Henshaw (2012),
the problem is specified by taking k=1, ¢, = 1/2,¢,=1,a=0.4
and 4 = 1. Computations are performed in double precision
using the 6M-order accurate upwind scheme described in Banks
and Henshaw (2012) and using a square grid with (x, y) € (-,
) X (—2m, 0) with N points in each direction. The L, error
norm of the approximate solutions at the final time #,= 5 using
various levels of ZFP compression, as well as data stored in
standard IEEE half, single, and double precision, are given in
Figure 8. Here it is apparent that the error in the half-precision
result is essentially dominated by roundoff error already with a
grid of 16 x 16, demonstrating that half-precision is not a viable
storage representation in this case. Error in the single-precision
result becomes roundoff-dominated near 107, a similar level
of error to that obtained by 20-bit ZFP. At the finest resolution,
double precision gives roughly 14 correct digits, and 40-bit
ZFP is nearly identical. Note that, as in the case of the simple
derivative operator (results shown in Figure 2), the ZFP results
appear to attain an error floor before leveling off, which is in
contrast to typical IEEE floating point, where the roundoff error
dominates and grows as O(h~2), at least initially. Because the
ZFP results here use double precision arithmetic, such growth
will be observed for sufficiently small # and will follow the
trend inherent to double-precision arithmetic.

relation w =

4.7. Example: Compressible flow

Many PDE applications involve solutions with singular
features. For example in conservation laws, solutions with
discontinuities (shock waves) often arise from smooth data
in finite time. Singular solutions also commonly occur near
jumps in material properties, such as along an interface
between disparate gasses. The implications of adopting ZFP
arrays for such problems is important to understand.

As a more complicated test, consider a Mach-1.22 shock
in air impacting a cylindrical inclusion (bubble) of helium
gas. This problem was first considered experimentally in
Haas and Sturtevant (1987) and in many subsequent nu-
merical studies including Schwendeman (1988); Quirk and
Karni (1996); Banks et al. (2007). In the present manuscript,
the numerical method and setup from Banks et al. (2007)
are adopted. In particular, air is modeled as an ideal gas
with ratio of specific heats y = 1.4, specific heat at
constant volume C, = 0.720, and initial density py = 1.
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Figure 8. Error in final-time solution to the wave equation.

Helium is modeled as an ideal gas with ratio of specific heats
y = 1.67, specific heat at constant volume C, = 3.11, and
initial density po = 0.138. The domain is a 2D rectangle
(x, ¥) € (0, 0.75) x (—0.25, 0.25). The initial conditions
correspond to a planar shock wave in air traveling left to
right and initially located at x = 0.05 and to a circular in-
clusion of helium of radius o= 0.1 and centered at (x., y.) =
(0.2, 0). Runs were made with solution-adaptive time-
stepping with a constant CFL number of 0.8.

Similar to Figure 8, in Figure 9, we present the L, error
norm (L, is the preferred error norm for problems with
discontinuities) in the solution at the final time 7= 0.40 (after
the shock wave has traversed the bubble) versus the grid size
for the shock-bubble interaction problem with results
computed in IEEE double but stored in different data types.
The error is measured with respect to a solution computed
with 80-bit extended precision storage. Five grid resolutions
are considered, with N points in y and 1.5 N points in x.
Again, one sees that, for the standard IEEE types, domi-
nation by a growing roundoff error for sufficiently small 4,
immediately in the cases of IEEE half and single precision
and after N = 256 for double precision. For all IEEE types,
the growth follows the predicted O(h~2) rate, at least ini-
tially. As before, the ZFP curves at first decrease with in-
creasing grid size, but all eventually begin to increase, with
the higher-rate ZFP more closely following the double-
precision trend. Notably, however, the ZFP results at an
equivalent number of bits have orders of magnitude lower
error than their IEEE counterparts: roughly four orders for
IEEE half relative to the 16-bit ZFP and slightly more than
four orders for IEEE single relative to the 32-bit ZFP. Put
another way, for a desired level of accuracy, ZFP arrays can
provide significant savings: if an accuracy of 107> was
sufficient, 12-bit ZFP is a suitable replacement for both
IEEE single and IEEE double, with storage savings of
factors of 2.7 and 5.3, respectively, and without any special
numerical algorithm considerations, which could be a ne-
cessity for computing directly with IEEE single. These
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results are consistent with tests on other 2D problems not
shown here (i.e., 16-bit ZFP can replace IEEE double with
less than a 1% loss in accuracy). In 3D, the savings are
potentially even greater.

