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Abstract— As an innovative design for high performance 
computing, Intel Xeon Phi coprocessor based on Intel Many 
Integrated Core (Intel MIC) architecture relies heavily on its 
SIMD (single instruction multiple data) unit. However, 
performance of non-contiguous memory access has become the 
memory wall towards efficient utilization of SIMD unit on Intel 
Xeon Phi coprocessors due to gather/scatter overhead. Existing 
vectorization techniques in the optimization of gather/scatter 
overhead have been focusing on extracting data parallelism from 
inter-loop and intra-loop in a decoupled means. In this paper, we 
propose a novel inter-intra-hybrid vectorization technique which 
further exploits SIMD efficiency. In this technique, we generate 
optimized SIMD code for loops requesting non-contiguous 
memory. Additional strategies are also presented to improve 
SIMD unit parallelism through data padding and redundant 
computation. To evaluate our technique, the two major functions 
from Sandia’s miniMD benchmark, i.e., LJ force calculation and 
neighbor list build, are taken for experiments which show that 
our proposed method achieves a performance gain of 25%-40% 
compared with Intel compiler auto vectorized code and 
outperforms the existing methods. Our optimization method can 
be further applied to other highly parallel workloads with 
frequent non-contiguous memory access, which is very common 
in real-world scientific applications. 

Keywords—high performance computing; gather/scatter; 
vectorization technique; performance optimization 

I. INTRODUCTION 
Intel Xeon Phi coprocessor is based on the Intel Many 

Integrated Core (Intel MIC) architecture which comprises of up 
to 61 x86-based power efficient cores. Each core is composed 
of four components: an inorder dual-issue pipeline with 4-way 
simultaneous multi-threading (SMT), a 512-bit wide SIMD 
unit; 32 KB L1 data and instruction caches; and a 512 KB fully 
coherent L2 cache [1]. The SIMD unit provides data 
parallelism at a very fine grain, 16 single precision (or 8 double 
precision) floating point operations can be executed as a single 
vector operation [2].  

Intel MIC provides a completely new 512-bit SIMD 
instruction set which has a larger vector length compared to 
prior vector architectures (MMX, SSE, and AVX). Besides, 
many new features have been introduced, such as write-mask 
which conditionally updates data in the destination vector 
register according to mask bits. All the SIMD instructions can 

be explicitly used through intrinsics [3] which serve as a 
programming interface for code developers. 

Intel Xeon Phi coprocessor is designed to satisfy the 
growing needs of High Performance Computing workloads 
which are highly parallel and it is crucial to effectively utilize 
the SIMD unit in respect of performance optimization. 
However, fully exploiting data level parallelism inherent in 
scientific workloads can be challenging due to the fact that 
compiler is unaware of field knowledge and probably 
incapable of generating optimal vectorized code. For example, 
Molecular Dynamics (MD) simulation codes such as miniMD, 
LAMMPS, NAMD and Amber are highly parallel but heavily 
depend on non-contiguous memory access via gather/scatter 
operations that are the key performance bottleneck on Intel 
Xeon Phi coprocessor. In this paper, we propose a novel 
vectorization technique which improves gather/scatter 
performance via hand coding with intrinsics based on the latest 
Sandia’s miniMD benchmark. 

The contributions of this paper are: 

• We propose a novel inter-intra-hybrid vectorization 
technique which efficiently generates optimized SIMD 
code for loops that heavily depend on non-contiguous 
memory access. 

• We present practical strategies of improving SIMD unit 
parallelism through data padding and redundant 
computation. 

• We implement our technique and compare it with 
existing vectorization techniques of alleviating 
gather/scatter overhead on Intel Xeon Phi coprocessor, 
i.e., inter-loop and intra-loop vectorization. In addition, 
we provide an in-depth performance analysis of 
advantages and disadvantages for these two methods. 

Experiments show that the proposed method outperforms 
the existing methods and achieves a performance gain of 25%-
40% compared with Intel compiler auto vectorized code. 

The remainder of this paper is organized as follows: 
Section II provides a survey of related work; Section III 
provides a brief introduction of miniMD and identifies 
performance bottleneck of Intel compiler auto vectorized code; 
Section IV describes the existing vectorization techniques as 
well as our proposed optimization method; Section V provides 
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performance results of the vectorization techniques; Section VI 
concludes this paper. 

