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Multi-timescale reinforcement learning in 
the brain

Paul Masset1,2,3,4,11 ✉, Pablo Tano5,11, HyungGoo R. Kim1,2,6,7, Athar N. Malik1,2,8,9, 
Alexandre Pouget5 ✉ & Naoshige Uchida1,2,10 ✉

To thrive in complex environments, animals and artificial agents must learn to act 
adaptively to maximize fitness and rewards. Such adaptive behaviour can be learned 
through reinforcement learning1, a class of algorithms that has been successful at 
training artificial agents2–5 and at characterizing the firing of dopaminergic neurons in 
the midbrain6–8. In classical reinforcement learning, agents discount future rewards 
exponentially according to a single timescale, known as the discount factor. Here we 
explore the presence of multiple timescales in biological reinforcement learning.  
We first show that reinforcement agents learning at a multitude of timescales possess 
distinct computational benefits. Next, we report that dopaminergic neurons in mice 
performing two behavioural tasks encode reward prediction error with a diversity  
of discount time constants. Our model explains the heterogeneity of temporal 
discounting in both cue-evoked transient responses and slower timescale fluctuations 
known as dopamine ramps. Crucially, the measured discount factor of individual 
neurons is correlated across the two tasks, suggesting that it is a cell-specific property. 
Together, our results provide a new paradigm for understanding functional 
heterogeneity in dopaminergic neurons and a mechanistic basis for the empirical 
observation that humans and animals use non-exponential discounts in many 
situations9–12, and open new avenues for the design of more-efficient reinforcement 
learning algorithms.

Many of the recent advances in artificial intelligence rely on temporal 
difference (TD) reinforcement learning (RL) in which the TD learning 
rule is used to learn predictive information1 (equation (2)). By updat-
ing current estimates on the basis of future expected estimates, TD 
methods have been remarkably successful in solving tasks that require 
predicting future rewards and planning actions to obtain them2,13.

The standard formulation of TD learning assumes a fixed discount 
factor (that is, a single-learning timescale), which, after convergence, 
results in exponential discounting: the value of a future reward is 
reduced by a fixed fraction per unit time (or timestep). Although 
this formulation is important for simplicity and self-consistency of 
the learning rule, it is well known that humans and other animals do 
not exhibit exponential discounting when faced with inter-temporal 
choices. Instead, they tend to show hyperbolic discounting: there is a 
fast drop in value followed by a slower rate for further delays9,10. Far from 
being irrational, non-exponential discounting can be optimal depend-
ing on the uncertainty in the environment, as has been documented 
in the behavioural economics and foraging literature11,12. Humans and 
animals can modulate their discounting function to adapt to the tem-
poral statistics of the environment and maladaptive behaviour can be 
a signature of mental state or disease14,15.

The TD rule can potentially be extended to learn more complex 
predictive representations than the mean discounted future reward 
of the traditional value function, in both artificial neural systems16–19 
and biological neural systems20–24. A growing body of evidence points 
to the rich nature of temporal representations in biological systems25,26 
and particularly in the basal ganglia27–31. Understanding how these 
rich temporal representations are learned remains a key question 
in neuroscience and psychology. An important component across 
most temporal-learning proposals is the presence of multiple time-
scales22,31–35, which enables capturing temporal dependencies across 
a diverse range of durations: shorter timescales typically handle rapid 
changes and immediate dependencies, whereas longer timescales 
capture slow-changing features or long-term dependencies34. Further-
more, work in artificial intelligence has suggested that the performance 
of deep RL algorithms can be improved by incorporating learning at 
multiple timescales19,36. We therefore ask whether RL in the brain exhib-
its such multi-timescale properties.

We first investigate the computational implications of multi- 
timescale RL. We then show that dopaminergic neurons encode predic-
tions at diverse timescales, providing a potential neural substrate for 
multi-timescale RL in the brain.
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Advantages of multi-timescale RL
We first examined the computational advantages of RL agents using 
multiple timescales over those utilizing a single timescale. We start 
with a simple example environment in which a cue (s) predicts a future 
reward at a specific time (Fig. 1a; see Methods). In standard RL algo-
rithms, the agent learns to predict future rewards, compressed into 
a single scalar value, that is, the sum of discounted future rewards 
expected from the current state1:
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where V(s) is the value of the state s, rt is reward at time t, γ is the discount 
factor (0 < γ < 1) and E denotes the expectation over stochasticity in the 
environment and actions. This exponentially functional form for the 
temporal discount (γt) is not arbitrary. It is naturally produced by the 
TD learning rule, a bootstrapping mechanism that updates the value 
estimate for state s after transitioning from s to s′ and receiving reward r:
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where α is the learning rate. This update process converges to the 
values defined above under very general conditions1 and has been 
experimentally proven to be an extremely robust and efficient learn-
ing rule in training deep RL systems13 and at characterizing the firing 
of dopaminergic neurons in the midbrain6–8.

Now consider multi-timescale learning (Fig. 1b). Let Vi be the value 
learned using a discount γi. Moving the discount factor γ out of the 
expectation in equation (1), values can be rewritten (truncating at 
t = T) as
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Where we assumed that timestep transitions are discrete and of size 
Δt (see Methods). Thus, single-timescale learning projects all the 
timestep-specific expected rewards (E r t( | )) onto a single scalar (Vi) 
through exponential discounting (Fig. 1a) and therefore entangles 
reward timing and reward size. When learning with multiple timescales, 
instead of collapsing all future rewards onto a single scalar, there is a 
vector of value predictions, each computing value with its own discount 
factor γi

 (ref. 21):
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The last equality shows that the array of values learned with multi-
ple discounts (value space in Fig. 1b) corresponds to the z-transform  

Fig. 1 | Computational advantages of multi-timescale RL. a, In single- 
timescale value learning, the value of a cue (at t = 0) predicting future rewards 
(left) is evaluated by discounting these rewards with a single exponential 
discounting function (middle). The expected reward size and timing are 
encoded, but confounded, in the value of the cue (right). b, In multi-timescale 
value learning, the same reward delays are evaluated with multiple discounting 
functions (middle left). The relative value of a cue as a function of the discount 
depends on the reward delay (middle right). A simple linear decoder based on 
the Laplace transform can thus reconstruct both the expected timing and the 
magnitude of rewards (right). c, Experiment to compare single-timescale 
versus multi-timescale learning. tR and R are fixed within each episode and 
varied across episodes. d, In each episode (defined by a specific tR and R),  
the value function is learned via tabular updates, using multiple discount 
factors (step 1). Given these values, step 2 consists of training a non-linear 

decoder to maximize the accuracy of a task-specific report. The decoder is 
trained across episodes using policy gradient. e, The architecture is trained 
across four tasks to highlight computational advantages of multi-timescale 
RL, including decoupling information about reward size and reward timing, 
the ability to learn with arbitrary discount functions, the ability to recover 
reward timing information before convergence and the ability to control  
the inductive bias (see main text and Methods). f, Mean accuracy is reported 
after 2,000 training episodes as the fraction of correct responses (see Methods). 
‘Three discounts’ correspond to the γ-ensemble [0.6,0.9,0.99], ‘one discount’ 
to the top-performing ensemble across {[0.6,0.6,0.6], [0.9,0.9,0.9], 
[0.99,0.99,0.99]} and analogous for ‘two discounts’. The error bars are the 
standard deviations (s.d.) across 100 test episodes and 3 trained policy 
gradient networks.
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(that is, the discrete Laplace transform (L)) of the array that indicates 
the expected reward at all future timesteps (temporal space in Fig. 1b). 
As the z-transform is invertible, the agent using TD learning with multi-
ple timescales implicitly encodes the expected temporal evolution of 
rewards, which can be recovered by applying a fixed, regularized linear 
decoder L−1 to the learned values21,37 (Fig. 1b, right panel illustrates a 
situation with one reward per trajectory, but this approach also works 
for multiple reward; see Methods and ref. 21).

RL agents performing multi-timescale learning have been shown to 
produce performance superior to that of single-timescale agents 
across a wide range of complex problems19,38. To illustrate the compu-
tational advantages of multi-timescale representations, we considered 
several example tasks, including a simple linear maze (Fig. 1c–f and 
Extended Data Fig. 1a–o), branching mazes (Extended Data Figs. 1p–r, 
2 and 3a–e), a navigation setting (Extended Data Fig. 2f–i) and a deep 
Q-network (DQN) setting (Extended Data Fig. 2j–l). In the linear maze, 
the agent navigates through a linear track (a sequence of 15 states), 
where it encounters a reward of a certain magnitude (R) at a specific 
time point (tR) (see Fig. 1c). The value of R and tR changes across epi-
sodes and remains constant within episodes. Each episode is initiated 
by a cue presented at the initial state (s). Within each episode, the agent 
first learns the expected future rewards predicted by the cue (that is, 
the value V s( )γ ) using a simple RL algorithm (tabular TD learning) using 
one or multiple discount factors (step 1 in Fig. 1d). Using the learned 
value (or values) associated with the cue, the agent then performs 
various tasks, which involve producing a task-specific report by trans-
forming the learned values using a decoder network (step 2 in Fig. 1d). 
As some tasks involve complex, non-linear operations over the 
multi-timescale values, we trained a general, non-linear decoder for 
each task using policy gradient (see Methods). Our goal is to evaluate 
the advantages of the multi-timescale value representation over the 
single-timescale value representation, and the degree to which these 
advantages can be exploited by a simple, code-agnostic decoder. 
Therefore, in our model, multi-timescale values are not used directly 
to produce behaviour. Instead, they act as an enriched state represen-
tation from which task-specific behaviour can be subsequently  
decoded.

