
Optimizing Non-Contiguous Memory Access on Intel
Xeon Phi Coprocessors

Mingfei Ma1, Jinlong Hou1, Jason Ye1, Meena Arunachalam2, Rafael Gutierrez3
Software and Service Group, Intel Corporation

1Shanghai, PRC, 2Portland, USA, 3Santa Clara, USA
{mingfei.ma, jinlong.hou, jason.y.ye, meena.arunachalam, rafael.gutierrez}@intel.com

Abstract— As an innovative design for high performance
computing, Intel Xeon Phi coprocessor based on Intel Many
Integrated Core (Intel MIC) architecture relies heavily on its
SIMD (single instruction multiple data) unit. However,
performance of non-contiguous memory access has become the
memory wall towards efficient utilization of SIMD unit on Intel
Xeon Phi coprocessors due to gather/scatter overhead. Existing
vectorization techniques in the optimization of gather/scatter
overhead have been focusing on extracting data parallelism from
inter-loop and intra-loop in a decoupled means. In this paper, we
propose a novel inter-intra-hybrid vectorization technique which
further exploits SIMD efficiency. In this technique, we generate
optimized SIMD code for loops requesting non-contiguous
memory. Additional strategies are also presented to improve
SIMD unit parallelism through data padding and redundant
computation. To evaluate our technique, the two major functions
from Sandia’s miniMD benchmark, i.e., LJ force calculation and
neighbor list build, are taken for experiments which show that
our proposed method achieves a performance gain of 25%-40%
compared with Intel compiler auto vectorized code and
outperforms the existing methods. Our optimization method can
be further applied to other highly parallel workloads with
frequent non-contiguous memory access, which is very common
in real-world scientific applications.

Keywords—high performance computing; gather/scatter;
vectorization technique; performance optimization

I. INTRODUCTION
Intel Xeon Phi coprocessor is based on the Intel Many

Integrated Core (Intel MIC) architecture which comprises of up
to 61 x86-based power efficient cores. Each core is composed
of four components: an inorder dual-issue pipeline with 4-way
simultaneous multi-threading (SMT), a 512-bit wide SIMD
unit; 32 KB L1 data and instruction caches; and a 512 KB fully
coherent L2 cache [1]. The SIMD unit provides data
parallelism at a very fine grain, 16 single precision (or 8 double
precision) floating point operations can be executed as a single
vector operation [2].

Intel MIC provides a completely new 512-bit SIMD
instruction set which has a larger vector length compared to
prior vector architectures (MMX, SSE, and AVX). Besides,
many new features have been introduced, such as write-mask
which conditionally updates data in the destination vector
register according to mask bits. All the SIMD instructions can

be explicitly used through intrinsics [3] which serve as a
programming interface for code developers.

Intel Xeon Phi coprocessor is designed to satisfy the
growing needs of High Performance Computing workloads
which are highly parallel and it is crucial to effectively utilize
the SIMD unit in respect of performance optimization.
However, fully exploiting data level parallelism inherent in
scientific workloads can be challenging due to the fact that
compiler is unaware of field knowledge and probably
incapable of generating optimal vectorized code. For example,
Molecular Dynamics (MD) simulation codes such as miniMD,
LAMMPS, NAMD and Amber are highly parallel but heavily
depend on non-contiguous memory access via gather/scatter
operations that are the key performance bottleneck on Intel
Xeon Phi coprocessor. In this paper, we propose a novel
vectorization technique which improves gather/scatter
performance via hand coding with intrinsics based on the latest
Sandia’s miniMD benchmark.

The contributions of this paper are:

• We propose a novel inter-intra-hybrid vectorization
technique which efficiently generates optimized SIMD
code for loops that heavily depend on non-contiguous
memory access.

• We present practical strategies of improving SIMD unit
parallelism through data padding and redundant
computation.

• We implement our technique and compare it with
existing vectorization techniques of alleviating
gather/scatter overhead on Intel Xeon Phi coprocessor,
i.e., inter-loop and intra-loop vectorization. In addition,
we provide an in-depth performance analysis of
advantages and disadvantages for these two methods.

Experiments show that the proposed method outperforms
the existing methods and achieves a performance gain of 25%-
40% compared with Intel compiler auto vectorized code.

