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ABSTRACT
Ab initio molecular dynamics (AIMD) simulations using hybrid density functionals and plane waves are of great interest owing to the accuracy
of this approach in treating condensed matter systems. On the other hand, such AIMD calculations are not routinely carried out since the
computational cost involved in applying the Hartree–Fock exchange operator is very high. In this work, we make use of a strategy that
combines adaptively compressed exchange operator formulation and multiple time step integration to significantly reduce the computational
cost of these simulations. We demonstrate the efficiency of this approach for a realistic condensed matter system.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125422., s

Ab initio molecular dynamics (AIMD) simulations with density
functional theory (DFT) and plane wave (PW) basis set are the meth-
ods of choice in studying the structural and dynamic properties of
condensed matter systems.1 Usage of density functionals at the level
of the Generalized Gradient Approximation (GGA) is common-
place for these simulations because more than a million energy and
force evaluations are computationally achievable by taking advan-
tage of parallel programs and parallel computing platforms. Con-
trarily, hybrid density functionals are preferred over GGA function-
als for improved accuracy in AIMD simulations.2–5 Computations
of energy and gradients at the hybrid functional level using the PW
basis set have prohibitively high computational cost resulting from
the application of the exact exchange operator on each of the occu-
pied orbitals. One of the ways to increase the efficiency of such
AIMD simulations is by making use of multiple time step (MTS)
algorithms6,7 among others.4,8–13 In this respect, the reversible ref-
erence system propagator algorithm (r-RESPA)7 has been used by
several authors.14–16 In the r-RESPA MTS approach, artificial time
scale separation in the ionic force components due to the com-
putationally intensive Hartree–Fock exchange (HFX) contribution
and the computationally cheaper rest of the terms is made.14,15 In

this manner, the MTS scheme allows us to compute HFX contribu-
tions less frequently compared to the rest of the contributions to the
force, thereby reducing the overall computational cost in performing
AIMD simulations.

Here, we propose a new way to take advantage of the r-RESPA
scheme for performing AIMD using hybrid functionals and PWs.
This scheme is based on the recently developed adaptively com-
pressed exchange (ACE) operator approach.17,18 We exploited some
property of the ACE operator to artificially split the ionic forces into
fast and slow.

The self-consistent field (SCF) solution of hybrid functional
based Kohn-Sham (KS) DFT equations requires application of the
exchange operator VX = −∑Norb

j
∣ψj⟩⟨ψj∣

r12
on each of the KS orbitals

∣ψi⟩,

VX∣ψi⟩ = −
Norb

∑
j
∣ψj⟩⟨ψj∣(r12)−1∣ψi⟩, i = 1, . . . ,Norb. (1)

Here,Norb is the total number of occupied orbitals. The evaluation of
⟨ψj∣(r12)−1∣ψi⟩ is usually done in reciprocal space8,19 using Fourier
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transform (FT). If NG is the total number of PWs, the computa-
tional cost for doing FT scales as NG logNG on using the fast Fourier
transform (FFT) algorithm. The total computational cost scales as
N2

orbNG logNG,19 as operation of VX on all the KS orbitals requires
N2

orb time evaluation of ⟨ψj∣(r12)−1∣ψi⟩.
In the recently developed ACE operator formulation,17 the

full rank VX operator is approximated by the ACE operator VACE
X

= −∑Norb
k ∣Pk⟩⟨Pk∣ using a low rank decomposition. Here, {∣Pk⟩} is

the set of ACE projection vectors which can be computed through a
series of simpler linear algebra operations, as explained below.

In matrix notation, VACE
X can be rewritten as

VACE
X = PPT , (2)

with {∣Pk⟩} being columns of P. Here,

P =WL−T , (3)

where the columns of W are

∣Wi⟩ = VX∣ψi⟩, i = 1, . . . ,Norb. (4)

L is a lower triangular matrix computed using the Cholesky factor-
ization of −M as

M = −LLT . (5)
Here, the elements of the matrix M are

Mkl = ⟨ψk∣VX∣ψl⟩. (6)

The evaluation of the action of theVACE
X operator on KS orbitals

can be done with the N2
orb number of inner products as

VACE
X ∣ψi⟩ = −

Norb

∑
k
∣Pk⟩⟨Pk∣ψi⟩, i = 1, . . . ,Norb. (7)

The advantage of the ACE approach is that the cost of applying the
VACE

X operator on each KS orbitals is much less as compared to the
VX operator. At the first SCF step, the VACE

X operator can be con-
structed through the computation of {VX∣ψi⟩}, which is the costliest
step [because of N2

orb time evaluation of ⟨ψj∣(r12)−1∣ψi⟩]. As HFX
has only a minor contribution to the total energy, an approximate
energy computation is possible by using the previously constructed
VACE

X operator without updating it for the rest of the SCF iterations.
It is again stressed that once the VACE

X operator is constructed, its low
rank structure allows the easy computation of {VACE

X ∣ψi⟩} in the sub-
sequent SCF iterations. We exploit this property of the ACE operator
to combine with the r-RESPA scheme.

