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ABSTRACT 

We apply graph neural network (GNN)-based analysis to automatically classify different crystalline phases 

inside computationally-synthesized molybdenum disulfide monolayer by reactive molecular dynamics 

(RMD) simulations on parallel computers. We have found that addition of edge-based features like distance 

increases the model accuracy up to 0.9391. Network analysis by visualizing the feature space of our GNN 

model clearly separates 2H and 1T crystalline phases inside the network. This work demonstrates the power 

of the GNN model to identify structures inside multimillion-atom RMD simulation data of complex 

materials. 
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1 INTRODUCTION 

Machine learning (ML) has proved ubiquitous applicability in image recognition, natural language pro-

cessing and many other areas involving real-world data. Such success has inspired chemists to apply ML, 

especially deep learning, to better understand chemical processes (Hansen et al. 2015; Montavon et al. 

2012). With the tremendous amount of data generated by computer simulations, deep neural networks in 

particular have shown significant power in many chemistry tasks, including the prediction of properties 

(Wei et al. 2012), drug discovery (Altae-Tran et al. 2017) and understanding of quantum molecular dynam-

ics (Mendoza et al. 2018). Most of the existing works deal with small organic molecules, where the datasets 

are formed by a collection of molecular graphs with adjacency matrix describing the connectivity of atoms. 

Such graph-based datasets require a unique deep-learning architecture to capture the additional structured 

information. Graph neural networks (GNN) (Scarselli et al. 2009), a variation of the widely used convolu-

tional neural networks (CNN) (Krizhevsky et al. 2012), process graph data as nodes and edges in a learnable 

fashion. Duvenaud et al. (2015) generalized molecular feature extraction methods by a series of differenti-

able functions to produce low-dimensional molecular fingerprints. Kearnes et al. (2016) integrated edge 

representations into the learning functions to capture more structural features from the graph. Li et al. (2016) 

applied gated recurrent units to update the hidden state during the learning phase, so that sequence-based 

methods (e.g., LSTM) can also be injected in graph models. 

More recently, these GNN applications to isolated molecules have been extended by materials scientists to 

handle infinitely-repeated crystal structures (Xie and Grossman 2018). However, this crystal-graph CNN 

has been limited to periodically-repeated, small crystalline unit cells each involving a few atoms. In this 

paper, we extend the applicability of GNN to general material graphs composed of millions of nodes. This 



Liu, Nomura, Rajak, Kalia, Nakano and Vashistha 

is a challenge since material structure often is a mixture of various crystalline phases and defects, which 

are interconnected to each other via bonds, resulting in a highly-complex, massive graph. Here, we propose 

a new variant of GNN to identify different phases inside an atomically-thin molybdenum disulfide (MoS2) 

monolayer that is computationally synthesized by reactive molecular dynamics simulation (RMD) 

simulation (Hong et al. 2017), mimicking experimental chemical vapor deposition (CVD). MoS2 is an 

archetype of atomically-thin layered materials (Geim and Grigorieva 2013), for which ML has extensively 

been applied (Bassman et al. 2018). Here, our model analyzes the local graph topology around each atom, 

and classifies it into crystalline 2H or 1T structures as is shown in Fig. 1. 

  

Figure 1: Top views of 2H (left) and 1T (right) crystalline phases of MoS2 monolayer. Magenta and yellow 

spheres represent Mo and S atoms, respectively, whereas Mo-S bonds are represented by cylinders. 

2 METHOD 

Figure 2 presents a high-level schematic of our classification task between 2H and 1T crystalline phases 

using GNN. The following subsections explain key components of this learning architecture, including 

dataset generation and GNN. 

 

Figure 2: Schematic of 2H vs. 1T phase classification by graph neural network. 

2.1 Dataset Generation 

We have performed RMD simulation to synthesize MoS2 monolayer by sulfidation of molybdenum trioxide 

(MoO3) precursor (Hong et al. 2017), followed by thermal annealing. RMD simulation follows the 

trajectory of all atoms while computing interatomic interaction using first principles-informed reactive 

bond-order and charge-equilibration concepts (Senftle et al. 2016). We have designed scalable algorithms 

to perform large RMD simulations on massively parallel computers (Nomura et al. 2008; Nomura et al. 

