
Articles
https://doi.org/10.1038/s42256-021-00302-5

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA. 2Division of Applied Mathematics, Brown University,
Providence, RI, USA. 3LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China. 4Department of
Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA. ✉e-mail: george_karniadakis@brown.edu

We consider theoretical and computational issues related
to operator regression and how to design deep neural
networks (DNNs) that could represent accurately lin-

ear and nonlinear operators, mapping input functions into output
functions. These operators can be of the explicit type, for example,
the Laplace transform, or of the implicit type, for example, solution
operators of partial differential equations (PDEs). For solution oper-
ators, the inputs to a DNN could be functions representing bound-
ary conditions selected from a properly designed input space V.
Implicit type operators may also describe systems for which we do
not have any mathematical knowledge of their form, for example,
in social dynamics, although we do not consider such cases in the
present work.

Discovering equations or operators from data is not a new objec-
tive. There were multiple pioneering efforts using neural networks
(NNs) in the 1990s, including work by Kevrekidis and his associ-
ates1–3 and other groups4, as well as efforts using different physically
intuitive approaches (for example, coarse-grained operators from
fine-scale data5,6). Although these previous efforts are not directly
related to our work here, they nevertheless contain several interest-
ing aspects that are useful in operator regression. In the literature,
two types of implicit operator have been considered, that is, dynam-
ical systems in the form of ordinary differential equations (ODEs)
or in the form of PDEs. For the dynamical systems, different net-
work architectures have been employed, including recurrent NNs
(RNNs)7, residual networks8, neural ordinary differential equations9
and neural jump stochastic differential equations10. However, they
are only able to predict the evolution of a specific system (for exam-
ple, a Hamiltonian system11–14) rather than identifying the system
behaviour for new unseen input signals. In learning operators from
PDEs with structured data, some works treat the input and output
function as an image and then use convolutional NNs (CNNs) to
learn the image-to-image mapping G (refs. 15,16), but this approach
can only be applied to particular types of problem where the

locations of the points where input function u is evaluated are
fixed. For unstructured data, a modified CNN based on generalized
moving least squares17 or graph kernel networks18 can be used to
approximate specific operators. However, they are not able to learn
general nonlinear operators. Also, some PDEs can be parameterized
by unknown coefficients19–23 or an unknown forcing term24,25, and
then the unknown parts are identified from data. However, not all
PDEs can be well parameterized. Symbolic mathematics have also
been applied to represent PDEs26,27, while accuracy and robustness
still need to be addressed.

In this Article, we propose a general deep learning frame-
work, DeepONet, to learn diverse continuous nonlinear opera-
tors. DeepONet is inspired directly by theory that guarantees small
approximation error (that is, the error between the target opera-
tor and the class of neural networks of a given finite-size archi-
tecture). Moreover, the specific architectures we introduce exhibit
small generalization errors (that is, the error of a neural network
for previously unseen data) for diverse applications, which we study
systematically herein. Proper representation of the input space V
of the operator is very important. Hence, we select 16 test cases to
investigate the important question of sampling the space V. These
examples include integrals, Legendre transforms, fractional deriva-
tives, nonlinear ODEs and PDEs, and stochastic ODEs and PDEs.
For all examples, the proposed NNs generalize well—they predict
the action of the operator on unseen functions accurately.

Our proposal of approximating functionals and nonlinear opera-
tors with NNs goes beyond the universal function approximation28,29
and supervised data, or using the idea of physics-informed neural
networks22. Specifically, we resort to a little known but powerful
theorem, the universal operator approximation theorem30. This
theorem states that a NN with a single hidden layer can approxi-
mate accurately any nonlinear continuous functional (a mapping
from a space of functions into real numbers)31–33 and (nonlinear)
operator (a mapping from a space of functions into another space of

Learning nonlinear operators via DeepONet based
on the universal approximation theorem
of operators
Lu Lu   1, Pengzhan Jin   2,3, Guofei Pang2, Zhongqiang Zhang   4 and George Em Karniadakis   2 ✉

It is widely known that neural networks (NNs) are universal approximators of continuous functions. However, a less known
but powerful result is that a NN with a single hidden layer can accurately approximate any nonlinear continuous operator. This
universal approximation theorem of operators is suggestive of the structure and potential of deep neural networks (DNNs) in
learning continuous operators or complex systems from streams of scattered data. Here, we thus extend this theorem to DNNs.
We design a new network with small generalization error, the deep operator network (DeepONet), which consists of a DNN
for encoding the discrete input function space (branch net) and another DNN for encoding the domain of the output functions
(trunk net). We demonstrate that DeepONet can learn various explicit operators, such as integrals and fractional Laplacians, as
well as implicit operators that represent deterministic and stochastic differential equations. We study different formulations of
the input function space and its effect on the generalization error for 16 different diverse applications.

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell218

mailto:george_karniadakis@brown.edu
http://orcid.org/0000-0002-5476-5768
http://orcid.org/0000-0002-2169-1491
http://orcid.org/0000-0001-8032-7510
http://orcid.org/0000-0002-9713-7120
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-021-00302-5&domain=pdf
http://www.nature.com/natmachintell

ArticlesNaTure MacHIne InTeLLIgence

functions)30,34. Let G be an operator taking an input function u, with
G(u) being the corresponding output function. For any point y in
the domain of G(u), the output G(u)(y) is a real number. Hence, the
network takes inputs composed of two parts: u and y, and outputs
G(u)(y) (Fig. 1a). In practice, we represent these input functions
discretely so that network approximations can be applied. Here, we
explore different representations of functions in the input space V,
with the simplest one based on the function values at a sufficient
but finite number of locations {x1, x2, …, xm}, which we call ‘sensors’
(Fig. 1a). There are other ways to represent a function, for example,
with spectral expansions or as an image, and we demonstrate these
in the 16 examples we present in this work. We envision that, in the
future, such functions will be represented by other NNs.

DeepONet consists of an offline training stage followed by an
online inference stage, and can be used for the real-time predic-
tions required in critical applications such as autonomous vehicles
or dynamic target identification. In the offline stage, we solve the
target operator with proper input space V using classical numerical
methods and then train our DNNs. Depending on the application,
a DeepONet may require only one or a few hundred graphics pro-
cessing unit (GPU) hours and can be trained using experimental or
simulation data, or both, at various scales and levels of fidelity. The
computational expense for training depends on the complexity of
the operator, the quantity and quality of the data, and the network
size. In this work, we assume that we have enough data and com-
putational resources to train the model offline. In the online stage,
we can use the trained network as a surrogate for online inference,
which only involves a forward pass of the network, and thus it can
be performed for high-dimensional models to speed up computa-
tionally expensive applications dramatically, for example, in a frac-
tion of a second. To put this in perspective, one can look at everyday
effective applications of pre-trained DNNs, for example, the recent
deep learning model GPT-335 for language modelling that has

175 billion parameters and requires 355 GPU years (cost of approxi-
mately US$5 million) to train, but once this model is trained, it can
be deployed for almost real-time inference.

DeepONet theory and network architecture
In the following, we state the theorem of Chen and Chen30 (for
more details, including definitions of variables, see Supplementary
Section 1), which we further extend to deep NNs, based on which
we propose the DeepONet. Subsequently, we present data genera-
tion and another theorem that relates the number and type of data
with the accuracy of the input functions.

Theorem 1 (Universal Approximation Theorem for Operator).
Suppose that σ is a continuous non-polynomial function, X is a Banach
space, K1 ⊂ X, K2 ⊂ R

d are two compact sets in X and Rd, respectively,
V is a compact set in C(K1), G is a nonlinear continuous operator,
which maps V into C(K2). Then for any ϵ > 0, there are positive integers
n, p and m, constants cki , ξk

ij, θk
i , ζk ∈ R, wk ∈ R

d, xj ∈ K1, i = 1, …, n,
k = 1, …, p and j = 1, …, m, such that
�
�
�
�
�
�
�
�
�
�
�
�
�

G(u)(y)−
p

�

k=1

n�

i=1
cki σ





m�

j=1
ξk
iju(xj) + θk

i





� �� �

branch

σ(wk · y+ ζk)
� �� �

trunk

�
�
�
�
�
�
�
�
�
�
�
�
�

< ϵ

(1)

holds for all u ∈ V and y ∈ K2. Here, C(K) is the Banach space of all con-
tinuous functions defined on K with norm ∥ f∥C(K) = maxx∈K|f(x)|.