II. RELATED WORK 
Improving the efficiency of vector processing unit is one of 

the crucial aspects in performance optimization on SIMD 
architectures, especially Intel Xeon Phi coprocessor which 
employs a vector length as long as 512-bit. Many approaches 
have been proposed to handle the difficulties of non-
contiguous memory access on SIMD architectures, such as 
interleaved data access [4], non-aligned and irregular data 
access [5], indirect data access [6], etc. These approaches focus 
on auto generation of vectorized code and bring inspiration to 
compiler optimization. Even so, perfectly exploiting the data 
parallelism inherent in scientific applications is extremely 
difficult for compiler due to the various possibilities of data 
access pattern which compiler is unaware of. Wu et al. [7] 
proposed an integrated SIMDization framework that pursues 
the vectorization of both inter-loop and intra-loop 
simultaneously but it is not feasible for non-contiguous 
memory access. Pennycook et al. [8] describes vectorization 
techniques that address the gather/scatter overhead through 
coding with platform specific intrinsics and reports a 
significant performance gain over scalar code on Intel Xeon 
processor as well as Intel Xeon Phi coprocessor. However, 
their proposed techniques extract data parallelism from inter-
loop and intra-loop in a decoupled means and there still exist 
alternatives for further performance improvement. 

III. MOTIVATING EXAMPLE 
Molecular Dynamics (MD) is a computational simulation 

of physical movements of atoms and molecules in the context 
of N-body simulation. The atoms and molecules are allowed to 
interact for a period of time, giving a view of the motion of the 
atoms. Molecular Dynamics has become one of the most 
powerful computational tools and has been widely used in the 
simulation of a huge variety of systems both in and out of 
thermodynamic equilibrium [9]. MD simulations are highly 
parallel computations and have been developed to run 
efficiently on various hardware architectures. Optimization of 
MD simulation is quite a popular topic and a lot of research 
focuses on rewriting the code with CUDA or OpenCL so as to 
take advantage of the growing computing power of  Graphics 
Processing Unit (GPU) [12]-[15]. Other research aims at 
acceleration on SIMD architecture such as Intel Xeon Phi 
coprocessor [8],[16],[17].  

miniMD is a simplified version of LAMMPS package from 
Sandia Labs with the purpose of optimization research [10], 
[11]. miniMD benchmark includes two major components: LJ 
force calculation and neighbor list build, which account for 

approximately 55% and 36% of total execution time on 
Knights Corner (KNC) Intel Xeon Phi coprocessor.  

A. LJ Force Calculation 
LJ force calculation (Algorithm 1) uses Newton’s equation 

to evaluate forces between all atoms. The algorithm makes use 
of a pre-computed neighbor list so as to save trouble of 
calculating the distance between all atom pairs and only 
neighbors with a distance shorter than the cut-off distance 
cutforcesq contribute to the accumulated result.  

Algorithm 1 LJ force calculation 
1:  for i = 0; i < num of atoms; i++ do 
2:      xi = pos[i][0] 
3:      yi = pos[i][1] 
4:      zi = pos[i][2] 
5:      for k = 0; k < num of i’s neighbors do 
6:          j = neighbor_list[k] 
7:          delx = xi – pos[j][0] 
8:          dely = yi – pos[j][1] 
9:          delz = zi – pos[j][2] 
10:        rsq = (delx * delx) + (dely * dely) + (delz * delz) 
11:        if rsq ! cutforcesq then 
12:            sr2 = 1.0 / rsq 
13:            sr6 = sr2 * sr2 * sr2 * sigma6 
14:            force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon 
15:            f[i][0] += force * delx 
16:            f[i][1] += force * dely 
17:            f[i][2] += force * delz 
18:        end if 
19:    end for 
20: end for 

Intel compiler is able to auto vectorize the inner loop of LJ 
force calculation efficiently. For double precision, Intel Xeon 
Phi coprocessor works on 8 neighbors at a time, as shown in 
Fig. 1. Atoms are stored in the format of AoS which needs to 
be reconstructed into SoA so as to achieve 100% SIMD 
efficiency. Lines 7-10 calculate the distance between the target 
atom and its neighbors in 3 dimensions. delx is calculated for 
the 8 neighbors at one instruction and position x of the 8 
neighbors are packed into one vector register. The non-
contiguous memory accesses of atom positions result in a 
gather operation which introduces significant inefficiency. 
Similarly, Lines 15-17 accumulate the LJ force in 3 dimensions 
and the SoA to AoS conversion leads to scatter operation. 

