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To thrive in complex environments, animals and artificial agents must learnto act
adaptively to maximize fitness and rewards. Such adaptive behaviour can be learned
through reinforcement learning’, a class of algorithms that has been successful at

training artificial agents* and at characterizing the firing of dopaminergic neuronsin
the midbrain®8. In classical reinforcement learning, agents discount future rewards
exponentially according to asingle timescale, known as the discount factor. Here we
explore the presence of multiple timescales in biological reinforcement learning.

We first show that reinforcement agents learning at a multitude of timescales possess
distinct computational benefits. Next, we report that dopaminergic neurons in mice
performing two behavioural tasks encode reward prediction error with a diversity

of discount time constants. Our model explains the heterogeneity of temporal
discounting inboth cue-evoked transient responses and slower timescale fluctuations
known as dopamine ramps. Crucially, the measured discount factor of individual
neuronsis correlated across the two tasks, suggesting that it is a cell-specific property.
Together, our results provide a new paradigm for understanding functional
heterogeneity in dopaminergic neurons and a mechanistic basis for the empirical
observation that humans and animals use non-exponential discounts in many

situations’ ™2

,and open new avenues for the design of more-efficient reinforcement
learning algorithms.

Many of the recent advancesin artificial intelligence rely on temporal
difference (TD) reinforcement learning (RL) in which the TD learning
rule is used to learn predictive information’ (equation (2)). By updat-
ing current estimates on the basis of future expected estimates, TD
methods have been remarkably successfulinsolving tasks that require
predicting future rewards and planning actions to obtain them?",

The standard formulation of TD learning assumes a fixed discount
factor (thatis, asingle-learning timescale), which, after convergence,
results in exponential discounting: the value of a future reward is
reduced by a fixed fraction per unit time (or timestep). Although
this formulation is important for simplicity and self-consistency of
the learning rule, it is well known that humans and other animals do
not exhibit exponential discounting when faced with inter-temporal
choices. Instead, they tend to show hyperbolic discounting: thereisa
fast drop invalue followed by aslower rate for further delays®°. Far from
beingirrational, non-exponential discounting can be optimal depend-
ing on the uncertainty in the environment, as has been documented
in the behavioural economics and foraging literature™2, Humans and
animals can modulate their discounting function to adapt to the tem-
poral statistics of the environment and maladaptive behaviour canbe
asignature of mental state or disease'*".

The TD rule can potentially be extended to learn more complex
predictive representations than the mean discounted future reward
of the traditional value function, in both artificial neural systems!®™*
and biological neural systems®**, Agrowing body of evidence points
to therich nature of temporal representationsin biological systems>2
and particularly in the basal ganglia? . Understanding how these
rich temporal representations are learned remains a key question
in neuroscience and psychology. An important component across
most temporal-learning proposals is the presence of multiple time-
scales?**'"* which enables capturing temporal dependencies across
adiverserange of durations: shorter timescales typically handle rapid
changes and immediate dependencies, whereas longer timescales
capture slow-changing features or long-term dependencies. Further-
more, workinartificial intelligence has suggested that the performance
of deep RL algorithms can be improved by incorporating learning at
multiple timescales'®**, We therefore ask whether RL in the brain exhib-
its such multi-timescale properties.

We first investigate the computational implications of multi-
timescale RL. We then show that dopaminergic neurons encode predic-
tions at diverse timescales, providing a potential neural substrate for
multi-timescale RLin the brain.
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Fig.1|Computational advantages of multi-timescaleRL. a, Insingle-
timescale value learning, the value of a cue (at ¢ = 0) predicting future rewards
(left) is evaluated by discounting these rewards with a single exponential
discounting function (middle). The expected reward size and timing are
encoded, but confounded, in the value of the cue (right). b, In multi-timescale
valuelearning, the same reward delays are evaluated with multiple discounting
functions (middleleft). The relative value of a cue as afunction of the discount
dependsonthereward delay (middleright). Asimplelinear decoder based on
the Laplace transform can thus reconstructboth the expected timing and the
magnitude of rewards (right). ¢, Experiment to compare single-timescale
versus multi-timescale learning. t;and R are fixed within each episode and
varied across episodes.d, Ineach episode (defined by aspecifictzand R),
thevalue functionislearned viatabular updates, using multiple discount
factors (step 1). Given these values, step 2 consists of training a non-linear

Advantages of multi-timescale RL

We first examined the computational advantages of RL agents using
multiple timescales over those utilizing a single timescale. We start
with asimple example environmentin which acue (s) predictsafuture
reward at a specific time (Fig. 1a; see Methods). In standard RL algo-
rithms, the agent learns to predict future rewards, compressed into
asingle scalar value, that is, the sum of discounted future rewards
expected from the current state’:

V(s):E{ Y y’rt} ()]

t=0

where V(s)isthe value of the states, r,isreward attime ¢, yis the discount
factor (0 <y <1)and Edenotes the expectation over stochasticity in the
environment and actions. This exponentially functional form for the
temporal discount () is not arbitrary. It is naturally produced by the
TD learning rule, a bootstrapping mechanism that updates the value
estimate for state safter transitioning fromstos’ and receiving reward r:

V(s) « V(s)+alr+yV(s) - V(s)] (2)

where «ais the learning rate. This update process converges to the
values defined above under very general conditions' and has been
experimentally proven to be an extremely robust and efficient learn-
ing rule in training deep RL systems® and at characterizing the firing
of dopaminergic neurons in the midbrain® %,

decoder to maximize the accuracy of a task-specificreport. The decoder is
trained across episodes using policy gradient. e, The architecture s trained
across four tasks to highlight computational advantages of multi-timescale
RL, including decoupling information about reward size and reward timing,
the ability to learn with arbitrary discount functions, the ability to recover
reward timing information before convergence and the ability to control
theinductive bias (see main text and Methods). f, Mean accuracy isreported
after2,000 training episodes as the fraction of correct responses (see Methods).
‘Three discounts’ correspond to the y-ensemble [0.6,0.9,0.99], ‘one discount’
to the top-performing ensemble across {[0.6,0.6,0.6],[0.9,0.9,0.9],
[0.99,0.99,0.99]} and analogous for ‘two discounts’. The error bars are the
standard deviations (s.d.) across 100 test episodes and 3 trained policy
gradient networks.

Now consider multi-timescale learning (Fig. 1b). Let V; be the value
learned using a discount y;. Moving the discount factor y out of the
expectation in equation (1), values can be rewritten (truncating at
t=T)as

E(rlt=0)
E(r|t=At)
vi=[1 y2 ]| Erie=200) 3)

E (r.l T

Where we assumed that timestep transitions are discrete and of size
At (see Methods). Thus, single-timescale learning projects all the
timestep-specific expected rewards (E(r|t)) onto a single scalar (V)
through exponential discounting (Fig. 1a) and therefore entangles
reward timing and reward size. When learning with multiple timescales,
instead of collapsing all future rewards onto a single scalar, there is a
vector of value predictions, each computing value with its own discount
factor y, - 2;

1 ylAt VIZAt le E(rlt:O)

4 1 ophc p2se T E(rlt=Ar)
Pl=ll2 2 2 || E(rle=2A¢) |=LE(rl0) 4)
Vol |1 : :
1 ynAt VHZAI ynT E(I‘l T)

The last equality shows that the array of values learned with multi-
ple discounts (value space in Fig. 1b) corresponds to the z-transform
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(thatis, the discrete Laplace transform (L)) of the array that indicates
the expected reward at all future timesteps (temporal spacein Fig. 1b).
Asthez-transformisinvertible, the agent using TD learning with multi-
pletimescalesimplicitly encodes the expected temporal evolution of
rewards, which canberecovered by applying afixed, regularized linear
decoder L to the learned values®?¥ (Fig. 1b, right panel illustrates a
situation with one reward per trajectory, but this approach also works
for multiple reward; see Methods and ref. 21).

RL agents performing multi-timescale learning have been shown to
produce performance superior to that of single-timescale agents
across awide range of complex problems™, Toillustrate the compu-
tational advantages of multi-timescale representations, we considered
several example tasks, including a simple linear maze (Fig. 1c-fand
Extended DataFig.1a-o0), branching mazes (Extended DataFigs. 1p-r,
2and 3a-e), anavigation setting (Extended Data Fig. 2f-i) and adeep
Q-network (DQN) setting (Extended Data Fig. 2j-1). Inthe linear maze,
the agent navigates through a linear track (a sequence of 15 states),
where it encounters a reward of a certain magnitude (R) at a specific
time point (¢;) (see Fig. 1c). The value of R and ¢; changes across epi-
sodes and remains constant within episodes. Each episodeisinitiated
byacuepresented at theinitial state (s). Withineach episode, the agent
firstlearns the expected future rewards predicted by the cue (that s,
thevalueV,(s)) using asimple RL algorithm (tabular TD learning) using
one or multiple discount factors (step 1in Fig. 1d). Using the learned
value (or values) associated with the cue, the agent then performs
various tasks, which involve producing a task-specific report by trans-
formingthelearned values using adecoder network (step 2in Fig.1d).
As some tasks involve complex, non-linear operations over the
multi-timescale values, we trained a general, non-linear decoder for
each task using policy gradient (see Methods). Our goal is to evaluate
the advantages of the multi-timescale value representation over the
single-timescale value representation, and the degree to which these
advantages can be exploited by a simple, code-agnostic decoder.
Therefore, in our model, multi-timescale values are not used directly
to produce behaviour. Instead, they act as an enriched state represen-
tation from which task-specific behaviour can be subsequently
decoded.

Task1: disentangling reward timing and reward magnitude

Insingle-timescale systems, a high value at the cue could signify asmall
rewardinthe near future or alarge reward inthe distant future. By con-
trast, the pattern of values across discount factors (middle right panel
inFig.1b)isinvariant to reward magnitude. As aresult, multi-timescale
agents can disentangle reward timing from reward magnitude (task 1
inFig.1e,f)inwhichthe agent reports reward timingindependently of
reward magnitude (Fig. 1f and Extended Data Fig.1a-c; see Methods).

Task 2:learning values with non-exponential temporal
discounts

The bootstrapping process of traditional TD value learning naturally
converges to exponentially discounted values. Although several tasks
canbe optimally solved by knowing the exponentially discounted state
values (that is, where the value of a reward at time ¢t decreases as )"),
the optimal discount in a specific task depends on its temporal con-
tingencies, such as its hazard rate, its horizon, the cost of time and
the uncertainty over time'**®. Indeed, human and animal judgements
are generally more consistent with a hyperbolic discount (that is,
decreasing as 1/(1 + yt)) than an exponential discount®™°. Crucially,
multi-timescale systems with a diversity of exponential discounts
implicitly encode the expected reward magnitudes at all future times
(Fig. 1b), so they can weigh the time-specific expected rewards with
any chosen discount weights to retrieve the specific discount neces-
sitated by the task. Our result shows that only multi-timescale systems
canreliably report the hyperbolic value of the cue given a diversity of
exponential values (task 2; Fig. 1e,f).
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Task 3: inferring temporal information before convergence

In single-timescale systems, a high value of the cue could be due to a
short delay (¢;) or simply because the value estimate in equation (1)
has undergone more positive updates from an initial value of O (for
example, if it has encountered the reward a larger number of times;
see Extended Data Fig. 1s-w). In multi-timescale systems, the shape
of value function across discount factors encodes the proximity to
rewards (Fig. 1b, medium left panel), and this shape is invariant to the
number of rewards encountered, to the extent that all value estimates
depart from similar baselines and share similar learning parameters.
As aresult, multi-timescale agents can decode the time of reward (t;)
eveninsituations in which learningisincomplete (task 3; Fig. 1e,f and
Extended Data Fig. 1; see Methods).

Task 4: state-dependent discount factor

Single-timescale systems are either myopic or far-sighted, whereas
multi-timescale systems can adjust between myopic and far-sighted
perspectives, leading to more accurate value estimatesinincomplete
learning scenarios. Consider aslight modification of the taskin Fig. 1c,
inwhich, inadditionto the large deterministic reward (R =1), small sto-
chastic rewards sampled from a Gaussian distribution are perceived at
every state (see Methods). If the agent experiences the trajectory many
times, the noisy rewards average out, so they do not affect the learned
value of the cue. Intask 4, however, the agent experiences the trajectory
only once, so the noisy rewards do affect the values learned with TD
learning. Given the noisy values, the goal in this task was to report the
true value of the cue that would arise after experiencing the trajectory
aninfinite number of times (this is, ignoring the noisy rewards). When ¢,
is small, far-sighted estimates not only integrate Rbut also all the noisy
rewards farther in the future, in contrast to myopic estimates, which
assign greater weight to R. However, when ¢, is large, only far-sighted
estimates can discern R from the noisy rewards. Thus, optimal accuracy
is only achievable by multi-timescale agents that can estimate ¢, and
thenadjustaccordingly between myopic and far-sighted perspectives.
Althoughinthistask the uncertainty onthe value of the cue arises due to
receiving small noisy rewards at every state, asimilar bias alsoimproves
the accuracy of value estimates in more realistic learning scenarios,
in which uncertainty arises due to incomplete exploration of the full
state space, as we have also shown in more realistic branching mazes,
navigationscenarios (Extended Data Fig. 2f-i) and in the Lunar Lander
environment using a DQN setting in which additional timescales act
as auxiliary tasks (Extended Data Fig. 2j-1; see ‘The myopic learning
bias’in Methods).

To summarize, in multi-timescale value systems, the vectorized learn-
ing signal robustly contains temporal information independently of
reward magnitude and learning conditions. This property empowers
agentsto flexibly adapt their behaviour to novel temporal contingen-
cies and focus on either myopic or far-sighted estimates depending
onthe currentsituation.

Discounting across dopaminergic neurons

In the previous section, we demonstrated the computational advan-
tages of learning with multiple discount factors for an RL agent. Build-
ingonthese findings, we nextinvestigated whether the brain uses such
multi-timescale RL. Towards this goal, we examined the activity of
dopaminergic neurons, which are believed to encode the TD error
terminRL algorithms.