The network constructed in equation (1) and the meanings
of the hyperparameters n, p and m are depicted in Fig. 1c. This

a Inputs & output

function

Network

b Training data

c Stacked DeepONet

Branch net1

Branch net2

Branch netp

Trunk net

d Unstacked DeepONet

Branch net

Trunk net

Input function
at fixed sensors at random location

Output function

Fig. 1 | Illustrations of the problem set-up and new architectures of DeepONets that lead to good generalization. a, For the network to learn an operator
G : u ↦ G(u) it takes two inputs [u(x1), u(x2), …, u(xm)] and y. b, Illustration of the training data. For each input function u, we require that we have the
same number of evaluations at the same scattered sensors x1, x2, …, xm. However, we do not enforce any constraints on the number or locations for
the evaluation of output functions. c, The stacked DeepONet is inspired by Theorem 1, and has one trunk network and p stacked branch networks. The
network constructed in Theorem 1 is a stacked DeepONet formed by choosing the trunk net as a one-layer network of width p and each branch net as
a one-hidden-layer network of width n. d, The unstacked DeepONet is inspired by Theorem 2, and has one trunk network and one branch network. An
unstacked DeepONet can be viewed as a stacked DeepONet with all the branch nets sharing the same set of parameters.

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell 219

http://www.nature.com/natmachintell

Articles NaTure MacHIne InTeLLIgence

approximation theorem is indicative of the potential application of
neural networks to learn nonlinear operators from data, that is, simi
lar to a standard NN where we learn functions from data. However,
this theorem does not inform us how to learn operators efficiently.
The overall accuracy of NNs can be characterized by dividing the
total error into three main types: approximation, optimization and
generalization errors36–38. The universal approximation theorem
only guarantees a small approximation error for a sufficiently large
network, but it does not consider the important optimization and
generalization errors at all, which, in practice, are often dominant
contributions to the total error. Useful networks should be easy to
train (that is, to exhibit small optimization error) and generalize
well to unseen data (that is, to exhibit small generalization error).

To demonstrate the capability and effectiveness of learning
nonlinear operators using NNs, we set up the problem to be as
general as possible by using the weakest possible constraints on
the sensors and training dataset. Specifically, the only condition
required is that the sensor locations {x1, x2, …, xm} are the same
but not necessarily on a lattice for all input functions u, while we
do not enforce any constraints on the output locations y (Fig. 1b).
However, even this constraint can be lifted, for example, by inter-
polating u on a common set of sensor locations or by projecting
u to a set of basis functions and then use the coefficients as a rep-
resentation of u. Heavily inspired by Theorem 1 and its extension
Theorem 2 (see below), we propose a specific new network archi-
tecture, the deep operator network (DeepONet), to achieve small
total errors. We will demonstrate that, unlike fully connected neu-
ral networks (FNNs) and residual neural networks (ResNets)39,
DeepONet substantially improves generalization based on a design
of two subnetworks, the branch net for the input function and the
trunk net for the locations to evaluate the output function. The key
point is that we discover a new operator G as a NN, which is able
to make inferences for quantities of interest given new and unseen
data. If we wish to further interpret the type of operator G using
the familiar classical calculus, we can project the results of G(u)
(y) onto a dictionary containing first- or higher-order derivatives,
gradients, Laplacians and so on, as is done currently with existing
regression techniques19.

DeepONet architecture. We focus on learning operators in a more
general setting, where the only requirement for the training dataset is
the consistency of the sensors {x1, x2, …, xm} for input functions (we
do not require the sensor locations to be equispaced). In this gen-
eral setting, the network inputs consist of two separate components,
[u(x1), u(x2),…, u(xm)]T and y (Fig. 1a), and the goal is to achieve
good performance by designing the network architecture. One
straightforward solution is to directly employ a classical network,
such as FNN, ResNet, CNN or RNN, and concatenate two inputs
together as the network input, that is, [u(x1), u(x2),…, u(xm), y]T.
However, in general, the input does not have any specific structure,
and thus we use FNN and ResNet as the baseline models. To com-
pare DeepONets with additional models, we also consider CNN
or RNN as the baselines in a few examples for specific problems
and datasets.

In high-dimensional problems, y is a vector with d components,
so the dimension of y no longer matches the dimension of u(xi)
for i = 1, 2, …, m. This also prevents us from treating u(xi) and y
equally, and thus at least two subnetworks are needed to handle
[u(x1), u(x2),…, u(xm)]T and y separately. Although the universal
approximation theorem (Theorem 1) does not have any guarantee
on the total error, it still provides us with a network structure con-
structed in equation (1). Inspired by this network, the architecture
we propose is shown in Fig. 1c. First, there is a ‘trunk’ network,
which takes y as the input and outputs [t1, t2,…, tp]T ∈ R

p. In addi-
tion to the trunk network, there are p ‘branch’ networks, and each
of them takes [u(x1), u(x2),…, u(xm)]T as the input and outputs a

scalar bk ∈ R for k = 1, 2, …, p. We then merge them together as in
equation (1):

G(u)(y) ≈
p

∑

k=1

bk(u(x1), u(x2),…, u(xm))
︸ ︷︷ ︸

branch

tk(y)
︸︷︷︸

trunk

The network constructed in Theorem 1 is equivalent to our pro-
posed network on choosing the trunk net as a one-layer network of
width p and each branch net as a one-hidden-layer network of width
n. Hence, we essentially replace the shallow networks in Theorem 1
with deep networks in Fig. 1c to gain expressivity. We note that the
trunk network also applies activation functions to the last layer, that
is, tk = σ(⋅) for k = 1, 2, …, p, and thus this trunk–branch network
can also be seen as a trunk network with each weight in the last
layer parameterized by another branch network instead of the clas-
sical single variable. In equation (1) we also note that the last layer
of each bk branch network does not have bias. Although bias is not
included in Theorem 1, adding bias may increase the performance
by reducing the generalization error (Fig. 2). In addition to adding
bias to the branch networks, we also add a bias b0 ∈ R in the last
stage: G(u)(y) ≈

∑p
k=1 bktk + b0.

In practice, p is at least of order 10, and using lots of branch net-
works is inefficient. Hence, we merge all the branch networks into
one single branch network (Fig. 1d), that is, a single branch net-
work outputs a vector [b1, b2,…, bp]T ∈ R

p. In the first DeepONet
(Fig. 1c), there are p branch networks stacked in parallel, so we
name it ‘stacked DeepONet’, while we refer to the second DeepONet
(Fig. 1d) as ‘unstacked DeepONet’. An unstacked DeepONet can be
viewed as a stacked DeepONet with all the branch nets sharing the
same set of parameters. We note that our proposed DeepONets are
also universal approximators for nonlinear operators, because none
of our modifications decrease the network expressivity compared
to the network in Theorem 1. All versions of DeepONets are imple-
mented in DeepXDE22, a user-friendly Python library designed for
scientific machine learning. The loss function we use is the mean
squared error (m.s.e.) between the true value of G(u)(y) and the net-
work prediction for the input ([u(x1), u(x2), …, u(xm)], y).

We developed two versions of DeepONets by extending the net-
work architecture in Theorem 1, and next we prove that the pro-
posed DeepONets are also universal approximators for operators in
Theorem 2. Although Theorem 1 only considers shallow networks,
Theorem 2 allows different branch/trunk networks.

Theorem 2 (Generalized Universal Approximation Theorem
for Operator). Suppose that X is a Banach space, K1 ⊂ X, K2 ⊂ R

d
are two compact sets in X and Rd, respectively, V is a compact set in
C(K1). Assume that G : V → C(K2) is a nonlinear continuous opera-
tor. Then, for any ϵ > 0, there exist positive integers m, p, continuous
vector functions g : Rm

→ R
p, f : Rd

→ R
p, and x1, x2, ..., xm ∈ K1,

such that

∣
∣
∣
∣
∣
∣
∣

G(u)(y)− ⟨g(u(x1), u(x2), · · · , u(xm))
︸ ︷︷ ︸

branch

, f(y)
︸︷︷︸

trunk

⟩

∣
∣
∣
∣
∣
∣
∣

< ϵ

holds for all u ∈ V and y ∈ K2, where 〈⋅,⋅〉 denotes the dot product in
R

p. Furthermore, the functions g and f can be chosen as diverse classes
of neural networks, which satisfy the classical universal approxima-
tion theorem of functions, for example, (stacked/unstacked) fully con-
nected neural networks, residual neural networks and convolutional
neural networks.