The branch at Line 11-18 is handled by vector masking. 
Intel Xeon Phi coprocessor has 16-bit mask registers that 
control which entries of the 16 32-bit elements are accessed 
during a computation, for double precision only the lower 8 
bits of the mask register are used. To be specific, a comparison 
at Line 11 is used to generate the mask bits and the 
computation at Lines 12-14 is executed for all neighbors, but 
only neighbors that passes the test are written back. 

 
Fig. 1. Intel Compiler auto vectorized code 
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B. Neighbor List Build 
Neighbor list build (Algorithm 2) identifies neighbors of 

each atom. The list is updated at a given time stamp and used 
for LJ force calculation.  

Algorithm 2 Neighbor List Build 
1:  for i = 0; i < num of atoms; i++  do 
2:      xi = pos[i][0] 
3:      yi = pos[i][1] 
4:      zi = pos[i][2] 
5:      for all k = 0; k < num of potential neighbors do 
6:          j = potential_neighbor[k] 
7:          delx = xi – pos[j][0] 
8:          dely = yi – pos[j][1] 
9:          delz = zi – pos[j][2] 
10:        rsq = (delx * delx) + (dely * dely) + (delz *delz) 
11:        if rsq ! cutneighsq  then 
12:            neighbor[i][numneigh[i]] = j 
13:            numneigh[i]++ 
14:        end if 
15:     end for 
16: end for 

Lines 7-10 of the loop are similar to LJ force calculation, 
the distance of target atom and potential neighbor is computed. 
The AoS to SoA conversion introduces gather operation which 
is the only performance inefficiency in neighbor list build. 
Lines 12-13 append the qualified neighbor whose distance to 
the target atom is closer than cutneighsq to the list and are 
handled by packed store. Intel Xeon Phi coprocessor provides 
pack/unpack instructions to handle the case where the memory 
data has to be compressed or expanded as they are written to 
memory or read from memory into a register. Mask bits 
generated at Line 11 is used to dictate which entries of the 
vector register data to be selected to fill the 64-byte form of the 
compressed memory data. 

C. Gather/Scatter Overhead 
Intel Xeon Phi coprocessor supports gather/scatter 

instructions to read/write sparse data in memory in or out of the 
packed vector registers, thus simplifying code generation for 
non-contiguous memory accesses. Using gather/scatter 
instructions are much more expensive than vector load/store 
because each gather/scatter instruction accesses only one cache 
line at a time. To fully populate all elements of the entire 
vector register, 16 cache line accesses are requested for single 
precision at most (8 for double precision).  

Gather/scatter instructions in Molecular Dynamics 
simulation result from AoS/SoA conversion and the requested 
elements for one vector register are not on the same cache line 
which means every gather/scatter hits the worst case. 

IV. OPTIMIZATION 
In this section, we firstly show several data alignment and 

padding skills in our optimization work and then discuss 
various vectorization techniques to achieve higher SIMD 
efficiency on Intel Xeon Phi coprocessor. 

A. Data Padding and Redundant Computation 
Vector unit of Intel Xeon Phi coprocessor reads and writes 

the data cache at a cache-line granularity of 512-bit through a 

dedicated bus. Unaligned data access causes expensive cache 
line split up and therefore harms performance. The default data 
structure of an atom in miniMD has 3 doubles, corresponding 
to positions in 3 dimensions. We pad an extra double to each 
atom and make the atom array aligned with 512-bit. 

Another performance hazard is the non-divisible loop 
count. Wide SIMD units such as KNC cannot be effectively 
utilized simply exposing complier to Intel MIC architecture. 
For example, using a SIMD unit of vector length VL, a scalar 
code that executes a loop of N iterations will execute 
floor(N/VL) full vector iterations followed by N mod VL scalar 
remainder iterations. Only if N is sufficiently larger than VL, 
the remainder iterations can still take up a significant portion of 
the total execution time. Loop count in miniMD depends on the 
cut-off distance Rc, larger Rc introduces more neighbors. In 
general, the remainder iterations bring 5-10% performance 
inefficiency. 

The non-divisible loop can be handled with several 
methods such as redundant computation and masked 
vectorization. In this work, we pad invalid neighbors which are 
atoms placed at infinity and always fail the cut-off check to the 
neighbor list so as to make loop count the nearest multiples of 
VL. 