To characterize the discounting properties of individual dopamin-
ergicneurons, mice (n = 8; see Extended Data Fig.10e) were trained in
a cued delay task?*’, in which on a given trial, one out of four distinct
odour cuesindicated its associated timing of awater reward (Fig. 2a).
These odour cues were preceded by a trial start cue (green computer
screen) by 1.25 s. The trial start cue reduced the timing uncertainty of
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Fig.2|Dopaminergic neurons exhibit adiversity of discountfactors that
enables decoding of reward delays. a, Outline of the cued delay task structure.
Image of awater droplet was created by googlefonts viaSVG Repo under an
ApacheLicence. b, Anticipatory licking before reward delivery (meanacross
behaviour for all recorded neurons; the shaded error bar indicates 95%
confidenceinterval using bootstrap).n =8 mice. ¢, Average PSTH for the
fourtrial types. The inset shows the firing ratein the 0.5 s following the cue
predicting reward delay. Thefiringratein the shaded grey box (0.1s<¢<0.4s)
was used as the cue response insubsequent analysis.n=50 dopaminergic
neurons.d, Example cue response fits for two single neurons. e, Normalized cue
responsesacross the population. For each neuron, the response was normalized
tothe highestresponse across the four possible delays. Theinset shows the
inferred discount factor for each neuron. f, Data are better fit by the exponential
than the hyperbolic model (distance of mean R?to the unit line; the shading
indicatessignificance for single neurons across bootstraps: P<0.05 (dark blue)

and P> 0.05 (lightblue)). g, Distribution of inferred discount factors across
neurons (meandiscount factor across bootstraps). The colourindicates the
animal. h, Shape of the normalized populationresponse as afunction of reward
delay. The thick lines denote smoothed fit, the dotted lines indicate theory and
the dots denoteindividual neurons. i, Discount matrix. Neurons are sorted asin
paneld.j, Outline of the decoding procedure. k, The subjective expected timing
of futurereward E(r|t) canbe decoded from the population responses to the cue
predicting reward delay. Decoding based on mean cue responses for test data
(toprow; see Methods) is better than using amodel with asingle discount factor
(the mean discount factor across the population; bottom row; thinlines (light
shade) indicate predictions forindividual bootstraps, thick lines (dark shade
within light shading) indicate mean prediction across bootstraps, andsingle
darkverticallinesindicate reward timing; see Methods; Extended Data Fig. 4e).
1, Modelin which the RPE of each dopaminergic neuron contributes to adistinct
value function (see Methods; Extended Data Fig. 7f-k).
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the odour cue and ensured that the responses of dopaminergic neurons
tothe odour cues were mostly driven by a valuation signal rather than
asaliency signal*. Mice showed anticipatory licking before reward
delivery. The onset of the anticipatory licking was delayed for trials with
cues predicting longer reward delays, indicating that the mice learned
the delay contingencies (Fig. 2b). We recorded optogenetically identi-
fied single dopaminergic neuronsin the ventral tegmental area (n = 78;
see Methods). We focused our analysis on neurons (n = 50) that passed
the selection criteria (including mean cue response firing rate above 2
spikes per second, positive goodness of fit on test data; see Methods).
As expected from RL theory and the prediction error framework, the
averageresponses tothereward cue decreased as the predicted reward
timing increased”* (Fig. 2c and Extended DataFig. 3a,b). However, cue
responses of individual neurons showed a great diversity of discounting
across the reward delays, ranging from neurons responding strongly
only tothe cueindicating the shortest delay to neurons with a gradual
decay of their response with cued reward delay (Fig. 2d,e).

To characterize the discount properties of individual neurons, we
fit themindividually using both an exponential discount model and a
hyperbolic discount model. The exponential model provided abetter
fit to the responses of neurons than the hyperbolic model (P=2.2 x1075,
two-tailed Student’s t-test, comparing the distribution across neurons
of the mean (across bootstraps) difference in R? between the two fits;
Fig. 2f and Extended Data Fig. 3c-e; see Methods) contrary to a previ-
ous observation®. Organism-level hyperbolic-like discounting can,
therefore, arise from the diversity of exponential discounting in single
neurons, as discussed above with artificial agents (Fig. 2d; see also
refs.12,19,33). This view is consistent with the wide distribution of
inferred discount factors obtained across the population (0.56 + 0.21s™,
mean +s.d.; Fig. 2g). Fits to simulated data suggest that our estimate of
inferred parameters is robust and primarily constrained by the num-
ber of trials (Extended Data Fig. 3f-j; see Methods). Furthermore, we
measured behavioural discounting using the anticipatory lick rate
and show that it is not correlated to the discounting measured from
single dopaminergic neurons (Extended Data Fig. 5a-f; see Methods).

As we have shown above, artificial agents equipped with diverse
discount factors exhibit various advantages. One key aspect contribut-
ingtotheseadvantagesis their unique ability toindependently extract
reward timing information, whichislackingin single-timescale agents.
We next asked whether dopaminergic neurons provide a popula-
tioncodeinwhichthestructured heterogeneity across the population
enables decoding of reward timing or the expected reward across
time, E(r|t). Mathematically, this transformation can be achieved
by the inverse Laplace transform (or its discrete equivalent the z-
transform)*>*% (Fig. 2j). In our dataset, the dopaminergic cue responses
foreachreward delay exhibited unique shapes as afunction of discount
factors, suggesting that reward timing informationis embeddedin the
dopaminergic population responses (Fig. 2h; compare with Fig. 1b).
The temporal horizon across the population, which underlies these
cue responses, can be visualized through the discount matrix, which
indicates for each neuron therelative value of afuture reward depend-
ing on the inferred discount factor (Fig. 2i).

If the dopaminergic population code is consistent with the Laplace
codeexplored above (Fig.1) and each dopaminergic neuron contributes
toadistinct value estimate (Fig. 21 and Extended Data Fig. 7f-k), reward
timing shouldbe recoverable from the cue responses of dopaminergic
neurons with a regularized discrete inverse Laplace transform of the
neuralactivity (which does not require training adecoder). Inour task,
we can use the TD-error-driven cue responses (instead of the value in
equation (4)) as they are driven by the discounted future value, that
is,6;, .= VA[VIcue"’At +Casr, =V, ., =0;seeMethods). Thisimplies
that the right-hand side of equation (4) can be approximated by the
population dopamine responses. We used a pseudo-inverse of the
discount matrix (computed using half of all trials) based on regularized
singular value decomposition to approximate the inverse Laplace
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transform (Fig. 2j and Extended Data Fig. 4a-d; see Methods and
ref. 21) and applied it to the cue responses of a dopaminergic neuron
(computed on the held-out half of the trials). The decoder was able to
predict reward timing, closely matching the true reward delay (Fig. 2k,
top row). This prediction was lost if we shuffled the neuron identities,
indicating that it is not a generic property of the discount matrix
(Extended Data Fig. 4f). We quantified this decoding by computing a
distance metric (using 1-Wasserstein distance) between the true and
predicted reward delay across conditions (compared with shuffle con-
trol: P=1.2 x10™*for 0.6-s reward delay and P < 1.0 x 10?° for the other
delays, one-tailed Wilcoxon signed-rank test; Extended Data Fig. 4g;
see Methods). Predictions from the model were more accurate
than an alternative model with a single discount factor in which the
response of each neuroniis interpreted as a sample from the reward
timing distribution (P,_g4,=1,P,_15,<1.0%x10™, P,_;,,=0.0135 and
P, _ 3,5, <1.0 x10™, one-tailed Wilcoxon signed-rank test; Fig. 2k, bot-
tom row, and Extended Data Fig. 4e; see Methods). Consistent with
the above observation that cue responses were fit better with expo-
nential over hyperbolic discounting models, the accuracy of reward
timing decoding was typically higher when using the discount matrix
from the exponential model than the discount matrix from the hyper-
bolic model (P,_y4,=1,P,_;5,<1.0x107, P,_,,.<1.0x107> and
P, _y375s<1.0 x1073, one-tailed Wilcoxon signed-rank test; Extended
DataFig. 6a-e). Furthermore, the decoding performance was compa-
rable with simulated data with matched trial numbers, indicating that
the remaining uncertainty in decoded reward timing is primarily driven
by limited sample size inthe data (for example, the number of neurons
and the number of trials per condition; Extended Data Fig. 6f,g; see
Methods). We performed the decoding analysis at the single-animal
level for two of the animals for which we had a sufficient number of
neurons and observed decoding of subjective reward timing (Extended
DataFigs. 5g and 10e; Methods).

Together, these results establish that dopaminergic neurons com-
pute prediction errors with a heterogeneity of discount factors and
show that the structurein this heterogeneity can be exploited by down-
stream circuits to decode reward timing.

Ramping heterogeneity and discounting

In the task above (Fig. 2), prediction errors in dopaminergic neurons
were measured through discrete transitions in the value functions at
the time of cue. Inmore naturalistic environments, value might change
more smoothly, for example, when an animal approaches a goal*. In
these tasks, rampsin dopaminergic signalling have been initially inter-
preted as quantifying value functions**, but have recently been shown
to conform to the predictions of the TD learning model. Specifically,
these ramps can be understood as moment-by-moment changes in
values or as TD error along an increasingly convex value functionin
which the derivative is also increasing**. Here we show that some of
the diversity in ramping activity across neurons can be understood as
evidence for multi-timescale RL across dopaminergic neurons.

We analysed the activity of optogenetically identified dopaminergic
neurons (n =90 fromn =13 mice; Extended DataFig.10e; see Methods
and ref. 44) while mice traversed along a linear track in virtual real-
ity. Although mice were free to locomote, their movements did not
affect the dynamics of the scene (see Methods and ref. 44 for details).
Attrial onset, alinear track appeared, the scene moved at continuous
speed, and reward was delivered 7.35 s after motion onset (Fig. 3a). The
slope of ramping across neurons was on average positive (Fig. 3b), but
single neurons exhibited a diversity of ramping activity (Fig.3b, inset,
and 3e,f) ranging from monotonic upwards and downwards ramps to
non-monotonic ramps.

We hypothesized that this seemingly puzzling heterogeneity canbe
understood as a signature of multi-timescale RL. Considering that the
value function is set by the limits on the precision of internal timing
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theenvironmentand therefore shareacommon value function (Fig. 3m;
see Methods). Depending on the shape of this value function, governed
by the statistics of the environment being learned, the TD error from
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neurons with different discount factors will exhibit different types of
activity ramps. At agiventime, the sign of the TD error will depend on
therelative scale of the upcomingincrease in value and the reduction
of this future value due to discounting. Given an increase in value 1/y,
(withy,<1), aneuron with a discount factor smaller, equal or larger
thany,will experience anegative, zero or positive TD error, respectively
(Extended DataFig. 7a; see Methods). For an exponential value function
(Fig. 3g, left panel), in which the value increases by a fixed factor L at
every timestep, aneuron with discount factor y, will have no TD erfor
during the entire visual scene (red line, Fig. 3g,h). A neuron with a higher
(orlower) discount factor than y, will experience an upwards (or down-
wards) monotonic ramp in its activity (darker and lighter red line in
Fig.3g,h, respectively). However, ifthe valuefunctionisnon-exponential
(for example, cubic as a function of distance to reward (Fig. 3i, left
panel) or hyperbolicasafunction of distance to reward (Extended Data
Fig.7b, left panel)), there willnot be aneuron whose discount factor is
ableto matchtheincreasesinvalue function at all timesteps. Neurons
with high or low discount factors will still ramp upwards or downwards
(darker andlighterredlinein Fig. 3i,j and Extended Data Fig. 7b, respec-
tively), but neurons with intermediate discount factors will exhibit
non-monotonic ramping (red line, Fig. 3i,j and Extended Data Fig. 7b)
asobservedin the neural data.

To fit this model to the dopaminergic neurons, we used a boot-
strapped constrained optimization procedure on a continuous for-
mulation of the TD error™* (6(¢) = b, + ay(y“dV (0)/dt -y In(y) V (1));
see Methods) by fitting anon-parametric common value function and
neuron-specific gains, baselines and discount factors. Although the
gain and baseline activity scale the range of activity, only the interac-
tion between the value function and the discount factor affects the
shape of the TD error across time (see Methods). The heterogeneity
of ramping activity across single neurons is explained (Fig. 3e,f) by a
common convex value function (Fig. 3k) and a diversity of discount
factorsacross single neurons (Fig. 31). We did not observe asignificant
correlation neither between inferred parameters and the mediolateral
positionof theimplanted electrodes (Extended Data Fig. 7c-e; although
we did not sample extensively lateral positions) nor with licking behav-
iour before reward delivery (a measure of behavioural discounting;
Extended Data Fig. 8a-d; see Methods). Furthermore, the model fit
wasrobust when applied at the single-animal level for the two animals
withsufficient numbers of neurons (Extended DataFig. 8e-j; see Meth-
ods). So far, we proposed a descriptive model with acommon value
function across neurons, suggesting that the prediction errors of sin-
gle neurons are pooled to estimate a single value function. Recent
models for distributed prediction errors across dopaminergic neurons
have instead used parallel loops in which individual neurons con-
tribute to estimating separate value functions?**-»48-° we obtained
similar results in such a model in which neurons estimate separate
value functions and instead share a common expectation of reward
timing (see Methods; Extended Data Fig. 9). We can reconcile these
two models as being two edge cases of a model in which, across
independent value estimators, there is a relative amount of mixing
between independent estimates and a common value signal (see the
section ‘Mixing in distributed RL models’ in Methods; Extended Data
Fig. 7f-k).

Together, these results show that diversity in slow changesin activity
across a single neuron (known as dopamine ramps) in environments
withgradual changesinvalue canbe explained by a diversity of discount
factors and is a signature of multi-timescale RL.

Correlated discount factors across tasks

Distributional RL and other distributed RL formulations provide agents
with greater flexibility as they allow agents to adapt risk sensitivity
and discounting to the statistics of the environment***, However,
they leave openthe question of the biological implementation of this
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adaptivity. Specifically, the tuning of single dopaminergic neurons,
controlled by the sensitivity to reward size or the discount factor, could
beeither acircuit property and therefore task and context specific or
a cell-specific property, with the contribution of different neurons
recruited according to task demands. However, measurements of
tuning diversity at the single-neuron level are usually done in a single
behavioural task?**"%?, [eaving open the question of this implementa-
tion across contexts.

Here we characterized discount factors across two behavioural
tasks, and asubset (n = 43) of the single neurons analysed above (Figs. 2
and 3) was recorded on the same day in both behavioural tasks. Using
this dataset, we found that the discount factors inferred independently
acrossthetwobehavioural tasks are correlated (Fig. 4a,b). Furthermore,
inthe cued delay task, we were able to decode subjective reward tim-
ing from population cue responses using the discount matrix built
fromthediscount factorsinferredinthevirtual reality task (P,- o ¢, =1,
P,_15<11x107%°,P,_5,5,<3.8x10and P, _ ;75 < 2.9 x107°, compared
withshuffled data; Extended DataFig.10a-d; see Methods). Theseresults
suggest that the discount factor (or its ranking) is a cell-specific prop-
erty and strongly constrains the biological implementation of multi-
timescale RL in the brain.

Discussion

In this work, we have analysed the unique computational benefits of
multi-timescale RL agents and shown that we can explain multiple
aspects of the activity of dopaminergic neurons through that lens.
The understanding of dopaminergic neurons as computing a
reward prediction error from TD RL algorithms has transformed our
understanding of their function. However, recent experimental work
expanding the anatomical locations of recordings and the task designs
has shown heterogeneity in dopamine responses that is not readily
explained within the canonical TD framework***>**, However, anumber
of these seemingly anomalous findings can be reconciled and inte-
grated within extensions of the RL framework, further reinforcing the
power and versatility of the TD theory in capturing the intricacies of
brain learning mechanisms?2#%55% n this work, we have revealed an
additional source of heterogeneity across dopaminergic neurons: they
encode prediction errors across multiple timescales. Together, these
results indicate that at least some of the heterogeneity observed in
dopamine responsesreflects variationsin key parameters within the RL
framework. Thus, these results indicate that the dopamine system uses
‘parameterized vector predictionerrors’,including adiscrete Laplace



transform of the future temporal evolution of the reward function,
allowing for the learning and representation of richer information than
what can be achieved with scalar prediction errors in the traditional
RL framework.

The constraint on the anatomical implementation of multi-timescale
RL suggested by the alignment of discount factors between the two
tasks could also inform algorithm design. Adapting the discount fac-
tor hasbeenused toimprove performancein several algorithms, with
proposed methods ranging from meta-learning an optimal discount
factor”, learning state-dependent discount factors®® or combining
parallel exponentially discounting agents'®***¢, Our results provide
evidence supporting the third model, but the recruitment mechanisms
of the neurons to adapt the global discounting function with task or
context and the link between anatomical location and discounting™
and the contribution of other neuromodulators, such as serotonin®¢°,
to this adaptation remain open questions. Similarly, the contribution
ofthis vectorized error signal on the downstream temporal representa-
tions?**® remains to be explored.