The remainder of this paper is organized as follows:
Section II provides a survey of related work; Section III
provides a brief introduction of miniMD and identifies
performance bottleneck of Intel compiler auto vectorized code;
Section IV describes the existing vectorization techniques as
well as our proposed optimization method; Section V provides

2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software

and Systems (ICESS)

978-1-4799-8937-9/15 $31.00 © 2015 IEEE
DOI 10.1109/HPCC-CSS-ICESS.2015.182

1615

performance results of the vectorization techniques; Section VI
concludes this paper.

II. RELATED WORK
Improving the efficiency of vector processing unit is one of

the crucial aspects in performance optimization on SIMD
architectures, especially Intel Xeon Phi coprocessor which
employs a vector length as long as 512-bit. Many approaches
have been proposed to handle the difficulties of non-
contiguous memory access on SIMD architectures, such as
interleaved data access [4], non-aligned and irregular data
access [5], indirect data access [6], etc. These approaches focus
on auto generation of vectorized code and bring inspiration to
compiler optimization. Even so, perfectly exploiting the data
parallelism inherent in scientific applications is extremely
difficult for compiler due to the various possibilities of data
access pattern which compiler is unaware of. Wu et al. [7]
proposed an integrated SIMDization framework that pursues
the vectorization of both inter-loop and intra-loop
simultaneously but it is not feasible for non-contiguous
memory access. Pennycook et al. [8] describes vectorization
techniques that address the gather/scatter overhead through
coding with platform specific intrinsics and reports a
significant performance gain over scalar code on Intel Xeon
processor as well as Intel Xeon Phi coprocessor. However,
their proposed techniques extract data parallelism from inter-
loop and intra-loop in a decoupled means and there still exist
alternatives for further performance improvement.

III. MOTIVATING EXAMPLE
Molecular Dynamics (MD) is a computational simulation

of physical movements of atoms and molecules in the context
of N-body simulation. The atoms and molecules are allowed to
interact for a period of time, giving a view of the motion of the
atoms. Molecular Dynamics has become one of the most
powerful computational tools and has been widely used in the
simulation of a huge variety of systems both in and out of
thermodynamic equilibrium [9]. MD simulations are highly
parallel computations and have been developed to run
efficiently on various hardware architectures. Optimization of
MD simulation is quite a popular topic and a lot of research
focuses on rewriting the code with CUDA or OpenCL so as to
take advantage of the growing computing power of Graphics
Processing Unit (GPU) [12]-[15]. Other research aims at
acceleration on SIMD architecture such as Intel Xeon Phi
coprocessor [8],[16],[17].

miniMD is a simplified version of LAMMPS package from
Sandia Labs with the purpose of optimization research [10],
[11]. miniMD benchmark includes two major components: LJ
force calculation and neighbor list build, which account for

approximately 55% and 36% of total execution time on
Knights Corner (KNC) Intel Xeon Phi coprocessor.

A. LJ Force Calculation
LJ force calculation (Algorithm 1) uses Newton’s equation

to evaluate forces between all atoms. The algorithm makes use
of a pre-computed neighbor list so as to save trouble of
calculating the distance between all atom pairs and only
neighbors with a distance shorter than the cut-off distance
cutforcesq contribute to the accumulated result.

Algorithm 1 LJ force calculation
1: for i = 0; i < num of atoms; i++ do
2: xi = pos[i][0]
3: yi = pos[i][1]
4: zi = pos[i][2]
5: for k = 0; k < num of i’s neighbors do
6: j = neighbor_list[k]
7: delx = xi – pos[j][0]
8: dely = yi – pos[j][1]
9: delz = zi – pos[j][2]
10: rsq = (delx * delx) + (dely * dely) + (delz * delz)
11: if rsq ! cutforcesq then
12: sr2 = 1.0 / rsq
13: sr6 = sr2 * sr2 * sr2 * sigma6
14: force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon
15: f[i][0] += force * delx
16: f[i][1] += force * dely
17: f[i][2] += force * delz
18: end if
19: end for
20: end for

Intel compiler is able to auto vectorize the inner loop of LJ
force calculation efficiently. For double precision, Intel Xeon
Phi coprocessor works on 8 neighbors at a time, as shown in
Fig. 1. Atoms are stored in the format of AoS which needs to
be reconstructed into SoA so as to achieve 100% SIMD
efficiency. Lines 7-10 calculate the distance between the target
atom and its neighbors in 3 dimensions. delx is calculated for
the 8 neighbors at one instruction and position x of the 8
neighbors are packed into one vector register. The non-
contiguous memory accesses of atom positions result in a
gather operation which introduces significant inefficiency.
Similarly, Lines 15-17 accumulate the LJ force in 3 dimensions
and the SoA to AoS conversion leads to scatter operation.