2015). Our RMD produces polycrystalline MoS2 monolayer, where different regions of the monolayer 

belong to either 2H or 1T phase of MoS2 crystal. Here, each atom inside the synthesized polycrystal is 
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connected to its nearest-neighbor atoms by forming bonds with them, which in turn are connected to their 

nearest neighbors and so on. Such bond formation between atoms makes the entire MoS2 monolayer a 

massive graph consisting of multimillion nodes (atoms) and edges (bonds). Hence, identification of 2H and 

1T phases using a conventional graph-based ML model is not feasible for the entire graph. To circumvent 

this problem, we have randomly sampled 66,896 atoms from the total MoS2 monolayer, and for each of 

these atoms, created a local graph using all their neighbors within a cutoff radius of 0.8 nm. The rationale 

behind this choice is that, for each atom, graph structure generated by its first and second nearest neighbors 

is able to distinguish its phase (2H or 1T). These 66,896 local graph structures serve as the training data for 

our neural-network model, and it consisted of 18,650 2H, 32,446 1T and 16,000 disordered structures. 

2.2 Graph Neural Networks 

Graph-based data in general can be represented as 𝑮 = (𝑽, 𝑬), where 𝑽 is the set of nodes and 𝑬 is the set 

of edges. Each edge 𝑒𝑢𝑣 ∈ 𝑬 is a connection between nodes 𝑢 and 𝑣. If 𝑮 is directed, we have 𝑒𝑢𝑣 ≢ 𝑒𝑣𝑢; 

if 𝑮 is undirected, instead 𝑒𝑢𝑣 ≡ 𝑒𝑣𝑢. Unless specified, the remaining of this paper will deal with undirected 

graphs, but we will show that it is trivial to modify our model to process directed graph data. It should be 

pointed out that, in molecular graphs, the nodes are actually atoms and the edges are atomic bonds, thus, 

the two pairs of terms are used interchangeably in this paper. 

The goal of GNN is to learn low-dimensional representation of graphs from the connectivity structure and 

input features of nodes and edges. The forward pass of GNN has two steps, i.e., message passing and node-

state updating. The architecture is summarized by the following recurrence relations, where t denotes the 

iteration count: 

𝑚𝑣
𝑡+1 = ∑ 𝑀𝑡(ℎ𝑣

𝑡 , ℎ𝑤
𝑡 , 𝑒𝑣𝑤)𝑤∈𝑁(𝑣)  ,        (1) 

ℎ𝑣
𝑡+1 = 𝑈𝑡(ℎ𝑣

𝑡 , 𝑚𝑣
𝑡+1),          (2) 

where 𝑁(𝑣) denotes the neighbors of 𝑣 in graph 𝑮. The message function 𝑀𝑡 takes node state ℎ𝑣
𝑡  and edge 

state 𝑒𝑣𝑤  as inputs and produces message 𝑚𝑣
𝑡+1 , which can be considered as a collection of feature 

information from the neighbors of 𝑣. The node states are then updated by function 𝑈𝑡 based on the previous 

state and the message. The initial states ℎ𝑣
0 are set to be the input features of atoms, which we will discuss 

in the next section. Here, we use normalized adjacency matrix 𝐴̃ (Chen et al. 2018) of the graph coupled 

with some other features (which will be discussed below) as the edge state. As shown in Fig. 3, these two 

steps are repeated for a total of T times in order to gather information from distant neighbors, and the node 

states are updated accordingly. GNN can be regarded as a layer-wise model that propagates messages over 

the edges and update the states of nodes in the previous layer. Thus, T can be considered to be the number 

of layers in this model. 