Understanding how this recruitment occurs will be a key step
towards a mechanistic understanding of the contribution of this
timescale diversity to calibration and miscalibrationinintertemporal
choices. There has been a conundrum that RL theories use exponen-
tial discounting, whereas humans and animals often exhibit hyper-
bolic discounting. A previous study, which examined discounting in
dopaminergic neurons, has argued that single dopaminergic neu-
rons exhibit hyperbolic discounting®. However, they used uncued
reward responses for zero reward delay, probably biasing the esti-
mate towards hyperbolic (as responses to unpredicted rewards are
typically large and potentially contaminated by salience signals). By
contrast, our data are consistent with exponential discounting at the
level of single neurons, suggesting that RL machinery defined by each
dopaminergic neuron conforms to the rules of asimple RLalgorithm.
Hyperbolic-like discounting can occur when these diverse exponen-
tial discounting are combined at the organism level>***, More gen-
erally, the relative contribution of multiple timescales to the global
computation governs the discount function at the organism level
and should be calibrated to the uncertainty in the hazard rate of the
environment®,

Appropriately recruiting the heterogeneity of discount factors
is therefore important to adapt to the temporal uncertainty of the
environment. This view draws parallels with the distributional RL
hypothesis that naturally fits with current work on anhedonia, as a
miscalibration of optimism and pessimism can lead to biases in the
learned value®. Miscalibration of the discounting spectrum can lead
to excessive patience or impulsivity. A bias in this distribution due to
genetical, developmental or transcriptional factors could bias the
learning at the level of the organism towards short-term or long-term
goals. Behaviourally such bias would manifest itself as an apparent
impulsivity or lack of motivation, leading to a potential mechanistic
interpretation of these maladaptive behaviours. Similarly, this view
could guide the design of algorithms that recruit and leverage these
adaptive temporal predictions.

Our study has established a new paradigm to understand the func-
tionalrole of prediction error computationin dopaminergic neurons,
and opens new avenues to develop mechanistic explanations for defi-
citsin intertemporal choice in disease and inspire the design of new
algorithms.
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Methods

Animal care and surgical procedures

The mouse behavioural and electrophysiological data presented here
were collected as part of a previous study in which all experimental
procedures are described in detail*%. As described in this study, all
procedures were performed in accordance with the US National Insti-
tutes of Health Guide for the Care and Use of Laboratory Animals and
approved by the Harvard Animal Care and Use Committee.

We used a total of 13 adult C57BL6/) DAT-Cre male mice. Mice were
backcrossed for over five generations with C57BL6/) mice, Animals were
singly housed after surgery onareverse 12-h dark-12-h light cycle (dark
from7:00t019:00). Single dopaminergic neurons were optogenetically
identified using custom-built micro-drives with eight tetrodes and
anoptical fibre as described in our previous study**. Significance was
assessed using the stimulus-associated spike latency test®.

All mice (n=13) were used in the virtual reality task and 8 of those
were also used in the cued delay task. The targeted mediolateral loca-
tion varied from 320 pm to 1,048 pm for neurons recorded in the vir-
tuality task and for neurons recorded in the cued delay task. Neurons
recorded at mediolateral position of more than 900 um were excluded
fromtheanalysis as they were considered to be in the substantia nigra
pars compacta. For experimental reasons, experimenters were not
blinded to the identity of the mice. Sample size was maximized given
experimental constrains.

RL at multi-timescales
In standard RL, the value of a state s under a given policy mis defined
as the expected sum of discounted future rewards:

V(s) =E[ i y'rls, n} (5)

t=0

The discount factory (whose valueisbetween 0 and1)isafixed factor
ateachtimestep devaluating future rewards. This exponentially func-
tional form for the temporal discount is not arbitrary. This temporal
discountisnaturally produced by the TD learning rule, abootstrapping
mechanism that updates the value estimates using the experienced
transition fromstos’ with rewardr:

V(s) < V(s)+alr+yV(s) - V(s)] (6)

where aisthelearningrate. Thisupdate process convergesto the values
defined above under very general conditions®2,

After convergence, the value V(s) can be rewritten by taking the sum
and the discount factor outside of the expectation:

Vi(s)= Y V'Elrls] ?)
t=0

Where we have added a y subscript to the value to indicate that the
value is computed for that particular discount, and we have omitted
the dependence of the expectation on 1 for simplicity. This last expres-
sionreveals avery useful property: V,(s), as afunction of the discount
y € (0,1), is the unilateral z-transform of E[r,|s] as a function of future
time t € (0, «), of with real-valued parameter y (that is, the discrete-
time equivalent of the Laplace transform®). As the z-transformis invert-
ible, in the limit of computing values with an infinite amount of y, the
agent can recover the expected rewards at all future times {£[r;|s 1}~
from the set of learned vaIues{Vy(s)}ye(oyl):

Z YV ($Mye(on = ELrRIsBo (8)

Thus, if the agent performs TD learning with an infinite amount of
discounts, the converging points of the TD backups would encode not

only the expected sum of discounted rewards, asin traditional RL, but
alsothe expected reward at all future timesteps, although the latter lies
inadifferent space, analogous to the frequency and temporal spaces
of the Fourier transform.

Decoding tasks
The four tasks in Fig. 1e were designed with a similar structure. In the
four tasks, the agent first performs N backups of tabular TD learn-
ing (equation (4) in the previous section) on the experimental states
(Fig.1c). Then, thelearned values for the cue sareinputintoapolicy gra-
dient network with one hidden layer of 32 units, and aReLU non-lineary
(Fig.1d, step 2). The policy gradient network receivesinitsinput the val-
ueslearned by TD learning and reportsinits output the corresponding
estimate for each task. The policy gradient network was trained across
2,000 episodes, after which we evaluated the accuracy of its report.
The precise structure of each episode depends on the task (see details
below).Ingeneral,ineach episode, the agent learned values fromscratch
using TD learning for aspecific experimental condition (thatis,a Markov
decision process (MDP)), and the policy gradient network maximized
its reporting performance across episodes. Thus, for each episode i,
the policy (11,) was a map from the learned multi-timescale values (V;)
toactions (a;). The parameters (8) of the policy gradient network were
optimized to maximize reporting accuracy across episodes (the specific
measure toreport depends on the experimental condition). The param-
eters were learned by optimizing the traditional policy gradient loss,
using an Adam optimizer withalearningrate of 0.001to maximize the
task-specific expected return/(t,) of the policy m,:

N
Vej(ﬂg) = EB~“0|:Z Vg |OgT[9(a,' | V;)CI:| (9)
i=1

where Bisabatch of n=100 episodes and C;isaRL binary signal indicat-
ing whether the report (a; the output of the network) was correct or
incorrectfor episode i, given the learned multi-timescale values V,f. To
tackle the exploration-exploitation problem, we extended the policy
using e-greedy, with € = 0.3 (performance is reported with £ = 0). We
used adecoder trained with RL methodsinstead of supervised learning
asitdoes notrequire an oracle that knows the correct responses, and
is therefore a more realistic model of biological learning.

Intask1(Fig.1le,fand Extended DataFig.1a-c), in each episode, adis-
cretereward timet,issampled between1and15and adiscrete reward
magnitude R sampled between 1and 10. This defines a MDP shown in
Extended Data Fig. 1a. For this MDP, TD learning was used to learn the
value of the first state of the MDP s, which we refer to as the ‘cue’. In all
tasks, the value of the cue was learned using one, two or three discount
factors (y) fromthe set {0.6,0.9,0.99}, depending onthe experimental
condition. The results indicated as ‘three discounts’ corresponds to
the discount factors [0.6,0.9,0.99]. As there is noise in the simulation
(seebelow), theresultsindicated as ‘one discount’ corresponds to the
top performer over three identical discount factors ([0.6,0.6,0.6],
[0.9,0.9,0.9],[0.99,0.99,0.99]) and analogously for the resultsindicated
as ‘two discounts’. After performing TD learning, the values were fed as
inputinto the policy gradient network whose output was the guessed
reward time (the network has 15 discrete actions, corresponding to
reporting reward times from 1to 15). Performance was evaluated as
thefraction of correct responses across test episodes (1 for estimating
the correctrewardtime, O otherwise). We have shown the performance
of the policy gradient network asitis trained in Extended Data Fig. 1c.
In Extended Data Fig. Im-o, we have shown a similar experiment but
using two reward times and reward magnitudes in the MDP. In this
complex case, a more accurate decoding is obtained using five dis-
counts instead of three.

Intask 2 (Fig.1e,fand Extended Data Fig.1d-f), the structure of each
episode was as in task 1 but with a discrete reward time ¢, sampled
betweenland 8 and a discrete reward magnitude R sampled between
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land 4. The learned values were input into a policy gradient network
with 32 possible discrete outputs, representing the 32 possible hyper-
bolicvalues obtainedinall the possible experiment (4 possible reward
magnitudes x 8 possible reward times):

R

V) =100,

(10)

Performance was evaluated as the fraction of correct responses
across episodes.

In task 3 (Fig. 1e,f and Extended Data Fig. 1g-i), we used the MDP
shown in Extended Data Fig. 1g while keeping R fixed at 1 but varying
tzand the number of times (V) that the full MDP had been experienced
by the agents. As TD backups were performed online after every transi-
tion, Nis proportional to the total number of TD backups. The (possibly
incomplete) learned values at sfrom these N experiences were fed into
the policy gradient network (Extended Data Fig.1h), whichwas trained
across episodes to optimize the reporting performance of t;.

We also evaluated learning inincomplete-information situations
using the MDP shown in Extended Data Fig. 1p-r. In each episode, the
length of the two branches was uniformly sampled from 5to 15 (if they
arethe same, they were resampled until being different). Thus, ineach
episode, there is ashorter branch and alonger branch. Each branch
was experienced arandom number of times (N) sampled from a uni-
form distribution with the range of 1-99 (denoted by uniform(1,99)).
Thus, the number of TD backups performed for the two branches
could be highly asymmetric. The learned values (with one or multiple
discounts) were fed as input into the policy gradient network with a
binary outputindicating which path was the shortest one; performance
was evaluated as the fraction of correct responses (Extended Data
Fig.10).Single-timescale agents canincorrectly believe that one branch
isshorter thanthe otherbranchifit has been experienced more often,
but multi-timescale agents can determine the distance to the reward
independently of the asymmetric experience. In the next section, we
present a theoretical proof showing that at any time during TD learn-
ing (that is, before learning converges), multi-timescale systems can
perform the z-transform and decode the timing of non-zero rewards
(in the absence of timing stochasticity). In addition to the theoretical
proof, we present an intuitive explanation (supported by Extended
DataFig. 1s-w).

Intask 4 (Fig.1e,fand Extended Data Fig. 1j-1), we keep the reward R
fixedatland ¢, variesbetweenland4. Crucially, smallrandom rewards
sampled from normal(0,0.25) were added to every state (fixed within
episodes). If the agent experienced the trajectory an infinite number
of times, the noisy rewards would be averaged out, so they would not
affect the value estimates of the cue. We note these ‘true’ value esti-
mates as I/V‘"’e(s), to distinguish them from V,(s), which are the values
learned with (incomplete) TD learning. Intask 4, the agent experienced
the trajectory only once (that is, a single backup of TD learning along
the trajectory), so the small random rewards do affect the values V,(s)
learned with TD learning. These noisy values are input into the policy
gradient network, the goal of which is to report the true value of the
cuel,5o(s), withadiscount of 0.9, that would arise after experiencing
the trajectory of aninfinite number of times (this s, ignoring the noisy
rewards). Although in task 4 we have illustrated the advantage of the
myopic learning bias in a task in which the uncertainty on the value
estimates arises due to stochastic rewards received at every state, the
myopic biasis beneficialindependently of the origin of the uncertainty.
For example, in more realistic state spaces, uncertainty usually arises
due to incomplete exploration of the state space. In Extended Data
Fig.2a, weillustrate that myopic estimates are generally more accurate
when the near future is more certain than the far future, and far-sighted
estimates are more accurate when the far future is more certain than
the near future. We have shown the benefits of the myopic learning
biasin more-realistic scenarios in which uncertainty arises due to noise

in abranching task, as well as due to incomplete exploration of the
state spaceinagrid-world, andinadeep RL environment (see Methods
below; Extended Data Fig. 2).

Intasks 1-4, the TD-learning process was corrupted by noise. Ineach
episode, the learning rate was sampled from a normal distribution
with mean of 0.1and variance of 0.001 (denoted by N(0.1,0.001)), the
number of TD backups was sampled from uniform(59,99) (except in
the tasks withincomplete learning: tasks 3 and 4). This variability was
included to make sure that the decoder learns robust decoding strate-
gies instead of just memorizing the exact values of each experimen-
tal condition. For example, in task 1, with one discount, the value of a
temporally close small reward was similar to the value of atemporally
far high reward, so reward time cannot be disentangled from reward
magnitude. However, although these two values were similar, they
were not identical, so adecoder with enough precision could learn to
memorize themto report reward time. Introducing asmallamount of
random noise in the learning process assures robustness in the evalu-
ation of the reporting performance.

Finally, note that we used anon-linear decoder for the policy gradient
networkinstead of alinear one. As we showed in the previous section,
in principle, reward time can be decoded from value estimates with the
Llinear decoder. We used anon-linear decoder for two reasons. First,
optimal performance in tasks 2 and 4 requires non-linear operations
over the learned values. Task 2 requires computing the hyperbolic
value, and task 4 requires biasing towards myopic or far-sighted esti-
mates based on the estimated reward time. Second, even in tasks in
whichthegoalisonly toreport reward time (for example, tasks1and 3),
thelinear decoder Lis only guaranteed to work well in optimal learn-
ing conditions (unnoisy value estimates with an infinite number of
discounts). Inincomplete learning conditions, the L decoder hasbeen
shown to be very sensible to noise, which leads to poor performance
inthe tasks studied here. Ingeneral, our goal in these simulations was
toillustrate the power of the multi-timescale representations over the
single-timescale representations, asrecoverable by asimple non-linear
decoder.

Recovering temporal information before TD learning converges
In Extended Data Fig. 1s-w, we illustrate intuitively why the tem-
poral information is available before TD learning converges for
multi-timescale agents (experiment in Fig. 1e). Consider the two
experiments in Extended Data Fig. 1s, one with a short wait between
the cue and reward (pink) and one with a longer wait (cyan). For a
single-timescale agent (Extended Data Fig. 1t), the value of the cue
depends not only on the experiment length but also on the number
of times that each experiment has been experienced (N, the number
of TD backups). Thus, for a given set of learning parameters (learn-
ing rate, discount factor, timestep length and reward magnitude),
the single-timescale agent can incorrectly believe that the cyan cue
indicates the shorter trajectory, ifit has been experienced more often
(left part of the plot). However, as we show theoretically in this sec-
tion, as temporal information is encoded across discount factors
for a multi-timescale agent, multi-timescale agents can determine
reward timing independently of V. In Extended Data Fig. 1u, the patterns
of three dots highlighted with rectangles are indicative of the reward
time and are only affected by the learning parameters by amultiplica-
tive factor. Indeed, when we plot the multi-timescale values as a func-
tion of the number of times that the experiments are experienced (V;
Extended Data Fig. 1v—-w), we saw that the pattern across discounts is
maintained, enabling a downstream system to robustly decode reward
timing.