The branch at Line 11-18 is handled by vector masking.
Intel Xeon Phi coprocessor has 16-bit mask registers that
control which entries of the 16 32-bit elements are accessed
during a computation, for double precision only the lower 8
bits of the mask register are used. To be specific, a comparison
at Line 11 is used to generate the mask bits and the
computation at Lines 12-14 is executed for all neighbors, but
only neighbors that passes the test are written back.

Fig. 1. Intel Compiler auto vectorized code

1616

B. Neighbor List Build
Neighbor list build (Algorithm 2) identifies neighbors of

each atom. The list is updated at a given time stamp and used
for LJ force calculation.

Algorithm 2 Neighbor List Build
1: for i = 0; i < num of atoms; i++ do
2: xi = pos[i][0]
3: yi = pos[i][1]
4: zi = pos[i][2]
5: for all k = 0; k < num of potential neighbors do
6: j = potential_neighbor[k]
7: delx = xi – pos[j][0]
8: dely = yi – pos[j][1]
9: delz = zi – pos[j][2]
10: rsq = (delx * delx) + (dely * dely) + (delz *delz)
11: if rsq ! cutneighsq then
12: neighbor[i][numneigh[i]] = j
13: numneigh[i]++
14: end if
15: end for
16: end for

Lines 7-10 of the loop are similar to LJ force calculation,
the distance of target atom and potential neighbor is computed.
The AoS to SoA conversion introduces gather operation which
is the only performance inefficiency in neighbor list build.
Lines 12-13 append the qualified neighbor whose distance to
the target atom is closer than cutneighsq to the list and are
handled by packed store. Intel Xeon Phi coprocessor provides
pack/unpack instructions to handle the case where the memory
data has to be compressed or expanded as they are written to
memory or read from memory into a register. Mask bits
generated at Line 11 is used to dictate which entries of the
vector register data to be selected to fill the 64-byte form of the
compressed memory data.

C. Gather/Scatter Overhead
Intel Xeon Phi coprocessor supports gather/scatter

instructions to read/write sparse data in memory in or out of the
packed vector registers, thus simplifying code generation for
non-contiguous memory accesses. Using gather/scatter
instructions are much more expensive than vector load/store
because each gather/scatter instruction accesses only one cache
line at a time. To fully populate all elements of the entire
vector register, 16 cache line accesses are requested for single
precision at most (8 for double precision).

Gather/scatter instructions in Molecular Dynamics
simulation result from AoS/SoA conversion and the requested
elements for one vector register are not on the same cache line
which means every gather/scatter hits the worst case.

IV. OPTIMIZATION
In this section, we firstly show several data alignment and

padding skills in our optimization work and then discuss
various vectorization techniques to achieve higher SIMD
efficiency on Intel Xeon Phi coprocessor.

A. Data Padding and Redundant Computation
Vector unit of Intel Xeon Phi coprocessor reads and writes

the data cache at a cache-line granularity of 512-bit through a

dedicated bus. Unaligned data access causes expensive cache
line split up and therefore harms performance. The default data
structure of an atom in miniMD has 3 doubles, corresponding
to positions in 3 dimensions. We pad an extra double to each
atom and make the atom array aligned with 512-bit.

Another performance hazard is the non-divisible loop
count. Wide SIMD units such as KNC cannot be effectively
utilized simply exposing complier to Intel MIC architecture.
For example, using a SIMD unit of vector length VL, a scalar
code that executes a loop of N iterations will execute
floor(N/VL) full vector iterations followed by N mod VL scalar
remainder iterations. Only if N is sufficiently larger than VL,
the remainder iterations can still take up a significant portion of
the total execution time. Loop count in miniMD depends on the
cut-off distance Rc, larger Rc introduces more neighbors. In
general, the remainder iterations bring 5-10% performance
inefficiency.