In the r-RESPA method,7 symmetric Trotter factorization of
the classical time evolution operator is carried out. Let that ionic
force can be decomposed into slow and fast components as FK
= Ffast

K + Fslow
K , K = 1, . . . , 3N, for a system containing N atoms.

In this case, the Liouville operator L can be written as

iL = iLfast
1 + iLfast

2 + iLslow, (8)

with

iLfast
1 =

3N

∑
K=1
[ẊK

∂

∂XK
], iLfast

2 =
3N

∑
K=1
[Ffast

K
∂

∂PK
] (9)

and

iLslow =
3N

∑
K=1
[Fslow

K
∂

∂PK
]. (10)

Here, {XK} and {PK} are the Cartesian coordinates and the conju-
gate momenta of the particles, respectively. Using symmetric Trotter
factorization, we arrive at

exp(iLΔt) ≈ exp(iLslow Δt
2
)[exp(iLfast

2
δt
2
) exp(iLfast

1 δt)

× exp(iLfast
2
δt
2
)]

n
exp(iLslow Δt

2
). (11)

Here, the large time step Δt is chosen according to the time scale of
variation of slow forces ({Fslow

K }) and the smaller time step δt = Δt/n
is chosen according to the time scale of fast forces ({Ffast

K }).
Now, we split the contribution of ionic forces from the HFX

part as

Fhybrid
K = FACE

K + ΔFK , K = 1, . . . , 3N, (12)

with ΔFK = (Fhybrid
K − FACE

K ). Here, Fhybrid is the ionic force com-

puted with the full rank exchange operator VX. The term FACE is
the ionic force calculated using the low rank VACE

X operator. In our
approach, we invoke the approximation that Ffast ≡ FACE and Fslow

≡ ΔF. Here, the longer time step Δt is chosen according to the time
scale of variation of the computationally costly slow forces (ΔF),
whereas the smaller time step δt is taken as per the time scale of
fast forces that are cheaper to compute (FACE). In this way, we get
the required speed-up using the r-RESPA scheme to perform hybrid
functional based AIMD simulations.

In Figs. 1(a) and 1(b), we have shown the components of the
FACE and ΔF for a realistic molecular system, where VACE

X is calcu-
lated once at the beginning of a SCF while kept fixed during the
remaining SCF cycles and ΔF is calculated every n = Δt/δt steps.
The magnitude of ΔF is ∼100 times smaller compared to FACE (see
the supplementary material). Moreover, ΔF computed at every n
= Δt/δt steps is slowly varying. Thus, the artificial time scale sepa-
ration considered here is reasonable. We emphasize that it is prac-
tically difficult to have ΔF resonance-free and thus the total energy
conservation may not be fully satisfied. In such cases, efficient ther-
mostats have to be used while performing canonical ensemble simu-
lations to avoid long time energy drifts.20 We note in passing that
force-splitting done by differences in forces due to two levels of
theory as in Ref. 15 has larger amplitude of oscillation than ΔF con-
structed using the ACE approach (see the supplementary material).
Flowcharts of the method are given in Figs. 2 and 3.

Benchmark calculations were carried out for a 32 water system
where the molecules were taken in a supercell of dimensions 9.85
Å × 9.85 Å × 9.85 Å with water density ∼1 g cm−3. Calculations
were carried out employing the CPMD program21 where the pro-
posed method has been implemented. The PBE022 exchange corre-
lation functional was employed together with the norm-conserving
Troullier-Martin type pseudopotentials.23 A PW cutoff energy of
80 Ry was used. Born-Oppenheimer molecular dynamics (BOMD)
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FIG. 1. Test results for the 32-water system using the PBE0 functional: one of the
components of FACE and ΔF on an arbitrarily chosen (a) oxygen and (b) hydrogen
atoms. Here, FACE and ΔF are calculated at every δt and Δt, respectively. (c)
Comparison of potential energy during VV, MTS-5, and MTS-15 simulations in the
NVE ensemble. (d) log10(ΔE) for different Δt values in VV and MTS simulations
calculated from 5 ps long trajectories.

simulations were carried out to perform MD simulations at the
microcanonical (NVE) and canonical (NVT) ensembles. In order
to perform the canonical ensemble AIMD simulation, we employed
Nosé–Hoover chain thermostats24 and the temperature of the sys-
tem was set to 300 K. Addition of thermostats also helps to eliminate
any resonance effects originated with the use of large time step.20,25

At every MD steps, wavefunctions were converged until the magni-
tude of the maximum wavefunction gradient reached below 1× 10−6

a.u. The initial guess for the wavefunctions at every MD step was
obtained using the Always Stable Predictor Corrector Extrapolation
scheme26 of order 5.