The following is a theoretical proof of this advantage. Consider a
multi-timescale agent performing TD learning on the trajectory
s> --- > sy inwhich there is no variability in outcome timing (that s,
non-zero outcomes always happen at the same states, but their mag-
nitude can be stochastic) and all rewards are positive. Under these



assumptions, the agent is able to decode reward timing ifit has access
to{b‘(,po)}Lo, the future times at which outcomes r, are non-zero given
the current state, where §,, o, is a Kronecker delta function that is
equal to1if r, is zero and equal to O otherwise. At any time during TD
learning, the value estimate for s computed with TD learning can be
written with the following general expression (note the absence of the
expectation):

T
W)= X V(@ N, Ro)(1- 8, 0) ()

=0

wherefT (a, N, R,.,) isanon-zeroscalar that depends on 7, onthelearn-
ingrate &, onthe number of times the trajectory has been experienced
Nand on the history of outcome magnitudes experienced in the past
R,.. This decoupling shares similarity with the successor representa-
tion”**%, Crucially, f, (a, N, R,.;)does not depend ony, so, atall times
during learning, it holds that:
Zﬁl{ Vy(s)}ye(oyl) = {fr (a,N,Ry.)(1- 6(,1,0))}1:0 (12)
As f (a,N,Ry.) isnon-zeroforallrand{1 - 6(,1,0)};0 isonly non-zero
at rinwhich a reward happens, the non-zero values of the right-hand
side expression indicates the future reward timings. In other words,
applying the inverse transform at any time during learning to the
multi-timescale estimate {Vy(S)}ye<o,1) gives an expression whose
non-zero values are the future outcome timings. In summary, in the
absence of timing stochasticity, the multi-timescale agent can recover
future outcome timing before TD converges, a capability that is not
presentin single-timescale agents.

The myopic learning bias

Forthe value estimate of astate sto converge to the expression shown
in equation (1), learning needs to be ‘complete’, which requires that
(1) all possible paths from s are explored; and (2) if there are stochastic
rewards or transitions, all possible paths are explored a sufficiently
large number of times such that the stochasticity is averaged out.
Althoughthese two conditions are usually true inartificial laboratory
experiments, they arerarely truein natural environments. When these
two conditions are not met, value estimates must be computed on
the basis of incomplete, uncertain information. The myopic learning
bias states that, when learning from incomplete and uncertain infor-
mation, the accuracy of myopic versus far-sighted value estimates
depends ontheuncertainty structure of the future. Myopic estimates
aremoreaccurateifthe near future ismore certain than the far future,
and far-sighted estimates are more accurate if the far future is more
certain than the near future.

Weillustrate the key idea of the myopic learning bias in Extended
Data Fig. 2a,b. In Extended Data Fig. 2a, we show two states: sand s'.
Inboth cases, the animal must decide whether to take the upwards or
downwards branch. The key difference between sand s’ is that, in s,
the near future after the decision is more certain than the far future;
however, ins’, the far future after the decision is more certain than the
near future. These states represent frequent situations encountered
in natural environments. For example, the two paths that leave from
statesrepresent pathsin which the far-away consequences are known
with certainty, but there are multiple possible paths (with different and
unexplored outcomes) that eventually lead to the more certain states.
Conversely, state s’ represents a common exploratory situation, in
which the branching-tree structure of the MDP causes the number of
possible outcomes toincrease exponentially with the distance froms’.
Inincomplete learning scenarios, the structure of future uncertainty
fromsand s’ is opposite. If the agent has not experienced all possi-
ble trajectories from sand s/, in state s, the near future will be more
uncertain thanthe far future, andin states’, the far future willbe more
uncertain than the near future.

Consider, for example, what happens if the agent has experienced
the upwards and downwards trajectories (fromsands’) only once, as
we show in Extended Data Fig. 2b. In this case, there are four possible
scenarios depending on which specific trajectories the agent visits. As
some of the possible paths are left unexplored, the agent must learn
fromincomplete information, and its value estimates can differ from
the those of an agent that has experienced all the paths. A perfect
agent that has experienced all trajectories will choose the upwards
trajectory from sand s’, and therefore the upwards trajectory is the
‘correct’ decisiontomake atsands’. In Extended DataFig. 2b, we show
that, when learning from incomplete information, the probability
of making the correct decision by following myopic estimates (low
y) versus far-sighted estimates (high y) depends on the uncertainty
structure of the future. In s, in which the far future is more certain
than the near future, it is beneficial to follow far-sighted estimates.
Ins’, in which the near future is more certain than the far future, it is
beneficial to follow myopic estimates. In summary, in s, the myopic
value estimates only integrate the certain near future, without being
contaminated by the uncertain far future, leading to more accurate
value estimation. By contrast, in s’, the myopic estimates only see
the noisy near future, without being able to improve on this noise by
the certaininformation that happensin the far future, leading toless
accurate value estimation.

The myopiclearningbiasisindependent of the source of the uncer-
tainty. In Extended DataFig. 2a,b, the uncertainty comes due toincom-
plete state exploration (and also in the grid-world shown in Extended
Data Fig. 2f-i; see Methods below). Conversely, in task 4 in Fig. 1and
inthe MDP shown in Extended Data Fig. 2c-e, the uncertainty comes
due to stochasticity in the rewards. Multi-timescale agents that have
myopic and far-sighted estimates at every state can, in principle,
leverage this representation advantage to improve performance in
specifictasks. For example, in task 4 and Extended Data Fig. 2c-e, the
multi-timescale agent can determine the temporal distance to large
deterministic rewards (t), and adapt accordingly between myopic or
far-sighted perspectives, leading to superior performance.

Note that, in general, exploiting the myopic learning bias requires
two components: (1) having available myopic and far-sighted value
estimates and every state, and (2) knowing if the near future is more
certainor uncertain thanthe far future atevery state. The second com-
ponent canbe sometimes inferred by the multi-timescale values (such
asintask4), but thisisnot necessarily the caseingeneral. For example,
in Extended Data Fig. 2a,b, the second component might require the
agent to rely on separate uncertainty estimates, such as counting the
fraction of pathsleft unexplored at different moments along the paths.
Another useful proxy to estimate the uncertainty structure of the future
isthe estimated distance to important environmental events (such as
the distance to the landing zone in the Lunar Lander environment or
to the rewarded zone in the grid world, see below). In summary, only
multi-timescale learning systems satisfy component 1, which provides
arepresentational advantage thatis absentinsingle-timescale systems.
This representational advantage can be exploited if the uncertainty
structure of the future is known. In some scenarios, the uncertainty
structure of the future can be inferred by looking at the multi-timescale
valuearray, butit could require separate uncertainty estimates in other
scenarios.

Myopic learning bias: branching task. In Extended Data Fig. 2c, we
presentasimple MDP to highlight the advantages of the myopiclearn-
ing bias. In this maze, each state is associated with arandom reward
drawn from [-0.5,0.5], except for two states (s and s’; orange circles),
which result in a deterministic reward of 1. The optimal strategy in
this scenario is to move upwards at both states sand s, which is the
policy that an optimal agent would implement after experiencing the
trajectories a sufficiently large number of times, after randomness is
averaged out.
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However, in our simulation, the agent only learns from three trajec-
tories: (1) atrajectory that moves downats, (2) another that moves up
atsand up at state s’, and (3) a trajectory that moves up at sand down
ats’. Asrewards are stochastic, the information that the agent gets on
each episode isincomplete. When learning from a limited number of
experiences, the smaller stochastic rewards can overpower the larger
deterministic rewards, making it challenging to achieve optimal perfor-
mance. At state s, only far-sighted agents can discern the significance
of the large deterministic rewards, thereby causing myopic agents to
perform near chance at s (Extended Data Fig. 2d, red). At state s’, the
situationis reversed. Far-sighted agents not only integrate the close-by
large reward but also all the stochastic rewards farther in the future.
Myopicagents, in contrast, assign greater weight to the deterministic
reward than to the future stochastic rewards, thus enabling optimal
performance ats’ (Extended Data Fig. 2d, blue). Therefore, only agents
that could dynamically adapt between being far-sighted at sand myopic
ats’ canattain optimal performance when learning from limited experi-
ences (Extended Data Fig. 2e).

To evaluate how well the agent acts given limited information, we
averaged performance over the following procedure: (1) sampled
rewards along the three trajectories mentioned before, (2) learned
the Q-values (until convergence) for s and s” using the rewards from
the sampled trajectories, and (3) chose the actions that maximize the
Q-values. In Extended Data Fig. 2d, we evaluated performance as the
fraction of episodesin which the Q-value of the branch with the deter-
ministic reward was higher than the Q-value of the branch without the
deterministic rewards. Performance was measured as the proportion
of correct decisions across 10,000 iterations of this procedure.

To evaluate the multi-timescale agent of Fig. 1d on this task (Extended
DataFig.2e), we followed asimilar procedure. Ineach episode, we ran-
domized theidentity of the top and bottom branches after the bifurca-
tion, which defines anepisode-specific MDP. For each episode-specific
MDP, the agent performed Q-learning until near convergence using the
threetrajectories mentioned in the previous paragraph. The Q-values
at the current state (s or s’) were fed into the policy learning architec-
ture of Fig. 1d, which outputs the decision to move up or down in the
episode-specific MDP. The policy-learning network was trained across
episodesto produce actions that maximize overall task performance.
For the single-discount agent, we have reported the maximum perfor-
mance over the agents with discounts [0.6,0.6]1and [0.99,0.99], which
achieved a performance of 77 + 2% and 83 + 1%, respectively. For the
multi-discount agent, we use the discounts [0.6,0.99], which achieved a
performance of 94 +1%. The error bars correspond to the s.e.m. across
500 episodesin a validation set.

Myopic learning bias: grid world. Previous theoretical work showed
that amyopic discount in RL can serve as a regularizer when approxi-
mating the value function from a limited number of trajectories®®.
In Extended Data Fig. 2f-i, we highlight the fact that the benefit of the
myopic discount is contingent on the distance between the current
state and significant environmental events. Consider the simple naviga-
tionscenariodepictedin Extended Data Fig. 2f. The motion of the agent
israndom andisotropic, garneringaminor randomreward fromanor-
mal distribution withmean 0 ands.d. 0.01in each step and three more
substantial rewards uponreaching the areas denoted by fire (r= -4) and
water (r=2) symbols. We evaluated how well the agent could determine
the true value function (under a discount factor y = 0.99) under the
aforementioned stochastic policy. Crucially, the agent performed this
task after experiencing only alimited number of trajectories. The grey
arrows show an example trajectory, with the actual and estimated values
for these trajectories shown in Extended Data Fig. 2g.

Consider the trajectory shown in Extended Data Fig. 2g. For this
trajectory, the myopic estimate (using adiscount factor y = 0.6; green)
clearly provides abetter estimate of the true value function (grey) than
using the discount factory=0.99 (brown), whichis the discount under

which we computed the true value function. We quantified that the
myopic estimateis a better approximation of the true value function by
evaluating the agreement between pairs of states along the estimated
andtrue curves. We evaluated accuracy using the Kendall rank correla-
tion coefficient between the true value functionin the entire maze and
the value estimates. The Kendall coefficient measures the fraction of
concordant pairs between the two value functions (across all pairs of
states in the maze). For every pair of states, it computes whether the
two value functions agree on which element of the pair is the larger one.
Note that this measure of accuracy is behaviourally more relevant than
alternative accuracy measures that compare the absolute magnitude of
values across states. In other words, for an agent navigating the maze,
itismoreimportantto be accurate ontherelative values of alternative
goal states than on their absolute values.

In Extended Data Fig. 2h,i, the agent learned from Nrandomly sam-
pled trajectories starting either in the lower half (blue) or upper half
(red) of the maze. The values for the states inthe Nsampled trajectories
were learned until convergence using the rewards and transitions in
the sampled trajectories. After convergence, we computed the Kendall
rank correlation between the estimates and the true value function,
and reported performance as the average correlation across 10,000
sets of Nsampled trajectories. Extended Data Fig. 2h shows that when
learning from two randomly sampled trajectories, the estimates of
the value function using a myopic discount factor are more accurate
than far-sighted discounts when the trajectories start in the lower half
of the maze (blue curve in Extended Data Fig. 2h). This result agrees
with the intuition built in Extended Data Fig. 2g when learning from a
singletrajectory. However, if the agent is distant from important events
(thatis, trajectories starting in the upper half of the maze, red curve),
the myopic estimates approach the noise level, whereas estimates
with larger discount factors are more accurate. With the accumula-
tion of more datafrom the environment, thatis, more trajectories, the
far-sighted estimate progressively aligns with the true value computed
withy=0.99 in the entire maze (Extended Data Fig. 2i).

Myopic learning bias: networks with discount factors as auxiliary
tasks. Analternative way to leverage multi-timescale learning benefits,
in contrast to the architecture presented in Fig. 1d, is to use them as
auxiliary tasks (Extended Data Fig. 2j). In this framework, the deep net-
workactsaccording to the Q-value computed with a single behavioural
timescale, but concurrently learns about multiple other timescales as
auxiliary tasksto enhance therepresentationinthe hiddenlayers, which
allows them to obtain superior performance in complex RL environ-
ments'>**¢’¢8, This approach is similar to distributional RL networks that
learn the quantiles of the value distribution but act according to the
expectation ofthat distribution”. Of note, we showed that the auxiliary
learning timescales display the myopiclearning bias highlighted so far.
Inthe Lunar Lander task (Extended Data Fig. 2j, left) in which the agent
must land a spacecraft, Q-values computed using a myopic discount
provide amore accurate representation of the future when the agent
is close to the landing site (blue in Extended Data Fig. 2k), whereas
the opposite holds when the agent is far from the landing site (red in
Extended Data Fig. 2k), as shown in Extended Data Fig. 2I.

In the Lunar Lander environment, the state space consists of eight
elements, including the position and velocity of the lander, its angular
position and angular velocity, as well as an additional input related to
the contact with the ground. The action space is composed of four
actions: doing nothing and activating one of three different engines.
The agentisa DQN?with two hidden layers of 512 units each, separated
by ReLU activation functions. In addition to the Q-values that control
the agent, the network has Q-values for 25 additional discounts factors
equally spaced between 0.6 and 0.99. Thus, if there are |a] actionsin the
environment, for each discount the network has |a| additional output
units. All sets of |a] units (one for each discount) use the Huber (that
is, smooth L1, 8 =1) Q-learning loss function with its corresponding



discount. All the auxiliary Q-learning losses update the action that
was actually chosen in the environment by the behavioural Q-value
units, and thus all of them learn the consequences of the behavioural
policy, but using different discount factors. The totalloss function uset
to train the network averages the Q-learning losses of all the discount
factors. Totrainthe DQN, we used alearning buffer of 20,000 samples,
alearningrate of 10 and a batch size of 32. Asin traditional DQNs, we
used atarget network tocompute the TD target, whichis updated every
1,000 samples with the weights from the policy network to stabilize the
learning process. For exploration, the agent uses alinearly decreasing
e-greedy policy that goes from e = 1.0 at the first sample toa minimum
value of £ = 0.01 after 40,000 samples.

Our goal was to compute the degree to which Q-values computed
with alternative discounts can capture the true Q-value of the behav-
ioural policy. The multi-timescale DQN uses a behavioural discount
Yoen = 0.99, and its policy is produced by choosing actions that maxi-
mize the Q-values with that discount factor. As in the navigation sce-
nario presented inthe previous section, our hypothesis was that, when
important events lie in the proximal future (here, close to the landing
site), the Q-values learned using myopic discounts capture the true
behavioural Q-value more accurately, whereas far-sighted discounts
are more accurate whenimportant events lie in the distant future (far
from the landing site).

