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We consider theoretical and computational issues related 
to operator regression and how to design deep neural 
networks (DNNs) that could represent accurately lin-

ear and nonlinear operators, mapping input functions into output 
functions. These operators can be of the explicit type, for example, 
the Laplace transform, or of the implicit type, for example, solution 
operators of partial differential equations (PDEs). For solution oper-
ators, the inputs to a DNN could be functions representing bound-
ary conditions selected from a properly designed input space V.  
Implicit type operators may also describe systems for which we do 
not have any mathematical knowledge of their form, for example, 
in social dynamics, although we do not consider such cases in the 
present work.

Discovering equations or operators from data is not a new objec-
tive. There were multiple pioneering efforts using neural networks 
(NNs) in the 1990s, including work by Kevrekidis and his associ-
ates1–3 and other groups4, as well as efforts using different physically 
intuitive approaches (for example, coarse-grained operators from 
fine-scale data5,6). Although these previous efforts are not directly 
related to our work here, they nevertheless contain several interest-
ing aspects that are useful in operator regression. In the literature, 
two types of implicit operator have been considered, that is, dynam-
ical systems in the form of ordinary differential equations (ODEs) 
or in the form of PDEs. For the dynamical systems, different net-
work architectures have been employed, including recurrent NNs 
(RNNs)7, residual networks8, neural ordinary differential equations9 
and neural jump stochastic differential equations10. However, they 
are only able to predict the evolution of a specific system (for exam-
ple, a Hamiltonian system11–14) rather than identifying the system 
behaviour for new unseen input signals. In learning operators from 
PDEs with structured data, some works treat the input and output 
function as an image and then use convolutional NNs (CNNs) to 
learn the image-to-image mapping G (refs. 15,16), but this approach 
can only be applied to particular types of problem where the  

locations of the points where input function u is evaluated are 
fixed. For unstructured data, a modified CNN based on generalized 
moving least squares17 or graph kernel networks18 can be used to 
approximate specific operators. However, they are not able to learn 
general nonlinear operators. Also, some PDEs can be parameterized 
by unknown coefficients19–23 or an unknown forcing term24,25, and 
then the unknown parts are identified from data. However, not all 
PDEs can be well parameterized. Symbolic mathematics have also 
been applied to represent PDEs26,27, while accuracy and robustness 
still need to be addressed.

In this Article, we propose a general deep learning frame-
work, DeepONet, to learn diverse continuous nonlinear opera-
tors. DeepONet is inspired directly by theory that guarantees small 
approximation error (that is, the error between the target opera-
tor and the class of neural networks of a given finite-size archi-
tecture). Moreover, the specific architectures we introduce exhibit 
small generalization errors (that is, the error of a neural network 
for previously unseen data) for diverse applications, which we study 
systematically herein. Proper representation of the input space V 
of the operator is very important. Hence, we select 16 test cases to 
investigate the important question of sampling the space V. These 
examples include integrals, Legendre transforms, fractional deriva-
tives, nonlinear ODEs and PDEs, and stochastic ODEs and PDEs. 
For all examples, the proposed NNs generalize well—they predict 
the action of the operator on unseen functions accurately.

Our proposal of approximating functionals and nonlinear opera-
tors with NNs goes beyond the universal function approximation28,29 
and supervised data, or using the idea of physics-informed neural 
networks22. Specifically, we resort to a little known but powerful 
theorem, the universal operator approximation theorem30. This 
theorem states that a NN with a single hidden layer can approxi-
mate accurately any nonlinear continuous functional (a mapping 
from a space of functions into real numbers)31–33 and (nonlinear) 
operator (a mapping from a space of functions into another space of 
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functions)30,34. Let G be an operator taking an input function u, with 
G(u) being the corresponding output function. For any point y in 
the domain of G(u), the output G(u)(y) is a real number. Hence, the 
network takes inputs composed of two parts: u and y, and outputs 
G(u)(y) (Fig. 1a). In practice, we represent these input functions 
discretely so that network approximations can be applied. Here, we 
explore different representations of functions in the input space V, 
with the simplest one based on the function values at a sufficient 
but finite number of locations {x1, x2, …, xm}, which we call ‘sensors’ 
(Fig. 1a). There are other ways to represent a function, for example, 
with spectral expansions or as an image, and we demonstrate these 
in the 16 examples we present in this work. We envision that, in the 
future, such functions will be represented by other NNs.

DeepONet consists of an offline training stage followed by an 
online inference stage, and can be used for the real-time predic-
tions required in critical applications such as autonomous vehicles 
or dynamic target identification. In the offline stage, we solve the 
target operator with proper input space V using classical numerical 
methods and then train our DNNs. Depending on the application, 
a DeepONet may require only one or a few hundred graphics pro-
cessing unit (GPU) hours and can be trained using experimental or 
simulation data, or both, at various scales and levels of fidelity. The 
computational expense for training depends on the complexity of 
the operator, the quantity and quality of the data, and the network 
size. In this work, we assume that we have enough data and com-
putational resources to train the model offline. In the online stage, 
we can use the trained network as a surrogate for online inference, 
which only involves a forward pass of the network, and thus it can 
be performed for high-dimensional models to speed up computa-
tionally expensive applications dramatically, for example, in a frac-
tion of a second. To put this in perspective, one can look at everyday 
effective applications of pre-trained DNNs, for example, the recent 
deep learning model GPT-335 for language modelling that has  

175 billion parameters and requires 355 GPU years (cost of approxi-
mately US$5 million) to train, but once this model is trained, it can 
be deployed for almost real-time inference.

DeepONet theory and network architecture
In the following, we state the theorem of Chen and Chen30 (for 
more details, including definitions of variables, see Supplementary 
Section 1), which we further extend to deep NNs, based on which 
we propose the DeepONet. Subsequently, we present data genera-
tion and another theorem that relates the number and type of data 
with the accuracy of the input functions.