Task 1: disentangling reward timing and reward magnitude
In single-timescale systems, a high value at the cue could signify a small 
reward in the near future or a large reward in the distant future. By con-
trast, the pattern of values across discount factors (middle right panel 
in Fig. 1b) is invariant to reward magnitude. As a result, multi-timescale 
agents can disentangle reward timing from reward magnitude (task 1 
in Fig. 1e,f) in which the agent reports reward timing independently of 
reward magnitude (Fig. 1f and Extended Data Fig. 1a–c; see Methods).

Task 2: learning values with non-exponential temporal 
discounts
The bootstrapping process of traditional TD value learning naturally 
converges to exponentially discounted values. Although several tasks 
can be optimally solved by knowing the exponentially discounted state 
values (that is, where the value of a reward at time t decreases as γt), 
the optimal discount in a specific task depends on its temporal con-
tingencies, such as its hazard rate, its horizon, the cost of time and 
the uncertainty over time19,38. Indeed, human and animal judgements 
are generally more consistent with a hyperbolic discount (that is, 
decreasing as 1/(1 + γt)) than an exponential discount9,10. Crucially, 
multi-timescale systems with a diversity of exponential discounts 
implicitly encode the expected reward magnitudes at all future times 
(Fig. 1b), so they can weigh the time-specific expected rewards with 
any chosen discount weights to retrieve the specific discount neces-
sitated by the task. Our result shows that only multi-timescale systems 
can reliably report the hyperbolic value of the cue given a diversity of 
exponential values (task 2; Fig. 1e,f).

Task 3: inferring temporal information before convergence
In single-timescale systems, a high value of the cue could be due to a 
short delay (tR) or simply because the value estimate in equation (1) 
has undergone more positive updates from an initial value of 0 (for 
example, if it has encountered the reward a larger number of times; 
see Extended Data Fig. 1s–w). In multi-timescale systems, the shape 
of value function across discount factors encodes the proximity to 
rewards (Fig. 1b, medium left panel), and this shape is invariant to the 
number of rewards encountered, to the extent that all value estimates 
depart from similar baselines and share similar learning parameters. 
As a result, multi-timescale agents can decode the time of reward (tR) 
even in situations in which learning is incomplete (task 3; Fig. 1e,f and 
Extended Data Fig. 1; see Methods).

Task 4: state-dependent discount factor
Single-timescale systems are either myopic or far-sighted, whereas 
multi-timescale systems can adjust between myopic and far-sighted 
perspectives, leading to more accurate value estimates in incomplete 
learning scenarios. Consider a slight modification of the task in Fig. 1c, 
in which, in addition to the large deterministic reward (R = 1), small sto-
chastic rewards sampled from a Gaussian distribution are perceived at 
every state (see Methods). If the agent experiences the trajectory many 
times, the noisy rewards average out, so they do not affect the learned 
value of the cue. In task 4, however, the agent experiences the trajectory 
only once, so the noisy rewards do affect the values learned with TD 
learning. Given the noisy values, the goal in this task was to report the 
true value of the cue that would arise after experiencing the trajectory 
an infinite number of times (this is, ignoring the noisy rewards). When tR 
is small, far-sighted estimates not only integrate R but also all the noisy 
rewards farther in the future, in contrast to myopic estimates, which 
assign greater weight to R. However, when tR is large, only far-sighted 
estimates can discern R from the noisy rewards. Thus, optimal accuracy 
is only achievable by multi-timescale agents that can estimate tR and 
then adjust accordingly between myopic and far-sighted perspectives. 
Although in this task the uncertainty on the value of the cue arises due to 
receiving small noisy rewards at every state, a similar bias also improves 
the accuracy of value estimates in more realistic learning scenarios, 
in which uncertainty arises due to incomplete exploration of the full 
state space, as we have also shown in more realistic branching mazes, 
navigation scenarios (Extended Data Fig. 2f–i) and in the Lunar Lander 
environment using a DQN setting in which additional timescales act 
as auxiliary tasks (Extended Data Fig. 2j–l; see ‘The myopic learning 
bias’ in Methods).

To summarize, in multi-timescale value systems, the vectorized learn-
ing signal robustly contains temporal information independently of 
reward magnitude and learning conditions. This property empowers 
agents to flexibly adapt their behaviour to novel temporal contingen-
cies and focus on either myopic or far-sighted estimates depending 
on the current situation.

Discounting across dopaminergic neurons
In the previous section, we demonstrated the computational advan-
tages of learning with multiple discount factors for an RL agent. Build-
ing on these findings, we next investigated whether the brain uses such 
multi-timescale RL. Towards this goal, we examined the activity of 
dopaminergic neurons, which are believed to encode the TD error 
term in RL algorithms.

To characterize the discounting properties of individual dopamin-
ergic neurons, mice (n = 8; see Extended Data Fig. 10e) were trained in 
a cued delay task27,39, in which on a given trial, one out of four distinct 
odour cues indicated its associated timing of a water reward (Fig. 2a). 
These odour cues were preceded by a trial start cue (green computer 
screen) by 1.25 s. The trial start cue reduced the timing uncertainty of 
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Fig. 2 | Dopaminergic neurons exhibit a diversity of discount factors that 
enables decoding of reward delays. a, Outline of the cued delay task structure. 
Image of a water droplet was created by googlefonts via SVG Repo under an 
Apache Licence. b, Anticipatory licking before reward delivery (mean across 
behaviour for all recorded neurons; the shaded error bar indicates 95% 
confidence interval using bootstrap). n = 8 mice. c, Average PSTH for the  
four trial types. The inset shows the firing rate in the 0.5 s following the cue 
predicting reward delay. The firing rate in the shaded grey box (0.1 s < t < 0.4 s) 
was used as the cue response in subsequent analysis. n = 50 dopaminergic 
neurons. d, Example cue response fits for two single neurons. e, Normalized cue 
responses across the population. For each neuron, the response was normalized 
to the highest response across the four possible delays. The inset shows the 
inferred discount factor for each neuron. f, Data are better fit by the exponential 
than the hyperbolic model (distance of mean R2 to the unit line; the shading 
indicates significance for single neurons across bootstraps: P < 0.05 (dark blue) 

and P > 0.05 (light blue)). g, Distribution of inferred discount factors across 
neurons (mean discount factor across bootstraps). The colour indicates the 
animal. h, Shape of the normalized population response as a function of reward 
delay. The thick lines denote smoothed fit, the dotted lines indicate theory and 
the dots denote individual neurons. i, Discount matrix. Neurons are sorted as in 
panel d. j, Outline of the decoding procedure. k, The subjective expected timing 
of future reward E r t( | ) can be decoded from the population responses to the cue 
predicting reward delay. Decoding based on mean cue responses for test data 
(top row; see Methods) is better than using a model with a single discount factor 
(the mean discount factor across the population; bottom row; thin lines (light 
shade) indicate predictions for individual bootstraps, thick lines (dark shade 
within light shading) indicate mean prediction across bootstraps, and single 
dark vertical lines indicate reward timing; see Methods; Extended Data Fig. 4e). 
l, Model in which the RPE of each dopaminergic neuron contributes to a distinct 
value function (see Methods; Extended Data Fig. 7f–k).
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the odour cue and ensured that the responses of dopaminergic neurons 
to the odour cues were mostly driven by a valuation signal rather than 
a saliency signal40. Mice showed anticipatory licking before reward 
delivery. The onset of the anticipatory licking was delayed for trials with 
cues predicting longer reward delays, indicating that the mice learned 
the delay contingencies (Fig. 2b). We recorded optogenetically identi-
fied single dopaminergic neurons in the ventral tegmental area (n = 78; 
see Methods). We focused our analysis on neurons (n = 50) that passed 
the selection criteria (including mean cue response firing rate above 2 
spikes per second, positive goodness of fit on test data; see Methods). 
As expected from RL theory and the prediction error framework, the 
average responses to the reward cue decreased as the predicted reward 
timing increased27,39 (Fig. 2c and Extended Data Fig. 3a,b). However, cue 
responses of individual neurons showed a great diversity of discounting 
across the reward delays, ranging from neurons responding strongly 
only to the cue indicating the shortest delay to neurons with a gradual 
decay of their response with cued reward delay (Fig. 2d,e).

To characterize the discount properties of individual neurons, we 
fit them individually using both an exponential discount model and a 
hyperbolic discount model. The exponential model provided a better 
fit to the responses of neurons than the hyperbolic model (P = 2.2 × 10−5, 
two-tailed Student’s t-test, comparing the distribution across neurons 
of the mean (across bootstraps) difference in R2 between the two fits; 
Fig. 2f and Extended Data Fig. 3c–e; see Methods) contrary to a previ-
ous observation39. Organism-level hyperbolic-like discounting can, 
therefore, arise from the diversity of exponential discounting in single 
neurons, as discussed above with artificial agents (Fig. 2d; see also  
refs. 12,19,33). This view is consistent with the wide distribution of 
inferred discount factors obtained across the population (0.56 ± 0.21 s−1, 
mean ± s.d.; Fig. 2g). Fits to simulated data suggest that our estimate of 
inferred parameters is robust and primarily constrained by the num-
ber of trials (Extended Data Fig. 3f–j; see Methods). Furthermore, we 
measured behavioural discounting using the anticipatory lick rate 
and show that it is not correlated to the discounting measured from 
single dopaminergic neurons (Extended Data Fig. 5a–f; see Methods).

As we have shown above, artificial agents equipped with diverse 
discount factors exhibit various advantages. One key aspect contribut-
ing to these advantages is their unique ability to independently extract 
reward timing information, which is lacking in single-timescale agents. 
We next asked whether dopaminergic neurons provide a popula-
tion code in which the structured heterogeneity across the population 
enables decoding of reward timing or the expected reward across  
time, E r t( | ). Mathematically, this transformation can be achieved  
by the inverse Laplace transform (or its discrete equivalent the z- 
transform)21,34,37 (Fig. 2j). In our dataset, the dopaminergic cue responses 
for each reward delay exhibited unique shapes as a function of discount 
factors, suggesting that reward timing information is embedded in the 
dopaminergic population responses (Fig. 2h; compare with Fig. 1b). 
The temporal horizon across the population, which underlies these 
cue responses, can be visualized through the discount matrix, which 
indicates for each neuron the relative value of a future reward depend-
ing on the inferred discount factor (Fig. 2i).