The non-divisible loop can be handled with several
methods such as redundant computation and masked
vectorization. In this work, we pad invalid neighbors which are
atoms placed at infinity and always fail the cut-off check to the
neighbor list so as to make loop count the nearest multiples of
VL.

B. Vectorization Techniques
Modern SIMD architecture employs wide vector length and

low power and low complexity processor design. For
programmers, fully exploiting data parallelism to efficiently
utilize the SIMD unit is one of the most important
considerations. In this section, we first implement and analyze
the existing vectorization techniques addressing the
gather/scatter overhead, i.e., inter-loop, intra-loop vectorization
and then propose inter-intra-hybrid vectorization method.
These techniques are applicable for both LJ force calculation
and neighbor list build since the overall procedure of the two
loops are quite similar.

1) Inter-Loop Vectorization: Inter-loop vectorization
extracts data parallelism across iterations. This approach
follows the same methodology as compiler and usually is the
first to come to mind for programmers. For double precision,
every 8 neighbors are worked in a batch, but rather than
expensive gather/scatter instructions, atom sets are
read/written in the format of AoS taking the advantage of
vector load/store. The AoS to SoA conversion is handled by
swizzle/permute intrinsics which perform data element re-
arrangement, as shown in Fig. 2. The rest of the loop executes
exactly the same as Intel compiler auto vectorized code.

Although gather/scatter instructions handle data
conversion together with data transfer and thus are much
easier to use, the performance is limited due to cache line
split. Inter-loop vectorization manipulates data transfer and
data conversion separately but in a much more efficient way.
Data transfer takes the advangtage of spatial locality of atom
elements and data conversion is handled in vector registers
rather than memory.

1617

Fig. 2. Inter-loop vectorization

2) Intra-Loop Vectorization: Intra-loop vectorization
extracts data parallelism within iteration and largely depends
on data structure of the scalar loop which is usually
overlooked by programmers. In the case of miniMD, intra-
loop vectorization makes use of atom data structure {x, y, z,
0}. Atoms are manipulated in the format of AoS and no
swizzle or permute instructions are needed as no data
conversion is required, as shown in Fig. 3. On 512-bit SIMD
unit such as Intel Xeon Phi coprocessor, distance rsq is
calculated with vector add/mul and swizzle instructions. On
128-bit and 256-bit SIMD units, it is possible to calculate rsq
with a single dot product instruction.

Fig. 3. Intra-loop vectorization

In intra-loop vectorization, every 2 neighbors are worked in
a batch to fully populate the 512-bit vector register for double
precision and no more data conversion is needed. Although
SIMD architecture favors SoA essentially, manipulating data in
the format of AoS can be beneficial since the trouble of AoS to
SoA conversion when loading and storing are both saved.
However, Naïve intra-loop vectorization cannot guarantee a
better performance than Intel compiler auto vectorized code.
Despite of the simpler data flow, 3/4 of the SIMD vector length

is wasted after rsq is computed, which is a significant
inefficiency of the SIMD unit.

3) Inter-Intra-Hybrid Vectorization: Inter-intra-hybrid
vectorization extracts data parallelism across and within
iterations simultaneously. Similar to intra-loop vectorization,
data is manipulated in the format of AoS but every 8 neighbors
are worked in a batch, which is the same as inter-loop
vectorization. Adjacent atom sets are loaded into one vector
register and 4 four vector registers are needed. After distance
rsq is calculated, {rsq0, rsq1, …, rsq7} from the 8 neighbors are
packed into one vector register so as to achieve 100% SIMD
efficiency in the following computations, as shown in Fig. 4,
which differs from intra-loop vectorization.

Inter-intra-hybrid vectorization has the advantages of both
inter-loop vectorization and intra-loop vectorization: (i) Data
transfer is handled by vector load/store which is a much more
efficient way than gather/scatter on SIMD architecture.
(ii)Atom sets are directly manipulated in the format of AoS
and thus save the trouble of data conversion when
loading/storing. (iii) high efficiency of SIMD unit is
guaranteed by data packing/unpacking at specific sections of
computation.