Theorem 1 (Universal Approximation Theorem for Operator). 
Suppose that σ is a continuous non-polynomial function, X is a Banach 
space, K1 ⊂ X, K2 ⊂ R

d are two compact sets in X and Rd, respectively, 
V is a compact set in C(K1), G is a nonlinear continuous operator, 
which maps V into C(K2). Then for any ϵ > 0, there are positive integers 
n, p and m, constants cki , ξk

ij, θk
i , ζk ∈ R, wk ∈ R

d, xj ∈ K1, i = 1, …, n, 
k = 1, …, p and j = 1, …, m, such that
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(1)

holds for all u ∈ V and y ∈ K2. Here, C(K) is the Banach space of all con-
tinuous functions defined on K with norm ∥ f∥C(K) = maxx∈K|f(x)|.

The network constructed in equation (1) and the meanings  
of the hyperparameters n, p and m are depicted in Fig. 1c. This 
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Fig. 1 | Illustrations of the problem set-up and new architectures of DeepONets that lead to good generalization. a, For the network to learn an operator 
G : u ↦ G(u) it takes two inputs [u(x1), u(x2), …, u(xm)] and y. b, Illustration of the training data. For each input function u, we require that we have the 
same number of evaluations at the same scattered sensors x1, x2, …, xm. However, we do not enforce any constraints on the number or locations for 
the evaluation of output functions. c, The stacked DeepONet is inspired by Theorem 1, and has one trunk network and p stacked branch networks. The 
network constructed in Theorem 1 is a stacked DeepONet formed by choosing the trunk net as a one-layer network of width p and each branch net as 
a one-hidden-layer network of width n. d, The unstacked DeepONet is inspired by Theorem 2, and has one trunk network and one branch network. An 
unstacked DeepONet can be viewed as a stacked DeepONet with all the branch nets sharing the same set of parameters.
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approximation theorem is indicative of the potential application of 
neural networks to learn nonlinear operators from data, that is, simi
lar to a standard NN where we learn functions from data. However, 
this theorem does not inform us how to learn operators efficiently. 
The overall accuracy of NNs can be characterized by dividing the 
total error into three main types: approximation, optimization and 
generalization errors36–38. The universal approximation theorem 
only guarantees a small approximation error for a sufficiently large 
network, but it does not consider the important optimization and 
generalization errors at all, which, in practice, are often dominant 
contributions to the total error. Useful networks should be easy to 
train (that is, to exhibit small optimization error) and generalize 
well to unseen data (that is, to exhibit small generalization error).

To demonstrate the capability and effectiveness of learning 
nonlinear operators using NNs, we set up the problem to be as 
general as possible by using the weakest possible constraints on 
the sensors and training dataset. Specifically, the only condition 
required is that the sensor locations {x1, x2, …, xm} are the same 
but not necessarily on a lattice for all input functions u, while we 
do not enforce any constraints on the output locations y (Fig. 1b). 
However, even this constraint can be lifted, for example, by inter-
polating u on a common set of sensor locations or by projecting 
u to a set of basis functions and then use the coefficients as a rep-
resentation of u. Heavily inspired by Theorem 1 and its extension 
Theorem 2 (see below), we propose a specific new network archi-
tecture, the deep operator network (DeepONet), to achieve small 
total errors. We will demonstrate that, unlike fully connected neu-
ral networks (FNNs) and residual neural networks (ResNets)39, 
DeepONet substantially improves generalization based on a design 
of two subnetworks, the branch net for the input function and the 
trunk net for the locations to evaluate the output function. The key 
point is that we discover a new operator G as a NN, which is able 
to make inferences for quantities of interest given new and unseen 
data. If we wish to further interpret the type of operator G using 
the familiar classical calculus, we can project the results of G(u)
(y) onto a dictionary containing first- or higher-order derivatives, 
gradients, Laplacians and so on, as is done currently with existing  
regression techniques19.

DeepONet architecture. We focus on learning operators in a more 
general setting, where the only requirement for the training dataset is 
the consistency of the sensors {x1, x2, …, xm} for input functions (we 
do not require the sensor locations to be equispaced). In this gen-
eral setting, the network inputs consist of two separate components, 
[u(x1), u(x2),…, u(xm)]T and y (Fig. 1a), and the goal is to achieve 
good performance by designing the network architecture. One 
straightforward solution is to directly employ a classical network, 
such as FNN, ResNet, CNN or RNN, and concatenate two inputs 
together as the network input, that is, [u(x1), u(x2),…, u(xm), y]T. 
However, in general, the input does not have any specific structure, 
and thus we use FNN and ResNet as the baseline models. To com-
pare DeepONets with additional models, we also consider CNN 
or RNN as the baselines in a few examples for specific problems  
and datasets.

In high-dimensional problems, y is a vector with d components, 
so the dimension of y no longer matches the dimension of u(xi) 
for i = 1, 2, …, m. This also prevents us from treating u(xi) and y 
equally, and thus at least two subnetworks are needed to handle 
[u(x1), u(x2),…, u(xm)]T and y separately. Although the universal 
approximation theorem (Theorem 1) does not have any guarantee 
on the total error, it still provides us with a network structure con-
structed in equation (1). Inspired by this network, the architecture 
we propose is shown in Fig. 1c. First, there is a ‘trunk’ network, 
which takes y as the input and outputs [t1, t2,…, tp]T ∈ R

p. In addi-
tion to the trunk network, there are p ‘branch’ networks, and each 
of them takes [u(x1), u(x2),…, u(xm)]T as the input and outputs a 

scalar bk ∈ R for k = 1, 2, …, p. We then merge them together as in 
equation (1):

G(u)(y) ≈
p

∑

k=1

bk(u(x1), u(x2),…, u(xm))
︸ ︷︷ ︸

branch

tk(y)
︸︷︷︸

trunk

The network constructed in Theorem 1 is equivalent to our pro-
posed network on choosing the trunk net as a one-layer network of 
width p and each branch net as a one-hidden-layer network of width 
n. Hence, we essentially replace the shallow networks in Theorem 1 
with deep networks in Fig. 1c to gain expressivity. We note that the 
trunk network also applies activation functions to the last layer, that 
is, tk = σ(⋅) for k = 1, 2, …, p, and thus this trunk–branch network 
can also be seen as a trunk network with each weight in the last 
layer parameterized by another branch network instead of the clas-
sical single variable. In equation (1) we also note that the last layer 
of each bk branch network does not have bias. Although bias is not 
included in Theorem 1, adding bias may increase the performance 
by reducing the generalization error (Fig. 2). In addition to adding 
bias to the branch networks, we also add a bias b0 ∈ R in the last 
stage: G(u)(y) ≈

∑p
k=1 bktk + b0.