If the dopaminergic population code is consistent with the Laplace 
code explored above (Fig. 1) and each dopaminergic neuron contributes 
to a distinct value estimate (Fig. 2l and Extended Data Fig. 7f–k), reward 
timing should be recoverable from the cue responses of dopaminergic 
neurons with a regularized discrete inverse Laplace transform of the 
neural activity (which does not require training a decoder). In our task, 
we can use the TD-error-driven cue responses (instead of the value in 
equation (4)) as they are driven by the discounted future value, that  
is, δ γ V C= +t

t
t t

Δ
+Δcue cue

, as r V= = 0t t tcue cue−Δ
; see Methods). This implies 

that the right-hand side of equation (4) can be approximated by the 
population dopamine responses. We used a pseudo-inverse of the 
discount matrix (computed using half of all trials) based on regularized 
singular value decomposition to approximate the inverse Laplace 

transform (Fig. 2j and Extended Data Fig. 4a–d; see Methods and  
ref. 21) and applied it to the cue responses of a dopaminergic neuron 
(computed on the held-out half of the trials). The decoder was able to 
predict reward timing, closely matching the true reward delay (Fig. 2k, 
top row). This prediction was lost if we shuffled the neuron identities, 
indicating that it is not a generic property of the discount matrix 
(Extended Data Fig. 4f). We quantified this decoding by computing a 
distance metric (using 1-Wasserstein distance) between the true and 
predicted reward delay across conditions (compared with shuffle con-
trol: P = 1.2 × 10−4 for 0.6-s reward delay and P < 1.0 × 10−20 for the other 
delays, one-tailed Wilcoxon signed-rank test; Extended Data Fig. 4g; 
see Methods). Predictions from the model were more accurate  
than an alternative model with a single discount factor in which the 
response of each neuron is interpreted as a sample from the reward 
timing distribution (Pt = 0.6 s = 1, Pt = 1.5 s < 1.0 × 10−31, Pt = 3.75 s = 0.0135 and 
Pt = 9.375 s < 1.0 × 10−14, one-tailed Wilcoxon signed-rank test; Fig. 2k, bot-
tom row, and Extended Data Fig. 4e; see Methods). Consistent with  
the above observation that cue responses were fit better with expo-
nential over hyperbolic discounting models, the accuracy of reward 
timing decoding was typically higher when using the discount matrix 
from the exponential model than the discount matrix from the hyper-
bolic model (Pt = 0.6 s = 1, Pt = 1.5 s < 1.0 × 10−31, Pt = 3.75 s < 1.0 × 10−33 and 
Pt = 9.375 s < 1.0 × 10−3, one-tailed Wilcoxon signed-rank test; Extended 
Data Fig. 6a–e). Furthermore, the decoding performance was compa-
rable with simulated data with matched trial numbers, indicating that 
the remaining uncertainty in decoded reward timing is primarily driven 
by limited sample size in the data (for example, the number of neurons 
and the number of trials per condition; Extended Data Fig. 6f,g; see 
Methods). We performed the decoding analysis at the single-animal 
level for two of the animals for which we had a sufficient number of 
neurons and observed decoding of subjective reward timing (Extended 
Data Figs. 5g and 10e; Methods).

Together, these results establish that dopaminergic neurons com-
pute prediction errors with a heterogeneity of discount factors and 
show that the structure in this heterogeneity can be exploited by down-
stream circuits to decode reward timing.

Ramping heterogeneity and discounting
In the task above (Fig. 2), prediction errors in dopaminergic neurons 
were measured through discrete transitions in the value functions at 
the time of cue. In more naturalistic environments, value might change 
more smoothly, for example, when an animal approaches a goal41. In 
these tasks, ramps in dopaminergic signalling have been initially inter-
preted as quantifying value functions41,42, but have recently been shown 
to conform to the predictions of the TD learning model. Specifically, 
these ramps can be understood as moment-by-moment changes in 
values or as TD error along an increasingly convex value function in 
which the derivative is also increasing43–45. Here we show that some of 
the diversity in ramping activity across neurons can be understood as 
evidence for multi-timescale RL across dopaminergic neurons.

We analysed the activity of optogenetically identified dopaminergic 
neurons (n = 90 from n = 13 mice; Extended Data Fig. 10e; see Methods 
and ref. 44) while mice traversed along a linear track in virtual real-
ity. Although mice were free to locomote, their movements did not 
affect the dynamics of the scene (see Methods and ref. 44 for details). 
At trial onset, a linear track appeared, the scene moved at continuous 
speed, and reward was delivered 7.35 s after motion onset (Fig. 3a). The 
slope of ramping across neurons was on average positive (Fig. 3b), but 
single neurons exhibited a diversity of ramping activity (Fig. 3b, inset, 
and 3e,f) ranging from monotonic upwards and downwards ramps to 
non-monotonic ramps.

We hypothesized that this seemingly puzzling heterogeneity can be 
understood as a signature of multi-timescale RL. Considering that the 
value function is set by the limits on the precision of internal timing 
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mechanisms and the reduction in uncertainty due to visual feed-
back45,46, we first assumed that heterogeneous dopaminergic neurons 
contribute to learning a common model of the value of the states in 

the environment and therefore share a common value function (Fig. 3m; 
see Methods). Depending on the shape of this value function, governed 
by the statistics of the environment being learned, the TD error from 
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Fig. 3 | The diversity of discount factors across dopaminergic neurons 
explains qualitatively different ramping activity. a, Experimental setup. 
View of the virtual reality corridor at movement initiation (left). Schematics  
of the experimental setup (middle and right). The mouse image in the diagram 
of the experimental setup in the right panel was created by Gil Costa under a 
Creative Commons licence CC BY 4.0. b, Average activity of single dopaminergic 
neurons (n = 90) exhibits an upwards ramp in the last few seconds of the track 
before reward delivery. The error bars represent s.e.m. across neurons. The 
inset shows that the slope of the activity ramp (computed between the two black 
horizontal ticks in main panel) is positive on average but varies across neurons 
(for population, mean slope = 0.097; P = 0.0175. For single neurons, positive and 
P < 0.05: n = 53; negative and P < 0.05: n = 32; P > 0.05: n = 5, two-tailed Student’s 
t-test). Image of a water droplet in panels a,b was created by googlefonts via SVG 
Repo under an Apache Licence. c, Example single neurons showing diverse 
ramping activity in the final approach to reward, including monotonic upwards 

(dark red), non-monotonic (red) and monotonic downwards (light red) ramps. 
d, Individual neurons across the population exhibit a spectrum of diversity in 
their ramping activity. Neurons are sorted according to the inferred discount 
factor from the common value function model (panel k). e, Example model fits 
for the single neurons shown in panel c. f, The model captures the diversity of 
ramping activity across the population. Neurons are ordered by the inferred 
discount factor as in panel d. g,h, Diversity of ramping as a function of discount 
factor for an exponential value function. i,j, Diversity of ramping as a function  
of discount factor for a cubic value function. k, Inferred value function. The thin 
grey lines denote the inferred value function for each bootstrap. The thick blue 
line indicates the mean over bootstraps. l, Histogram of inferred discount 
factors. Mean ± s.d. of 0.42 ± 0.23. m, Model in which the value function used 
for the RPE computation is shared across dopaminergic neurons (see Methods 
and Extended Data Fig. 7f–k).
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neurons with different discount factors will exhibit different types of 
activity ramps. At a given time, the sign of the TD error will depend on 
the relative scale of the upcoming increase in value and the reduction 
of this future value due to discounting. Given an increase in value 1/γo 
(with γo < 1), a neuron with a discount factor smaller, equal or larger 
than γo will experience a negative, zero or positive TD error, respectively 
(Extended Data Fig. 7a; see Methods). For an exponential value function 
(Fig. 3g, left panel), in which the value increases by a fixed factor 

γ
1

o
 at 

every timestep, a neuron with discount factor γo will have no TD error 
during the entire visual scene (red line, Fig. 3g,h). A neuron with a higher 
(or lower) discount factor than γo will experience an upwards (or down-
wards) monotonic ramp in its activity (darker and lighter red line in 
Fig. 3g,h, respectively). However, if the value function is non-exponential 
(for example, cubic as a function of distance to reward (Fig. 3i, left 
panel) or hyperbolic as a function of distance to reward (Extended Data 
Fig. 7b, left panel)), there will not be a neuron whose discount factor is 
able to match the increases in value function at all timesteps. Neurons 
with high or low discount factors will still ramp upwards or downwards 
(darker and lighter red line in Fig. 3i,j and Extended Data Fig. 7b, respec-
tively), but neurons with intermediate discount factors will exhibit 
non-monotonic ramping (red line, Fig. 3i,j and Extended Data Fig. 7b) 
as observed in the neural data.