Under the policy of the DQN (1pqy), the true value of state sis:

T
V;;::(S) = ET[DQN l: Z yb[ehrt} (13)
t=0

Ifthe DQN has perfectly learned the Q-value of state s, then the esti-
mate Q, (s, ) Of the DQN should be equal to V;1"*(s), where ay,ey, is
the action produced by the DQN at s. For the analysis, we computed
thetruevalue of state sby simulating the policy alarge number of times.
Weevaluated accuracy as the degree to which the estimated Q (s, @)
capturesthetrue Vyt;l::(s)' and compared accuracy across the auxiliary
discount factors.

After training the network for 50,000 samples (and achieving
close-to-optimal performance), we computed Vy‘;‘e’:(s) empirically
across states by recording the actual discounted sum of rewards
obtained by the agent when departing from state s. We calculated
Vyrus(s) empirically for 25,000 states. Then, we compared, across states,
the empirically calculated Vy‘;';‘:(s) with the Q-values produced by the
DQN at those states.

To measure accuracy, we used the Kendall rank correlation as in the
previous section. The Kendall correlation measures the fraction of con-
cordant pairs between Vyt{)‘;:and theestimated Q , across sampled pairs
of states. Asinthe navigation scenario presented in the previous section,
for an agent deciding which state to navigate to, it is more important
tobeaccurate on therelative values between pairs of states than on the
absolute value of individual states. Therefore, the Kendall correlation
is behaviourally more relevant than other accuracy metrics that com-
pare the absolute magnitude (for example, ( V;{,‘gﬁ(s) - Qy(s, Aper))?)-

Giventhat the environment and the training process are stochastic,
we reported the accuracy by averaging over 10 randomly initialized
networks.

Cued delay task
Allthe datainthe experiments with mice were collected inthe previous
study*‘. The experimental details, including the surgical procedures,
behavioural setup and the behavioural tasks, have been described
there**. Here we focus on the task description as our analysis includes
task conditions that were not analysed in the previous study.

Mice were head-fixed on a wheel in front of three computer moni-
tors and an odour port. At trial onset, the screens flashed green to
indicate the beginning of the trial. After t=1.25s, an odour cue was

delivered. This reward delay cue was one of four possible odours, and
each cue was associated with a unique reward delay chosen from 0.6,
1.5,3.750r 9.375s. The association between odour and reward delay
was randomized across mice. The inter-trial interval was adjusted
depending on the reward delays such that the trial start cues were
spaced by 17-20 s. Mice performed 81.4 +12.5 trials (mean +s.d.)
per session across the 36 sessions in which neurons were recorded in
the task.

Approach-to-target virtual reality task

Werefer thereader to the previous study for details on the experimental
procedures*. Mice were also trained in additional conditions, which
we did not analyse in the present study, including teleport and speed
modulation in the virtual reality scene.

Here we analysed single-neuron recordings in the sessions with no
teleport or speed manipulation and in the open-loop condition. Mice
were free to locomote but their motion did not affect the dynamics of
thevisual scene. After scene motion onset, the visual scene progressed
at constant speed until reward was delivered after 7.35 s.

Mice performed 58.8 + 21.7 trials (mean + s.d.) per session across the
60 sessions in which neurons were recorded in the task. Spiking activity
was convolved with a box filter of length 10 ms. When plotting neural
activity, we further convolved the responses by a causal exponential
filter (¢ %%%), Spiking-rate traces across neurons were normalized using
amodified z-score. The mean was taken as the average firing activity
cross thefirst1.5 sand the standard deviation across the entire 4.35 s.

Fitting neural activity in the cued delay task
For the cued delay task, we fit the responses of single neurons to the
delay cue (calculated asthe firing ratein the timeinterval 0.1s <t < 0.4 s
after the cue onset; see shaded area in Fig. 2c) using two discounting
models as in ref. 63, the classic exponential model and a hyperbolic
model. For the exponential model, we fit the responses to a cue pre-
dicting areward in 7seconds by:
FRep=b+ay"=b+ae™ (14)

The discount factor y canalso be expressed as a discount rate A and
vice versa: 1 =—Iny or y = ™. The discount factors fitted to data are
always expressed in units of seconds, that is, the discount factor is the
devaluation1sinto the future.

For the hyperbolic model, we used astandard model for hyperbolic
discounting in which the parameter k controls discounting:

FRuyp=b (15

" al +kt

We fit both models by minimizing the mean squared error (the fit
functionin MATLAB). For both models, we constrained the baseline
and gain parameters such that 0 <b <40 and 0 < a <40. For the expo-
nential model, the discount rate was constrained such that
0.0001 <A <20, andfor the hyperbolic model, the discount parameter
was constrained such that 0 < k <20. Note that all the parameters were
fitted independently for each single neuron.

To characterize the robustness and significance of our estimated
parameters, we used abootstrap procedure. For each run, we split the
trials in half and fit the models independently on each half. We com-
puted for each split the explained variance using the other half of the
data (Extended Data Fig. 3c,d) and correlated the inferred parameter
values for each neuron across both splits (Extended Data Fig. 3f-h).

Werestricted our subsequent analysis to neurons that had a positive
explained variance onthetest set (n =17 neurons excluded), anaverage
firing rate in the cue period over the 4 delays above 2 spikes per sec-
ond (n=11neurons excluded) and with mediolateral distance above
900 pm (n = 4 neurons excluded). Non-selected neurons are shown
in Extended Data Fig. 3b. Poorly fit neurons often were non-canonical
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dopaminergic neurons that also did not exhibit a strong reward
response.

Decoding expected reward timing from population responses
The vectorized prediction error allows us to directly decode the
expected timing of reward given the cue responses®. The value at
time tis given by:

;
V,= E{z y‘rt} =YY E(r|AD) + Y22 E(r2A0) + ... + Y E(r|T) (16)
t

In the cued delay task, at the time of the cue indicating reward
delay, the response of dopaminergic neurons is driven by the dis-
counted future reward. The reward predictionerror §, = r, + y2V,,; - V,
becomes simply 6,=y*V,,,+cst as there is no reward delivered at
the time of the cue (r,, =0) and the reward expectation before the
reward cue delivery is identical across conditions (Vtcue= C;whereC
is a constant). Thus, the TD error at the time of reward delay cue
(6tcue = rfcue + yAtVtcue*'At - Vtcue) becomes 6tcue = yAtVtcue*At +C,andifwe
assume the constantis O or the TD error is baseline subtracted, at con-
vergence the prediction error is given by:

E(r|At)
. Viq E (rI?At) a7)

ET)

In single-timescale RL, the temporal information is collapsed, and
itisnot possible for the system receiving the learning signal (the stria-
tumin this case) to untangle the signal. However, in a distributed system
learning at multiple timescales, the reward expectation E(r|t)isencoded
with multiple discount factors y;:

2
5 W WT Eran
E1 yAO pR || E(ri2a) = Lp(rlt) (18)
5, : : :

ynAt Vﬂzm " E(r|T)

The temporal information about reward timing is now distributed
across neurons, and if the tuning of individual neurons is sufficiently
diverse, we can write:

E(r|At)

E(ri280) | _ !

: (19)
E(r|T) On

Where L'is the approximate pseudo-inverse of L such that 'L = /.
In practice, the matrix L is not very well conditioned as the rows of
the matrix are exponentially decaying functions, so the right side
(furtherinthefuture)is sparsely populated (Fig. 2iand Extended Data
Fig.4a-d). We therefore need to use a regularized pseudo-inverse.

To invert the discount matrix L, we used the regularized singular
value decomposition (SVD) approach similar to the one proposed in
ref. 21. We then normalized the resulting prediction to constrain it to
be a probability distribution (p(r|t) > O, for all tand Y., p(r|t) =1). More
specifically, the regularized SVD approach corresponds to optimizing:

ILp(rie) - Agll* + a2 IE(rE) I (20)
The standard SVD of the discount matrix can be written as:
L
L= guuw!=USV" (21)

s=1

L 2 T
A
E(rle) = Z[ % ZJ”S 0% _ 1A, (22)

2
s=1 a +0s GS

where A, = [61...6N]T. The smooth regularization introduced by the
Tikhonov regularization through the parameter a (which we can choose
by inspection of the distribution of singular values g,, see below) is
morerobust thanastrict truncated SVD inwhich we only take anumber
offactorsand set the remaining factors tozero. Analternative approx-
imationto thisinverse problem is Post’s approximation®*¥. It relies on
evaluating higher-order derivatives and lacks robustness if the Laplace
spaceisnotsampled withenough precision (thatis, not enough neurons
tiling the y space).

The procedureinthe previous section allows us to estimate the dis-
countfactorindependently for each neuron. We then choose adiscre-
tizationstep At =100 msand atemporal horizon T=12 s over which to
make the prediction. This allowed us to construct the discount matrix
LshowninFig.2iforthe exponential model and Extended Data Fig. 6¢
for the hyperbolic model. To choose a suitable value for the regulari-
zation parameter a, we performed the regular SVD on the discount
matrix L and assessed the values at which the singular values become
negligible. We chose a value of a that corresponded to the transition
between large singular values and negligible values (Extended Data
Fig.4b). Using this approach, we used a = 2 in our decoding analysis.

For each delay, we constructed a pseudo-population response A,
across the recorded neurons. For each bootstrap, we took the mean
activity for each cue, subtracted the inferred baseline parameter b and
normalized the maximum response to 1. To assess the robustness of
the predictions, we used the mean responses and baseline from half
the trials to construct A, used the estimated discount factors from the
other half of the trials to estimate L™ and we repeated this approach for
each bootstrap (Medictions = 200). In the figures (Fig. 2k and Extended
DataFigs. 5g, 6d,fand 10c), the thinlines correspond to the predictions
fromindividual bootstraps and the thicker line to the average of these
predictions. For shuffle control, we randomized the identity of the
neuronsinthe pseudo-populationresponse A,. Thismeansthatinthe
shuffle control, agiven neuronis not decoded with its corresponding
weights but by arandom row of the decoding matrix L™

Toensurethat the prediction corresponded to a probability distribu-
tion, we normalized the resulting prediction of reward timing. We first
set the probability of obtaining a reward to zero for all times in which
the prediction was negative, then we normalized the distribution to
beavalid probability distribution (such that the probability mass over
te[0,12]summedtol).

For the time decoding using a single average discount factor, we
used a different approach. The inversion procedure would not work
asthediscount matrix would be of rank 1. Instead, if we assume a fixed
known reward size and a single discount factor, the response of indi-
vidual neurons would correspond to different estimates of the reward
timing. For each bootstrap, we estimated the expected reward timing
for each neuron. For a given firing rate FR for the held-out data, we
estimated the reward timing using the parameter estimates from the
trained data. The baseline b;and gain a; parameters are specificto each
neuron, whereas the discount factor y is the average discount factor
acrossallthe neurons. The expected reward timing for neuronis given
by the following equation:

FR;-b;
logmax (™42, 0.0001)

logy

Together, the neurons provide adistribution of expected reward tim-
ing with eachneuron predictingasample of the distribution of expected
reward times. The average distribution is obtained by averaging the
distributions across all the bootstraps, excluding predicted reward
times beyond 12 s and normalizing the distribution to be a probability

(23)

E(0)=



distribution. Similarly to the SVD-based decoding, in Extended Data
Fig. 4f, the thin lines correspond to the predictions from individual
bootstraps and the thicker line to the average of these predictions.

Quantifying reward timing decoding accuracy

To quantify the reward timing decoding accuracy, we used the
1-Wasserstein distance (or earth mover’s distance) between distribu-
tions as our metric. We used the 1-Wasserstein distance as the differ-
ence in support between the predicted reward timing distribution
(probability mass as most locations) and the single true reward timing
(probability mass at a single location) is not conducive to using the
Kullback-Leibler divergence.

For each bootstrap, we generated n=100,000 samples from the
predicted reward timing distributions and computed the 1-Wassertstein
distance betweenthe predicted reward timing and the true correspond-
ingreward delay (using the MATLAB function ws_distance from https://
github.com/nklb/wasserstein-distance). For each condition (expo-
nential fit, hyperbolic fit, average discount factor, simulation fit and
their associated shuffled predictions), we obtained a distribution of
1-Wasserstein distances across the bootstraps (n =200). To assess the
significance of the differences in reward timing predictions across
conditions, we used the one-tailed Wilcoxon’s signed-rank test (using
the MATLAB function signrank).

Analysing behavioural discounting through thelick ratein the
cued delay task

To quantify theinfluence of behaviour on the discount factorsinferred at
thesingle-neuronlevel, we analysed the relationship between the behav-
ioural discounting and the neural discounting. To quantify behavioural
discounting, we used the anticipatory lick ratein the 0.6 s following the
delay cue.Foreachneuron, we computed the average lick rate for each of
thefour delays. We then fitted an exponential model (as for the neurons)
tothefouraveragelick rates for the four delays (shownin Extended Data
Fig. 5a,d, left panels). For each neuron, we therefore obtained a behav-
ioural discount factor. To quantify the relationship between behavioural
and neural discount factor, we used the Spearman rank correlation.

Comparing the neural discount factor as afunction of lick rate
To investigate the effect of the of the lick rate on the discount factor
measured in single neurons, we also compared the modulation of the
inferred discount factor with the lick rate. For each neuron and each
reward delay, we split the trials into low and high lick rate trials depend-
ingonwhether thelickrateinthe entire anticipation period was strictly
below or above (or equal) to the median lick rate for this reward delay.
We then fit the exponential discounting model separately for low lick
rate trials and high lick rate trials. We compared the difference in the
inferred discount factor for each neuron across the two conditions. We
performed this analysis at the single-animal level for the two animals
with sufficient number of neurons (Extended Data Fig. 5h,i).

Analysing behavioural discounting through the lick ratein the
virtual reality task

To quantify the relationship between behaviour and neural activity
in the virtual reality task as mice approach the reward location, we
computed a measure of ramping in the lick rate and compared it with
our measure of neural discounting. For each neuron, we computed the
average lick rate during the reward anticipation period as the mice are
moving along the linear track. We computed the average lick rate in
three windows: early (-3.45 s to -2.95 sbefore reward delivery), middle
(-1.95sto -1.45 s before reward delivery) and late (-0.75st0 -0.25 s
before reward delivery). Using these windows, we computed three
modulation indices using the following equation:

Lick rate, - Lick rate,
Lick rate, + Lick rate;

MIZ—I = (24)

We compared these modulation indices to the inferred discount
factors, showing nosignificant correlations, whereas the three meas-
ures of licking are strongly correlated among themselves (Extended
DataFig. 8).

Fitting neural activity in the virtual reality task
To quantify the heterogeneity of discount factors in the virtual reality
task, we fit the neural activity in the last 4.30 s (¢ = 3.05 s after scene
motiononset) of the approach to reward period in which the ramping
activity was most pronounced. To assess the robustness of the fit, we
usedabootstrap procedureinwhichforeachbootstrap (np,qrsrap = 100),
we partitioned the trials into two halves and computed the two average
PSTHs using dt=0.1s as our discretization step. We then computed
the mean value of the parameters across all bootstraps. We limit our
analysis to neurons whose firing rate over the analysis period is larger
than 2 spikes per second. We fit the two models (common value func-
tion and common reward timing expectation) to this data.