In practice, p is at least of order 10, and using lots of branch net-
works is inefficient. Hence, we merge all the branch networks into 
one single branch network (Fig. 1d), that is, a single branch net-
work outputs a vector [b1, b2,…, bp]T ∈ R

p. In the first DeepONet  
(Fig. 1c), there are p branch networks stacked in parallel, so we 
name it ‘stacked DeepONet’, while we refer to the second DeepONet 
(Fig. 1d) as ‘unstacked DeepONet’. An unstacked DeepONet can be 
viewed as a stacked DeepONet with all the branch nets sharing the 
same set of parameters. We note that our proposed DeepONets are 
also universal approximators for nonlinear operators, because none 
of our modifications decrease the network expressivity compared 
to the network in Theorem 1. All versions of DeepONets are imple-
mented in DeepXDE22, a user-friendly Python library designed for 
scientific machine learning. The loss function we use is the mean 
squared error (m.s.e.) between the true value of G(u)(y) and the net-
work prediction for the input ([u(x1), u(x2), …, u(xm)], y).

We developed two versions of DeepONets by extending the net-
work architecture in Theorem 1, and next we prove that the pro-
posed DeepONets are also universal approximators for operators in 
Theorem 2. Although Theorem 1 only considers shallow networks, 
Theorem 2 allows different branch/trunk networks.

Theorem 2 (Generalized Universal Approximation Theorem 
for Operator). Suppose that X is a Banach space, K1 ⊂ X, K2 ⊂ R

d 
are two compact sets in X and Rd, respectively, V is a compact set in 
C(K1). Assume that G : V → C(K2) is a nonlinear continuous opera-
tor. Then, for any ϵ > 0, there exist positive integers m, p, continuous 
vector functions g : Rm

→ R
p, f : Rd

→ R
p, and x1, x2, ..., xm ∈ K1, 

such that
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holds for all u ∈ V and y ∈ K2, where 〈⋅,⋅〉 denotes the dot product in 
R

p. Furthermore, the functions g and f can be chosen as diverse classes 
of neural networks, which satisfy the classical universal approxima-
tion theorem of functions, for example, (stacked/unstacked) fully con-
nected neural networks, residual neural networks and convolutional 
neural networks.

Proof. The proof can be found in Supplementary Section 2.
As stated in Theorem 2, DeepONet is a high-level network archi-

tecture without defining the architectures of its inner trunk and 
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branch networks. To demonstrate the capability and good perfor-
mance of DeepONet alone, we choose the simplest FNN for the 
architectures of the subnetworks in this study. If the input function 
has a certain structure, then it is possible that by using some special-
ized layers we could further improve the accuracy. For example, if 
{x1, x2, …, xm} are on an equispaced grid, then we can use convolu-
tional layers in the branch net. Other network designs may also be 
considered in DeepONets, for example, the ‘attention’ mechanism40.

Embodying some prior knowledge into neural network archi-
tectures usually induces good generalization. This inductive bias 
has been reflected in many networks, such as CNNs for images 
and RNNs for sequential data. The success of DeepONet, even 

when using FNNs for its subnetworks, is also due to its strong 
inductive bias. The output G(u)(y) has two independent inputs u 
and y, and thus using the trunk and branch networks explicitly is 
consistent with this prior knowledge. More broadly, G(u)(y) can be 
viewed as a function of y conditioned on u, and thus DeepONets 
can be viewed as a conditional model, where the embedding of u 
(the output of the branch net) and the embedding of y (the out-
put of the trunk net) are merged at the end through a dot product 
operation. Finding an effective way to represent the conditioning 
input and merge the embeddings is still an open question, and 
different approaches have been proposed, such as feature-wise  
transformations41.
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Fig. 2 | Learning explicit operators using different V spaces and different network architectures. a, Errors of different network architectures trained to 
learn the antiderivative operator (linear case). The training/test errors of stacked/unstacked DeepONets with/without bias compared with the best test 
error and the corresponding training error of FNNs, ResNets and Seq2Seq models. The ‘Seq2Seq 10×’ is a Seq2Seq model with 10 times more training data 
points. The error bars show the one standard deviation from 10 runs with different training/test data and network initialization. b, The training trajectory of 
an unstacked DeepONet with bias (m.s.e., mean squared error). c, The error (mean and standard deviation) tested on the space of Gaussian random fields 
(GRFs) with the correlation length l = 0.1 for DeepONets trained with GRF spaces of different correlation length l (red curve). The 2-Wasserstein metric 
between the GRF of l = 0.1 and a GRF of different correlation length l is shown as a blue curve. The test error grows exponentially with respect to the W2 
metric (inset). d, Learning the Caputo fractional derivative: poly-fractonomials versus Legendre versus GRF. e, Learning the fractional Laplacian on a disk. 
The V space consists of the Zernike polynomials.
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Data generation. The input function u(x) plays an important role 
in learning operators. In this study, we mainly consider the follow-
ing function spaces: Gaussian random fields (GRFs), spectral repre-
sentations and formulating the input functions as images (for more 
details see Supplementary Section 3). We note that one data point is a 
triplet (u, y, G(u)(y)), and thus a specific input u may appear in mul-
tiple data points with different values of y. For example, a dataset of 
size 10,000 may only be generated from 100 u trajectories, and each 
evaluates G(u)(y) at 100 different y locations. Moreover, the number 
and locations of y could be different for different u. In our dataset, for 
each u we randomly select P different y points in the domain of G(u), 
and thus the total number of data points is equal to P × #u.