To fit this model to the dopaminergic neurons, we used a boot-
strapped constrained optimization procedure on a continuous for-
mulation of the TD error45,47 (δ t b α γ V t t γ γ V t( ) = + ( d ( )/d − ln( ) ( ))i i i i

t
i

t
i

d d ; 
see Methods) by fitting a non-parametric common value function and 
neuron-specific gains, baselines and discount factors. Although the 
gain and baseline activity scale the range of activity, only the interac-
tion between the value function and the discount factor affects the 
shape of the TD error across time (see Methods). The heterogeneity 
of ramping activity across single neurons is explained (Fig. 3e,f) by a 
common convex value function (Fig. 3k) and a diversity of discount 
factors across single neurons (Fig. 3l). We did not observe a significant 
correlation neither between inferred parameters and the mediolateral 
position of the implanted electrodes (Extended Data Fig. 7c–e; although 
we did not sample extensively lateral positions) nor with licking behav-
iour before reward delivery (a measure of behavioural discounting; 
Extended Data Fig. 8a–d; see Methods). Furthermore, the model fit 
was robust when applied at the single-animal level for the two animals 
with sufficient numbers of neurons (Extended Data Fig. 8e–j; see Meth-
ods). So far, we proposed a descriptive model with a common value 
function across neurons, suggesting that the prediction errors of sin-
gle neurons are pooled to estimate a single value function. Recent 
models for distributed prediction errors across dopaminergic neurons 
have instead used parallel loops in which individual neurons con-
tribute to estimating separate value functions20,21,23,48–50. We obtained 
similar results in such a model in which neurons estimate separate 
value functions and instead share a common expectation of reward 
timing (see Methods; Extended Data Fig. 9). We can reconcile these 
two models as being two edge cases of a model in which, across 
independent value estimators, there is a relative amount of mixing 
between independent estimates and a common value signal (see the 
section ‘Mixing in distributed RL models’ in Methods; Extended Data  
Fig. 7f–k).

Together, these results show that diversity in slow changes in activity 
across a single neuron (known as dopamine ramps) in environments 
with gradual changes in value can be explained by a diversity of discount 
factors and is a signature of multi-timescale RL.

Correlated discount factors across tasks
Distributional RL and other distributed RL formulations provide agents 
with greater flexibility as they allow agents to adapt risk sensitivity 
and discounting to the statistics of the environment17,19,21,23. However, 
they leave open the question of the biological implementation of this 

adaptivity. Specifically, the tuning of single dopaminergic neurons, 
controlled by the sensitivity to reward size or the discount factor, could 
be either a circuit property and therefore task and context specific or 
a cell-specific property, with the contribution of different neurons 
recruited according to task demands. However, measurements of 
tuning diversity at the single-neuron level are usually done in a single 
behavioural task20,51,52, leaving open the question of this implementa-
tion across contexts.

Here we characterized discount factors across two behavioural  
tasks, and a subset (n = 43) of the single neurons analysed above (Figs. 2 
and 3) was recorded on the same day in both behavioural tasks. Using 
this dataset, we found that the discount factors inferred independently 
across the two behavioural tasks are correlated (Fig. 4a,b). Furthermore, 
in the cued delay task, we were able to decode subjective reward tim-
ing from population cue responses using the discount matrix built 
from the discount factors inferred in the virtual reality task (Pt = 0.6 s = 1, 
Pt = 1.5 s < 1.1 × 10−20, Pt = 3.75 s < 3.8 × 10−20 and Pt = 9.375 s < 2.9 × 10−5, compared 
with shuffled data; Extended Data Fig. 10a–d; see Methods). These results 
suggest that the discount factor (or its ranking) is a cell-specific prop-
erty and strongly constrains the biological implementation of multi- 
timescale RL in the brain.

Discussion
In this work, we have analysed the unique computational benefits of 
multi-timescale RL agents and shown that we can explain multiple 
aspects of the activity of dopaminergic neurons through that lens.

The understanding of dopaminergic neurons as computing a 
reward prediction error from TD RL algorithms has transformed our 
understanding of their function. However, recent experimental work 
expanding the anatomical locations of recordings and the task designs 
has shown heterogeneity in dopamine responses that is not readily 
explained within the canonical TD framework42,53,54. However, a number 
of these seemingly anomalous findings can be reconciled and inte-
grated within extensions of the RL framework, further reinforcing the 
power and versatility of the TD theory in capturing the intricacies of 
brain learning mechanisms23,24,48,55,56. In this work, we have revealed an 
additional source of heterogeneity across dopaminergic neurons: they 
encode prediction errors across multiple timescales. Together, these 
results indicate that at least some of the heterogeneity observed in 
dopamine responses reflects variations in key parameters within the RL 
framework. Thus, these results indicate that the dopamine system uses 
‘parameterized vector prediction errors’, including a discrete Laplace 
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transform of the future temporal evolution of the reward function, 
allowing for the learning and representation of richer information than 
what can be achieved with scalar prediction errors in the traditional 
RL framework.

The constraint on the anatomical implementation of multi-timescale 
RL suggested by the alignment of discount factors between the two 
tasks could also inform algorithm design. Adapting the discount fac-
tor has been used to improve performance in several algorithms, with 
proposed methods ranging from meta-learning an optimal discount 
factor57, learning state-dependent discount factors58 or combining 
parallel exponentially discounting agents19,33,36. Our results provide 
evidence supporting the third model, but the recruitment mechanisms 
of the neurons to adapt the global discounting function with task or 
context and the link between anatomical location and discounting30 
and the contribution of other neuromodulators, such as serotonin59,60, 
to this adaptation remain open questions. Similarly, the contribution 
of this vectorized error signal on the downstream temporal representa-
tions26,28 remains to be explored.

Understanding how this recruitment occurs will be a key step 
towards a mechanistic understanding of the contribution of this 
timescale diversity to calibration and miscalibration in intertemporal 
choices. There has been a conundrum that RL theories use exponen-
tial discounting, whereas humans and animals often exhibit hyper-
bolic discounting. A previous study, which examined discounting in 
dopaminergic neurons, has argued that single dopaminergic neu-
rons exhibit hyperbolic discounting39. However, they used uncued 
reward responses for zero reward delay, probably biasing the esti-
mate towards hyperbolic (as responses to unpredicted rewards are 
typically large and potentially contaminated by salience signals). By 
contrast, our data are consistent with exponential discounting at the 
level of single neurons, suggesting that RL machinery defined by each 
dopaminergic neuron conforms to the rules of a simple RL algorithm. 
Hyperbolic-like discounting can occur when these diverse exponen-
tial discounting are combined at the organism level12,14,33. More gen-
erally, the relative contribution of multiple timescales to the global 
computation governs the discount function at the organism level 
and should be calibrated to the uncertainty in the hazard rate of the  
environment12.

Appropriately recruiting the heterogeneity of discount factors 
is therefore important to adapt to the temporal uncertainty of the 
environment. This view draws parallels with the distributional RL 
hypothesis that naturally fits with current work on anhedonia, as a 
miscalibration of optimism and pessimism can lead to biases in the 
learned value20. Miscalibration of the discounting spectrum can lead 
to excessive patience or impulsivity. A bias in this distribution due to 
genetical, developmental or transcriptional factors could bias the 
learning at the level of the organism towards short-term or long-term 
goals. Behaviourally such bias would manifest itself as an apparent 
impulsivity or lack of motivation, leading to a potential mechanistic 
interpretation of these maladaptive behaviours. Similarly, this view 
could guide the design of algorithms that recruit and leverage these 
adaptive temporal predictions.

Our study has established a new paradigm to understand the func-
tional role of prediction error computation in dopaminergic neurons, 
and opens new avenues to develop mechanistic explanations for defi-
cits in intertemporal choice in disease and inspire the design of new 
algorithms.
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Methods

Animal care and surgical procedures
The mouse behavioural and electrophysiological data presented here 
were collected as part of a previous study in which all experimental 
procedures are described in detail44. As described in this study, all 
procedures were performed in accordance with the US National Insti-
tutes of Health Guide for the Care and Use of Laboratory Animals and 
approved by the Harvard Animal Care and Use Committee.

We used a total of 13 adult C57BL6/J DAT-Cre male mice. Mice were 
backcrossed for over five generations with C57BL6/J mice, Animals were 
singly housed after surgery on a reverse 12-h dark–12-h light cycle (dark 
from 7:00 to 19:00). Single dopaminergic neurons were optogenetically 
identified using custom-built micro-drives with eight tetrodes and 
an optical fibre as described in our previous study44. Significance was 
assessed using the stimulus-associated spike latency test61.

All mice (n = 13) were used in the virtual reality task and 8 of those 
were also used in the cued delay task. The targeted mediolateral loca-
tion varied from 320 µm to 1,048 µm for neurons recorded in the vir-
tuality task and for neurons recorded in the cued delay task. Neurons 
recorded at mediolateral position of more than 900 µm were excluded 
from the analysis as they were considered to be in the substantia nigra 
pars compacta. For experimental reasons, experimenters were not 
blinded to the identity of the mice. Sample size was maximized given 
experimental constrains.

RL at multi-timescales
In standard RL, the value of a state s under a given policy π is defined 
as the expected sum of discounted future rewards:

∑V s E γ r |s( ) = , π (5)
t

t
t

=0

∞









The discount factor γ (whose value is between 0 and 1) is a fixed factor 
at each timestep devaluating future rewards. This exponentially func-
tional form for the temporal discount is not arbitrary. This temporal 
discount is naturally produced by the TD learning rule, a bootstrapping 
mechanism that updates the value estimates using the experienced 
transition from s to s′ with reward r:

V s V s α r γV s V s( ) ← ( ) + [ + ( ′) − ( )] (6)

where α is the learning rate. This update process converges to the values 
defined above under very general conditions62.