Proof. The proof can be found in Supplementary Section 2.
As stated in Theorem 2, DeepONet is a high-level network archi-

tecture without defining the architectures of its inner trunk and

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell220

http://www.nature.com/natmachintell

ArticlesNaTure MacHIne InTeLLIgence

branch networks. To demonstrate the capability and good perfor-
mance of DeepONet alone, we choose the simplest FNN for the
architectures of the subnetworks in this study. If the input function
has a certain structure, then it is possible that by using some special-
ized layers we could further improve the accuracy. For example, if
{x1, x2, …, xm} are on an equispaced grid, then we can use convolu-
tional layers in the branch net. Other network designs may also be
considered in DeepONets, for example, the ‘attention’ mechanism40.

Embodying some prior knowledge into neural network archi-
tectures usually induces good generalization. This inductive bias
has been reflected in many networks, such as CNNs for images
and RNNs for sequential data. The success of DeepONet, even

when using FNNs for its subnetworks, is also due to its strong
inductive bias. The output G(u)(y) has two independent inputs u
and y, and thus using the trunk and branch networks explicitly is
consistent with this prior knowledge. More broadly, G(u)(y) can be
viewed as a function of y conditioned on u, and thus DeepONets
can be viewed as a conditional model, where the embedding of u
(the output of the branch net) and the embedding of y (the out-
put of the trunk net) are merged at the end through a dot product
operation. Finding an effective way to represent the conditioning
input and merge the embeddings is still an open question, and
different approaches have been proposed, such as feature-wise
transformations41.

10–6

10–5

10–4

FNN
(best)

ResNet
(best)

Seq2Seq
(best)

Seq2Seq 10x
(best)

Stacked
(no bias)

Stacked
(bias)

Unstacked
(no bias)

Unstacked
(bias)

a

M
.s

.e
.

Train
Test

10–6

10–5

10–4

10–3

10–2

10–1

0 10,000 20,000 30,000 40,000 50,000

b

M
.s

.e
.

No. of iterations

Train
Test

10–6

10–5

10–4

10–3

10–2

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0
c

Te
st

 M
.s

.e
.

W
2

Correlation length

10–5

10–4

10–3

10–2

0 0.2 0.4 0.6 0.8 1.0

10–5

10–4

10–3

10–2

10–1

100

0 5,000 10,000 15,000 20,000 25,000 30,000

M
.s

.e
.

No. of iterations

Train (poly-fractonomial)
Test (poly-fractonomial)
Train (Legendre)
Test (Legendre)
Train (GRF)
Test (GRF)

10–4

10–3

10–2

10–1

100

0 1,000 2,000 3,000 4,000 5,000

d e

M
.s

.e
.

No. of epochs

Z 0
0

Z 1
–1

Z 2
–2

Z 3
–3

Z 4
–4

Z 5
–5 Z 5

–3 Z 5
–1 Z 5

1 Z 5
3 Z 5

5

Z 4
–2 Z 4

0 Z 4
2 Z 4

4

Z 3
–1 Z 3

1 Z 3
3

Z 2
0 Z 2

2

Z 1
1

Train (DeepONet)
Test (DeepONet)
Train (CNN)
Test (CNN)

Fig. 2 | Learning explicit operators using different V spaces and different network architectures. a, Errors of different network architectures trained to
learn the antiderivative operator (linear case). The training/test errors of stacked/unstacked DeepONets with/without bias compared with the best test
error and the corresponding training error of FNNs, ResNets and Seq2Seq models. The ‘Seq2Seq 10×’ is a Seq2Seq model with 10 times more training data
points. The error bars show the one standard deviation from 10 runs with different training/test data and network initialization. b, The training trajectory of
an unstacked DeepONet with bias (m.s.e., mean squared error). c, The error (mean and standard deviation) tested on the space of Gaussian random fields
(GRFs) with the correlation length l = 0.1 for DeepONets trained with GRF spaces of different correlation length l (red curve). The 2-Wasserstein metric
between the GRF of l = 0.1 and a GRF of different correlation length l is shown as a blue curve. The test error grows exponentially with respect to the W2
metric (inset). d, Learning the Caputo fractional derivative: poly-fractonomials versus Legendre versus GRF. e, Learning the fractional Laplacian on a disk.
The V space consists of the Zernike polynomials.

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell 221

http://www.nature.com/natmachintell

Articles NaTure MacHIne InTeLLIgence

Data generation. The input function u(x) plays an important role
in learning operators. In this study, we mainly consider the follow-
ing function spaces: Gaussian random fields (GRFs), spectral repre-
sentations and formulating the input functions as images (for more
details see Supplementary Section 3). We note that one data point is a
triplet (u, y, G(u)(y)), and thus a specific input u may appear in mul-
tiple data points with different values of y. For example, a dataset of
size 10,000 may only be generated from 100 u trajectories, and each
evaluates G(u)(y) at 100 different y locations. Moreover, the number
and locations of y could be different for different u. In our dataset, for
each u we randomly select P different y points in the domain of G(u),
and thus the total number of data points is equal to P × #u.

In DeepONets, we use [u(x1), u(x2), …, u(xm)] as the input of
the branch net to represent u(x), and we should estimate how many
sensors m are required to achieve a good accuracy ε. We consider
the following ODE system:

Problem 1
{ d

dx s(x) = g(s(x), u(x), x)
s(a) = s0

(2)

where u ∈ V (a compact subset of C[a, b]) is the input signal,
and s : [a, b] → R

K is the solution of system (2) serving as the
output signal.

Let G be the operator mapping the input u to the output s, that
is, G(u) satisfies

G(u)(x) = s0 +
∫ x

a
g(G(u)(t), u(t), t)dt

Now, we choose uniformly m + 1 points xj = a + j(b − a)/m, j = 0,
1, ..., m from [a, b], and define the function um(x) as

um(x) = u(xj) + u(xj+1)−u(xj)
xj+1−xj (x− xj), xj ≤ x ≤ xj+1, j

= 0, 1, ..., m− 1

Denote the operator mapping u to um by Lm, and let
Um = {Lm(u)|u ∈ V}, which is a compact subset of C[a, b], since
V is compact and continuous operator Lm keeps the compactness.
Obviously, Wm := V ∪ Um, as the union of two compact sets is also
compact. Then, set W :=

∪
∞

i=1 Wi, and the lemma in Supplementary
Section 5 points out that W is still a compact set. Because G is a con-
tinuous operator, G(W) is compact in C([a, b];RK). Let B[G(W)] and
B[W] be the unions of the ranges of the functions in G(W) and W,
respectively, and then B[G(W)] and B[W] are compact due to the
compactness of G(W) and W. For convenience of analysis, we assume
that g(s, u, x) satisfies the Lipschitz condition with respect to s and u
on B[G(W)]× B[W], that is, there is a constant c > 0 such that

∥ g(s1, u, x)− g(s2, u, x)∥2 ≤ c ∥ s1 − s2∥2
∥ g(s, u1, x)− g(s, u2, x)∥2 ≤ c|u1 − u2|

Note that this condition is easy to achieve, for example as long as g is
differentiable with respect to s and u on B[G(W)]× B[W].

For u ∈ V, um ∈ Um, there exists a constant κ(m, V) depending on
m and compact space V, such that

maxx∈[a,b]|u(x)− um(x)| ≤ κ(m,V), κ(m,V) → 0 as m → ∞

(3)

When V is a GRF with the Gaussian kernel, we have κ(m,V) ∼ 1
m2 l2

(for the proof see Supplementary Section 4). Based on the these
concepts, we have the following theorem.

Theorem 3. Suppose that m is a positive integer making
c(b − a)κ(m, V)ec(b−a) less than ε, then for any d ∈ [a, b], there exist
W1 ∈ R

n×(m+1), b1 ∈ R
m+1, W2 ∈ R

K×n, b2 ∈ R
K , such that

∥ G(u)(d)− (W2 · σ(W1 · [u(x0) · · · u(xm)]T + b1) + b2)∥2 < ε

holds for all u ∈ V.
Proof. The proof can be found in Supplementary Section 5.

Results and discussion
To demonstrate the capability and efficiency of DeepONets, we
will learn 16 different operators via DeepONets, including diverse
linear/nonlinear explicit and implicit operators. Specifically, the
four explicit operators include the integration, Legendre trans-
form, one-dimensional (1D) fractional derivative, and 2D frac-
tional Laplacian. The implicit operators include eight operators of
deterministic ODEs (nonlinear ODE and the gravity pendulum)
and PDEs (diffusion-reaction, advection and advection-diffusion)
and four operators of two stochastic differential equations for both
pathwise solutions and statistics. For the ODEs and PDEs, the input
function of the operators could be the boundary conditions, initial
conditions or forcing terms. We have carefully selected these diverse
tests to probe the generalization error of DeepONet, investigate
proper representations of the input space V including non-compact
spaces, compare different DNN architectures and consider both
explicit and implicit mathematical operators. All details of these
tests are provided in the Supplementary Information to assist the
readers to readily reproduce our results. In ongoing work, we have
employed DeepONets to simulate various multiscale and multi-
physics systems, and we will report this work in future publications.