To benchmark our implementation, we first compared the fluc-
tuations in the total energy using the conventional velocity Verlet
(VV) integrator and MTS runs (MTS-n) with n = Δt/δt, and δt ≈ 0.5
fs for 32-water in a periodic box treated by the PBE0 functional. The
magnitude of the total energy (E) fluctuations is measured by

ΔE = ⟨∣E − ⟨E⟩⟨E⟩ ∣⟩, (13)

where ⟨⋯⟩ specifies the time average. In the case of VV runs,
log10(ΔE) increases with higher Δt corresponding to the increase in
total energy fluctuations as shown in Fig. 1(d). We also observed that

FIG. 2. Flowchart of the MTS propagation scheme proposed in this work.

the use of a time step greater than 1.4 fs in VV runs leads to unstable
trajectories with breaking of O–H covalent bonds. In MTS-n runs,
we kept the inner time step δt fixed at 0.5 fs and varied outer time
step Δt = n δt. The quality of the energy conservation in these runs

FIG. 3. Flowchart showing the steps involved in computing FACE. Here, Ψ( i ) is the
wavefunction at the ith iteration.
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TABLE I. Comparison of various quantities for VV, MTS-5, and MTS-15 simulations
in the NVE ensemble.

Method log10(ΔE)a ΔU/(a.u.)b tCPU/(s)c Speed-upd

VV −6.8 0.0 258 1
MTS-5 −5.4 5.9× 10−4 64 4
MTS-15 −5.2 1.9× 10−3 38 7

aCalculated using Eq. (13) over 5 ps long trajectories.
bThe average absolute deviation of potential energy in MTS-n runs from the VV run:
ΔU = ⟨∣UVV

− U MTS-n
∣⟩. Here, UVV/MTS−n is the potential energy at any time during

VV/MTS-n run. This average is calculated over 1000 MD steps.
cAverage computational time per MD step (averaged over 500 MD steps) performed
using identical 120 processors.
dSpeed-up is the ratio of tCPU for VV and MTS-n runs.

depends on the value of n, which determines how large the outer
time step is compared to the inner time step. It is clear from Fig. 1(d)
that MTS-n runs with n up to 15 have the total energy conserva-
tion comparable (to the order of magnitude) to the VV run using a
time step 1.4 fs. Although the MTS-30 run (with Δt = 14.4 fs) was
showing higher total energy fluctuation, it was able to generate sta-
ble MD trajectories. Notably, we observed good accuracy in MTS

FIG. 4. Radial distribution functions (RDFs) for bulk water simulation from VV,
MTS-5, and MTS-15 trajectories at the level of PBE0: (a) O–O, (b) O–H, and (c)
H–H. (d) Power spectrum of the same system computed from VV, MTS-5, and
MTS-15 trajectories.

TABLE II. CPU time for various stages of the program.

CPU time per SCF using the VX operator 24 s
CPU time per SCF using the VACE

X operator 0.1 s
Average CPU time for the construction of
VACE

X at the beginning of every MD step 24 s

runs with n = 15 (i.e., MTS-15) (see Table I). The total energy
drifts for different NVE runs are reported in the supplementary
material.

In order to show the correctness of our proposed MTS scheme,
we compared the fluctuation in potential energy for VV, MTS-5,
and MTS-15 runs for a short initial time period for the 32-water
system (before the trajectories deviate due to growing numeri-
cal differences) in Fig. 1(c) (see also Table I). All these simu-
lations were started with the same initial conditions. We find
that potential energy computed from the MTS-5 and MTS-15
trajectories is closely following the potential energy from the
VV run.

As the next, we carried out NVT simulations for the same
system and computed the static and dynamical properties of bulk
water. In particular, we calculated partial radial distribution func-
tions (RDFs) and the power spectrum (see Fig. 4). It is clear
that the RDFs from the MTS simulations are in excellent agree-
ment with those from the VV run [Figs. 4(a)–4(c)]. In addi-
tion, the power spectrum computed from these calculations is in
excellent agreement [Fig. 4(d)]. Thus, we conclude that our MTS
scheme gives an accurate description of the structural and dynamical
properties.

We now compare the average computational time per MD
step (tCPU) for MTS-n and VV runs (see Tables I and II). We
have achieved a speed-up of ∼4 fold for the 32-water system with
MTS-5 as compared to the VV run. At the same time, with MTS-
15, we could achieve a speed-up of ∼7 fold. We have observed
a similar speed-up for larger system sizes (see the supplementary
material). It is crucial to note that application of the VACE

X oper-
ator at every SCF cycle in place of the exact exchange operator
VX gives a speed-up of ∼240 (see Table II). However, construc-
tion of the VACE

X operator, which is done only once in every MD
time step, is computationally expensive (and has the same com-
putational cost of applying the exact exchange operator). Thus in
this method, construction of VACE

X remains as the computational
bottleneck.

In conclusion, we presented a new scheme in using the r-
RESPA to perform hybrid functional based AIMD simulations with
the PW basis set. This involves artificial splitting in the nuclear forces
envisaged by the recently developed ACE approach. Our benchmark
results for liquid water show that stable and accurate MD trajecto-
ries can be obtained through this procedure. For the specific case of a
32-water system, a computational speed-up up to 7 could be ob-
tained. We hope that this approach will enable us to compute long
accurate AIMD trajectories at the level of hybrid DFT. Systematic
improvements can be further made to speed up this approach, in
particular, using localized orbitals for the construction of the ACE
operator,27 and by employing a resonance free thermostat,20 while
these are beyond the scope of this work.
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See the supplementary material for the comparison of fast and
slow force components, total energy drift, and benchmark for larger
system sizes.
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