In DeepONets, we use [u(x1), u(x2), …, u(xm)] as the input of 
the branch net to represent u(x), and we should estimate how many 
sensors m are required to achieve a good accuracy ε. We consider 
the following ODE system:

Problem 1
{ d

dx s(x) = g(s(x), u(x), x)
s(a) = s0

(2)

where u ∈ V (a compact subset of C[a, b]) is the input signal, 
and s : [a, b] → R

K  is the solution of system (2) serving as the  
output signal.

Let G be the operator mapping the input u to the output s, that 
is, G(u) satisfies

G(u)(x) = s0 +
∫ x

a
g(G(u)(t), u(t), t)dt

Now, we choose uniformly m + 1 points xj = a + j(b − a)/m, j = 0,  
1, ..., m from [a, b], and define the function um(x) as

um(x) = u(xj) + u(xj+1)−u(xj)
xj+1−xj (x− xj), xj ≤ x ≤ xj+1, j

= 0, 1, ..., m− 1

Denote the operator mapping u to um by Lm, and let 
Um = {Lm(u)|u ∈ V}, which is a compact subset of C[a, b], since 
V is compact and continuous operator Lm keeps the compactness. 
Obviously, Wm := V ∪ Um, as the union of two compact sets is also 
compact. Then, set W :=

∪
∞

i=1 Wi, and the lemma in Supplementary 
Section 5 points out that W is still a compact set. Because G is a con-
tinuous operator, G(W) is compact in C([a, b];RK). Let B[G(W)] and 
B[W] be the unions of the ranges of the functions in G(W) and W, 
respectively, and then B[G(W)] and B[W] are compact due to the 
compactness of G(W) and W. For convenience of analysis, we assume 
that g(s, u, x) satisfies the Lipschitz condition with respect to s and u 
on B[G(W)]× B[W], that is, there is a constant c > 0 such that

∥ g(s1, u, x)− g(s2, u, x)∥2 ≤ c ∥ s1 − s2∥2
∥ g(s, u1, x)− g(s, u2, x)∥2 ≤ c|u1 − u2|

Note that this condition is easy to achieve, for example as long as g is 
differentiable with respect to s and u on B[G(W)]× B[W].

For u ∈ V, um ∈ Um, there exists a constant κ(m, V) depending on 
m and compact space V, such that

maxx∈[a,b]|u(x)− um(x)| ≤ κ(m,V), κ(m,V) → 0 as m → ∞

(3)

When V is a GRF with the Gaussian kernel, we have κ(m,V) ∼ 1
m2 l2  

(for the proof see Supplementary Section 4). Based on the these 
concepts, we have the following theorem.

Theorem 3. Suppose that m is a positive integer making 
c(b − a)κ(m, V)ec(b−a) less than ε, then for any d ∈ [a, b], there exist 
W1 ∈ R

n×(m+1), b1 ∈ R
m+1, W2 ∈ R

K×n, b2 ∈ R
K , such that

∥ G(u)(d)− (W2 · σ(W1 · [u(x0) · · · u(xm)]T + b1) + b2)∥2 < ε

holds for all u ∈ V.
Proof. The proof can be found in Supplementary Section 5.

Results and discussion
To demonstrate the capability and efficiency of DeepONets, we 
will learn 16 different operators via DeepONets, including diverse 
linear/nonlinear explicit and implicit operators. Specifically, the 
four explicit operators include the integration, Legendre trans-
form, one-dimensional (1D) fractional derivative, and 2D frac-
tional Laplacian. The implicit operators include eight operators of 
deterministic ODEs (nonlinear ODE and the gravity pendulum) 
and PDEs (diffusion-reaction, advection and advection-diffusion) 
and four operators of two stochastic differential equations for both 
pathwise solutions and statistics. For the ODEs and PDEs, the input 
function of the operators could be the boundary conditions, initial 
conditions or forcing terms. We have carefully selected these diverse 
tests to probe the generalization error of DeepONet, investigate 
proper representations of the input space V including non-compact 
spaces, compare different DNN architectures and consider both 
explicit and implicit mathematical operators. All details of these 
tests are provided in the Supplementary Information to assist the 
readers to readily reproduce our results. In ongoing work, we have 
employed DeepONets to simulate various multiscale and multi-
physics systems, and we will report this work in future publications.

We first show how to learn explicit operators, and demonstrate 
small generalization error for different representations of the dis-
crete input space V. We then present how to learn implicit operators. 
The parameter values for all examples are listed in Supplementary 
Section 7, and verification of the Hölder continuity of all the explicit 
and implicit operators considered in this study is presented in 
Supplementary Section 18.