B. Vectorization Techniques 
Modern SIMD architecture employs wide vector length and 

low power and low complexity processor design. For 
programmers, fully exploiting data parallelism to efficiently 
utilize the SIMD unit is one of the most important 
considerations. In this section, we first implement and analyze 
the existing vectorization techniques addressing the 
gather/scatter overhead, i.e., inter-loop, intra-loop vectorization 
and then propose inter-intra-hybrid vectorization method. 
These techniques are applicable for both LJ force calculation 
and neighbor list build since the overall procedure of the two 
loops are quite similar.  

1) Inter-Loop Vectorization: Inter-loop vectorization 
extracts data parallelism across iterations. This approach 
follows the same methodology as compiler and usually is the 
first to come to mind for programmers. For double precision, 
every 8 neighbors are worked in a batch, but rather than 
expensive gather/scatter instructions, atom sets are 
read/written in the format of AoS taking the advantage of 
vector load/store. The AoS to SoA conversion is handled by 
swizzle/permute intrinsics which perform data element re-
arrangement, as shown in Fig. 2. The rest of the loop executes 
exactly the same as Intel compiler auto vectorized code. 

Although gather/scatter instructions handle data 
conversion together with data transfer and thus are much 
easier to use, the performance is limited due to cache line 
split. Inter-loop vectorization manipulates data transfer and 
data conversion separately but in a much more efficient way. 
Data transfer takes the advangtage of spatial locality of atom 
elements and data conversion is handled in vector registers 
rather than memory. 
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Fig. 2. Inter-loop vectorization 

2) Intra-Loop Vectorization: Intra-loop vectorization 
extracts data parallelism within iteration and largely depends 
on data structure of the scalar loop which is usually 
overlooked by programmers. In the case of miniMD, intra-
loop vectorization makes use of atom data structure {x, y, z, 
0}. Atoms are manipulated in the format of AoS and no 
swizzle or permute instructions are needed as no data 
conversion is required, as shown in Fig. 3. On 512-bit SIMD 
unit such as Intel Xeon Phi coprocessor, distance rsq is 
calculated with vector add/mul and swizzle instructions. On 
128-bit and 256-bit SIMD units, it is possible to calculate rsq 
with a single dot product instruction. 

 
Fig. 3. Intra-loop vectorization 

In intra-loop vectorization, every 2 neighbors are worked in 
a batch to fully populate the 512-bit vector register for double 
precision and no more data conversion is needed. Although 
SIMD architecture favors SoA essentially, manipulating data in 
the format of AoS can be beneficial since the trouble of AoS to 
SoA conversion when loading and storing are both saved. 
However, Naïve intra-loop vectorization cannot guarantee a 
better performance than Intel compiler auto vectorized code. 
Despite of the simpler data flow, 3/4 of the SIMD vector length 

is wasted after rsq is computed, which is a significant 
inefficiency of the SIMD unit. 

3) Inter-Intra-Hybrid Vectorization: Inter-intra-hybrid 
vectorization extracts data parallelism across and within 
iterations simultaneously. Similar to intra-loop vectorization, 
data is manipulated in the format of AoS but every 8 neighbors 
are worked in a batch, which is the same as inter-loop 
vectorization. Adjacent atom sets are loaded into one vector 
register and 4 four vector registers are needed. After distance 
rsq is calculated, {rsq0, rsq1, …, rsq7} from the 8 neighbors are 
packed into one vector register so as to achieve 100% SIMD 
efficiency in the following computations, as shown in Fig. 4, 
which differs from intra-loop vectorization. 

Inter-intra-hybrid vectorization has the advantages of both 
inter-loop vectorization and intra-loop vectorization: (i) Data 
transfer is handled by vector load/store which is a much more 
efficient way than gather/scatter on SIMD architecture. 
(ii)Atom sets are directly manipulated in the format of AoS 
and thus save the trouble of data conversion when 
loading/storing. (iii) high efficiency of SIMD unit is 
guaranteed by data packing/unpacking at specific sections of 
computation. 