After convergence, the value V(s) can be rewritten by taking the sum 
and the discount factor outside of the expectation:

∑V s γ E r |s( ) = [ ] (7)γ
t

t
t

=0

∞

Where we have added a γ subscript to the value to indicate that the 
value is computed for that particular discount, and we have omitted 
the dependence of the expectation on π for simplicity. This last expres-
sion reveals a very useful property: Vγ(s), as a function of the discount 
γ ∈ (0,1), is the unilateral z-transform of E r s[ | ]t  as a function of future 
time t ∈ (0, ∞), of with real-valued parameter γ−1 (that is, the discrete- 
time equivalent of the Laplace transform63). As the z-transform is invert-
ible, in the limit of computing values with an infinite amount of γ, the 
agent can recover the expected rewards at all future times E r s{ [ | ]}t t =0

∞  
from the set of learned values V s{ ( )}γ γ∈(0,1):

Z V s E r |s{ ( )} = { [ ]} (8)γ γ t t
−1

∈(0,1) =0
∞

Thus, if the agent performs TD learning with an infinite amount of 
discounts, the converging points of the TD backups would encode not 

only the expected sum of discounted rewards, as in traditional RL, but 
also the expected reward at all future timesteps, although the latter lies 
in a different space, analogous to the frequency and temporal spaces 
of the Fourier transform.

Decoding tasks
The four tasks in Fig. 1e were designed with a similar structure. In the 
four tasks, the agent first performs N backups of tabular TD learn-
ing (equation (4) in the previous section) on the experimental states 
(Fig. 1c). Then, the learned values for the cue s are input into a policy gra-
dient network with one hidden layer of 32 units, and a ReLU non-lineary 
(Fig. 1d, step 2). The policy gradient network receives in its input the val-
ues learned by TD learning and reports in its output the corresponding 
estimate for each task. The policy gradient network was trained across 
2,000 episodes, after which we evaluated the accuracy of its report.

The precise structure of each episode depends on the task (see details 
below). In general, in each episode, the agent learned values from scratch 
using TD learning for a specific experimental condition (that is, a Markov 
decision process (MDP)), and the policy gradient network maximized 
its reporting performance across episodes. Thus, for each episode i, 
the policy (πθ) was a map from the learned multi-timescale values (Vγ

i) 
to actions (ai). The parameters (θ) of the policy gradient network were 
optimized to maximize reporting accuracy across episodes (the specific 
measure to report depends on the experimental condition). The param-
eters were learned by optimizing the traditional policy gradient loss, 
using an Adam optimizer with a learning rate of 0.001 to maximize the 
task-specific expected return J(πθ) of the policy πθ:















∑J E a V C∇ (π ) = ∇ logπ ( | ) (9)θ θ B
i

N

θ θ i γ
i

iπ
=1

θ

where B is a batch of n = 100 episodes and Ci is a RL binary signal indicat-
ing whether the report (ai; the output of the network) was correct or 
incorrect for episode i, given the learned multi-timescale values Vγ

i. To 
tackle the exploration–exploitation problem, we extended the policy 
using ε-greedy, with ε = 0.3 (performance is reported with ε = 0). We 
used a decoder trained with RL methods instead of supervised learning 
as it does not require an oracle that knows the correct responses, and 
is therefore a more realistic model of biological learning.

In task 1 (Fig. 1e,f and Extended Data Fig. 1a–c), in each episode, a dis-
crete reward time tR is sampled between 1 and 15 and a discrete reward 
magnitude R sampled between 1 and 10. This defines a MDP shown in 
Extended Data Fig. 1a. For this MDP, TD learning was used to learn the 
value of the first state of the MDP s, which we refer to as the ‘cue’. In all 
tasks, the value of the cue was learned using one, two or three discount 
factors (γ) from the set {0.6,0.9,0.99}, depending on the experimental 
condition. The results indicated as ‘three discounts’ corresponds to 
the discount factors [0.6,0.9,0.99]. As there is noise in the simulation 
(see below), the results indicated as ‘one discount’ corresponds to the 
top performer over three identical discount factors ([0.6,0.6,0.6], 
[0.9,0.9,0.9], [0.99,0.99,0.99]) and analogously for the results indicated 
as ‘two discounts’. After performing TD learning, the values were fed as 
input into the policy gradient network whose output was the guessed 
reward time (the network has 15 discrete actions, corresponding to 
reporting reward times from 1 to 15). Performance was evaluated as 
the fraction of correct responses across test episodes (1 for estimating 
the correct reward time, 0 otherwise). We have shown the performance 
of the policy gradient network as it is trained in Extended Data Fig. 1c. 
In Extended Data Fig. 1m–o, we have shown a similar experiment but 
using two reward times and reward magnitudes in the MDP. In this 
complex case, a more accurate decoding is obtained using five dis-
counts instead of three.

In task 2 (Fig. 1e,f and Extended Data Fig. 1d–f), the structure of each 
episode was as in task 1 but with a discrete reward time tR sampled 
between 1 and 8 and a discrete reward magnitude R sampled between 
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1 and 4. The learned values were input into a policy gradient network 
with 32 possible discrete outputs, representing the 32 possible hyper-
bolic values obtained in all the possible experiment (4 possible reward 
magnitudes × 8 possible reward times):

V s
R

t
( ) =

1 + 0.9
(10)

R

Performance was evaluated as the fraction of correct responses 
across episodes.

In task 3 (Fig. 1e,f and Extended Data Fig. 1g–i), we used the MDP 
shown in Extended Data Fig. 1g while keeping R fixed at 1 but varying 
tR and the number of times (N) that the full MDP had been experienced 
by the agents. As TD backups were performed online after every transi-
tion, N is proportional to the total number of TD backups. The (possibly 
incomplete) learned values at s from these N experiences were fed into 
the policy gradient network (Extended Data Fig. 1h), which was trained 
across episodes to optimize the reporting performance of tR.

We also evaluated learning in incomplete-information situations 
using the MDP shown in Extended Data Fig. 1p–r. In each episode, the 
length of the two branches was uniformly sampled from 5 to 15 (if they 
are the same, they were resampled until being different). Thus, in each 
episode, there is a shorter branch and a longer branch. Each branch 
was experienced a random number of times (N) sampled from a uni-
form distribution with the range of 1–99 (denoted by uniform(1,99)). 
Thus, the number of TD backups performed for the two branches 
could be highly asymmetric. The learned values (with one or multiple 
discounts) were fed as input into the policy gradient network with a 
binary output indicating which path was the shortest one; performance 
was evaluated as the fraction of correct responses (Extended Data 
Fig. 1o). Single-timescale agents can incorrectly believe that one branch 
is shorter than the other branch if it has been experienced more often, 
but multi-timescale agents can determine the distance to the reward 
independently of the asymmetric experience. In the next section, we 
present a theoretical proof showing that at any time during TD learn-
ing (that is, before learning converges), multi-timescale systems can 
perform the z-transform and decode the timing of non-zero rewards 
(in the absence of timing stochasticity). In addition to the theoretical 
proof, we present an intuitive explanation (supported by Extended 
Data Fig. 1s–w).

In task 4 (Fig. 1e,f and Extended Data Fig. 1j–l), we keep the reward R 
fixed at 1 and tR varies between 1 and 4. Crucially, small random rewards 
sampled from normal(0,0.25) were added to every state (fixed within 
episodes). If the agent experienced the trajectory an infinite number 
of times, the noisy rewards would be averaged out, so they would not 
affect the value estimates of the cue. We note these ‘true’ value esti-
mates as V s( )γ

true , to distinguish them from Vγ(s), which are the values 
learned with (incomplete) TD learning. In task 4, the agent experienced 
the trajectory only once (that is, a single backup of TD learning along 
the trajectory), so the small random rewards do affect the values Vγ(s) 
learned with TD learning. These noisy values are input into the policy 
gradient network, the goal of which is to report the true value of the 
cue V s( )γ=0.9

true , with a discount of 0.9, that would arise after experiencing 
the trajectory of an infinite number of times (this is, ignoring the noisy 
rewards). Although in task 4 we have illustrated the advantage of the 
myopic learning bias in a task in which the uncertainty on the value 
estimates arises due to stochastic rewards received at every state, the 
myopic bias is beneficial independently of the origin of the uncertainty. 
For example, in more realistic state spaces, uncertainty usually arises 
due to incomplete exploration of the state space. In Extended Data 
Fig. 2a, we illustrate that myopic estimates are generally more accurate 
when the near future is more certain than the far future, and far-sighted 
estimates are more accurate when the far future is more certain than 
the near future. We have shown the benefits of the myopic learning 
bias in more-realistic scenarios in which uncertainty arises due to noise 

in a branching task, as well as due to incomplete exploration of the 
state space in a grid-world, and in a deep RL environment (see Methods 
below; Extended Data Fig. 2).

In tasks 1–4, the TD-learning process was corrupted by noise. In each 
episode, the learning rate was sampled from a normal distribution 
with mean of 0.1 and variance of 0.001 (denoted by N(0.1, 0.001)), the 
number of TD backups was sampled from uniform(59,99) (except in 
the tasks with incomplete learning: tasks 3 and 4). This variability was 
included to make sure that the decoder learns robust decoding strate-
gies instead of just memorizing the exact values of each experimen-
tal condition. For example, in task 1, with one discount, the value of a 
temporally close small reward was similar to the value of a temporally 
far high reward, so reward time cannot be disentangled from reward 
magnitude. However, although these two values were similar, they 
were not identical, so a decoder with enough precision could learn to 
memorize them to report reward time. Introducing a small amount of 
random noise in the learning process assures robustness in the evalu-
ation of the reporting performance.

Finally, note that we used a non-linear decoder for the policy gradient 
network instead of a linear one. As we showed in the previous section, 
in principle, reward time can be decoded from value estimates with the 
L−1 linear decoder. We used a non-linear decoder for two reasons. First, 
optimal performance in tasks 2 and 4 requires non-linear operations 
over the learned values. Task 2 requires computing the hyperbolic 
value, and task 4 requires biasing towards myopic or far-sighted esti-
mates based on the estimated reward time. Second, even in tasks in 
which the goal is only to report reward time (for example, tasks 1 and 3),  
the linear decoder L−1 is only guaranteed to work well in optimal learn-
ing conditions (unnoisy value estimates with an infinite number of 
discounts). In incomplete learning conditions, the L−1 decoder has been 
shown to be very sensible to noise21, which leads to poor performance 
in the tasks studied here. In general, our goal in these simulations was 
to illustrate the power of the multi-timescale representations over the 
single-timescale representations, as recoverable by a simple non-linear 
decoder.