Learning explicit operators. First, we consider a pedagogical 
example described by

ds(x)
dx = g(s(x), u(x), x), x ∈ (0, 1]

with an initial condition (IC) s(0) = 0. Our goal is to predict s(x) 
over the whole domain [0, 1] for any u(x). We first consider a linear 
problem by choosing g(s(x), u(x), x) = u(x), which is equivalent to 
learning the antiderivative operator:

Problem 1.A ds(x)
dx = u(x) andG : u(x) �→ s(x)

= s0 +
∫ x
0 u(τ)dτ, x ∈ [0, 1]

(4)

We train FNNs and ResNets to learn the antiderivative operator, 
where the network input is a concatenation of u(x) and y and the 
output is G(u)(y). To obtain the best performance of FNNs, we 
grid-search three hyperparameters: depth from 2 to 4, width from 
10 to 2,560 and learning rate from 0.0001 to 0.01. The m.s.e.s of the 
test dataset with learning rates 0.01, 0.001 and 0.0001 are shown 
in Supplementary Fig. 1. Although we only choose depth up to 4, 
the results show that increasing the depth further does not improve 
the test error. Among all these hyperparameters, the smallest test 
error of ~7 × 10−5 is obtained for the network with depth 2, width 
2,560 and learning rate 0.001. We observe that, when the network 
is small, the training error is large and the generalization error (the 
difference between test error and training error) is small due to 
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the small expressivity. When the network size increases, the train-
ing error decreases, but the generalization error increases. We stop 
the training before FNNs reach the overfitting region, where the 
test error increases. Similarly, for ResNets, we grid-search the two 
hyperparameters: the number of residual blocks from 1 to 5 and 
width from 10 to 320. We note that one residual block includes two 
dense layers with a shortcut connection, and each ResNet has one 
hidden layer before the first residual block and one hidden layer 
after the last residual block39, and thus a ResNet has in total (3 + 2# 
residual block) layers. We chose a learning rate of 0.001 based on 
previous results for FNNs. Among all these hyperparameters, the 
smallest test error of ~1 × 10−4 is obtained for the ResNet with one 
residual block and width 20. In addition to FNNs and ResNets, we 
also considered sequence-to-sequence (Seq2Seq) models42–44 using 
the long short-term memory (LSTM) or the gated recurrent units 
(GRUs) with attention mechanism as the baseline. More details of 
Seq2Seq are presented in Supplementary Section 16.

Compared to FNNs, ResNets and Seq2Seq, DeepONets have 
much smaller generalization error and thus smaller test error (Fig. 
2a and Supplementary Table 6). Seq2Seq is better than FNNs and 
ResNets, and has performance similar to stacked DeepONets—
for ~10 times more data points, the performance of Seq2Seq is 
close to unstacked DeepONets. We note that the datasets used for 
DeepONets and Seq2Seq are not exactly the same, because Seq2Seq 
requires that the output function evaluations have to be on a dense 
grid (P = 100), while DeepONet does not have this constraint and 
uses a dataset of P = 1 only. Unstacked DeepONets have perfor-
mance similar to Seq2Seq if we train DeepONets on the same dense 
dataset, which is not required for DeepONets as they work with 
sparse datasets. Moreover, the training of Seq2Seq is much more 
expensive (more than seven times) than the training of DeepONets 
(Supplementary Table 4).

Here, we do not aim to find the best hyperparameters of 
DeepONets, and only test the performance of the stacked and 
unstacked DeepONets listed in Supplementary Table 3. One training 
trajectory of an unstacked DeepONet with bias is shown in Fig. 2b, 
and the generalization error is negligible. We observe that for both 
stacked and unstacked DeepONets, adding bias to branch networks 
reduces both training and test errors (Fig. 2a). DeepONets with 
bias also have smaller uncertainty; that is, they are more stable for 
training from random initialization (Fig. 2a). Compared to stacked 
DeepONets, unstacked DeepONets have smaller test error due to 
the smaller generalization error. Therefore, unstacked DeepONets 
with bias achieve the best performance. In addition, unstacked 
DeepONets have fewer parameters than stacked DeepONets, and 
thus can be trained more quickly using much less memory. We also 
provide examples of the Legendre transform in Supplementary 
Section 10 and nonlinear ODEs in Supplementary Section 11, as 
well as more details on the accuracy and architecture. In the follow-
ing study, we will use unstacked DeepONets.

When we train a neural network, we usually generate a training 
dataset from the same space as the functions that we will predict, 
namely, interpolation. We have shown that DeepONets perform very 
well for interpolation (Fig. 2a,b). Next, we will test DeepONets for 
the situation where the training dataset and test dataset are not sam-
pled from the same function space. Specifically, the input functions  
in the training dataset are sampled from the space of a GRF with 
the covariance kernel kl(x1, x2) = exp(− ∥ x1 − x2∥2/2l2), where l 
is the length-scale parameter. After the network is trained, instead 
of testing functions also in this space, we will always use the func-
tions sampled from the space of the GRF with l = 0.1 for testing. To 
quantify the difference between two GRF spaces of different cor-
relation lengths, we use the 2-Wasserstein (W2) metric45 to measure 
their distance (details are provided in Supplementary Section 6). 
When l is large, the W2 metric is large (blue curve, Fig. 2c), and the 
test error is also large (red curve, Fig. 2c). When l is smaller, the W2 

metric and test error become smaller. If l = 0.1, the training and test 
spaces are the same, and thus the W2 metric is 0. It is interesting that 
the test m.s.e. grows exponentially with respect to the W2 metric 
(inset, Fig. 2c).

In addition to the aforementioned integral operator, we consider 
integro-differential operators, namely, fractional differential opera-
tors, to demonstrate the flexibility of DeepONets to learn more 
complicated operators. The first fractional differential operator we 
learn is the 1D Caputo fractional derivative46:

Problem 2

G(u)(y, α) : u(x) �→ s(y, α) = 1
Γ (1−α)

∫ y
0 (y− τ)−αu′(τ)dτ,

y ∈ [0, 1], α ∈ (0, 1)

where α and u′(·) are the fractional order and first derivative of u, 
respectively. The domain of the output function now includes two 
variables y and α. We concatenate y and α to form an augmented 
ŷ = [y, α]T and then feed ŷ to the trunk net. We consider the influ-
ence of different V spaces on the generalization error of DeepONets. 
These spaces include two orthogonal polynomial spaces spanned by 
poly-factonomials47 and Legendre polynomials, as well as the GRF. 
More details are provided in Supplementary Section 17. Figure 2d 
shows the generalization errors for the three different V spaces. We 
see that small generalization errors are achieved for all of the cases. 
The generalization error for the GRF is slightly larger than those for 
orthogonal polynomial spaces.