Figure 10 shows a visualization of the density field for
different data representations with N,, = 1024 at final time =
0.40. Clearly, the results using 16-bit IEEE half precision
and Posits exhibit significant artifacts, and we conclude that
16-bit precision is not sufficient in this case. On the other
hand, the 12-bit ZFP results, which are roughly on par with
IEEE single precision, are nearly indistinguishable from the
double precision calculation, but with more than 5x re-
duction in storage.

4.8. Performance

We conclude this section with some brief comments on
performance. While ZFP has been designed to be highly
performant, the reduction in data movement it affords also
comes at the expense of additional computations to perform
both compression and decompression. In the case of ZFP’s
compressed-array classes, additional overhead is incurred in
the index translations associated with array tiling and cache
lookup and management.

Figure 11 plots the serial CPU execution time for the
shock wave problem using both 16-bit ZFP and 64-bit
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Figure 9. Final-time error for the shock wave problem.

IEEE. As expected, execution time increases as O(N?)
due to finer resolution in x and y and correspondingly
smaller time steps to meet the CFL condition, resulting in
linear curves in this log-log plot. In spite of (de)compression
being done in software, ZFP performance is here only 2—
4 times lower than running with conventional floating-point
arrays. With the recent development of ZFP FPGA Barrow
et al. (2022); Sun and Jun (2019); Habboush et al. (2022);
Sun et al. (2020, 2022); Lim and Jun (2022) and ASIC Liu
et al. (2023) designs, we expect this performance gap to
narrow and possibly reverse with ZFP hardware support.

Figure 12 plots, for the same problem, the serial exe-
cution time dependence on both rate and grid size, N,
relative to FP 64 execution time. These runs were done on
LLNL’s Lassen supercomputer.” This figure shows roughly
a linear relationship between execution time and rate, with
better ZFP performance for the smallest and largest grids.
We conjecture that this is due to better software cache reuse
for small grids, with O(¥,) cache size and O(Ni) problem
size, and better hardware cache reuse relative to FP 64 when
grids are large. Here, 16-bit ZFP is roughly 2.1-2.5 times
slower than FP 64.

Whereas keeping up with memory bandwidth is chal-
lenging, data movement occurs throughout the memory
hierarchy: between CPU and GPU Bamakhrama et al.
(2019), between compute nodes using communication
Ramesh et al., 2022; Zhou et al., 2021, 2022b, 2022, and
between compute nodes and disk in I/O operations Langer
et al. (2016); Lindstrom et al. (2016); Triantafyllides et al.
(2019); Orf (2019); Margetis et al. (2021); McCallen et al.
(2022). Here, ZFP fares more favorably and often dra-
matically improves overall performance. Moreover, in these
situations it is common to compress larger pieces of an array
than single blocks at a time, allowing overhead to be am-
ortized over many blocks and data movement to be
accelerated using parallel (de)compression.

ZFP’s decomposition of arrays into small, independently
compressed blocks exposes opportunities for massive data
parallelism, as exploited by the ZFP CUDA back-end.
Figure 13 plots the ZFP compression and decompression
throughput in gigabytes per second on three generations of
NVIDIA GPUs. As data source, we used 3D double-

(a) IEEE FP 64 (b) zFp 12

(c) POSIT 16

(d) IEEE FP 16

Figure 10. Density contours for the shock wave/bubble interaction at time t = 0.40.
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2—4 times slower.
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Figure 12. ZFP execution time relative to |[EEE double precision
versus rate and vertical grid size, N,, for the shock wave
problem.

precision arrays from the Miranda hydrodynamics code
available from SDRBench Zhao et al. (2020).* Here
throughput peaks around 700 GB/s on an A100 GPU.
Performance is strongly dictated by bit rate—at lower rates,
fewer bits need to be output or processed, and (de)com-
pression time roughly depends linearly on rate.

Because of ZFP’s decomposition into independently
compressed blocks, distributed-memory parallelism scales
as one would expect. That is, no cross-node communication
or synchronization is needed for (de)compression itself. On
the other hand, other studies have highlighted the benefits of
using ZFP to perform node-to-node communication in
compressed form Zhou et al. (2021); Ramesh et al. (2022).