We first show how to learn explicit operators, and demonstrate
small generalization error for different representations of the dis-
crete input space V. We then present how to learn implicit operators.
The parameter values for all examples are listed in Supplementary
Section 7, and verification of the Hölder continuity of all the explicit
and implicit operators considered in this study is presented in
Supplementary Section 18.

Learning explicit operators. First, we consider a pedagogical
example described by

ds(x)
dx = g(s(x), u(x), x), x ∈ (0, 1]

with an initial condition (IC) s(0) = 0. Our goal is to predict s(x)
over the whole domain [0, 1] for any u(x). We first consider a linear
problem by choosing g(s(x), u(x), x) = u(x), which is equivalent to
learning the antiderivative operator:

Problem 1.A ds(x)
dx = u(x) andG : u(x) �→ s(x)

= s0 +
∫ x
0 u(τ)dτ, x ∈ [0, 1]

(4)

We train FNNs and ResNets to learn the antiderivative operator,
where the network input is a concatenation of u(x) and y and the
output is G(u)(y). To obtain the best performance of FNNs, we
grid-search three hyperparameters: depth from 2 to 4, width from
10 to 2,560 and learning rate from 0.0001 to 0.01. The m.s.e.s of the
test dataset with learning rates 0.01, 0.001 and 0.0001 are shown
in Supplementary Fig. 1. Although we only choose depth up to 4,
the results show that increasing the depth further does not improve
the test error. Among all these hyperparameters, the smallest test
error of ~7 × 10−5 is obtained for the network with depth 2, width
2,560 and learning rate 0.001. We observe that, when the network
is small, the training error is large and the generalization error (the
difference between test error and training error) is small due to

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell222

http://www.nature.com/natmachintell

ArticlesNaTure MacHIne InTeLLIgence

the small expressivity. When the network size increases, the train-
ing error decreases, but the generalization error increases. We stop
the training before FNNs reach the overfitting region, where the
test error increases. Similarly, for ResNets, we grid-search the two
hyperparameters: the number of residual blocks from 1 to 5 and
width from 10 to 320. We note that one residual block includes two
dense layers with a shortcut connection, and each ResNet has one
hidden layer before the first residual block and one hidden layer
after the last residual block39, and thus a ResNet has in total (3 + 2#
residual block) layers. We chose a learning rate of 0.001 based on
previous results for FNNs. Among all these hyperparameters, the
smallest test error of ~1 × 10−4 is obtained for the ResNet with one
residual block and width 20. In addition to FNNs and ResNets, we
also considered sequence-to-sequence (Seq2Seq) models42–44 using
the long short-term memory (LSTM) or the gated recurrent units
(GRUs) with attention mechanism as the baseline. More details of
Seq2Seq are presented in Supplementary Section 16.

Compared to FNNs, ResNets and Seq2Seq, DeepONets have
much smaller generalization error and thus smaller test error (Fig.
2a and Supplementary Table 6). Seq2Seq is better than FNNs and
ResNets, and has performance similar to stacked DeepONets—
for ~10 times more data points, the performance of Seq2Seq is
close to unstacked DeepONets. We note that the datasets used for
DeepONets and Seq2Seq are not exactly the same, because Seq2Seq
requires that the output function evaluations have to be on a dense
grid (P = 100), while DeepONet does not have this constraint and
uses a dataset of P = 1 only. Unstacked DeepONets have perfor-
mance similar to Seq2Seq if we train DeepONets on the same dense
dataset, which is not required for DeepONets as they work with
sparse datasets. Moreover, the training of Seq2Seq is much more
expensive (more than seven times) than the training of DeepONets
(Supplementary Table 4).

Here, we do not aim to find the best hyperparameters of
DeepONets, and only test the performance of the stacked and
unstacked DeepONets listed in Supplementary Table 3. One training
trajectory of an unstacked DeepONet with bias is shown in Fig. 2b,
and the generalization error is negligible. We observe that for both
stacked and unstacked DeepONets, adding bias to branch networks
reduces both training and test errors (Fig. 2a). DeepONets with
bias also have smaller uncertainty; that is, they are more stable for
training from random initialization (Fig. 2a). Compared to stacked
DeepONets, unstacked DeepONets have smaller test error due to
the smaller generalization error. Therefore, unstacked DeepONets
with bias achieve the best performance. In addition, unstacked
DeepONets have fewer parameters than stacked DeepONets, and
thus can be trained more quickly using much less memory. We also
provide examples of the Legendre transform in Supplementary
Section 10 and nonlinear ODEs in Supplementary Section 11, as
well as more details on the accuracy and architecture. In the follow-
ing study, we will use unstacked DeepONets.

When we train a neural network, we usually generate a training
dataset from the same space as the functions that we will predict,
namely, interpolation. We have shown that DeepONets perform very
well for interpolation (Fig. 2a,b). Next, we will test DeepONets for
the situation where the training dataset and test dataset are not sam-
pled from the same function space. Specifically, the input functions
in the training dataset are sampled from the space of a GRF with
the covariance kernel kl(x1, x2) = exp(− ∥ x1 − x2∥2/2l2), where l
is the length-scale parameter. After the network is trained, instead
of testing functions also in this space, we will always use the func-
tions sampled from the space of the GRF with l = 0.1 for testing. To
quantify the difference between two GRF spaces of different cor-
relation lengths, we use the 2-Wasserstein (W2) metric45 to measure
their distance (details are provided in Supplementary Section 6).
When l is large, the W2 metric is large (blue curve, Fig. 2c), and the
test error is also large (red curve, Fig. 2c). When l is smaller, the W2

metric and test error become smaller. If l = 0.1, the training and test
spaces are the same, and thus the W2 metric is 0. It is interesting that
the test m.s.e. grows exponentially with respect to the W2 metric
(inset, Fig. 2c).

In addition to the aforementioned integral operator, we consider
integro-differential operators, namely, fractional differential opera-
tors, to demonstrate the flexibility of DeepONets to learn more
complicated operators. The first fractional differential operator we
learn is the 1D Caputo fractional derivative46:

Problem 2

G(u)(y, α) : u(x) �→ s(y, α) = 1
Γ (1−α)

∫ y
0 (y− τ)−αu′(τ)dτ,

y ∈ [0, 1], α ∈ (0, 1)

where α and u′(·) are the fractional order and first derivative of u,
respectively. The domain of the output function now includes two
variables y and α. We concatenate y and α to form an augmented
ŷ = [y, α]T and then feed ŷ to the trunk net. We consider the influ-
ence of different V spaces on the generalization error of DeepONets.
These spaces include two orthogonal polynomial spaces spanned by
poly-factonomials47 and Legendre polynomials, as well as the GRF.
More details are provided in Supplementary Section 17. Figure 2d
shows the generalization errors for the three different V spaces. We
see that small generalization errors are achieved for all of the cases.
The generalization error for the GRF is slightly larger than those for
orthogonal polynomial spaces.

The second fractional differential operator we learn is the 2D
Riesz fractional Laplacian48:

Problem 3

G(u)(y, α) : u(x) �→ s(y, α)

=
2α

Γ (1+ α
2)

π|Γ (−
α
2)|

× p.v.
∫

R2
u(y)−u(τ)
∥y−τ∥2+α

2
dτ, α ∈ (0, 2)

where ‘p.v.’ means principle value. The input and output functions
are both assumed to be identically zero outside of a unit disk cen-
tred at the origin. The 2D fractional Laplacian reduces to standard
Laplacian Δ as the fractional order α goes to two. For learning this
operator, we specify the V space to be the orthogonal space spanned
by the Zernike polynomials49, which are commonly used to generate
or approximate functions defined on a unit disk. Figure 2e (inset) dis-
plays the first 21 Zernike polynomials (for a more detailed descrip-
tion of the polynomial expansions see Supplementary Section 3).