The second fractional differential operator we learn is the 2D 
Riesz fractional Laplacian48:

Problem 3

G(u)(y, α) : u(x) �→ s(y, α)

=
2α

Γ (1+ α
2 )

π|Γ (−
α
2 )|

× p.v.
∫

R2
u(y)−u(τ)
∥y−τ∥2+α

2
dτ, α ∈ (0, 2)

where ‘p.v.’ means principle value. The input and output functions 
are both assumed to be identically zero outside of a unit disk cen-
tred at the origin. The 2D fractional Laplacian reduces to standard 
Laplacian Δ as the fractional order α goes to two. For learning this 
operator, we specify the V space to be the orthogonal space spanned 
by the Zernike polynomials49, which are commonly used to generate 
or approximate functions defined on a unit disk. Figure 2e (inset) dis-
plays the first 21 Zernike polynomials (for a more detailed descrip-
tion of the polynomial expansions see Supplementary Section 3).

We consider two different NN architectures: unstacked 
DeepONets versus CNNs. In this problem, we generated a dataset 
such that the input and output functions are evaluated on an equi-
spaced grid, such that a CNN can also be used. For the DeepONet, 
in a similar manner as for handling the 1D Caputo derivative case, 
we feed the augmented ŷ = [y, α] to the trunk net. For the CNN 
architecture, we rearrange the values of input and output func-
tions to 2D images in which ‘pixel’ (or function) values are attached 
to a lattice in the polar coordinate. We first utilize a CNN as an 
encoder to extract the features of the input image, which reduces 
the high-dimensional input space to a low-dimensional latent space, 
and then we employ another CNN as a decoder to map the vector 
in the latent space to the output space. To accommodate the extra 
parameter α, we set the image consisting of values of G(y, αk) for 
kth α as the kth channel of the output image. As such, we obtain 
a multi-channel output image. We observe from Fig. 2e that both 
architectures yield small generalization errors. Moreover, the CNN 
architecture exhibits slightly higher accuracy than the DeepONet. 
This is because the former sufficiently takes advantage of the spa-
tial structure of the training data. Nevertheless, DeepONet is more 
flexible than CNN for unstructured data, as we commented in the 
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preceding paragraphs. More details are presented in Supplementary 
Section 17.

DeepONet learns fast. An important question for the effectiveness 
of DeepONet is how fast it learns new operators. We investigate this 
question by learning a system of nonlinear ODEs first and subse-
quently a nonlinear PDE. First, we consider the motion of a gravity 
pendulum with an external force described by

Problem 1.B ds1
dt = s2,

ds2
dt = −k sin s1 + u(t)

with an initial condition s(0) = 0, and k determined by the accelera-
tion due to gravity and the length of the pendulum. This problem is 
characterized by three factors: (1) k, (2) maximum prediction time 
T and (3) input function space. The accuracy of learned networks 
is determined by four factors: (1) the number of sensor points m, 
(2) training dataset size, (3) network architecture and (4) optimizer. 
We investigate the effects of all these factors on the accuracy of 
DeepONet in Supplementary Section 12 and verify our analysis on 
the number of sensors, but here we focus on the convergence rate of 
the training process.

The test and generalization errors of DeepONets with different 
trunk/branch width are shown in Fig. 3a,b. It is surprising that the 
test and generalization errors have exponential convergence for 
small training dataset size. Even for a large dataset, the polynomial 
convergence rates are still higher than the classical x−0.5 in learning 
theory50. This fast convergence reveals that DeepONets learn expo-

nentially fast, especially in the region of a small dataset. Moreover, 
the transition point from exponential to polynomial convergence 
depends on the network size, and a larger exponential regime can be 
accomplished with a sufficiently large network, but the smaller net-
work has higher accuracy for a small dataset. We cannot yet explain 
theoretically this convergence behaviour, but we speculate that it 
may be related to the theory of information bottleneck51.

We have observed a fast exponential and polynomial error con-
vergence for DeepONets. For comparison we checked the error 
decay of two baseline models (FNN and Seq2Seq) with the same 
set-up. We chose an FNN of depth 3 and width 100, which has size 
similar to that of the DeepONet with branch/trunk width of 50 in Fig. 
3a. Details for the Seq2Seq are provided in Supplementary Section 
16. We also observed a similar initial exponential converge of FNNs 
(Fig. 3c), but, compared with DeepONets, FNNs have a much larger 
test error and much slower convergence speed. However, Seq2Seq 
models do not exhibit the exponential convergence regime and, 
overall, the test errors are larger with larger variation.

Next, we learn an implicit operator in the form of a nonlinear 
diffusion-reaction PDE with a source term u(x) described by

Problem 4 ∂s
∂t = D ∂2s

∂x2 + ks2 + u(x), x ∈ (0, 1), t ∈ (0, 1]

with zero initial/boundary conditions, where D = 0.01 is the diffu-
sion coefficient and k = 0.01 is the reaction rate. We use DeepONets 
to learn the operator mapping from u(x) to the PDE solution s(x, t). 
In the previous examples, for each input u we only used one random 
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point of s(x) for training; instead we may also use multiple points of 
s(x). To generate the training dataset, we solve the diffusion-reaction 
system using a second-order implicit finite-difference method on 
a 100 × 100 grid, and then for each s we randomly select P points 
from these 10,000(= 100 × 100) grid points (Supplementary Fig. 8). 
Hence, the dataset size is equal to the product of P and the number 
of u samples. We confirm that the training and test datasets do not 
include the data from the same s.

We investigate the error tendency with respect to the number of 
u samples and the value of P. When we use 100 random u samples, 
the test error decreases first as P increases (Fig. 4a), then saturates 
due to other factors, such as the finite number of u samples and 
fixed neural network size. We observe a similar error tendency but 
with less saturation as the number of u samples increases with P 
fixed (Fig. 4b). In addition, in this PDE problem the DeepONet is 
able to learn from a small dataset; for example, a DeepONet can 
reach a test error of ~10−5 when it is only trained with 100 u samples 
(P = 1,000). We recall that we test on 10,000 grid points and thus, on 
average, each location point only has 100 × 1,000/10,000 = 10 train-
ing data points. For comparison, we train ResNets of different sizes 
with the same set-up, and the test error is ~10−1 due to the large 
generalization error (Supplementary Table 7).