Inthe virtual reality task, the expectations vary smoothly as a func-
tion of time and distance and we therefore use the discretized formula-
tion of the TD error for continuous time in our fits**:

@dv

de (25)

60 =br+af Vo)

Although this formulationis also discretized as the standard formu-
lation of the TD error, the presence of the derivative d'/";t) (whichis
computed numerically) improves the stability of the fitting procedure.
The two models differ in whether value function is estimated directly
(and shared across neurons) or indirectly (and distinct across neurons).
The discount factor is also in units of seconds, allowing comparison
with the values estimated in the cued delay task.

Common value function model

In the common value function model, V(¢) is common across neurons
andisdirectly fitted by the optimization procedure which minimizes:

Ming 5y, v|IFR - AJ[® (26)

With,

O(tg) - 6(T)
A=| : : 27)

O(tg) -+ 6u(T)

Wefit the gains, baseline, and discount factors of individual neurons
(a;, b; and y, respectively) and the join value functionV using a con-
strained optimization procedure (fminconin MATLAB, a; € [0.05,50],
b;€[0.05,12],,€[0.05,0.999999], and V € [0.05,5]).

We performed this analysis both on the full population of neurons
that passed theinclusion criteria (Fig. 3) as we well asindependently for
the subsets of neurons belonging to m3044 (29 neurons) and m3054
(24 neurons; Extended Data Fig. 8e-j).

Common reward expectation model

In the common reward expectation model, the reduction in uncer-
tainty inreward timing due to sensory feedback as the mice approach
the reward leads to an upwards ramp in the average TD error signal
across dopaminergic neurons***¢.Inatask such as the cued delay task
showninFig.2, once the cue hasbeen presented, the time estimation
until the reward isbased on the internal clock of the mice that experi-
ences scalar timing (that is, the standard deviation of the noise in the
estimation grows linearly with the estimation time)?. In the virtual
reality task, there is visual feedback, and as the mice approach the
reward, the uncertainty is instead reduced (Extended Data Fig. 9a).
We also showed that this alternative model also provides a similar
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explanation of ramping diversity as originating from a heterogeneity
of discount factors.

We use ajoint fitting procedure in which we simultaneously fit the
discount factors across neurons and the expected timing of reward as
afunction of position in the virtual track. Similarly to ref. 45, we inter-
pret the ramping in single neurons as originating from the reduction
in uncertainty due to the visual feedback as the mice approach the
reward. Although each neuron has a distinct discount factor and its
ownvalue function, the world model, which parametrizes the changes
inreward expectation with visual feedback, is shared across dopamin-
ergic neurons. This arises as this shared model is the product of the
integration of the diverse dopamine signals, as well as of other neural
computations that control reward expectations®.

Individual neurons therefore act asindependent agents estimating
value given a shared expectation of reward timing. Each neuron has
adistinct discount factor y; with which it computes value given the
expected reward timing. We assumed that inference has converged
and therefore we have the value V,associated with neuron i:

;
Vi= Y yE(rr, e, T)

=t

(28)

Here we assumed that £(rlz, ¢, T) takes the form a folded normal
distribution with parameters u =T -t and (fitted) standard deviation
0. The folded normal distribution reflects the weight of the negative
component of a normal distribution back onto positive values™. The
folded normal distribution formulation leads to the following distribu-
tion for the expected reward timing for 7> O:

_@+(T-0? _
E(rlt,t, T) =, ize 202 cosh((r ;)Tj
o o

In our analysis, the mean, u=T-¢, is given by the current position
inthe virtual reality track and the only fitted parameter is the standard
deviation o. At each timestep, we fit a different value of the standard
deviation. As observed through the fitting procedure, the standard
deviation was initially high and reduced as the mice approached the
reward location. This is an indication that similarly than proposed in
ref. 45, therampingin activity in the dopaminergic neuron arises from
the reduction in uncertainty due to the visual feedback as the mice
approachthe reward. We used a slightly different formulation thanin
ref. 45 as we required additional flexibility to fit data and specifically
needed to go beyond the assumptions of Gaussian state uncertainty.
Note also that here we assumed that the uncertainty isin the timing of
the reward rather thanin the state.

To normalize the contributions of the different neurons, we used a
normalized firing rate and therefore only fit the discount factor y and
standard deviation o of the reward expectation.

(29)

min, ,||[FR - AJ|? (30)

With,

6i(tg) -+ 6(T)
A=l : (31

On(tg) -+ 6y(T)

We performed the constrained optimization with the MATLAB func-
tionfminconand constrained the parameterssuch thaty € [0.001,0.99]
ando €[0.1,12].

Mixing in distributed RL models
When explaining how multi-timescale RL can explain the diversity
of ramping activity, we proposed two possible interpretations:

one with a common value function across all neurons and another
with a common reward timing estimation; whereas in the cued
delay task, each dopaminergic neuron contributed to learning an
independent value function. Here we reconcile these approaches
as shown in Extended Data Fig. 7f-k. We can understand these dif-
ferent models as a spectrum in which the value functions used for
the computations for each discount factor is more or less shared
across them.

In‘classic’ multi-timescale TD learning', the values (V;) and RPEs (6,)
for the different discounts (y;) are updated independently, which guar-
antees its convergence. Now consider asituationin which the value-RPE
circuits of the multiple discounts share a common value function, to
adegree Abetween 0 and 1. In this case, the next value estimate in the
timescale-independent TD backup is corrected by:

Vics,) < Vilsy) + atr, + pi(sen) = Vilsy) (32)

V=AV+a-av (33)

Where V is the mean value function across all discounts. The main
motivation for this modification of the traditional TD backup is neu-
roanatomical, asitis plausible to consider a degree of commonshared
activity across nearby value units. Unlike the model with a fully shared
common value function (that is, A =1), multi-timescale learning with
smallvalues of the sharing parameter (for example, A = 0.1) preserve,
toalarge degree, all the computational advantages of multi-timescale
learning, while being more biologically realistic than fully separated
circuits (that is, A= 0). Using A= 0.1 in the four tasks of Fig. 1e (while
keeping the same simulation parameters as in Fig. 1; see ‘Decoding
tasks’ in Methods), the accuracy of the report of the agent with three
discounts{0.6,0.9,0.99}is 82 + 5% intask1,94 + 2%intask 2,92 +3%in
task 3 and 93 + 3% in task 4. Therefore, regularizing the independent
value functions with a small degree of shared activity preservesall the
multi-timescale advantages highlighted so far.

With this modification to the learning rule, V,does not converge to
a pure exponential form anymore (compare dashed lines with solid
linesin Extended Data Fig. 7f-h value panels, middle row), even witha
smallsharing parameter (A= 0.1in Extended DataFig. 7g). As aresult,
the RPE does not converge to O across the trajectory (Extended Data
Fig.7g,h, 6, bottomrow), so TD learning does not fully converge at the
level of individual value estimators. However, we found empirically
that learning stabilizes completely after 1,000 TD backups (using
a=0.1). Crucially, owing to the non-exponential form of the learned
value function, we observed that y < y(y > ) have RPEs that mostly
ramp down (or up), so our characterization of cell-specific discounts
based on ramping patternsis mostly independent of which of the ramp-
inginterpretations we adopt. These ramping patterns across timescales
are robust when varying the magnitude of the sharing parameter
A(A€[0,1]), thelearning rate a and the number of TD backups (we used
alearning rate a of 0.01 and 2,000 TD backups for Extended Data
Fig. 7f-h). For the simulations in Extended Data Fig. 7f-h, we used the
discounts fitted experimentally in Fig. 31 (90 units), and plot only three
discounts in Extended Data Fig. 7f-h (renormalized to lie between -1
and 1) corresponding to the 20th, 70th and 90th percentiles, corre-
sponding to discounts 0.25, 0.56 and 0.88.

Themodelinthe cued delay task correspondstoA = 0. The common
value function model that we propose would be similar to a value of
A=1, but note that the common value model used for fitting in equa-
tion (25) is slightly different than in equation (32), as in equation (32)
the shared value is only used for estimating future value. The model
from equation (32) corresponds more closely to the common reward
timing estimation model (Extended Data Fig. 9) in which the reduction
inuncertainty with visual feedback affects the estimate of future value
asoutlined below. In thismodel, the TD error for neuron i can be writ-
tenasfollow: 5;=yV’;—- V.



V=3, Y E(riT, ¢, T) =y, " 'E, is the value before the sen-
sory feedback and V/;=3"_,,, ¥ E (T, e+1,T) = Y yUE s
the value of the next state, including the sensory feedback
and the reduction in uncertainty in reward timing. To highlight
the contribution of the sensory feedback, we also introduced
V=3l y (i, 41, T) =31y p7 ', , which would be the
value at the next stepinthe absence of sensory feedback (and therefore
no reduction in uncertainty about reward timing).

We canrewrite the TD error as follows:

5i=}/,~V’,'_V,'=V,-V/,'_VI-VH1[.+V,-VH1[._V; (34)
5,'=V,~VH1[._ V,"')’,AV,

Here the correction due to the sensory feedback appears as AV,
which we can also write as 3'_,., yir’t’l(E’T—ET) . Similarly than in
ref. 45, the sensory feedback acts asacorrectionterminthe prediction
error computation. Here the shared correction term is the reduction
in uncertainty, so it takes a slightly different form than in the general
formulation with shared value ¥ and would correspond to a case in
which the sharing parameter depends on the discount factor. This
source of ‘regularization’ could occur through different pathways.
Hereitisthereductioninuncertainty dueto the structure of the virtual
reality task that leads to a reduction in the uncertainty about reward
timing as the mice approach the reward. This contribution of ashared
signal or estimate from a parallel value estimation has also been used to
explain non-canonical prediction errors in motor tasks™. In the cued
delaytask, thereis nofeedback about reward timing and therefore we
have AV;=0inequation (34), and this would correspond to asituation
inwhichtheloopsare entirely decoupled (A = 0).In practice, we might
expectsome low level of coupling given the anatomical considerations
outlined above. Aslong as theloops are not completely coupled (1 #1),
thereisenoughinformationtoleverage the computational advantages
shown in Fig.1and perform the decoding shown in Fig. 2 (Extended
DataFig. 7i-k).

Comparing parameters across tasks

We used two methods to assess the relationship between the inferred
discount factorsinthe approach-to-reward virtual reality task and the
cued delay task. First, we used the mean parameters across bootstraps
and computed the Spearman rank correlation. Next, we computed, for
n=10,000 randomly selected (with replacement) pairs of bootstraps,
the Spearman rank correlation between the parameters across the two
tasks and plotted the distribution of these correlation.

For the decoding of reward timing using parametersinferredin the
virtual reality task, we also used a bootstrap approach. We computed
the discount matrix and the decoding matrix for each bootstrap esti-
mate of the discount factors in the virtual reality task.

Simulations to assess limits on parameter estimation

To assess the contribution of the limits imposed by the number of tri-
als and the stochasticity in firing rates to the accuracy of the reward
timing prediction and the similarity of inferred parameters across
tasks, weran aseries of simulations with parameters chosen to match
those inferred from the data. For the simulation parameters, we used
the mean inferred value for the parameters across all the bootstraps
for the respective task.

For the cued delay task, for each neuron, we generated n = 80 trials
(n=20 per delay), comparable with behavioural sessions in the task,
simulated cue responses by taking samples from a Poisson distribu-
tion with a rate parameter corresponding to the value predicted by
the exponential discount model for the corresponding reward delay.
We used the same procedure as for analysing the recorded databy per-
forming n =100 bootstraps and fitting the simulated dataonrandom
partitions of the data.

For thevirtualreality task, for each neuron, we generated n = 80 ttrials,
comparable with behavioural sessions in the task, by taking samples
from aPoissondistribution with arate parameter correspondingto the
predicted activity given equation (22). We then performed the fitting
procedures similarly than for the experimental data.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The raw electrophysiological data can be found on DANDI Archive
(https://dandiarchive.org/dandiset/000251). The curated electrophysi-
ological data can be found at https://doi.org/10.17632/tc43t3s7c5.1
(seeref.72).

Code availability

The code used for simulations can be found on GitHub (https://github.
com/pablotano8/multi_timescale_RL). The data analysis code for
the electrophysiological experiments can be found at https://doi.
org/10.17632/tc43t3s7c5.1 (see ref. 72).

61. Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in
prefrontal cortex. Nature 498, 363-366 (2013).

62. Sutton, R. S. Learning to predict by the methods of temporal differences. Mach. Learn. 3,
9-44 (1988).

63. Oppenheim, A., Willsky, A. & Hamid, W. Signals and Systems (Pearson, 1996).

64. Dayan, P. Improving generalisation for temporal difference learning: the successor
representation. Neural Comput. 5, 613-624 (1993).

65. Gershman, S. J. The successor representation: its computational logic and neural
substrates. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0151-18.2018 (2018).

66. Amit, R., Meir, R. & Ciosek, K. Discount factor as a regularizer in reinforcement learning.
In Proceedings of the 37th International Conference on Machine Learning 269-278 (PMLR,
2020).

67. Badia, A. P. et al. Agent57: outperforming the Atari human benchmark. In Proceedings of
the 37th International Conference on Machine Learning 507-517 (PMLR, 2020).

68. Reinke, C. Time adaptive reinforcement learning. ICLR 2020 work. Beyond tabula rasa RL.
Preprint at https://doi.org/10.48550/arXiv.2004.08600 (2020).

69. Gershman, S. J. & Uchida, N. Believing in dopamine. Nat. Rev. Neurosci. 20, 703-714
(2019).

70. Leone, F.C., Nelson, L. S. & Nottingham, R. B. The folded normal distribution. Technometrics
3,543-550 (1961).

71.  Lindsey, J. & Litwin-Kumar, A. Action-modulated midbrain dopamine activity arises from
distributed control policies. Adv. Neural Inf. Process. Syst. 35, 5535-5548 (2022).

72. Masset, P. et al. Data and code for ‘Multi-timescale reinforcement learning in the brain’,
V1. Mendeley Data https://doi.org/1017632/tc43t3s7c5.1 (2025).

Acknowledgements We thank S. J. Gershman and J. Mikhael for their contributions to the
preceding studies; M. Watabe-Uchida for advice on task design; members of the Uchida and
Pouget laboratories, including A. Lowet and M. Burrell, for discussions and comments; and

W. Carvalho, G. Reddy and T. Ott for their comments on the manuscript. This work is supported
by US National Institutes of Health (NIH) BRAIN Initiative grants (ROTINS226753 and U19NS113201),
NIH grant 5R01DC017311 to N.U., and a grant from the Swiss National Science Foundation
(315230_197296) to A.P. This research was carried out in part thanks to funding from the
Canada First Research Excellence Fund, awarded to P.M. through the Healthy Brains, Healthy
Lives initiative at McGill University.

Author contributions P.M., PT., A.P. and N.U. conceived the project. PM., H.R.K., A.N.M.

and N.U. designed the electrophysiology experiments. A.N.M. and H.R.K. performed the
electrophysiology experiments and curated the data. PT. performed the simulations with
artificial agents. P.M. performed the analysis of electrophysiological data. P.M., PT., A.P.and
N.U. wrote the paper with input from H.R.K.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-025-08929-9.

Correspondence and requests for materials should be addressed to Paul Masset,

Alexandre Pouget or Naoshige Uchida.