The exact form of message function is 

𝑚𝑣
𝑡+1 = 𝐴𝑣𝑾𝒕[ℎ1

𝑡  … ℎ𝑣
𝑡 ] + 𝒃,        (3) 

where 𝑾𝒕 are weights of GNN and 𝒃 denotes bias. We use gated recurrent units (Cho et al. 2014) as the 

update function: 

𝑧𝑣
𝑡 = 𝜎(𝑾𝒛𝑚𝑣

𝑡 + 𝑼𝒛ℎ𝑣
𝑡−1) ,        (4) 

𝑟𝑣
𝑡 = 𝜎(𝑾𝒓𝑚𝑣

𝑡 + 𝑼𝒓ℎ𝑣
𝑡−1) ,        (5) 

ℎ𝑣
𝑡̃ = tanh(𝑾𝑚𝑣

𝑡 + 𝑼(𝑟𝑣
𝑡 ⊙ ℎ𝑣

𝑡−1)) ,       (6) 

ℎ𝑣
𝑡 = (1 − 𝑧𝑣

𝑡) ⊙ ℎ𝑣
𝑡−1 + 𝑧𝑣

𝑡 ⊙ ℎ𝑣
𝑡̃ ,        (7) 

where ⊙ denotes element-wise matrix multiplication and 𝜎(∙) is sigmoid function for nonlinear activation. 
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Figure 3: Repeating message function and update function T times to learn atom representations. 

Once GNN learns low-dimensional atom representations, we feed them to a generic ML model, e.g. fully-

connect network, to predict 2H vs. 1T phases as a complete classification task. We argue that the learned 

atom representations for the molecular graphs can better interpret the structural uniqueness of 2H and 1T 

phases, so that the model can achieve higher predictive performance. In the next section, we show the 

experiment results to support this assumption. 

3 EXPERIMENT AND ANALYSIS 

We have studied the structure of CVD-grown MoS2 monolayer using RMD simulation (Fig. 4). The initial 

system for RMD simulation consists of MoO3 slab surrounded from top by S2 gas. The dimension of the 

RMD simulation is 211.0 × 196.3 × 14.5 (nm3) in the x-, y- and z-directions, respectively, and it consist of 

a total of 4,305,600 atoms. The entire system is subjected to an annealing schedule, where the system 

temperature is first increased to 3,000 K, and subsequently its temperature is quenched to 1,000 K, where 

it is held for 1 nanosecond (ns). This is followed by two annealing cycles consisting of a heating step from 

1,000 K to 1,600 K for 0.4 ns followed by a thermalization step at 1,600 K for 1.5 ns and a cooling step 

from 1,600 K to 1,000 K for 0.4 ns. This annealing schedule facilitates the reaction of S2 with MoO3 slab, 

which results in the formation of polycrystalline MoS2 monolayer where different regions of the synthesized 

MoS2 monolayer belongs to either 2H or 1T phase. 

 

Figure 4: Snapshot of computationally-synthesized MoS2 monolayer. Ball-and-stick representation is used 

to show the positions of atoms and covalent bonds with neighboring atoms. Atoms are color-coded as 

yellow for sulfur (S), blue for molybdenum (Mo) and red for oxygen (O), respectively. 
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3.1 Input Features and Training Settings 

The small molecular graphs carved out from the simulation results carry a number of properties on atoms 

as well as bonds. See Table 1 for details. These properties are transformed into vector format and embedded 

with nodes and edges as the initial states of the GNN model. Due to the fact that the numbers of atoms in 

different atom-centered graphs are different, all input features are zero-padded up to a larger dimension, d 

= 40, to conform with Tensorflow’s dataset interface (Abadi et al. 2015). 

Table1: Input node and edge features. 

 Feature Description Datatype 

Node 
atom type Mo or S, a one-hot vector 2 integers 

charge  Atomic charge 1 float 

Edge 
distance Distance between atoms in nm 1 float 

bond order Dimensionless chemical bond order 1 float 

We randomly shuffle and split the dataset as follows: 50,000 graphs in training set; 5,000 graphs in 

validation set; and another 5,000 in test set. The remaining 6,896 graphs are not used in our experiments. 

The number of layers of our GNN model is T = 2, batch size set to 20, and we train the model for a maximum 

of 100 epochs using Adam (Kingma & Ba 2015) with a learning rate of 0.01. 