Before the error saturates, the rates of convergence with respect 
to both P and the number of u samples obey a polynomial law in 
most of the range (Fig. 4c,d). The rate of convergence versus P 
depends on the number of u samples, and more u samples induce 
faster convergence until saturation (blue line, Supplementary Fig. 
9d). Similarly, the rate of convergence versus the number of u sam-
ples depends on the value of P (red line, Supplementary Fig. 9d). 
In addition, in the initial range of the convergence, we observe an 
exponential convergence (Supplementary Fig. 9a,b). The coefficient 
1/k in the exponential convergence e−x/k also depends on the number 
of u samples or the value of P (Supplementary Fig. 9c). It is reason-

able that the convergence rate presented in Supplementary Fig. 9c,d 
increases with the number of u samples or the value of P, because 
the total number of training data points is equal to P × #u. However, 
by fitting the points, it is surprising that there is a clear tendency in 
the form of either ln (x) or e−x (Supplementary Fig. 9c,d), which we 
cannot fully explain yet, and hence more theoretical and computa-
tional investigations are required.

Here, when studying the convergence of DeepONets, we fix 
either #u or P and increase the other one. We show that the same 
exponential and polynomial convergence behaviour is also observed 
(Supplementary Fig. 10) when we keep P = #u to generate the train-
ing dataset; that is, the number of training data points is equal to 
P × #u = P2 = (#u)2. We also provide examples of the advection equa-
tion in Supplementary Section 14 and the advection-diffusion equa-
tion in Supplementary Section 15.

Learning stochastic operators. Next, we demonstrate that we can 
learn high-dimensional operators, so here we consider a stochastic 
ODE and a stochastic PDE and present our main findings.

Consider the population growth model

Problem 5 dy(t;ω) = k(t;ω)y(t;ω)dt, t ∈ (0, 1] andω ∈ Ω

(5)

with y(0) = 1. Here, Ω is the random space. The randomness comes 
from the coefficient k(t; ω). Here, k(t; ω) is modelled as a Gaussian 
random process such that

k(t;ω) ∼ GP(k0(t), Cov (t1, t2))

where the mean k0(t) = 0 and the covariance function is 
Cov (t1, t2) = σ2 exp(− ∥ t1 − t2∥2/2l2). We choose σ = 1, and the 
correlation length l is in the range [1, 2].
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We use DeepONet to learn the operator mapping from k(t; ω) 
of different correlation lengths to the solution y(t; ω). We note that 
we do not assume we know the covariance function for training 
DeepONet. The main differences between this example and the 
previous examples are as follows: (1) here, the input of the branch 
net is a random process instead of a function and (2) the input of 
the trunk net contains both physical spaces and random spaces. 
Specifically, to handle the random process as the input, we employ 
the Karhunen–Loève (KL) expansion:

k(t;ω) ≈

N∑

i=1

√

λiei(t)ξi(ω)

where N is the number of retained modes, λi and ei(t) are the ith 
largest eigenvalue and its associated normalized eigenfunction of 
the covariance function, respectively, and ξ1, …, ξN are independent 
standard Gaussian random variables. Then, the input of the branch 
net is the N eigenfunctions scaled by the eigenvalues:

[
√

λ1e1(t),
√

λ2e2(t),…,
√

λNeN(t)] ∈ R
N×m

where 
√

λiei(t) =
√

λi[ei(t1), ei(t2),…, ei(tm)] ∈ R
m, and the input 

of the trunk net is [t, ξ1, ξ2,…, ξN] ∈ R
N+1. We note that, by using 

the KL expansion, the randomness is only in ξi and becomes the 
input of DeepONet. However, this problem remains challenging 
because its dimension is very high; the input of the branch net 
contains N orthogonal functions instead of one function, and the 
dimension of the input of the trunk net is the sum of the dimensions 
of the physical space and random space.

We choose N = 5, which is sufficient to conserve 99.9% stochastic 
energy. We train a DeepONet with a dataset of 10,000 different k(t; 
ω) with l randomly sampled in [1, 2], and for each k(t; ω) we use only 
one realization. The test m.s.e. is 8.0 × 10−5 ± 3.4 × 10−5. As an exam-
ple, the prediction for 10 different random samples from k(t; ω) with 
l = 1.5 is shown in Fig. 5, and the average L2 relative error is ~0.5%.

Next, we consider the following elliptic problem with multiplica-
tive noise:

Problem 6 − div(eb(x;ω)

∇u(x;ω)) = f(x), x ∈ (0, 1) andω ∈ Ω

with Dirichlet boundary conditions u(0) = u(1) = 0. The ran-
domness comes from the diffusion coefficient eb(x;ω), and 
b(x;ω) ∼ GP(b0(x), Cov (x1, x2)), where the mean b0(x) = 0 and the 
covariance function is Cov (x1, x2) = σ2 exp(− ∥ x1 − x2∥2/2l2). In 
this example, we choose a constant forcing term f(x) = 10, and we 
set the standard deviation as σ = 0.1 and correlation length in the 
range [1, 2].

We use DeepONet to learn the operator mapping from b(x; ω) 
of different correlation lengths to the solution u(x; ω). We train a 
DeepONet with a dataset of 10,000 different b(x; ω) with l randomly 
sampled in [1, 2], and for each b(x, ω) we use only one realization. 
The test m.s.e. is 2.0 × 10−3 ± 1.7 × 10−3. As an example, the predic-
tion for 10 different random samples from b(x; ω) with l = 1.5 is 
presented in Fig. 6a, and the average L2 relative error is ~1.1%. We 
have a relative larger error in this stochastic elliptic problem and, 
to reduce the error further, we can remove outliers of the random 
variables {ξ1, ξ2, …, ξN} by clipping them to a bounded domain. For 
example, if the random variables are clipped to [−3.1, 3.1], which is 
sufficient large to keep 99% probability space, then the test m.s.e. is 
reduced to 9.4 × 10−4 ± 3.0 × 10−4.