Recovering temporal information before TD learning converges
In Extended Data Fig. 1s–w, we illustrate intuitively why the tem-
poral information is available before TD learning converges for 
multi-timescale agents (experiment in Fig. 1e). Consider the two 
experiments in Extended Data Fig. 1s, one with a short wait between 
the cue and reward (pink) and one with a longer wait (cyan). For a 
single-timescale agent (Extended Data Fig. 1t), the value of the cue 
depends not only on the experiment length but also on the number 
of times that each experiment has been experienced (N, the number 
of TD backups). Thus, for a given set of learning parameters (learn-
ing rate, discount factor, timestep length and reward magnitude), 
the single-timescale agent can incorrectly believe that the cyan cue 
indicates the shorter trajectory, if it has been experienced more often 
(left part of the plot). However, as we show theoretically in this sec-
tion, as temporal information is encoded across discount factors 
for a multi-timescale agent, multi-timescale agents can determine 
reward timing independently of N. In Extended Data Fig. 1u, the patterns  
of three dots highlighted with rectangles are indicative of the reward 
time and are only affected by the learning parameters by a multiplica-
tive factor. Indeed, when we plot the multi-timescale values as a func-
tion of the number of times that the experiments are experienced (N; 
Extended Data Fig. 1v–w), we saw that the pattern across discounts is 
maintained, enabling a downstream system to robustly decode reward  
timing.

The following is a theoretical proof of this advantage. Consider a 
multi-timescale agent performing TD learning on the trajectory 

⋯s s→ → T  in which there is no variability in outcome timing (that is, 
non-zero outcomes always happen at the same states, but their mag-
nitude can be stochastic) and all rewards are positive. Under these 



assumptions, the agent is able to decode reward timing if it has access 
to δ{ }r τ

T
( ,0) =0τ

, the future times at which outcomes rτ are non-zero given 
the current state, where δ r( ,0)τ

 is a Kronecker delta function that is 
equal to 1 if rτ is zero and equal to 0 otherwise. At any time during TD 
learning, the value estimate for s computed with TD learning can be 
written with the following general expression (note the absence of the 
expectation):

∑V s γ f α N R δ( ) = ( , , )(1 − ) (11)γ
τ

T
τ

τ τ r
=0

0: ( ,0)τ

where f α N R( , , )τ τ0:  is a non-zero scalar that depends on τ, on the learn-
ing rate α, on the number of times the trajectory has been experienced 
N and on the history of outcome magnitudes experienced in the past 
R0:τ. This decoupling shares similarity with the successor representa-
tion37,64,65. Crucially, f α N R( , , )τ τ0:  does not depend on γ, so, at all times 
during learning, it holds that:

Z V s f α N R δ{ ( )} = { ( , , )(1 − )} (12)γ γ τ τ r τ
T−1

∈(0,1) 0: ( ,0) =0τ

As f α N R( , , )τ τ0:  is non-zero for all τ and δ{1 − }r τ
T

( ,0) =0τ
 is only non-zero 

at τ in which a reward happens, the non-zero values of the right-hand 
side expression indicates the future reward timings. In other words, 
applying the inverse transform at any time during learning to the 
multi-timescale estimate V s{ ( )}γ γ∈(0,1)  gives an expression whose 
non-zero values are the future outcome timings. In summary, in the 
absence of timing stochasticity, the multi-timescale agent can recover 
future outcome timing before TD converges, a capability that is not 
present in single-timescale agents.

The myopic learning bias
For the value estimate of a state s to converge to the expression shown 
in equation (1), learning needs to be ‘complete’, which requires that  
(1) all possible paths from s are explored; and (2) if there are stochastic 
rewards or transitions, all possible paths are explored a sufficiently 
large number of times such that the stochasticity is averaged out. 
Although these two conditions are usually true in artificial laboratory 
experiments, they are rarely true in natural environments. When these 
two conditions are not met, value estimates must be computed on 
the basis of incomplete, uncertain information. The myopic learning 
bias states that, when learning from incomplete and uncertain infor-
mation, the accuracy of myopic versus far-sighted value estimates 
depends on the uncertainty structure of the future. Myopic estimates 
are more accurate if the near future is more certain than the far future, 
and far-sighted estimates are more accurate if the far future is more 
certain than the near future.

We illustrate the key idea of the myopic learning bias in Extended 
Data Fig. 2a,b. In Extended Data Fig. 2a, we show two states: s and s′. 
In both cases, the animal must decide whether to take the upwards or 
downwards branch. The key difference between s and s′ is that, in s, 
the near future after the decision is more certain than the far future; 
however, in s′, the far future after the decision is more certain than the 
near future. These states represent frequent situations encountered 
in natural environments. For example, the two paths that leave from 
state s represent paths in which the far-away consequences are known 
with certainty, but there are multiple possible paths (with different and 
unexplored outcomes) that eventually lead to the more certain states. 
Conversely, state s′ represents a common exploratory situation, in 
which the branching-tree structure of the MDP causes the number of 
possible outcomes to increase exponentially with the distance from s′. 
In incomplete learning scenarios, the structure of future uncertainty 
from s and s′ is opposite. If the agent has not experienced all possi-
ble trajectories from s and s′, in state s, the near future will be more 
uncertain than the far future, and in state s′, the far future will be more 
uncertain than the near future.

Consider, for example, what happens if the agent has experienced 
the upwards and downwards trajectories (from s and s′) only once, as 
we show in Extended Data Fig. 2b. In this case, there are four possible 
scenarios depending on which specific trajectories the agent visits. As 
some of the possible paths are left unexplored, the agent must learn 
from incomplete information, and its value estimates can differ from 
the those of an agent that has experienced all the paths. A perfect 
agent that has experienced all trajectories will choose the upwards 
trajectory from s and s′, and therefore the upwards trajectory is the 
‘correct’ decision to make at s and s′. In Extended Data Fig. 2b, we show 
that, when learning from incomplete information, the probability 
of making the correct decision by following myopic estimates (low 
γ) versus far-sighted estimates (high γ) depends on the uncertainty 
structure of the future. In s, in which the far future is more certain 
than the near future, it is beneficial to follow far-sighted estimates. 
In s′, in which the near future is more certain than the far future, it is 
beneficial to follow myopic estimates. In summary, in s, the myopic 
value estimates only integrate the certain near future, without being 
contaminated by the uncertain far future, leading to more accurate 
value estimation. By contrast, in s′, the myopic estimates only see 
the noisy near future, without being able to improve on this noise by 
the certain information that happens in the far future, leading to less 
accurate value estimation.

The myopic learning bias is independent of the source of the uncer-
tainty. In Extended Data Fig. 2a,b, the uncertainty comes due to incom-
plete state exploration (and also in the grid-world shown in Extended 
Data Fig. 2f–i; see Methods below). Conversely, in task 4 in Fig. 1 and 
in the MDP shown in Extended Data Fig. 2c–e, the uncertainty comes 
due to stochasticity in the rewards. Multi-timescale agents that have 
myopic and far-sighted estimates at every state can, in principle, 
leverage this representation advantage to improve performance in 
specific tasks. For example, in task 4 and Extended Data Fig. 2c–e, the 
multi-timescale agent can determine the temporal distance to large 
deterministic rewards (tR), and adapt accordingly between myopic or 
far-sighted perspectives, leading to superior performance.

Note that, in general, exploiting the myopic learning bias requires 
two components: (1) having available myopic and far-sighted value 
estimates and every state, and (2) knowing if the near future is more 
certain or uncertain than the far future at every state. The second com-
ponent can be sometimes inferred by the multi-timescale values (such 
as in task 4), but this is not necessarily the case in general. For example, 
in Extended Data Fig. 2a,b, the second component might require the 
agent to rely on separate uncertainty estimates, such as counting the 
fraction of paths left unexplored at different moments along the paths. 
Another useful proxy to estimate the uncertainty structure of the future 
is the estimated distance to important environmental events (such as 
the distance to the landing zone in the Lunar Lander environment or 
to the rewarded zone in the grid world, see below). In summary, only 
multi-timescale learning systems satisfy component 1, which provides 
a representational advantage that is absent in single-timescale systems. 
This representational advantage can be exploited if the uncertainty 
structure of the future is known. In some scenarios, the uncertainty 
structure of the future can be inferred by looking at the multi-timescale 
value array, but it could require separate uncertainty estimates in other 
scenarios.

Myopic learning bias: branching task. In Extended Data Fig. 2c, we 
present a simple MDP to highlight the advantages of the myopic learn-
ing bias. In this maze, each state is associated with a random reward 
drawn from [–0.5,0.5], except for two states (s and s′; orange circles), 
which result in a deterministic reward of 1. The optimal strategy in 
this scenario is to move upwards at both states s and s′, which is the 
policy that an optimal agent would implement after experiencing the 
trajectories a sufficiently large number of times, after randomness is 
averaged out.
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However, in our simulation, the agent only learns from three trajec-

tories: (1) a trajectory that moves down at s, (2) another that moves up 
at s and up at state s′, and (3) a trajectory that moves up at s and down 
at s′. As rewards are stochastic, the information that the agent gets on 
each episode is incomplete. When learning from a limited number of 
experiences, the smaller stochastic rewards can overpower the larger 
deterministic rewards, making it challenging to achieve optimal perfor-
mance. At state s, only far-sighted agents can discern the significance 
of the large deterministic rewards, thereby causing myopic agents to 
perform near chance at s (Extended Data Fig. 2d, red). At state s′, the 
situation is reversed. Far-sighted agents not only integrate the close-by 
large reward but also all the stochastic rewards farther in the future. 
Myopic agents, in contrast, assign greater weight to the deterministic 
reward than to the future stochastic rewards, thus enabling optimal 
performance at s′ (Extended Data Fig. 2d, blue). Therefore, only agents 
that could dynamically adapt between being far-sighted at s and myopic 
at s′ can attain optimal performance when learning from limited experi-
ences (Extended Data Fig. 2e).