3.2 Predictive performance 

To investigate how the input features affect the predictive performance, we perform a series of experiments 

with different selections of edge features, while node features are kept fixed. Results are shown in Table 2. 

In the first trail, we only use node features as inputs, revealing no spatial information but just adjacency 

matrix for training. The F1 score of 2H in test set is only 0.5424, meaning that nearly half of the 2H phases 

are misclassified. Next, we add edge features to the model, then observe improvements in both 1T and 2H 

classes. It turns out that distance and bond order have almost equivalent effect to the GNN. The reason for 

not seeing increase in performance of the model when distance and bond order are added together as edge 

feature is because both of them make an estimate of bonding between two atoms and hence are highly 

correlated. High bond-order values mean strong bonding between atoms and small values mean weak 

bonding, whereas distance cutoff based feature makes an absolute decision whether atoms are bonded or 

not. Since the bond length between atoms is an important feature to distinguish these phases, the 

node+distance based model gives the higher performance. 

Table 2: F1 scores for different input features. Higher value sinifies better classification accuracy. 

input features 1T 2H 

node only 0.7821 0.5424 

node + edge 0.9321 0.8642 

node + distance 0.9391 0.8855 

node + bond order 0.9305 0.8761 

Figure 5 plots the ROC (receiver operating characteristic) curve obtained in one of our experiments using 

both node and edge features. The curves of 1T and 2H are close to the upper-left corner, indicating that the 

model achieves high accuracy on both classes. In addition, we calculate a more quantitative measure, ROC-

AUC (area under the ROC curve) score, as is shown in Table 3, to verify the performance of the model. 

We observe similar results as the F1 scores, which confirms the robustness of our conclusion drawn above. 
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Figure 5: ROC curves for 1T (green) and 2H (red) phases using node and edge features as input, which 

correspond to the second row in Table 3. The x-axis is the true positive rate (TPR) and y-axis is the false 

positive rate (FPR). 

Table 3: ROC-AUC for different input features. Value is in the range of (0, 1). Higher value signifies better 

classification accuracy. 

input features 1T 2H 

node only 0.88 0.87 

node + edge 0.93 0.92 

node + distance 0.95 0.95 

node + bond order 0.93 0.93 

3.3 Visualization of Hidden Node States 

It is still an open and active research area to interpret the learning process of ML models. In this work, we 

try to provide some insight on how GNN learns from graphs by visualizing the evolution of the hidden 

states during the training phase. As is shown in Fig. 6, this molecular graph has 20 atoms with a dimension 

of 3 (see Table 1 for details) for the initial atom features. There are several patterns shared by the atoms, 

for example, the first 7 atoms have very similar feature encodings. In the second and third layers, GNN 

expands the dimension to 25, which is a hyperparameter of the model, while the feature of each atom 

gradually becomes divergent compared to the initially state. Such divergence would make it easier to find 

the hyperplane in the feature space, so that the model can achieve high classification accuracy. 
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Figure 6: Layer-wise evolution of node states. The x-axis is the dimensions of features (padded to 20) and 

y-axis is the number of atoms (zero-padded to 40) in the graph. Each row represents a feature vector of an 

atom, and the color of each pixel indicates the value on the unit. 

4 CONCLUSION 

In summary, we have shown that graph neural network-based analysis can automatically classify different 

phases present in RMD simulation of MoS2 synthesis. Furthermore, we found that addition of edge based 

features (especially bond distance) increases the model accuracy significantly. Network analysis by 

visualizing the feature space of our GNN model shows clear separation of the 2H and 1T graph structures 

inside the network, which helps identify and better understand these structures.  

This is contrary to conventional techniques for structural analysis (e.g., common neighborhood analysis 

and centro-symmetry parameter calculation). While they work for mono-atomic FCC, BCC and HCP 

crystals, these conventional methods do not distinguish 2H and 1T crystalline phases in transition-metal 

dichalcogenide layers considered here. Due to the lack of a readily available order parameter that can 

identify each structure type, our GNN model serves as an indispensable analysis tool for general materials. 
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