Peer review information Nature thanks Kenji Doya and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.


https://dandiarchive.org/dandiset/000251
https://doi.org/10.17632/tc43t3s7c5.1
https://github.com/pablotano8/multi_timescale_RL
https://github.com/pablotano8/multi_timescale_RL
https://doi.org/10.17632/tc43t3s7c5.1
https://doi.org/10.17632/tc43t3s7c5.1
https://doi.org/10.1523/JNEUROSCI.0151-18.2018
https://doi.org/10.48550/arXiv.2004.08600
https://doi.org/10.17632/tc43t3s7c5.1
https://doi.org/10.1038/s41586-025-08929-9
http://www.nature.com/reprints

Article

a s tr d s tr g s tr
-0 -0-0-0 -0 -0-0-0- -0 -0-0-0-
0 0 0 R 0 0 0 0 R 0 0 0 0 1 0
b 15 e h
tp~[1,15 tr~[1,8] tr ~ [L,8]
> V,(s)>| |>t R ’ Rk B N> >t
R~ [0 > ) [t R~i,q > V) 3~ T709+tn N ~[1,99] V(s> >
Sample TD-learning Report - i S I TD-learning Report
episode reward time Sample  Tdeaming hyparoelc opsode  (Niterations) reward time
parameters parameters value ofs parameters
c 1 f 1 1 1
)
o 3 3 —
c [ c
2os Eos 8 -
E . % . % 05
€ ‘© ‘© —
o) © o)
o o o —
0 0 | —
0
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Epoch Epoch Epoch
j m P Dy - ®
° S tr, . Y T4 - -
0-0-0 0 -0-0-0- -0-0-0- 9" Rt
Y Y
room Ly T 0 0o Ry o 0 Ry 0 q Dg Pt}
k n
~ Vy(s)
trp ~ [174] true tRu tRz [17 5] D,,Dg~ [57 15] 7 > > D D,
>V, (s)>| >V (s) > V,(s)>| _|>tr,str >y 4 < Du
rasi~N0,025) ) B>y, B Ry~3” ) [ bt Ny, Na~[1,99]  V5'()
TD-learning Report Sample TD-learning Report shorter
Sample TD-learning Report true Sample reward times i i i
opisods (1 iteration) value of s episode sl (N iterations)  branch
parameters parameters
| o r
1 1
© ©
3 8 S os —
c c c
© ® © —
S € 05 € —
S S S
® k5 J5 -
o o 7 o . —
0.5 ol — [0.6, 0.7, 0.9, 0.95, 0.99] s N T
500 1000 1500 0 500 0 500
Epoch Epoch Epoch
s t u v w
1 1 v =099
s oo
cue—»Reward o o8 =0 o 2
£ 05 Z5 05 2o =
S SE S S
E E: E] 5
s / gS ¥=0.6 s 5
o|/ 0 0

0

Number of TD-backups

Extended DataFig.1|See next page for caption.

R 5 10
Outcome time (a.u.)

(short trajectory)

50 00
Number of TD-backups

[0.6 0.9 0.99]
[0.6 0.6 0.9]
[0.6 0.6 0.99]
[0.9 0.9 0.99]
[0.6 0.6 0.6]
[0.90.90.9]
[0.99 0.99 0.99]

[0.6 0.9 0.99]
[0.6 0.6 0.9]
[0.6 0.6 0.99]
[0.9 0.9 0.99]
[0.6 0.6 0.6]
[0.90.90.9]
[0.99 0.99 0.99]

v =0.99

y=09

=06

50 100
Number of TD-backups



Extended DataFig.1|Decoding simulations for multi-timescale vs. single-
timescale agents. (a-c). Experiment corresponding to Task1inFig.1.a, MDP
withreward Rattimet,. b, Diagram of the decoding experiment. Ineach
episode, thereward magnitude and time are randomly sampled from discrete
uniform distributions, which defines the MDPina. Values are learned until

near convergence using TD-learning. Values with different discount factors
arelearnedindependently. The learned values for the cue (s) are fed into a
non-linear decoder whichlearns, across MDPs, to report the reward time.
c,Decoding performance as the decoderistrained. Different colorsindicate the
discount factors used in TD-learning. (d-f). Experiment corresponding to Task 2
inFig.1.d, MDP withreward R at time ¢,. e, Diagram of the decoding experiment.
Ineachepisode, the reward magnitude and time are randomly sampled from
discrete uniform distributions, which defines the MDPina. Values are learned
until near convergence using TD-learning. Values with different discount
factorsarelearnedindependently. The learned values for the cue (s) are fed
intoanon-linear decoder which learns, across MDPs, to report the hyperbolic
value of the cue. f, Decoding performance as the decoder is trained. Different
colorsindicate the discount factorsused in TD-learning. (g-i). Experiment
correspondingto Task 3inFig.1.g, MDP with reward equal to1at time ¢.

h, Diagram of the decoding experiment.Ineachepisode, the reward time and
thenumber of TDiterations (N) are sampled from discrete uniform distributions.
Values arelearned by performing N TD-learning backups on the MDP. Values with
different discount factors are learnedindependently. Thelearned values for

the cue (s) arefedintoanon-linear decoder which learns, across MDPs, toreport
thereward time. i, Decoding performance as the decoder is trained. Different
colorsindicate the discount factors used in TD-learning. (j-1). Experiment
correspondingto Task4inFig.1.j, MDP with reward equal tolattimet,, and
anoisy reward added to every state. k, Diagram of the decoding experiment.
Ineachepisode, the reward timeissampled fromdiscrete uniformdistributions.
Values arelearned by performingasingle iteration of TD-learning backwards
through the MDP. Values with different discount factors are learned
independently. The learned values for the cue (s) are fed into anon-linear
decoderwhichlearns, across MDPs, toreport the true value of the cue after
experiencingthe trajectory aninfinite number of times (thisis, ignoring the

random rewards).l, Decoding performance as the decoder is trained. Different
colorsindicate the discount factors used in TD-learning. (m-0) Experiment with
tworewards.m, MDP with two rewards of magnitude RIand R2at times t,; < ty,.
Value estimates V,(s) are fed into anon-linear decoder which learns, across MDPs,
toreportbothrewardtimes. o, Decoding performance as the decoder is trained.
Different colorsindicate the discount factors usedin TD-learning. (p-r) Experiment
todetermine the shortest branch whenlearning fromincomplete information.
p, MDP with two possible trajectories. Inthis example, the upwards trajectory is
longer than the downwards trajectory. q, Diagram of the decoding experiment.
Ineach episode, the length of the two branches D and the number of times that
TD-backupsare performed for eachbranchare randomly sampled from uniform
discrete distributions. Then, TD-backups are performed for the two branches
the corresponding number of times. After this, they are fed intoadecoder which
istrained, across episodes, toreportthe shorter branch.r, Decoding performance
asthedecoder istrained. Different colorsindicate the discount factorsusedin
TD-learning.s-w: Temporal estimates are available before convergence for
multi-timescale agents. s, Two experiments, one withashort waitbetween the
cueandreward (pink), and one with alonger wait (cyan). t, Theidentity of the cue
with the higher value for asingle-timescale agent (here y=0.9) dependsonthe
number of times that the experiments have been experienced. When the longer
trajectory hasbeen experienced significantly more often than the short one, the
single-timescale agent canincorrectly believe thatit has alarger value.u,Fora
multi-timescale agent, the pattern of values learned across discount factors is
only affected by amultiplicative factor that depends on thelearning rate, the prior
values and the asymmetriclearning experience. The pattern therefore contains
unique information about outcome time. v,w, When plotted as afunction of the
number of times that trajectories are experienced, the pattern of values across
discount factorsis only affected by amultiplicative factor. In other words, for
the pink cue, thelarger discount factors are closer together than they are to

the smaller discount factor, and the opposite for the cyan cue. This patternis
maintained at every point along the x-axis, and therefore isindependent of the
asymmetric experience, and it enables adownstream system to decode reward
timing. Error bars are the standard deviations (s.d.) across 100 test episodes and
3trained policy gradient (PG) networks.
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Extended DataFig. 2| The myopiclearningbias. a, Illustration of the myopic
learning bias. Considerascenarioin which the upwards and downwards paths
fromsands’are experienced only once, such that atleast one pathinthe small
bifurcationsisleft unexplored. Instates’(blue) the far future ismore uncertain
thanthe near future, and in state s (red) the near future is more uncertain
thanthe far future. b, When experiencing the upwards and downwards paths
onlyonce, there are 4 possible scenarios depending on which path of the
correspondingbifurcationsis visited. When learning from limited information,
the myopic (lowy) and farsighted (high y) estimates would make different
decisions depending on whether the V' estimate is larger, smaller or
approximately equal to VPN (VP = VP®"Noccurs when both estimates have
similar magnitudes and some small variationsin the precise magnitude of
rewards, the prior values or the learning parameters could change whether

VP < YPOWN o yUP > yPOWN) Inboth sand s’, the correct decisionis to follow the
upwards path (the ‘correct’ decisionis the decision made by ahypothetical RL
agent thatexperiencesall possible trajectories aninfinite number of times).
Below we show the approximate probability that the agent chooses the correct
path, ifit follows the myopic estimates (low y) or far-sighted estimates (high y).
Illustration of amousein panelaandsilhouette of araptorin panelsa,bwere
adapted from the NIAID NIH BIOART Source. lllustration ofablock of cheese
inpanelsa,b, was adapted from SVG Repoundera CCO1.0licence.c, Task
structure to evaluate the myopiclearning bias when uncertainty arises due
tostochastic rewards. The three dots collapse 5 transitions between black
states. Black states give asmallstochasticreward and orange states givea
large deterministic reward. d, Accuracy at selecting the branch with thelarge
deterministic reward underincomplete learning conditions. At state s (orange),
agentswith larger discount factors (far-sighted) are more accurate. At state s’

(blue), agents with asmall discount factor (myopic) are more accurate. Error
barsare halfs.d.across10,000 episodes, maximums are highlighted with
stars. e, Mean performance in this task by the agentin Fig. 1d (see main text

and Methods). f, Maze to highlight the myopiclearning biasin cases where
uncertainty arises due toincomplete exploration of the state space. Rewards
areindicated withwater and fire. An example trajectory isshown with
transparentarrows. Thered and blue barsto theright denote the statesin

the Lower and Upper half. g, True (grey) and estimated (green and brown)
values for the example trajectory on top and shownin panel a. In the x-axis we
highlight the starting timestep with s, the timestep when the fireis reached and
the timestep when the water is reached. Image of fire in panels f,g was created
by dstore viaSVG RepounderaCCO1.0licence.Images of water dropletin
panelsf,gwereadapted from SVG RepounderaCCO1.0licence.h, Accuracy
(y-axis) is measured as the Kendall tau coefficient between the estimate with
aspecificgamma (x-axis) and the true value function V,= 0.99. Error bars are
deviations across 300 sets of sampled trajectories. The red (blue) curve shows
average accuracy for the states on the upper (lower) half of the maze, indicated
with colorlineson panela.i, Asthesampled number of trajectories increases,
the myopic learning bias disappears. j, Architecture that learns about multiple
timescales as auxiliary tasks.k, States are separated according to the agent
being closeto the goal (blue) or far from the goal (orange). Images in panelsj,k
were adapted from Farama Foundation under an MIT licence. 1, Accuracy of the
Q-valuesinthe Lunar Lander environment as a function of their discount factor,
estimated as the fraction of concordant state pairs between the empirical value
functionand the discount specific Q-value estimated by the network. Error
barsares.e.macross 10 trained networks, maximums are highlighted with
stars.See Methods for details.
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Extended DataFig. 3 |See next page for caption.
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Extended DataFig. 3 |Single neuronresponses and robustness of fitinthe
cued delay task. a, PSTHs of single selected neurons (n = 50) responses to the
cues predictingareward delay of 0.6 s,1.5s,3.75s,and 9.375 s (from top to
bottom). Neurons aresorted by theinferred value of the discount factor y.
Neural responses are normalized by z-scoring each neuron acrossits activity to
all4 conditions. b, PSTHs of single non-selected neurons (n=23) responses to
the cues predicting areward delay of (from top to bottom). Neurons are sorted
by theinferred value of the discount factor y. Neural responses are normalized
by z-scoring each neuron acrossits activity to all 4 conditions. ¢, Variance
explained for training vs testing data for the exponential model. For each
bootstrap, the variance explained was computed on both the half of the trials
used for fitting (train) and the other half of the trials (test). Neurons (n = 13) with
anegative variance explained on the test data are excluded from the decoding
analysis (grey dots).d, Same as panel c but for the fits for the hyperbolic model.
e,Meangoodness of fiton held-out dataacross 100 bootstraps for each
selected neuron for the exponential and hyperbolic models. The datalies
above the diagonal line suggesting abetter fit from the exponential model as
showninFig. 2f. Error barsindicate 95% confidence interval using bootstrap,
see Methods. f, The values of the inferred parameters in the exponential model
arerobustacrossbootstraps. top row, Inferred value of the parameters across
two halves of the trials (single bootstrap) for the gain «, baseline b and discount
factory, respectively. Bottom row, Distribution across n =100 bootstraps of

the Pearson correlations across neurons between the inferred parameter
valuesinthe two halves of the trials. Reported meanis the mean correlation
across bootstrapsand reported p-valueis the highest p-value for all the
bootstraps foragiven parameters assessed viaStudent’s t-test. Distribution

of correlations for the gain a (mean=0.84, P<1x107%°), baseline b (v, mean=0.9,
P<1.0x10?) and discountfactory (vi, mean=0.93,P<1.0 x10™*¢). g, Same as
panel f (lower row) but for the hyperbolic model with distribution of correlations
for the gain & (mean=0.86,P<1x1072%), baselineb (v, mean=0.88,P<1.0x107%)
andshape parameterk (vi, mean=0.76, P <1.0 x10™). h, Same as panel f (lower
row) but for the exponential model simulated responses with distribution of
correlations for the gain o (mean=0.86,P<1.0 x10'°), baseline b (v, mean=0.88,
P<1.0x10?*) and discount factor y (vi, mean=0.76, P<1.0 x102°). Note that the
distributions of inferred parameters areinasimilar range than the fits to the data
suggesting that trial numbers constrain the accuracy of parameter estimation.

i, similar to the panel f (lower row) for the neurons recorded in mouse m3044,
showingthatacross bootstraps, the estimates are consistent for the gaina (mean=
0.64,P<0.05for88/100 bootstraps, light blue P> 0.05, dark blue P < 0.05),
baselineb (mean=0.86,P<0.012) and discount factory (mean=0.72, P< 0.05for
97/100 bootstraps, light blue P> 0.05, dark blue P< 0.05).j, same as panel f (lower
row) for the neuronsrecorded inmouse m3054. The estimates are consistent for
thegaina(mean=0.90,P<0.0048), baselineb (mean=0.93,P<1.0 x10) and
discount factory(mean=0.79,P<0.0069).