We consider two different NN architectures: unstacked
DeepONets versus CNNs. In this problem, we generated a dataset
such that the input and output functions are evaluated on an equi-
spaced grid, such that a CNN can also be used. For the DeepONet,
in a similar manner as for handling the 1D Caputo derivative case,
we feed the augmented ŷ = [y, α] to the trunk net. For the CNN
architecture, we rearrange the values of input and output func-
tions to 2D images in which ‘pixel’ (or function) values are attached
to a lattice in the polar coordinate. We first utilize a CNN as an
encoder to extract the features of the input image, which reduces
the high-dimensional input space to a low-dimensional latent space,
and then we employ another CNN as a decoder to map the vector
in the latent space to the output space. To accommodate the extra
parameter α, we set the image consisting of values of G(y, αk) for
kth α as the kth channel of the output image. As such, we obtain
a multi-channel output image. We observe from Fig. 2e that both
architectures yield small generalization errors. Moreover, the CNN
architecture exhibits slightly higher accuracy than the DeepONet.
This is because the former sufficiently takes advantage of the spa-
tial structure of the training data. Nevertheless, DeepONet is more
flexible than CNN for unstructured data, as we commented in the

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell 223

http://www.nature.com/natmachintell

Articles NaTure MacHIne InTeLLIgence

preceding paragraphs. More details are presented in Supplementary
Section 17.

DeepONet learns fast. An important question for the effectiveness
of DeepONet is how fast it learns new operators. We investigate this
question by learning a system of nonlinear ODEs first and subse-
quently a nonlinear PDE. First, we consider the motion of a gravity
pendulum with an external force described by

Problem 1.B ds1
dt = s2,

ds2
dt = −k sin s1 + u(t)

with an initial condition s(0) = 0, and k determined by the accelera-
tion due to gravity and the length of the pendulum. This problem is
characterized by three factors: (1) k, (2) maximum prediction time
T and (3) input function space. The accuracy of learned networks
is determined by four factors: (1) the number of sensor points m,
(2) training dataset size, (3) network architecture and (4) optimizer.
We investigate the effects of all these factors on the accuracy of
DeepONet in Supplementary Section 12 and verify our analysis on
the number of sensors, but here we focus on the convergence rate of
the training process.

The test and generalization errors of DeepONets with different
trunk/branch width are shown in Fig. 3a,b. It is surprising that the
test and generalization errors have exponential convergence for
small training dataset size. Even for a large dataset, the polynomial
convergence rates are still higher than the classical x−0.5 in learning
theory50. This fast convergence reveals that DeepONets learn expo-

nentially fast, especially in the region of a small dataset. Moreover,
the transition point from exponential to polynomial convergence
depends on the network size, and a larger exponential regime can be
accomplished with a sufficiently large network, but the smaller net-
work has higher accuracy for a small dataset. We cannot yet explain
theoretically this convergence behaviour, but we speculate that it
may be related to the theory of information bottleneck51.

We have observed a fast exponential and polynomial error con-
vergence for DeepONets. For comparison we checked the error
decay of two baseline models (FNN and Seq2Seq) with the same
set-up. We chose an FNN of depth 3 and width 100, which has size
similar to that of the DeepONet with branch/trunk width of 50 in Fig.
3a. Details for the Seq2Seq are provided in Supplementary Section
16. We also observed a similar initial exponential converge of FNNs
(Fig. 3c), but, compared with DeepONets, FNNs have a much larger
test error and much slower convergence speed. However, Seq2Seq
models do not exhibit the exponential convergence regime and,
overall, the test errors are larger with larger variation.

Next, we learn an implicit operator in the form of a nonlinear
diffusion-reaction PDE with a source term u(x) described by

Problem 4 ∂s
∂t = D ∂2s

∂x2 + ks2 + u(x), x ∈ (0, 1), t ∈ (0, 1]

with zero initial/boundary conditions, where D = 0.01 is the diffu-
sion coefficient and k = 0.01 is the reaction rate. We use DeepONets
to learn the operator mapping from u(x) to the PDE solution s(x, t).
In the previous examples, for each input u we only used one random

103 104 105

a

e–x /1,400

x–1.5

x–1.2

M
.s

.e
.

No. of training data

103 104 105

No. of training data

103 104 105

No. of training data

103 104 105

No. of training data

Branch/trunk width 50

Gen.
Test

b

e–x /3,100

x–1.4

x–1.3

M
.s

.e
.

Branch/trunk width 200

Gen.
Test

c

e–x /5,800

x–1.5

x–1.1

M
.s

.e
.

FNN width 100

Gen.
Test

d

x–1.3

M
.s

.e
.

Seq2Seq

Gen.
Test

10–6

10–5

10–4

10–3

10–2

10–1

10–6

10–5

10–4

10–3

10–2

10–1

10–6

10–5

10–4

10–3

10–2

10–1

10–6

10–5

10–4

10–3

10–2

10–1

Fig. 3 | Fast learning of implicit operators in a nonlinear pendulum (k = 1 and T = 3). a,b, The test and generalization errors of DeepONets have
exponential convergence for small training datasets, and then converge with polynomial rates. The transition point from exponential to polynomial
(indicated by the arrow) convergence depends on the width (branch/trunk width of 50 in a and 200 in b), and a bigger network has a later transition
point. c, FNNs also have an initial exponential error decay, but with much larger error and much slower convergence speed. d, Seq2Seq models have a
roughly polynomial convergence rate, and the test errors have a large variation for different runs. x is the number of training data.

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell224

http://www.nature.com/natmachintell

ArticlesNaTure MacHIne InTeLLIgence

point of s(x) for training; instead we may also use multiple points of
s(x). To generate the training dataset, we solve the diffusion-reaction
system using a second-order implicit finite-difference method on
a 100 × 100 grid, and then for each s we randomly select P points
from these 10,000(= 100 × 100) grid points (Supplementary Fig. 8).
Hence, the dataset size is equal to the product of P and the number
of u samples. We confirm that the training and test datasets do not
include the data from the same s.

We investigate the error tendency with respect to the number of
u samples and the value of P. When we use 100 random u samples,
the test error decreases first as P increases (Fig. 4a), then saturates
due to other factors, such as the finite number of u samples and
fixed neural network size. We observe a similar error tendency but
with less saturation as the number of u samples increases with P
fixed (Fig. 4b). In addition, in this PDE problem the DeepONet is
able to learn from a small dataset; for example, a DeepONet can
reach a test error of ~10−5 when it is only trained with 100 u samples
(P = 1,000). We recall that we test on 10,000 grid points and thus, on
average, each location point only has 100 × 1,000/10,000 = 10 train-
ing data points. For comparison, we train ResNets of different sizes
with the same set-up, and the test error is ~10−1 due to the large
generalization error (Supplementary Table 7).

Before the error saturates, the rates of convergence with respect
to both P and the number of u samples obey a polynomial law in
most of the range (Fig. 4c,d). The rate of convergence versus P
depends on the number of u samples, and more u samples induce
faster convergence until saturation (blue line, Supplementary Fig.
9d). Similarly, the rate of convergence versus the number of u sam-
ples depends on the value of P (red line, Supplementary Fig. 9d).
In addition, in the initial range of the convergence, we observe an
exponential convergence (Supplementary Fig. 9a,b). The coefficient
1/k in the exponential convergence e−x/k also depends on the number
of u samples or the value of P (Supplementary Fig. 9c). It is reason-

able that the convergence rate presented in Supplementary Fig. 9c,d
increases with the number of u samples or the value of P, because
the total number of training data points is equal to P × #u. However,
by fitting the points, it is surprising that there is a clear tendency in
the form of either ln (x) or e−x (Supplementary Fig. 9c,d), which we
cannot fully explain yet, and hence more theoretical and computa-
tional investigations are required.

Here, when studying the convergence of DeepONets, we fix
either #u or P and increase the other one. We show that the same
exponential and polynomial convergence behaviour is also observed
(Supplementary Fig. 10) when we keep P = #u to generate the train-
ing dataset; that is, the number of training data points is equal to
P × #u = P2 = (#u)2. We also provide examples of the advection equa-
tion in Supplementary Section 14 and the advection-diffusion equa-
tion in Supplementary Section 15.

Learning stochastic operators. Next, we demonstrate that we can
learn high-dimensional operators, so here we consider a stochastic
ODE and a stochastic PDE and present our main findings.

Consider the population growth model

Problem 5 dy(t;ω) = k(t;ω)y(t;ω)dt, t ∈ (0, 1] andω ∈ Ω

(5)

with y(0) = 1. Here, Ω is the random space. The randomness comes
from the coefficient k(t; ω). Here, k(t; ω) is modelled as a Gaussian
random process such that

k(t;ω) ∼ GP(k0(t), Cov (t1, t2))

where the mean k0(t) = 0 and the covariance function is
Cov (t1, t2) = σ2 exp(− ∥ t1 − t2∥2/2l2). We choose σ = 1, and the
correlation length l is in the range [1, 2].

10–9

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

 10 100 1,000

a

M
.s

.e
.

P

No. of u = 100

Train

Test

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

 10 100 1,000

b

M
.s

.e
.

No. of u

P = 100

Train

Test

10–5

10–4

10–3

10–2

10–1

 10 100 1,000

c

x–1.4

x–2.2

x–2.4

x–2.4

M
.s

.e
.