Extrating data parallelism of both inter-loop and intra-loop
can be difficult since this vectorization technique highly relies
on data flow of scalar code and therefore requires specific
field knowledge. However, inter-intra-hybrid vectorization
provides an alternative sulotion which further extend SIMD
unit efficiency and should be carefully considered in the
process of performance optimization.

x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6 x7 y7 z70 0 0 0 0 0 0 0

x0 y0 z0 x1 y1 z10 0 x2 y2 z2 x3 y3 z30 0 x4 y4 z4 x5 y5 z50 0 x6 y6 z6 x7 y7 z70 0

vector load

rsq0 rsq1rsq0 rsq0 rsq0 rsq1 rsq1 rsq1 rsq2 rsq3rsq2 rsq2 rsq2 rsq3 rsq3 rsq3 rsq4 rsq5rsq4 rsq4 rsq4 rsq5 rsq5 rsq5 rsq6 rsq7rsq6 rsq6 rsq6 rsq7 rsq7 rsq7

rsq0 rsq4rsq1 rsq2 rsq3 rsq5 rsq6 rsq7
Fig. 4. Inter-intra-loop vectorization

1618

V. RESULTS

A. miniMD Benchmark
To evaluate the performance of the different vectorization

techniques, the latest code from Sandia Labs is used and the
results of both LJ force calculation and neighbor list build are
presented. Double precision is used and the other simulation
parameters are fixed as follows: size = 60, timesteps = 100.
The experiment is repeated by 100 times and the average
execution time of the two major functions is calculated. The
relative performance of inter-loop, intra-loop and inter-intra-
hybrid in comparison of Intel compiler auto vectorized code
are presented.

B. System Configuration
The detailed information on the configuration of Intel Xeon

Phi coprocessor used in the performance study of proposed
vectorization techniques is provided in Table I.

TABLE I. TARGET SYSTEM CONFIGURATIONS

System
Parameters

Intel Xeon Phi coprocessor
7120P

Cores 61
Threads 244

Frequency 1.238GHz
Power 300W

Memory Capacity 16GB
Memory Technology GDDR5
Memory Frequency 2.75GHz
Memory Channels 16

Memory Bandwidth 352GB/s
SIMD vector length 512 bits

C. Performance Results
Table II shows the performance comparison for 1) Default

Intel compiler auto vectorized code; 2) inter-loop vectorization;
3) intra-loop vectorization; 4) inter-intra-hybrid vectorization.

TABLE II. PERFORMANCE RESULTS

Components Auto
vectorized

Inter
-loop

Intra-
loop

Inter-intra-
hybrid

LJ force
calculation 1.00x 1.20x 0.66x 1.25x

Neighbor list build 1.00x 1.35x 0.74x 1.40x

In general, inter-intra-hybrid vectorization achieves 25%-

40% performance gain compared with Intel compiler auto
vectorized code and outperforms the existing vectorization
techniques. All the three vectorization techniques handle data
transfer by vector read/write rather less efficient gather/scatter
instructions. Furthermore, inter-loop vectorization uses swizzle
and permute intrinsics to cope with AoS to SoA conversion
and achieves 100% SIMD efficiency. Intra-loop vectorization
manipulated atom sets in the format of AoS and saves the

trouble of data conversion. However, it is even slower than the
default Intel auto vectorized code due to the fact that 3/4 of the
SIMD vector length is wasted after distance rsq is computed.
Inter-intra-hybrid vectorization addresses this SIMD unit
inefficiency by exploiting data parallelism across and within
iterations simultaneously, therefore achieves the best
performance.

VI. CONCLUSIONS
Driven by the increasing prevalence of SIMD architecture

in High Performance Computing, we propose a novel
vectorization technique that addresses the gather/scatter
overhead on Intel Xeon Phi coprocessor. We analyze the
existing vectorization techniques that focus on the optimization
of non-contiguous memory access on SIMD architecture, i.e.
inter-loop, intra-loop vectorization and provide an in-depth
analysis of the advantages and disadvantages. We use the two
major functions of miniMD benchmark for evaluation whose
results show that our proposed method achieves a performance
gain of 25%-40% compared with Intel compiler auto
vectorized code and outperforms the existing methods on Intel
Xeon Phi coprocessor.