To evaluate how well the agent acts given limited information, we 
averaged performance over the following procedure: (1) sampled 
rewards along the three trajectories mentioned before, (2) learned 
the Q-values (until convergence) for s and s′ using the rewards from 
the sampled trajectories, and (3) chose the actions that maximize the 
Q-values. In Extended Data Fig. 2d, we evaluated performance as the 
fraction of episodes in which the Q-value of the branch with the deter-
ministic reward was higher than the Q-value of the branch without the 
deterministic rewards. Performance was measured as the proportion 
of correct decisions across 10,000 iterations of this procedure.

To evaluate the multi-timescale agent of Fig. 1d on this task (Extended 
Data Fig. 2e), we followed a similar procedure. In each episode, we ran-
domized the identity of the top and bottom branches after the bifurca-
tion, which defines an episode-specific MDP. For each episode-specific 
MDP, the agent performed Q-learning until near convergence using the 
three trajectories mentioned in the previous paragraph. The Q-values 
at the current state (s or s′) were fed into the policy learning architec-
ture of Fig. 1d, which outputs the decision to move up or down in the 
episode-specific MDP. The policy-learning network was trained across 
episodes to produce actions that maximize overall task performance. 
For the single-discount agent, we have reported the maximum perfor-
mance over the agents with discounts [0.6,0.6] and [0.99,0.99], which 
achieved a performance of 77 ± 2% and 83 ± 1%, respectively. For the 
multi-discount agent, we use the discounts [0.6,0.99], which achieved a 
performance of 94 ± 1%. The error bars correspond to the s.e.m. across 
500 episodes in a validation set.

Myopic learning bias: grid world. Previous theoretical work showed 
that a myopic discount in RL can serve as a regularizer when approxi-
mating the value function from a limited number of trajectories66.  
In Extended Data Fig. 2f–i, we highlight the fact that the benefit of the 
myopic discount is contingent on the distance between the current 
state and significant environmental events. Consider the simple naviga-
tion scenario depicted in Extended Data Fig. 2f. The motion of the agent 
is random and isotropic, garnering a minor random reward from a nor-
mal distribution with mean 0 and s.d. 0.01 in each step and three more 
substantial rewards upon reaching the areas denoted by fire (r = –4) and 
water (r = 2) symbols. We evaluated how well the agent could determine 
the true value function (under a discount factor γ = 0.99) under the 
aforementioned stochastic policy. Crucially, the agent performed this 
task after experiencing only a limited number of trajectories. The grey 
arrows show an example trajectory, with the actual and estimated values 
for these trajectories shown in Extended Data Fig. 2g.

Consider the trajectory shown in Extended Data Fig. 2g. For this 
trajectory, the myopic estimate (using a discount factor γ = 0.6; green) 
clearly provides a better estimate of the true value function (grey) than 
using the discount factor γ = 0.99 (brown), which is the discount under 

which we computed the true value function. We quantified that the 
myopic estimate is a better approximation of the true value function by 
evaluating the agreement between pairs of states along the estimated 
and true curves. We evaluated accuracy using the Kendall rank correla-
tion coefficient between the true value function in the entire maze and 
the value estimates. The Kendall coefficient measures the fraction of 
concordant pairs between the two value functions (across all pairs of 
states in the maze). For every pair of states, it computes whether the 
two value functions agree on which element of the pair is the larger one. 
Note that this measure of accuracy is behaviourally more relevant than 
alternative accuracy measures that compare the absolute magnitude of 
values across states. In other words, for an agent navigating the maze, 
it is more important to be accurate on the relative values of alternative 
goal states than on their absolute values.

In Extended Data Fig. 2h,i, the agent learned from N randomly sam-
pled trajectories starting either in the lower half (blue) or upper half 
(red) of the maze. The values for the states in the N sampled trajectories 
were learned until convergence using the rewards and transitions in 
the sampled trajectories. After convergence, we computed the Kendall 
rank correlation between the estimates and the true value function, 
and reported performance as the average correlation across 10,000 
sets of N sampled trajectories. Extended Data Fig. 2h shows that when 
learning from two randomly sampled trajectories, the estimates of 
the value function using a myopic discount factor are more accurate 
than far-sighted discounts when the trajectories start in the lower half 
of the maze (blue curve in Extended Data Fig. 2h). This result agrees 
with the intuition built in Extended Data Fig. 2g when learning from a 
single trajectory. However, if the agent is distant from important events 
(that is, trajectories starting in the upper half of the maze, red curve), 
the myopic estimates approach the noise level, whereas estimates 
with larger discount factors are more accurate. With the accumula-
tion of more data from the environment, that is, more trajectories, the 
far-sighted estimate progressively aligns with the true value computed 
with γ = 0.99 in the entire maze (Extended Data Fig. 2i).

Myopic learning bias: networks with discount factors as auxiliary 
tasks. An alternative way to leverage multi-timescale learning benefits, 
in contrast to the architecture presented in Fig. 1d, is to use them as 
auxiliary tasks (Extended Data Fig. 2j). In this framework, the deep net-
work acts according to the Q-value computed with a single behavioural 
timescale, but concurrently learns about multiple other timescales as 
auxiliary tasks to enhance the representation in the hidden layers, which 
allows them to obtain superior performance in complex RL environ-
ments19,38,67,68. This approach is similar to distributional RL networks that 
learn the quantiles of the value distribution but act according to the 
expectation of that distribution17. Of note, we showed that the auxiliary 
learning timescales display the myopic learning bias highlighted so far. 
In the Lunar Lander task (Extended Data Fig. 2j, left) in which the agent 
must land a spacecraft, Q-values computed using a myopic discount 
provide a more accurate representation of the future when the agent 
is close to the landing site (blue in Extended Data Fig. 2k), whereas 
the opposite holds when the agent is far from the landing site (red in 
Extended Data Fig. 2k), as shown in Extended Data Fig. 2l.

In the Lunar Lander environment, the state space consists of eight 
elements, including the position and velocity of the lander, its angular 
position and angular velocity, as well as an additional input related to 
the contact with the ground. The action space is composed of four 
actions: doing nothing and activating one of three different engines. 
The agent is a DQN3 with two hidden layers of 512 units each, separated 
by ReLU activation functions. In addition to the Q-values that control 
the agent, the network has Q-values for 25 additional discounts factors 
equally spaced between 0.6 and 0.99. Thus, if there are |a| actions in the 
environment, for each discount the network has |a| additional output 
units. All sets of |a| units (one for each discount) use the Huber (that 
is, smooth L1, β = 1) Q-learning loss function with its corresponding 



discount. All the auxiliary Q-learning losses update the action that 
was actually chosen in the environment by the behavioural Q-value 
units, and thus all of them learn the consequences of the behavioural 
policy, but using different discount factors. The total loss function uset 
to train the network averages the Q-learning losses of all the discount 
factors. To train the DQN, we used a learning buffer of 20,000 samples, 
a learning rate of 10−3 and a batch size of 32. As in traditional DQNs, we 
used a target network to compute the TD target, which is updated every 
1,000 samples with the weights from the policy network to stabilize the 
learning process. For exploration, the agent uses a linearly decreasing 
ε-greedy policy that goes from ε = 1.0 at the first sample to a minimum 
value of ε = 0.01 after 40,000 samples.

Our goal was to compute the degree to which Q-values computed 
with alternative discounts can capture the true Q-value of the behav-
ioural policy. The multi-timescale DQN uses a behavioural discount 
γbeh = 0.99, and its policy is produced by choosing actions that maxi-
mize the Q-values with that discount factor. As in the navigation sce-
nario presented in the previous section, our hypothesis was that, when 
important events lie in the proximal future (here, close to the landing 
site), the Q-values learned using myopic discounts capture the true 
behavioural Q-value more accurately, whereas far-sighted discounts 
are more accurate when important events lie in the distant future (far 
from the landing site).

Under the policy of the DQN (πDQN), the true value of state s is:
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If the DQN has perfectly learned the Q-value of state s, then the esti-
mate Q s a( , )γ beh  of the DQN should be equal to V s( )γ

true
beh

, where abeh is  
the action produced by the DQN at s. For the analysis, we computed 
the true value of state s by simulating the policy a large number of times. 
We evaluated accuracy as the degree to which the estimated Q s a( , )γ beh  
captures the true V s( )γ

true
beh

, and compared accuracy across the auxiliary 
discount factors.

After training the network for 50,000 samples (and achieving 
close-to-optimal performance), we computed V s( )γ

true
beh

 empirically 
across states by recording the actual discounted sum of rewards 
obtained by the agent when departing from state s. We calculated 
V s( )γ

true
beh

 empirically for 25,000 states. Then, we compared, across states, 
the empirically calculated V s( )γ

true
beh

 with the Q-values produced by the 
DQN at those states.

To measure accuracy, we used the Kendall rank correlation as in the 
previous section. The Kendall correlation measures the fraction of con-
cordant pairs between Vγ

true
beh

 and the estimated Qγ, across sampled pairs 
of states. As in the navigation scenario presented in the previous section, 
for an agent deciding which state to navigate to, it is more important 
to be accurate on the relative values between pairs of states than on the 
absolute value of individual states. Therefore, the Kendall correlation 
is behaviourally more relevant than other accuracy metrics that com-
pare the absolute magnitude (for example, V s Q s a( ( ) − ( , ))γ γbeh

true
beh

2).
Given that the environment and the training process are stochastic, 

we reported the accuracy by averaging over 10 randomly initialized 
networks.