P

No. of u = 50

No. of u = 100

No. of u = 200

No. of u = 400

10–5

10–4

10–3

10–2

10–1

 10 100 1,000

d

x–2.6

x–2.9

x–3.3

x–3.7

M
.s

.e
.

No. of u

P = 50

P = 100

P = 200

P = 400

Fig. 4 | Fast learning of implicit operators in a diffusion-reaction system. a,b, Comparison of training (blue) and testing (red) errors for different values
of the number of random points P when 100 random u samples are used (a) and for different numbers of u samples when P = 100 (b). The shaded regions
denote one standard deviation. c,d, The algebraic decay of test errors in terms of the number of sampling points P and the number of input functions u(x, t):
convergence of test error with respect to P for different numbers of u samples (c) and with respect to the number of u samples for different values of P (d).

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell 225

http://www.nature.com/natmachintell

Articles NaTure MacHIne InTeLLIgence

We use DeepONet to learn the operator mapping from k(t; ω)
of different correlation lengths to the solution y(t; ω). We note that
we do not assume we know the covariance function for training
DeepONet. The main differences between this example and the
previous examples are as follows: (1) here, the input of the branch
net is a random process instead of a function and (2) the input of
the trunk net contains both physical spaces and random spaces.
Specifically, to handle the random process as the input, we employ
the Karhunen–Loève (KL) expansion:

k(t;ω) ≈

N∑

i=1

√

λiei(t)ξi(ω)

where N is the number of retained modes, λi and ei(t) are the ith
largest eigenvalue and its associated normalized eigenfunction of
the covariance function, respectively, and ξ1, …, ξN are independent
standard Gaussian random variables. Then, the input of the branch
net is the N eigenfunctions scaled by the eigenvalues:

[
√

λ1e1(t),
√

λ2e2(t),…,
√

λNeN(t)] ∈ R
N×m

where
√

λiei(t) =
√

λi[ei(t1), ei(t2),…, ei(tm)] ∈ R
m, and the input

of the trunk net is [t, ξ1, ξ2,…, ξN] ∈ R
N+1. We note that, by using

the KL expansion, the randomness is only in ξi and becomes the
input of DeepONet. However, this problem remains challenging
because its dimension is very high; the input of the branch net
contains N orthogonal functions instead of one function, and the
dimension of the input of the trunk net is the sum of the dimensions
of the physical space and random space.

We choose N = 5, which is sufficient to conserve 99.9% stochastic
energy. We train a DeepONet with a dataset of 10,000 different k(t;
ω) with l randomly sampled in [1, 2], and for each k(t; ω) we use only
one realization. The test m.s.e. is 8.0 × 10−5 ± 3.4 × 10−5. As an exam-
ple, the prediction for 10 different random samples from k(t; ω) with
l = 1.5 is shown in Fig. 5, and the average L2 relative error is ~0.5%.

Next, we consider the following elliptic problem with multiplica-
tive noise:

Problem 6 − div(eb(x;ω)

∇u(x;ω)) = f(x), x ∈ (0, 1) andω ∈ Ω

with Dirichlet boundary conditions u(0) = u(1) = 0. The ran-
domness comes from the diffusion coefficient eb(x;ω), and
b(x;ω) ∼ GP(b0(x), Cov (x1, x2)), where the mean b0(x) = 0 and the
covariance function is Cov (x1, x2) = σ2 exp(− ∥ x1 − x2∥2/2l2). In
this example, we choose a constant forcing term f(x) = 10, and we
set the standard deviation as σ = 0.1 and correlation length in the
range [1, 2].

We use DeepONet to learn the operator mapping from b(x; ω)
of different correlation lengths to the solution u(x; ω). We train a
DeepONet with a dataset of 10,000 different b(x; ω) with l randomly
sampled in [1, 2], and for each b(x, ω) we use only one realization.
The test m.s.e. is 2.0 × 10−3 ± 1.7 × 10−3. As an example, the predic-
tion for 10 different random samples from b(x; ω) with l = 1.5 is
presented in Fig. 6a, and the average L2 relative error is ~1.1%. We
have a relative larger error in this stochastic elliptic problem and,
to reduce the error further, we can remove outliers of the random
variables {ξ1, ξ2, …, ξN} by clipping them to a bounded domain. For
example, if the random variables are clipped to [−3.1, 3.1], which is
sufficient large to keep 99% probability space, then the test m.s.e. is
reduced to 9.4 × 10−4 ± 3.0 × 10−4.

In the aforementioned stochastic ODE and PDE problems, we
have used DeepONets to predict the pathwise solutions. Next, we
will apply DeepONets to predict statistical averages of the stochas-
tic solution, for example, the mean and standard deviation. We use
the same set-up as in Problem 6, except that we consider a larger
range [0.2, 2] for the correlation length. We also employ the KL
expansion to handle the random process, and we keep the input of
the branch net the same as in the previous problems, but for the
trunk net the input is only t without random variables ξi. Because
we consider a smaller correlation length, N = 8 modes are required
to conserve 99.9% stochastic energy. We show that DeepONets
can predict the mean and standard deviation accurately, and as an
example the predictions for three values of the correlation length are
shown in Fig. 6b,c.

In summary, the above method for stochastic ODEs and PDEs
can be used for any colour noise where the KL expansion can be
employed. For stochastic ODEs/PDEs with white noise, a different
approach may be required.

Conclusions
We have formulated the problem of learning operators in a gen-
eral set-up and have proposed DeepONets to learn diverse linear/
nonlinear explicit and implicit operators. In DeepONets, we first
construct two subnetworks to encode input functions and location
variables separately, and then merge them together to compute the
output. We test DeepONets on learning explicit operators, includ-
ing fractional operators, as well as implicit operators in the form of
deterministic and stochastic ODEs and PDEs. Our two main find-
ings are that the generalization error is small and that the training
and testing errors decay quickly with respect to the training data
size. In fact, we observed exponentially fast learning for sufficiently
large networks and transition to standard convergence for large
datasets. In our simulations, we systematically studied the effects
on the test error of different factors, including the number of sen-
sors, maximum prediction time, the complexity of the space of

0

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1

y
(t

; ω
)

t

Reference

DeepONet

 0.2

 0.4

 0.6

 0.8

1.0

 1.2

0 0.2 0.4 0.6 0.8 1

y
(t

; ω
)

t

Reference

DeepONet

Fig. 5 | DeepONet prediction for a stochastic ODE. The DeepONet prediction (symbols) is very close to the reference solution for 10 different random
samples (five in each panel) from k(x; ω) with l = 1.5.

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell226

http://www.nature.com/natmachintell

ArticlesNaTure MacHIne InTeLLIgence

input functions, training dataset size and network size. Moreover,
we derived, theoretically, the dependence of approximation error on
different factors, which is consistent with our computational results.
In this study, all our training datasets are obtained from numerical
solvers; that is, the trained DeepONet is a surrogate of the numeri-
cal solver. Hence, DeepONets cannot be better than the numerical
solvers in terms of accuracy. However, as we show in Supplementary
Table 5, the computational cost of running inference of DeepONet
is substantially lower than for the numerical solver.

More broadly, a DeepONet could represent a multiscale opera-
tor trained with data spanning several orders of magnitude in
spatio-temporal scales, for example, trained by data from the molecu-
lar, mesoscopic and continuum regimes in fluid mechanics or other
multiscale problems. We could also envision other types of com-
posite DNN for developing multiphysics operators, for example, in
electro-convection involving the evolution of the flow field and con-
centration fields of anions and cations due to continuous variation of
imposed electric potentials. Indeed, in ongoing work, we have devel-
oped an extension of DeepONet for simulating this electro-convection
multiphysics problem52, where we show that DeepONet is substan-
tially faster than a spectral element solver. We have obtained a similar
speed-up and high accuracy in hypersonics for learning the aero-
dynamics coupled with the finite rate chemistry of multiple species.
Learning such multiscale and multiphysics nonlinear operators will
simplify computational modelling and will facilitate very fast predic-
tions of complex dynamics for unseen new parameter values and new
input functions (boundary/initial conditions/excitation) with good
accuracy, if the generalization error is bounded.