Extrating data parallelism of both inter-loop and intra-loop 
can be difficult since this vectorization technique highly relies 
on data flow of scalar code and therefore requires specific 
field knowledge. However, inter-intra-hybrid vectorization 
provides an alternative sulotion which further extend SIMD 
unit efficiency and should be carefully considered in the 
process of performance optimization. 
 

x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6 x7 y7 z70 0 0 0 0 0 0 0

x0 y0 z0 x1 y1 z10 0 x2 y2 z2 x3 y3 z30 0 x4 y4 z4 x5 y5 z50 0 x6 y6 z6 x7 y7 z70 0

vector load

rsq0 rsq1rsq0 rsq0 rsq0 rsq1 rsq1 rsq1 rsq2 rsq3rsq2 rsq2 rsq2 rsq3 rsq3 rsq3 rsq4 rsq5rsq4 rsq4 rsq4 rsq5 rsq5 rsq5 rsq6 rsq7rsq6 rsq6 rsq6 rsq7 rsq7 rsq7

rsq0 rsq4rsq1 rsq2 rsq3 rsq5 rsq6 rsq7  
Fig. 4. Inter-intra-loop vectorization 
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V. RESULTS 

A. miniMD Benchmark 
To evaluate the performance of the different vectorization 

techniques, the latest code from Sandia Labs is used and the 
results of both LJ force calculation and neighbor list build are 
presented. Double precision is used and the other simulation 
parameters are fixed as follows: size = 60, timesteps = 100. 
The experiment is repeated by 100 times and the average 
execution time of the two major functions is calculated. The 
relative performance of inter-loop, intra-loop and inter-intra-
hybrid in comparison of Intel compiler auto vectorized code 
are presented. 

B. System Configuration 
The detailed information on the configuration of Intel Xeon 

Phi coprocessor used in the performance study of proposed 
vectorization techniques is provided in Table I. 

TABLE I.  TARGET SYSTEM CONFIGURATIONS 

System 
Parameters 

Intel Xeon Phi coprocessor 
7120P 

Cores 61 
Threads 244 

Frequency 1.238GHz 
Power 300W 

Memory Capacity 16GB 
Memory Technology GDDR5 
Memory Frequency 2.75GHz 
Memory Channels 16 

Memory Bandwidth 352GB/s 
SIMD vector length 512 bits 

 

C. Performance Results 
Table II shows the performance comparison for 1) Default 

Intel compiler auto vectorized code; 2) inter-loop vectorization; 
3) intra-loop vectorization; 4) inter-intra-hybrid vectorization. 

TABLE II.  PERFORMANCE RESULTS 

Components Auto 
vectorized 

Inter
-loop 

Intra-
loop 

Inter-intra-
hybrid 

LJ force 
calculation 1.00x 1.20x 0.66x 1.25x 

Neighbor list build 1.00x 1.35x 0.74x 1.40x 
 
In general, inter-intra-hybrid vectorization achieves 25%-

40% performance gain compared with Intel compiler auto 
vectorized code and outperforms the existing vectorization 
techniques. All the three vectorization techniques handle data 
transfer by vector read/write rather less efficient gather/scatter 
instructions. Furthermore, inter-loop vectorization uses swizzle 
and permute intrinsics to cope with AoS to SoA conversion 
and achieves 100% SIMD efficiency. Intra-loop vectorization 
manipulated atom sets in the format of AoS and saves the 

trouble of data conversion. However, it is even slower than the 
default Intel auto vectorized code due to the fact that 3/4 of the 
SIMD vector length is wasted after distance rsq is computed. 
Inter-intra-hybrid vectorization addresses this SIMD unit 
inefficiency by exploiting data parallelism across and within 
iterations simultaneously, therefore achieves the best 
performance. 

VI. CONCLUSIONS 
Driven by the increasing prevalence of SIMD architecture 

in High Performance Computing, we propose a novel 
vectorization technique that addresses the gather/scatter 
overhead on Intel Xeon Phi coprocessor. We analyze the 
existing vectorization techniques that focus on the optimization 
of non-contiguous memory access on SIMD architecture, i.e. 
inter-loop, intra-loop vectorization and provide an in-depth 
analysis of the advantages and disadvantages. We use the two 
major functions of miniMD benchmark for evaluation whose 
results show that our proposed method achieves a performance 
gain of 25%-40% compared with Intel compiler auto 
vectorized code and outperforms the existing methods on Intel 
Xeon Phi coprocessor. 

The inter-intra-hybrid vectorization technique is also 
applicable for other vector length such as 128-bit and 256-bit. 
Furthermore, besides MD simulation, we believe that the 
proposed vectorization technique can be applied to other 
classes of workload that heavily rely on non-contiguous 
memory access.  
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