In the aforementioned stochastic ODE and PDE problems, we 
have used DeepONets to predict the pathwise solutions. Next, we 
will apply DeepONets to predict statistical averages of the stochas-
tic solution, for example, the mean and standard deviation. We use 
the same set-up as in Problem 6, except that we consider a larger 
range [0.2, 2] for the correlation length. We also employ the KL 
expansion to handle the random process, and we keep the input of 
the branch net the same as in the previous problems, but for the 
trunk net the input is only t without random variables ξi. Because 
we consider a smaller correlation length, N = 8 modes are required 
to conserve 99.9% stochastic energy. We show that DeepONets 
can predict the mean and standard deviation accurately, and as an 
example the predictions for three values of the correlation length are  
shown in Fig. 6b,c.

In summary, the above method for stochastic ODEs and PDEs 
can be used for any colour noise where the KL expansion can be 
employed. For stochastic ODEs/PDEs with white noise, a different 
approach may be required.

Conclusions
We have formulated the problem of learning operators in a gen-
eral set-up and have proposed DeepONets to learn diverse linear/
nonlinear explicit and implicit operators. In DeepONets, we first 
construct two subnetworks to encode input functions and location 
variables separately, and then merge them together to compute the 
output. We test DeepONets on learning explicit operators, includ-
ing fractional operators, as well as implicit operators in the form of 
deterministic and stochastic ODEs and PDEs. Our two main find-
ings are that the generalization error is small and that the training 
and testing errors decay quickly with respect to the training data 
size. In fact, we observed exponentially fast learning for sufficiently 
large networks and transition to standard convergence for large 
datasets. In our simulations, we systematically studied the effects 
on the test error of different factors, including the number of sen-
sors, maximum prediction time, the complexity of the space of 
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input functions, training dataset size and network size. Moreover, 
we derived, theoretically, the dependence of approximation error on 
different factors, which is consistent with our computational results. 
In this study, all our training datasets are obtained from numerical 
solvers; that is, the trained DeepONet is a surrogate of the numeri-
cal solver. Hence, DeepONets cannot be better than the numerical 
solvers in terms of accuracy. However, as we show in Supplementary 
Table 5, the computational cost of running inference of DeepONet 
is substantially lower than for the numerical solver.

More broadly, a DeepONet could represent a multiscale opera-
tor trained with data spanning several orders of magnitude in 
spatio-temporal scales, for example, trained by data from the molecu-
lar, mesoscopic and continuum regimes in fluid mechanics or other 
multiscale problems. We could also envision other types of com-
posite DNN for developing multiphysics operators, for example, in 
electro-convection involving the evolution of the flow field and con-
centration fields of anions and cations due to continuous variation of 
imposed electric potentials. Indeed, in ongoing work, we have devel-
oped an extension of DeepONet for simulating this electro-convection 
multiphysics problem52, where we show that DeepONet is substan-
tially faster than a spectral element solver. We have obtained a similar 
speed-up and high accuracy in hypersonics for learning the aero-
dynamics coupled with the finite rate chemistry of multiple species. 
Learning such multiscale and multiphysics nonlinear operators will 
simplify computational modelling and will facilitate very fast predic-
tions of complex dynamics for unseen new parameter values and new 
input functions (boundary/initial conditions/excitation) with good 
accuracy, if the generalization error is bounded.

Despite the reported progress in this first Article, more work 
should be done both theoretically and computationally. Because 
the training dataset size in DeepONets is a product of the num-
ber of input functions u and the number of evaluation locations y 
for G(u), training DeepONets for operator approximation is much 
more computationally intensive than training NNs for function 

approximation. Hence, more research is needed in speeding up the 
training process and in formulating efficient offline training strate-
gies, including perhaps transfer learning approaches. Here, we have 
employed known operators to evaluate the accuracy of DeepONet 
systematically; however, the real strength of DeepONet is that it 
can discover new operators that are trained by multi-fidelity data 
or by heterogeneous sources of experimental data and simulation 
data. We could also endow the operator G with prior knowledge, 
for example, translational and rotational invariances as in CNNs 
for imaging53. On the theoretical side, there have not been any 
results on the network size for operator approximation, similar to 
the bounds of width and depth for function approximation54. We 
also do not yet understand theoretically why DeepONets can induce 
small generalization errors. On the other hand, in this Article we 
use fully connected neural networks for the two subnetworks, but, 
as we discussed in the Materials and methods, if the network input 
has a certain structure, we can also employ other network architec-
tures, such as CNNs or the ‘attention’ mechanism. These modifi-
cations may improve further the accuracy of DeepONets, and the 
example of using a CNN with encoders and decoders for learning 
the fractional Laplacian presented here is a first such indication.

In summary, we have formulated a new framework for deep NN, 
based on the new Theorem 2, to learn linear and nonlinear opera-
tors implicitly as NNs. In theory, all the operators of the classical 
integer calculus, but also of fractional calculus, can be represented 
by carefully trained NNs as well as other transforms and even theo-
rems, such as the Gauss theorem. In future work, we will present 
our ongoing simulation experiments in predicting very complex 
dynamics of multiscale and multiphysics operators, accurately and 
very quickly.

Reporting Summary. Further information on research design 
is available in the Nature Research Reporting Summary linked to  
this Article.
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Data availability
All the datasets in the study were generated directly from the code.

Code availability
The code used in the study is publicly available from the GitHub 
repository https://github.com/lululxvi/deeponet55.
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