Despite the reported progress in this first Article, more work
should be done both theoretically and computationally. Because
the training dataset size in DeepONets is a product of the num-
ber of input functions u and the number of evaluation locations y
for G(u), training DeepONets for operator approximation is much
more computationally intensive than training NNs for function

approximation. Hence, more research is needed in speeding up the
training process and in formulating efficient offline training strate-
gies, including perhaps transfer learning approaches. Here, we have
employed known operators to evaluate the accuracy of DeepONet
systematically; however, the real strength of DeepONet is that it
can discover new operators that are trained by multi-fidelity data
or by heterogeneous sources of experimental data and simulation
data. We could also endow the operator G with prior knowledge,
for example, translational and rotational invariances as in CNNs
for imaging53. On the theoretical side, there have not been any
results on the network size for operator approximation, similar to
the bounds of width and depth for function approximation54. We
also do not yet understand theoretically why DeepONets can induce
small generalization errors. On the other hand, in this Article we
use fully connected neural networks for the two subnetworks, but,
as we discussed in the Materials and methods, if the network input
has a certain structure, we can also employ other network architec-
tures, such as CNNs or the ‘attention’ mechanism. These modifi-
cations may improve further the accuracy of DeepONets, and the
example of using a CNN with encoders and decoders for learning
the fractional Laplacian presented here is a first such indication.

In summary, we have formulated a new framework for deep NN,
based on the new Theorem 2, to learn linear and nonlinear opera-
tors implicitly as NNs. In theory, all the operators of the classical
integer calculus, but also of fractional calculus, can be represented
by carefully trained NNs as well as other transforms and even theo-
rems, such as the Gauss theorem. In future work, we will present
our ongoing simulation experiments in predicting very complex
dynamics of multiscale and multiphysics operators, accurately and
very quickly.

Reporting Summary. Further information on research design
is available in the Nature Research Reporting Summary linked to
this Article.

0

1

2

3

4

5

6a

b c

0 0.2 0.4 0.6 0.8 1.0
x

Reference
DeepONet

0

 0.2

 0.4

 0.6

 0.8

1.0

 1.2

 1.4

0 0.2 0.4 0.6 0.8 1.0

u(
x

; ω
)

x

0

 0.3

 0.6

 0.9

 1.2

0 0.2 0.4 0.6 0.8 1.0

E
[u

]

x

l = 0.4
l = 0.8
l = 1.6

0

 0.03

 0.06

 0.09

 0.12

0 0.2 0.4 0.6 0.8 1.0

σ[
u

]

x

l = 0.4
l = 0.8
l = 1.6

u(
x

; ω
)

Fig. 6 | DeepONet prediction for a stochastic elliptic equation. a, The DeepONet prediction (symbols) is very close to the reference solution for 10
different random samples (five in each panel) from b(x; ω) with l = 1.5. b,c, The DeepONet prediction (symbols) of the mean E[u] (b) and standard
deviation σ[u] (c) of the solution for k(x; ω) with l = 0.4 (black), 0.8 (blue) and 1.6 (red). E[u] of different correlation lengths collapse to the same line.

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell 227

http://www.nature.com/natmachintell

Articles NaTure MacHIne InTeLLIgence

Data availability
All the datasets in the study were generated directly from the code.

Code availability
The code used in the study is publicly available from the GitHub
repository https://github.com/lululxvi/deeponet55.

Received: 14 April 2020; Accepted: 25 January 2021;
Published online: 18 March 2021

References
	1.	 Rico-Martinez, R., Krischer, K., Kevrekidis, I. G., Kube, M. C. & Hudson, J. L.

Discrete- vs. continuous-time nonlinear signal processing of Cu
electrodissolution data. Chem. Eng. Commun. 118, 25–48 (1992).

	2.	 Rico-Martinez, R., Anderson, J. S. & Kevrekidis, I. G. Continuous-time
nonlinear signal processing: a neural network based approach for gray box
identification. In Proc. IEEE Workshop on Neural Networks for Signal
Processing 596–605 (IEEE, 1994).

	3.	 González-García, R., Rico-Martínez, R. & Kevrekidis, I. G. Identification of
distributed parameter systems: a neural net based approach. Comput. Chem.
Eng. 22, S965–S968 (1998).

	4.	 Psichogios, D. C. & Ungar, L. H. A hybrid neural network-first principles
approach to process modeling. AIChE J. 38, 1499–1511 (1992).

	5.	 Kevrekidis, I. G. et al. Equation-free, coarse-grained multiscale computation:
enabling mocroscopic simulators to perform system-level analysis. Commun.
Math. Sci. 1, 715–762 (2003).

	6.	 Weinan, E. Principles of Multiscale Modeling (Cambridge Univ. Press, 2011).
	7.	 Ferrandis, J., Triantafyllou, M., Chryssostomidis, C. & Karniadakis, G.

Learning functionals via LSTM neural networks for predicting vessel
dynamics in extreme sea states. Preprint at https://arxiv.org/pdf/1912.13382.
pdf (2019).

	8.	 Qin, T., Chen, Z., Jakeman, J. & Xiu, D. Deep learning of parameterized
equations with applications to uncertainty quantification. Preprint at
https://arxiv.org/pdf/1910.07096.pdf (2020).

	9.	 Chen, T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems
6571–6583 (NIPS, 2018).

	10.	Jia, J. & Benson, A. R. Neural jump stochastic differential equations. Preprint
at https://arxiv.org/pdf/1905.10403.pdf (2019).

	11.	Greydanus, S., Dzamba, M. & Yosinski, J. Hamiltonian neural networks.
In Advances in Neural Information Processing Systems 15379–15389
(NIPS, 2019).

	12.	Toth, P. et al. Hamiltonian generative networks. Preprint at https://arxiv.org/
pdf/1909.13789.pdf (2019).

	13.	Zhong, Y. D., Dey, B. & Chakraborty, A. Symplectic ODE-Net: learning
Hamiltonian dynamics with control. Preprint at https://arxiv.org/pdf/
1909.12077.pdf (2019).

	14.	Chen, Z., Zhang, J., Arjovsky, M. & Bottou, L. Symplectic recurrent neural
networks. Preprint at https://arxiv.org/pdf/1909.13334.pdf (2019).

	15.	Winovich, N., Ramani, K. & Lin, G. ConvPDE-UQ: convolutional
neural networks with quantified uncertainty for heterogeneous elliptic
partial differential equations on varied domains. J. Comput. Phys. 394,
263–279 (2019).

	16.	Zhu, Y., Zabaras, N., Koutsourelakis, P.-S. & Perdikaris, P. Physics-constrained
deep learning for high-dimensional surrogate modeling and
uncertainty quantification without labeled data. J. Comput. Phys. 394,
56–81 (2019).

	17.	Trask, N., Patel, R. G., Gross, B. J. & Atzberger, P. J. GMLS-Nets: a framework
for learning from unstructured data. Preprint at https://arxiv.org/pdf/
1909.05371.pdf (2019).

	18.	Li, Z. et al. Neural operator: graph kernel network for partial differential
equations. Preprint at https://arxiv.org/pdf/2003.03485.pdf (2020).

	19.	Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery
of partial differential equations. Sci. Adv. 3, e1602614 (2017).

	20.	Zhang, D., Lu, L., Guo, L. & Karniadakis, G. E. Quantifying total uncertainty
in physics-informed neural networks for solving forward and inverse
stochastic problems. J. Comput. Phys. 397, 108850 (2019).

	21.	Pang, G., Lu, L. & Karniadakis, G. E. fPINNs: fractional physics-informed
neural networks. SIAM J. Sci. Comput. 41, A2603–A2626 (2019).

	22.	Lu, L., Meng, X., Mao, Z. & Karniadakis, G. E. DeepXDE: a deep learning
library for solving differential equations. SIAM Rev. 63, 208–228 (2021).

	23.	Yazdani, A., Lu, L., Raissi, M. & Karniadakis, G. E. Systems biology informed
deep learning for inferring parameters and hidden dynamics. PLoS Comput.
Biol. 16, e1007575 (2020).

	24.	Chen, Y., Lu, L., Karniadakis, G. E. & Negro, L. D. Physics-informed neural
networks for inverse problems in nano-optics and metamaterials. Opt. Express
28, 11618–11633 (2020).

	25.	Holl, P., Koltun, V. & Thuerey, N. Learning to control PDEs with
differentiable physics. Preprint at https://arxiv.org/pdf/2001.07457.pdf (2020).

	26.	Lample, G. & Charton, F. Deep learning for symbolic mathematics. Preprint
at https://arxiv.org/pdf/1912.01412.pdf (2019).

	27.	Charton, F., Hayat, A. & Lample, G. Deep differential system stability—
learning advanced computations from examples. Preprint at https://arxiv.org/
pdf/2006.06462.pdf (2020).

	28.	Cybenko, G. Approximation by superpositions of a sigmoidal function. Math.
Control Signals Syst. 2, 303–314 (1989).

	29.	Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks
are universal approximators. Neural Networks 2, 359–366 (1989).