Article

Extended DataFig.4|Decoding reward timing using theregularized
pseudo-inverse of the discount matrix. (a-c), Singular value decomposition
(SVD) of the discount matrix. a, left singular vectors (in the neuron space).

b, Singular values. The black line at 2 indicates the values of the regularization
terma.c, rightsingular vectors (inthe time space). d, Decoding matrix based
ontheregularized pseudo-inverse. e, Distribution of -wassertein distances
between the reward timing and the predicted reward timing from the decoding
onthetest datafrom exponential fits (shownin Fig. 2k, top row) and on the
average exponential model (shownin Fig. 2k, bottom row). Decoding is better
for the exponential model from Fig. 2 than the average exponential model except
for the shortestdelay (P(t=0.6s)=1,P(t=1.55)<1.0 x10™, P(¢ = 3.75) = 0.0135,
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P(t=9.3755) <1.0 x107**), one-tailed Wilcoxon signed rank test, see Methods).

f, The ability to decode the timing of expected future reward isnotduetoa
general property of the discounting matrix and collapses if we randomize the
identity of the cue responses (see Methods). g, Distribution of 1-Wassertein
distances between the reward timing and the predicted reward timing from the
decodingonthetest data exponential fits (shownin Fig. 2k, top row) and on the
shuffled data (shownin panelf). The prediction fromthe test dataare better
predictions (smaller 1-Wasserstein distance) than shuffled data (P=1.2x10™*
for 0.6 sreward delay, P < 1.0 x 10 for the other delays, one-tailed Wilcoxon
signed rank test, see Methods).
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Thisisthe matrix used for decodingin panel g, bottom row. g, Decoding of
reward timing at the single animal level for mouse 3044 (top row) and mouse
3054 (bottomrow). Thedecodingis present but slightly lessaccurate as
expected from the smaller number of neurons. h, discount factor inferred
for neuronsin mouse m3044 when dividing trials between low and high
anticipatory lick rate. left panel, scatter plot of the value across neurons.
right panel, the distribution across neurons of differencesininferred discount
across the two conditionsis not significant (mean =-0.0024, P=0.96, two-
tailed Student’s t-test). i, Same as panel h for mouse m3054. The difference
ininferred value betweenlow and high lick rate is significant (mean =0.086,
P=0.0062, two-tailed Student’s t-test) but the mean effect is small compared
tothe standard deviation of inferred discount factors across neurons
(s.d.=0.19 for neurons inm3054).

Extended DataFig. 5| Comparing behavioral and neural discounting and
decoding reward timinginsingle animals. (a-c): mouse 3044. a, left panel.
Normalized lick responsesto the cues predicting reward delays across the
population. For each neuron, the response was normalized to the highest
responseacrossthe 4 possible delays. Neurons are sorted by the inferred
behavioral discount factor. Right panel: Normalized neural responses to the
cues predicting reward delays across the population (sorted by the behavioral
discountfactor).b, The behavioral and neural discount factors are not
correlated (r=-0.29, P=0.27,Spearman’s rank correlation, two-tailed Student’s
t-test). ¢, Discount matrix for the neuronsrecorded in mouse 3044. Thisis the
matrix used for decodingin panel g, top row. (d-f): same as panels (a-c) for
mouse 3054. e, Thebehavioraland neural discount factors are not correlated in
mouse 3054 (r=-0.029, P=0.9, Spearman’s rank correlation, two-tailed
Student’s t-test). f, Discount matrix for the neurons recorded in mouse 3054.
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Extended DataFig. 6| Decoding reward timing from the hyperbolic model
and exponential model simulations. a, Distribution of theinferred discount
parameter kacross the neurons. b, Correlation between the discount factor
inferred in the exponential model of the discount parameter k fromthe
hyperbolic model (r=-0.9,P<1.0 x107°, Student’s t-test). Note thein the
hyperbolic modelalarger value of kimplies faster discounting hence the
negative correlation. ¢, Discount matrix for the hyperbolic model. For each
neuronwe plot the relative value of future events givenitsinferred discount
parameter. Neurons are sorted by decreasing estimated value of the discount
parameter.d, Decoded subjective expected timing of future reward E(r|t) using
the discount matrix from the hyperbolic model (see Methods). e, Distribution
of 1-Wassertein distances between the reward timing and the predicted reward
timing from the decoding on the test data with the exponential model (shown
inFig.2k, toprow) and on the test datawith the hyperbolic model (shownind).

Decodingis better for the exponential model from Fig. 2 than the hyperbolic
model except for the shortest delay (P(t=0.6s) =1, P(t=1.55)<1.0 x 107,
P(t=3.75)<1.0x107®, P(t=9.3755s) <1.0 x107), one-tailed Wilcoxon signed rank
test, see Methods). f, Decoded subjective expected timing of future reward
E(r|t)using simulated databased on the parameters of the exponential model
(see Methods). g, Distribution of 1-Wassertein distances between the reward
timing and the predicted reward timing from the decoding on the test data
from exponential fits (shownin Fig. 2k, top row) and on the simulated data from
the parameters of the exponentialfits (showninf). Decodingis marginally
better for the data predictions (P(t=0.6s)=0.002, P(t=1.55)=0.999,
P(t=3.75) <1x107%, P(t=9.3755) =0.027), one-tailed Wilcoxon signed rank test,
see Methods), suggesting that decodingaccuracy is limited by the number of
trials.
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Extended DataFig.7|Ramping, discounting, anatomy and distributed RL
models. a,Rampinginthe predictionerror signal is controlled by the relative
contribution of valueincreases and discounting. If the value increase (middle)

exactlymatches thediscounting, thereisno prediction error (middle equation,

right). If the discounting is smaller than the value increase (large discount
factor) thenthereisapositive TD error (top equation, right). If the discounting
islarger (small discount factor) than the valueincrease then there a negative
TDerror (bottom equation, right). A single timescale agent with no state
uncertainty will learn an exponential value function butif thereis state
uncertainty (seeref. 69) or the global value function arises from combining the
contribution of single-timescale agents then the value functionis likely t be
non-exponential. Image of amagnifying glass was created by googlefonts via
SVG Repo under anApacheLicence. b, Intuition for diversity of ramping with
ahyperbolicvalue function. Agents with asmall discount factor exhibita
monotonic downward ramp (pink), while those with alarge discount factor
exhibitamonotonicupward ramp (brown). Agents with anintermediary
discount factor tend to exhibit adownward then upward ramp. The hyperbolic
value function getsincreasingly convex as the reward approaches, so an
increasing fraction of the agents have a positive prediction error as they
approach thereward. ¢, Thediscount factorinferred in the VR task is not
correlated with the medio-lateral (ML) position of the implant (Pearson’s
r=0.015,P=0.89, two-tailed Student’s t-test).d, The baseline parameter
inferred in the VR taskis not correlated with the medio-lateral (ML) position
oftheimplant (Pearson’sr=-0.011, P=0.92, two-tailed Student’s t-test).e, The
inferred gainin the VR task reduces withincreasing medio-lateral (ML) position
but the effect does not reach significance (Pearson’sr=-0.19,P=0.069, two-
tailed Student’s t-test). In panels c-e, the line correspond to the best fit linear
regression and the uncertainty shading represents 95% confidence intervalon
alinearregression fit. f-h. Ramping in the reward prediction error with mixing
indistributed RL models. Inferred value functions (V) and RPEs (6) for the

mixed RLmodel as afunction of thecommon value function sharing-parameter
A,inalinear MDP of 30 steps (x-axisin the plots) with a deterministic reward
equaltolinthelaststepand O everywhereelse.Plots are shown after learning
hasempirically stabilized (after 3,000 TD-learningiterations with alearning
rate of 0.1). The dashed value functionis the exponential value function without
common value sharing (1= 0), whichwould lead toaflat RPE equal to O atevery
state. The actual value functions (solid lines) are not purely exponential, and
thuslead to ramping RPEs. f, Circuit model in which each value estimation and
their corresponding predictionerrorare part completely independentloops
(A=0).Atconvergence, thereisnomore prediction errorinthe reward
anticipation period (bottomrow). g, Circuit modelin which the prediction
error for each dopamine neuronisinfluenced by both theindependent value
signaland the shared acommon value signal (C,A=0.1). The dashed line
indicate the value function corresponding to completely separate loops, and
the solid function the actual value function due to theinfluence of the common
value signal. The difference between themleads to rampingin the reward
prediction error signals (bottom row). h, Circuitmodel with astronginfluence
ofthe common value signal (A =1) which also leads to rampingin the reward
predictionerror signals. See Methods for details. i, Decoded reward times for

4 experimental conditions withrewards attimes 5,10,15and 30 (pink to cyan),
by applying aregularized inverse Laplace decoder (analogous to the one used
inFig.2 of the main text) to the values at the moment of the cue, under the
modelwithout mixingA=0.j, Same as (i) but using a mixing factor of1=0.1.
The small mixing factor does not affect the quality of the temporal decoding,
while creatingaramping reward prediction error (panel g). Therefore, asmall
mixing factor constitutesacommon model that can qualitatively account for
the two tasks studied in the paper. k, Same as (i) but using a mixing factor of
A=1.Usingafully shared value function therelative differences between
discount factors disappear, so temporal decodingis nolonger possible.
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Extended DataFig. 8| Behavioral and neural discounting at the single
animal. a, Time course of the lick rate in the VR task as mice approach the
reward location. gray line, lick rate for individual neurons, blue line, mean lick
rate. Thethreeblacklines ontopindicate the three windows used to compute
early, middle and late lick rate in the analysis presented in panels c-d. b, The
inferred discount factor and the slopeinspiking activity (see Fig.3b) are
strongly correlated (r=0.81, P=0,Spearmanrank correlation, two-tailed
Student’s t-test) suggesting that slope is agood measure of discounting.

¢, Correlations of measures of behavioral and neural discounting for mouse
m3044 (Spearman rank correlation, two-tailed Student’s t-test). i-iii: the neural
discount factorand therampinlicking activity is not correlated irrespective
ofthewindow used to compute the ramp inlicking activity whenusing the
following windows to compute ramping activity in the lick rate: i, modulation
betweenthelate and early window, r=0.09, P=0.64.ii, modulation between
thelate and middle windows, r=-0.05, P=0.79.iii, modulation between the
earlyand middle windows, r=0.17, P= 0.37.iv-vi: The measures of rampingin
licking activity are strongly correlated to each other:i, correlation between
thelate-middle and late-early modulation measures, r=0.65,P=1.3x107*.

ii, correlation between the middle-early and late-early modulation measures,
r=0.96,P=7x107".iii, correlation between the middle-early and late-middle
modulation measures, r=0.53,P=0.0028.d, Correlations of measures
ofbehavioral and neural discounting for mouse m3054 (Spearman rank
correlation, two-tailed Student’s t-test). i-iii: the neural discount factor and
therampinlickingactivity isnot correlated irrespective of the window used
tocompute the rampinlicking activity when using the following windows to

compute rampingactivity inthelick rate: i, modulation between the late and
earlywindow, r=-0.1, P=0.62.ii, modulation between the late and middle
windows, r=0.032, P=0.88.iii, modulation between the early and middle
windows, r=-0.11, P=0.61.iv-vi: The measures of ramping in licking activity
arestrongly correlated to each other:i, correlation between the late-middle
and late-early modulation measures, r=0.82, P=6.7 x107.ii, correlation
between the middle-early and late-early modulation measures, r=0.94,
P=4.7x107".iii, correlation between the middle-early and late-middle
modulation measures, r=0.66, P=4.2 x10™*. e, The VR model fits (right panel)
tom3044 neuronsalone captures the diversity of rampingactivity observed
across single neurons (left panel). f, Inferred value function for m3044. Thin
grayline, individual bootstrap fits. Blue line, mean value fit. g, The VR model
fits (right panel) tom3054 neurons alone captures the diversity of ramping
activity observed across single neurons (left panel). h, Inferred value function
form3054.Thingray line, individual bootstrap fits. Blue line, mean value fit.

i, Theinferred parameter values between the fit for m3044 and the full
population fit are strongly correlated (Spearman rank correlation, two-

tailed Student’s t-test) for the gain parameter (left panel, r=0.78,P=2.1x107°),
the baseline parameter (middle panel, r=0.75,P=5.7 x10"°) and the discount
factor (rightpanel,r=0.75,P=6.8 x10°°).j, Theinferred parameter values
between the fit for m3054 and the full population fitare strongly correlated
(Spearmanrank correlation, two-tailed Student’s t-test) for the gain parameter
(left panel,r=0.97,P=1.3 x10"°), the baseline parameter (middle panel, r=0.98,
P=1.1x10"°) and the discount factor (right panel,r=0.88,P=2.6 x107°).
Allreported correlations are Spearmanrank correlations.
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expected reward timereduces but the standard deviation of the estimate also
reduces. Distributioninthe bottom row from fitted data (see panels c-e).

b, Amodel where each neuron contributes to its individual value function but
shareacommonreward expectation predicts ramping heterogeneity across
neurons. Left panel, as mice approach reward, the uncertainty, quantified

by the standard deviation, of reward timing reduces. 2" panel from left, The
Expectation of reward timing takes the form of a folded normal distribution.
Asthemiceapproachtherewardthereisareduction of boththe meanandthe
standard deviation of the expected reward timing distribution. 3" panel from
left, eachneuron computes adistinct value function given their individual
discount factor and the common expected reward timing distribution with.
Right panel, The diverse value functions across neurons lead to ramping
heterogeneity across neuronsinthe reward predictionerror. (see Methods
‘Common Reward Expectationmodel’). ¢, Theinferred standard deviation of
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the reward expectation model reduces as afunction of time to reward. Line
indicates the meaninferred standard deviation and the shadingindicates the
standard error of the mean over100 bootstraps. d, Expected timing of the
reward as afunction of true time to reward. As the mice approach the reward
notonly doesthe mean expected time to reward reduces but the uncertainty of
thereward timing captured by the standard deviation shownincalso reduces.
This effect leads to increasingly convex value functions that lead to the
observed rampsin dopamine neuron activity. e, Value function for each
individual neuron (same order as in h-i). f, Distribution of inferred discount
factorsunder the common reward expectation model. g, Although the range of
discount factor between the fits from the common value (x axis) and common
reward expectation (y axis) models differs, the inferred discount factors are
strongly correlated for single neurons (Spearman’s p=0.93,P<1.0 X107, two-
tailed Student’s t-test). h, Predicted rampingactivity from the model fits under
the common reward expectation model. i, Diversity of rampingactivity across
single neurons as mice approach reward (aligned by inferred discount factorin
thecommon reward expectation model).
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Extended DataFig.10|Decoding reward timingin the cued delayed reward

taskusing parametersinferredinthe VR task and details of recordings.
a, Discount matrix computed using the parametersinferredin the VR tasks
forneuronsrecorded across both tasks and used in the cross-task decoding.

b, Dopamine neurons cueresponsesinthe cued delay task. Neurons are aligned

asinaaccording toincreasing discount factor inferredin the VR task. c, Top
row: Decoded reward timing using discount factors inferred in the VR task.
Bottom row: The ability to decode reward timing is lost when shuffling the

identities of the cue responses. d, Except for the shortest delay, decoded

reward timingis more accurate than shuffle as measured by the 1-Wassertsein
distance (P,_.s=1, P15, <L1%x107%, P,_375,<3.8 X107, P,_g 375, < 2.9 x107).

e, Breakdown of the number of recorded neurons per animal and task. The
numbersinparenthesisindicate the number of neuronsincludedin the analysis.
tindicates standard deviation across sessions. The maximum number of
neuronsrecordedinasingle sessionwas4inboth the cued delay task and the

VR task.
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described in the manuscript.

Randomization  Allocation between the virtual reality and cued delayed task was based on the timing of the experimental data collection.
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controls that required blinding. Analysis was performed after data collection so investigators were blind to inferred neuron parameters during
data collection.
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Ethics oversight

We used a total of 13 adult C57/BL6J DAT-Cre male mice. Mice were backcrossed for over 5 generations with C57/BL6J mice. All
procedures were performed in accordance with the National Institutes of Health Guide for the Care and Use of

Laboratory Animals and approved by the Harvard Animal Care and Use Committee. We refer to the paper that describes data
collection for more details: Kim, HyungGoo R., et al. "A unified framework for dopamine signals across timescales." Cell 183.6 (2020):
1600-1616.

No wild animals were used in this study.
Sex was not considered in the study design and all data presented was collected in male mice only.
No field-collected samples were used in this study.

All procedures were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory
Animals and approved by the Harvard Animal Care and Use Committee.
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