The inter-intra-hybrid vectorization technique is also
applicable for other vector length such as 128-bit and 256-bit.
Furthermore, besides MD simulation, we believe that the
proposed vectorization technique can be applied to other
classes of workload that heavily rely on non-contiguous
memory access.

ACKNOWLEDGMENT
The authors would like to thank Ashish Jha for his help in

providing performance data of inter-loop vectorization in
miniMD benchmark.

REFERENCES
[1] Intel Corporation, “Intel® Xeon Phi™ Coprocessor System Software

Developers Guide,” March 2014,
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-
coprocessor-system-software-developers-guide.pdf.

[2] Intel Corporation, “Intel® Xeon Phi™ Coprocessor Vector
Microarchitecture,” May 2013, https://software.intel.com/en-
us/articles/intel-xeon-phi-coprocessor-vector-microarchitecture.

[3] Intel Corporation, “Overview: Reference for Intrinsics Supporting
Intel® Initial Many Core Instructions”,
https://software.intel.com/sites/products/documentation/doclib/iss/2013/
compiler/cpp-lin/GUID-35876E20-882E-4067-88FA-
EC110B5A3D9F.htm

[4] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of interleaved
data for SIMD,” in Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’06, pages 132–143, 2006.

[5] H. Chang and W. Sung, “Efficient vectorization of SIMD programs with
non-aligned and irregular data access hardware,” in Proceedings of the
2008 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, CASES ’08, pages 167–176, 2008.

[6] S. Kim and H. Han, “Efficient SIMD Code Generation for Irregular
Kernels,” in Proceedings of the Symposium on Principles and Practice
of Parallel Programming, New Orleans, LA, 25-29 February 2012, pp.
55–64.

[7] P. Wu, A. E. Eichenberger, A. Wang, and P. Zhao, “An integrated
simdization framework using virtual vectors,” in Proceedings of the 19th

1619

annual International Conference on Supercomputing, ICS ’05, pages
169–178, 2005.

[8] S. Pennycook, C. Hughes, M. Smelyanskiy and S. Jarvis, “Exploring
SIMD for Molecular Dynamics, Using Intel® Xeon® Processors and
1ntel® Xeon Phi Coprocessors,” Parallel & Distributed Processing
(IPDPS), IEEE 27th International Symposium, Boston, MA., May 2013,
pp.1085-1097.

[9] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General Purpose
Molecular Dynamics Simulations Fully Implemented on Graphics
Processing Units,” Journal of Computer Physics, vol. 227, no. 10, pp.
5342–5359, 2008.

[10] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R.
W. Numrich, Improving Performance via Mini-applications, Technical
Report, SAND2009-5574, 2009.

[11] S. Plimpton et al., “LAMMPS Molecular Dynamics
Simulator,”http://lammps.sandia.gov/, May 2011.

[12] J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting a Message-Driven
Parallel Application to GPU-Accelerated Clusters,” in Proceedings of

the International Conference for High Performance Computing,
Networking, Storage and Analysis, Austin, TX., 2008, pp. 1–9.

[13] C. R. Trott, “LAMMPScuda - A New GPU-Accelerated Molecular
Dynamics Simulations Package and its Application to Ion-Conducting
Glasses,” Ph.D. dissertation, Ilmenau University of Technology, 2011.

[14] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, and
K. Schulten, “Accelerating molecular modeling applications with
graphics processors,” J. Comp. Chem. 28 (2007) 2618–2640.

[15] J. Yang, Y. Wang, Y. Chen, “GPU accelerated molecular dynamics
simulation of thermal conductivities,” J. Chem. Phys. 221 (2007) 799–
804.

[16] A. Harode, A. Gupta, B. Mathew, and N. Rai, “Optimization of
Molecular Dynamics Application for Intel Xeon Phi Coprossor,” High
Performance Computing and Applications, Bhubaneswar, 2014, pp. 1-6.

[17] F. Wende, T. Steinke, F. Cordes, “Concurrent Kernel Execution on
Xeon Phi within Parallel Heterogeneous Workloads,” Euro-Par 2014
Parallel Processing, Lecture Notes in Computer Science, Volume 8632,
2014, pp 788-799.

1620