	30.	Chen, T. & Chen, H. Universal approximation to nonlinear operators by
neural networks with arbitrary activation functions and its application to
dynamical systems. IEEE Trans. Neural Networks 6, 911–917 (1995).

	31.	Chen, T. & Chen, H. Approximations of continuous functionals by neural
networks with application to dynamic systems. IEEE Trans. Neural Networks
4, 910–918 (1993).

	32.	Mhaskar, H. N. & Hahm, N. Neural networks for functional approximation
and system identification. Neural Comput. 9, 143–159 (1997).

	33.	Rossi, F. & Conan-Guez, B. Functional multi-layer perceptron: a non-linear
tool for functional data analysis. Neural Networks 18, 45–60 (2005).

	34.	Chen, T. & Chen, H. Approximation capability to functions of several
variables, nonlinear functionals, and operators by radial basis function neural
networks. IEEE Trans. Neural Networks 6, 904–910 (1995).

	35.	Brown, T. B. et al. Language models are few-shot learners. Preprint at https://
arxiv.org/pdf/2005.14165.pdf (2020).

	36.	Lu, L., Su, Y. & Karniadakis, G. E. Collapse of deep and narrow neural nets.
Preprint at https://arxiv.org/pdf/1808.04947.pdf (2018).

	37.	Jin, P., Lu, L., Tang, Y. & Karniadakis, G. E. Quantifying the generalization
error in deep learning in terms of data distribution and neural network
smoothness. Neural Networks 130, 85–99 (2020).

	38.	Lu, L., Shin, Y., Su, Y. & Karniadakis, G. E. Dying ReLU and initialization:
theory and numerical examples. Commun. Comput. Phys. 28,
1671–1706 (2020).

	39.	He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In Proc. 2016 IEEE Conference on Computer Vision and Pattern
Recognition 770–778 (IEEE, 2016).

	40.	Vaswani, A. et al. Attention is all you need. In Advances in Neural Information
Processing Systems 5998–6008 (NIPS, 2017).

	41.	Dumoulin, V. et al. Feature-wise transformations. Distill https://distill.
pub/2018/feature-wise-transformations (2018).

	42.	Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems
3104–3112 (NIPS, 2014).

	43.	Bahdanau, D., Cho, K. & Bengio. Y. Neural machine translation by jointly
learning to align and translate. Preprint at https://arxiv.org/pdf/1409.0473.pdf
(2014).

	44.	Britz, D., Goldie, A., Luong, M. & Le, Q. Massive exploration of neural
machine translation architectures. Preprint at https://arxiv.org/pdf/
1703.03906.pdf (2017).

	45.	Gelbrich, M. On a formula for the l2 Wasserstein metric between measures on
Euclidean and Hilbert spaces. Math. Nachrichten 147, 185–203 (1990).

	46.	Podlubny, I. Fractional Differential Equations: An Introduction to Fractional
Derivatives, Fractional Differential Equations, to Methods of their Solution and
Some of their Applications (Elsevier, 1998).

	47.	Zayernouri, M. & Karniadakis, G. E. Fractional Sturm–Liouville
Eigen-problems: theory and numerical approximation. J. Comput. Phys. 252,
495–517 (2013).

	48.	Lischke, A. et al. What is the fractional Laplacian? A comparative review with
new results. J. Comput. Phys. 404, 109009 (2020).

	49.	Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light (Elsevier, 2013).

	50.	Mitzenmacher, M. & Upfal, E. Probability and Computing: Randomization
and Probabilistic Techniques in Algorithms and Data Analysis (Cambridge
Univ. Press, 2017).

	51.	Shwartz-Ziv, R. & Tishby, N. Opening the black box of deep neural
networks via information. Preprint at https://arxiv.org/pdf/1703.00810.pdf
(2017).

	52.	Cai, S., Wang, Z., Lu, L., Zaki, T. A. & Karniadakis, G. E. DeepM&Mnet:
inferring the electroconvection multiphysics fields based on operator
approximation by neural networks. Preprint at https://arxiv.org/pdf/
2009.12935.pdf (2020).

	53.	Tai, K. S., Bailis, P. & Valiant, G. Equivariant transformer networks. Preprint
at https://arxiv.org/pdf/1901.11399.pdf (2019).

	54.	Hanin, B. Universal function approximation by deep neural nets with
bounded width and ReLU activations. Preprint at https://arxiv.org/pdf/
1708.02691.pdf (2017).

	55.	Lu, L. DeepONet https://doi.org/10.5281/zenodo.4319385
(13 December 2020).

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell228

https://github.com/lululxvi/deeponet
https://arxiv.org/pdf/1912.13382.pdf
https://arxiv.org/pdf/1912.13382.pdf
https://arxiv.org/pdf/1910.07096.pdf
https://arxiv.org/pdf/1905.10403.pdf
https://arxiv.org/pdf/1909.13789.pdf
https://arxiv.org/pdf/1909.13789.pdf
https://arxiv.org/pdf/1909.12077.pdf
https://arxiv.org/pdf/1909.12077.pdf
https://arxiv.org/pdf/1909.13334.pdf
https://arxiv.org/pdf/1909.05371.pdf
https://arxiv.org/pdf/1909.05371.pdf
https://arxiv.org/pdf/2003.03485.pdf
https://arxiv.org/pdf/2001.07457.pdf
https://arxiv.org/pdf/1912.01412.pdf
https://arxiv.org/pdf/2006.06462.pdf
https://arxiv.org/pdf/2006.06462.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/1808.04947.pdf
https://distill.pub/2018/feature-wise-transformations
https://distill.pub/2018/feature-wise-transformations
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1703.03906.pdf
https://arxiv.org/pdf/1703.03906.pdf
https://arxiv.org/pdf/1703.00810.pdf
https://arxiv.org/pdf/2009.12935.pdf
https://arxiv.org/pdf/2009.12935.pdf
https://arxiv.org/pdf/1901.11399.pdf
https://arxiv.org/pdf/1708.02691.pdf
https://arxiv.org/pdf/1708.02691.pdf
https://doi.org/10.5281/zenodo.4319385
http://www.nature.com/natmachintell

ArticlesNaTure MacHIne InTeLLIgence

Acknowledgements
This work was supported by the DOE PhILMs project (no. DE-SC0019453) and
DARPA-CompMods grant no. HR00112090062.

Author contributions
L.L. and G.E.K. designed the study based on G.E.K.’s original idea. L.L.
developed DeepONet architectures. L.L., P.J. and Z.Z. developed the theory.
L.L. performed the experiments for the integral, nonlinear ODE, gravity
pendulum and stochastic ODE/PDE operators. L.L. and P.J. performed the
experiments for the Legendre transform, diffusion-reaction, advection and
advection-diffusion PDEs. G.P. performed the experiments for fractional
operators. L.L., P.J., G.P., Z.Z. and G.E.K. wrote the manuscript. G.E.K. supervised
the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42256-021-00302-5.

Correspondence and requests for materials should be addressed to G.E.K.

Peer review information Nature Machine Intelligence thanks Irana Higgins, Jian-Xun Wang
and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Nature Machine Intelligence | VOL 3 | March 2021 | 218–229 | www.nature.com/natmachintell 229

https://doi.org/10.1038/s42256-021-00302-5
http://www.nature.com/reprints
http://www.nature.com/natmachintell

1

nature research | reporting sum
m

ary
O

ctober 2018

Corresponding author(s): George Em Karniadakis

Last updated by author(s): Dec 13, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Python 3, TensorFlow

Data analysis Python 3, TensorFlow

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All the datasets in the study are generated directly from the code.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

2

nature research | reporting sum
m

ary
O

ctober 2018

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible,
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information
(e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving
existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale
for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria
were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether
the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale
behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

3

nature research | reporting sum
m

ary
O

ctober 2018

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water
depth).

Access and import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and
in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing
authority, the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

	Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators

	DeepONet theory and network architecture

	DeepONet architecture.
	Data generation.

	Results and discussion

	Learning explicit operators.
	DeepONet learns fast.
	Learning stochastic operators.

	Conclusions

	Reporting Summary.

	Acknowledgements

	Fig. 1 Illustrations of the problem set-up and new architectures of DeepONets that lead to good generalization.
	Fig. 2 Learning explicit operators using different V spaces and different network architectures.
	Fig. 3 Fast learning of implicit operators in a nonlinear pendulum (k = 1 and T = 3).
	Fig. 4 Fast learning of implicit operators in a diffusion-reaction system.
	Fig. 5 DeepONet prediction for a stochastic ODE.
	Fig. 6 DeepONet prediction for a stochastic elliptic equation.