At throughputs like these, ZFP becomes an attractive
approach to accelerating HPC applications with minimal
impact on accuracy, as we have demonstrated here. Com-
pression errors introduced by 16-bit ZFP usually fall

——-A100 encode —o-V100 encode -o-P100 encode

A100 decode -« V100 decode P100 decode
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throughput (uncompressed GB/s)
15}
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&
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Figure 13. 3D fixed-rate double-precision parallel throughput
on three generations of NVIDIA graphics cards. Notice how
(de)compression time is roughly proportional to bit rate.

somewhere in between single and double precision roundoff
errors, and sometimes greatly improve on single precision.
Furthermore, as ZFP provides a near continuous knob on
either rate or accuracy, it allows balancing accuracy and
performance to meet the application’s needs.

Finally, for memory capacity limited computations, ZFP
provides an alternative to double precision that enables
computations to be completed that otherwise could not due
to insufficient memory.

5. Future work and conclusions

Memory usage, both capacity and bandwidth, have become
major concemns in HPC, motivating new approaches to the
intelligent storage of information. Reduced precision repre-
sentations are undergoing a renaissance as computational
scientists seek to balance information content with the number
of bits used. Here, we have demonstrated that an approach
based on lossy compressed floating-point arrays is a viable
strategy worthy of further consideration by the HPC com-
munity. A drop-in compressed array representation has ob-
vious advantages over mixed or lower precision approaches,
both in terms of ease of implementation and, if computing in
double precision, no need for the specialized solvers robust to
roundoff accumulation and overflow that are a necessity for
single (or lower) precision calculation. In addition, the ZFP
compression error in derivative estimates actually decreases
with increasing number of degrees of freedom (i.e., larger
condition numbers) as opposed to the standard IEEE floating-
point behavior, where roundoff error in derivative estimates
increases.

We discussed and added to the growing theoretical and
empirical evidence supporting the use of compressed data
arrays in certain classes of HPC simulation. Recent theo-
retical results provide a solid foundation that the errors of
lossy compression, like their cousins from traditional finite-
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precision arithmetic, can be controlled to ensure stability,
accuracy, and effectively unbiased approximation. Exper-
iments with simulations based on PDEs demonstrate a
factor of four reduction in memory requirements over [IEEE
double for less than a 1% change in the L; norm of the
computed results, which is comparable to the accuracy of
single precision. We note that, as with IEEE floating-point
precision, choosing a suitable ZFP rate for a given problem
is mostly an exercise in trial and error, although the error
bounds and convergence theory presented here may inform
such decisions.

It is important to identify areas where an approach based
on ZFP arrays will likely not benefit. ZFP obtains its highest
compression, like most compressors, when data are locally
well-correlated (similar or “smooth™). Particle data, for
instance, only has such locality if ordered in high-
dimensional phase space, which would defeat a major
advantage of particle-based methods; thus, ZFP arrays
provide little gain for these problems. Depending on how
data is organized, unstructured data, for example, from a
tetrahedral mesh or arrays of structures, are generally not
ordered in such a way as to provide the local correlations
needed for high compression. Clever refactoring can reduce
this concern. Problems with extreme nonlinearities and data
ranges may also present a challenge for a compressed data
type. One may object to lossy compression used to represent
chaotic solutions like turbulence, but the compression errors
are no more serious than the other discretization errors, and
one should never focus on a particular instantiation of a
chaotic process; only the statistics are valuable quantities of
interest for these problems, and the point of eliminating bias
in ZFP is to ensure that we can compute correct statistics for
the system. Even in problems where extremely high ac-
curacy is required and the truncation error may be driven
down to the level of roundoff error, ZFP arrays still provide
an advantage because ZFP’s wider mantissas actually im-
prove accuracy for the same storage.

Fixed-rate ZFP is but one compression strategy, and
there are other options to consider for future work. In
particular, a promising direction would be to use variable-
rate arrays as the compression strategy. In this case, only as
many bits to achieve a desired level of accuracy within each
block would be used, so each compressed block would have
a different compression rate. Initial results indicate that this
choice of compression strategy is even more efficient than
fixed-rate ZFP because it “locally adapts” the compression
rate to the data, and overall compression factors above four
in 2D can be achieved while maintaining less than 1%
compression error in the solution.
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Notes

1. Negative connotations associated with “lossy” compression are
undeserved; IEEE floating-point is itself lossy, rounding away
mantissa that it cannot represent. Roundoff error is literally the
error associated with lossy finite-precision arithmetic, dem-
onstrating that lossy errors can be managed.

2. Such loss also occurs in usual floating-point arithmetic such as
addition.

3. Some of the N, = 1024 runs exceeded Lassen’s 12-h job time
limit. Thus, we timed only the first 75% of the simulation at this
grid size.

4. https://sdrbench.github.io
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