Cued delay task
All the data in the experiments with mice were collected in the previous 
study44. The experimental details, including the surgical procedures, 
behavioural setup and the behavioural tasks, have been described 
there44. Here we focus on the task description as our analysis includes 
task conditions that were not analysed in the previous study.

Mice were head-fixed on a wheel in front of three computer moni-
tors and an odour port. At trial onset, the screens flashed green to 
indicate the beginning of the trial. After t = 1.25 s, an odour cue was 

delivered. This reward delay cue was one of four possible odours, and 
each cue was associated with a unique reward delay chosen from 0.6, 
1.5, 3.75 or 9.375 s. The association between odour and reward delay 
was randomized across mice. The inter-trial interval was adjusted 
depending on the reward delays such that the trial start cues were 
spaced by 17–20 s. Mice performed 81.4 ± 12.5 trials (mean ± s.d.) 
per session across the 36 sessions in which neurons were recorded in  
the task.

Approach-to-target virtual reality task
We refer the reader to the previous study for details on the experimental 
procedures44. Mice were also trained in additional conditions, which 
we did not analyse in the present study, including teleport and speed 
modulation in the virtual reality scene.

Here we analysed single-neuron recordings in the sessions with no 
teleport or speed manipulation and in the open-loop condition. Mice 
were free to locomote but their motion did not affect the dynamics of 
the visual scene. After scene motion onset, the visual scene progressed 
at constant speed until reward was delivered after 7.35 s.

Mice performed 58.8 ± 21.7 trials (mean ± s.d.) per session across the 
60 sessions in which neurons were recorded in the task. Spiking activity 
was convolved with a box filter of length 10 ms. When plotting neural 
activity, we further convolved the responses by a causal exponential 
filter (e−0.05dt). Spiking-rate traces across neurons were normalized using 
a modified z-score. The mean was taken as the average firing activity 
cross the first 1.5 s and the standard deviation across the entire 4.35 s.

Fitting neural activity in the cued delay task
For the cued delay task, we fit the responses of single neurons to the 
delay cue (calculated as the firing rate in the time interval 0.1 s < t < 0.4 s 
after the cue onset; see shaded area in Fig. 2c) using two discounting 
models as in ref. 63, the classic exponential model and a hyperbolic 
model. For the exponential model, we fit the responses to a cue pre-
dicting a reward in τ seconds by:

FR b αγ b αe= + = + (14)τ λτ
exp

−

The discount factor γ can also be expressed as a discount rate λ and 
vice versa: λ γ= −ln  or γ e= λ− . The discount factors fitted to data are 
always expressed in units of seconds, that is, the discount factor is the 
devaluation 1 s into the future.

For the hyperbolic model, we used a standard model for hyperbolic 
discounting in which the parameter k controls discounting:

FR b α
kτ

= +
1

1 +
(15)hyp

We fit both models by minimizing the mean squared error (the fit 
function in MATLAB). For both models, we constrained the baseline 
and gain parameters such that 0 < b < 40 and 0 < α < 40. For the expo-
nential model, the discount rate was constrained such that 

λ0.0001 < < 20, and for the hyperbolic model, the discount parameter 
was constrained such that 0 < k < 20. Note that all the parameters were 
fitted independently for each single neuron.

To characterize the robustness and significance of our estimated 
parameters, we used a bootstrap procedure. For each run, we split the 
trials in half and fit the models independently on each half. We com-
puted for each split the explained variance using the other half of the 
data (Extended Data Fig. 3c,d) and correlated the inferred parameter 
values for each neuron across both splits (Extended Data Fig. 3f–h).

We restricted our subsequent analysis to neurons that had a positive 
explained variance on the test set (n = 17 neurons excluded), an average 
firing rate in the cue period over the 4 delays above 2 spikes per sec-
ond (n = 11 neurons excluded) and with mediolateral distance above 
900 µm (n = 4 neurons excluded). Non-selected neurons are shown 
in Extended Data Fig. 3b. Poorly fit neurons often were non-canonical 
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dopaminergic neurons that also did not exhibit a strong reward  
response.

Decoding expected reward timing from population responses
The vectorized prediction error allows us to directly decode the 
expected timing of reward given the cue responses21. The value at 
time t is given by:
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In the cued delay task, at the time of the cue indicating reward  
delay, the response of dopaminergic neurons is driven by the dis-
counted future reward. The reward prediction error δ r γ V V= + −t t

t
t t

Δ
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becomes simply δ γ V cst= +t
t

t
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+1  as there is no reward delivered at  
the time of the cue (r = 0t cue

) and the reward expectation before the 
reward cue delivery is identical across conditions (V C=t cue

; where C  
is a constant). Thus, the TD error at the time of reward delay cue 
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, and if we 

assume the constant is 0 or the TD error is baseline subtracted, at con-
vergence the prediction error is given by:
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In single-timescale RL, the temporal information is collapsed, and 
it is not possible for the system receiving the learning signal (the stria-
tum in this case) to untangle the signal. However, in a distributed system 
learning at multiple timescales, the reward expectation E r t( | ) is encoded 
with multiple discount factors γi:
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The temporal information about reward timing is now distributed 
across neurons, and if the tuning of individual neurons is sufficiently 
diverse, we can write:
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Where −1L  is the approximate pseudo-inverse of L such that I≈−1L L . 
In practice, the matrix L is not very well conditioned as the rows of  
the matrix are exponentially decaying functions, so the right side  
(further in the future) is sparsely populated (Fig. 2i and Extended Data 
Fig. 4a–d). We therefore need to use a regularized pseudo-inverse.

To invert the discount matrix L, we used the regularized singular 
value decomposition (SVD) approach similar to the one proposed in 
ref. 21. We then normalized the resulting prediction to constrain it to 
be a probability distribution (p r t( | ) > 0, for all t and p r t∑ ( | ) = 1)t . More 
specifically, the regularized SVD approach corresponds to optimizing:

|| p r t || α E r t( | ) − Δ + || ( | )|| (20)d
2 2 2L

The standard SVD of the discount matrix can be written as:
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1 . The smooth regularization introduced by the 
Tikhonov regularization through the parameter α (which we can choose 
by inspection of the distribution of singular values σs, see below) is 
more robust than a strict truncated SVD in which we only take a number 
of factors and set the remaining factors to zero. An alternative approx-
imation to this inverse problem is Post’s approximation34,37. It relies on 
evaluating higher-order derivatives and lacks robustness if the Laplace 
space is not sampled with enough precision (that is, not enough neurons 
tiling the γ space).

The procedure in the previous section allows us to estimate the dis-
count factor independently for each neuron. We then choose a discre-
tization step Δt = 100 ms and a temporal horizon T = 12 s over which to 
make the prediction. This allowed us to construct the discount matrix 
L shown in Fig. 2i for the exponential model and Extended Data Fig. 6c 
for the hyperbolic model. To choose a suitable value for the regulari-
zation parameter α, we performed the regular SVD on the discount 
matrix L and assessed the values at which the singular values become 
negligible. We chose a value of α that corresponded to the transition 
between large singular values and negligible values (Extended Data 
Fig. 4b). Using this approach, we used α = 2 in our decoding analysis.

For each delay, we constructed a pseudo-population response Δd 
across the recorded neurons. For each bootstrap, we took the mean 
activity for each cue, subtracted the inferred baseline parameter b and 
normalized the maximum response to 1. To assess the robustness of 
the predictions, we used the mean responses and baseline from half 
the trials to construct Δd, used the estimated discount factors from the 
other half of the trials to estimate L−1 and we repeated this approach for 
each bootstrap (npredictions = 200). In the figures (Fig. 2k and Extended 
Data Figs. 5g, 6d,f and 10c), the thin lines correspond to the predictions 
from individual bootstraps and the thicker line to the average of these 
predictions. For shuffle control, we randomized the identity of the 
neurons in the pseudo-population response Δd. This means that in the 
shuffle control, a given neuron is not decoded with its corresponding 
weights but by a random row of the decoding matrix L−1.

To ensure that the prediction corresponded to a probability distribu-
tion, we normalized the resulting prediction of reward timing. We first 
set the probability of obtaining a reward to zero for all times in which 
the prediction was negative, then we normalized the distribution to 
be a valid probability distribution (such that the probability mass over 
t ∈ [0,12] summed to 1).

For the time decoding using a single average discount factor, we 
used a different approach. The inversion procedure would not work 
as the discount matrix would be of rank 1. Instead, if we assume a fixed 
known reward size and a single discount factor, the response of indi-
vidual neurons would correspond to different estimates of the reward 
timing. For each bootstrap, we estimated the expected reward timing 
for each neuron. For a given firing rate FR for the held-out data, we 
estimated the reward timing using the parameter estimates from the 
trained data. The baseline bi and gain αi parameters are specific to each 
neuron, whereas the discount factor γ is the average discount factor 
across all the neurons. The expected reward timing for neuron i is given 
by the following equation:
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Together, the neurons provide a distribution of expected reward tim-
ing with each neuron predicting a sample of the distribution of expected 
reward times. The average distribution is obtained by averaging the 
distributions across all the bootstraps, excluding predicted reward 
times beyond 12 s and normalizing the distribution to be a probability 



distribution. Similarly to the SVD-based decoding, in Extended Data 
Fig. 4f, the thin lines correspond to the predictions from individual 
bootstraps and the thicker line to the average of these predictions.

Quantifying reward timing decoding accuracy
To quantify the reward timing decoding accuracy, we used the 
1-Wasserstein distance (or earth mover’s distance) between distribu-
tions as our metric. We used the 1-Wasserstein distance as the differ-
ence in support between the predicted reward timing distribution 
(probability mass as most locations) and the single true reward timing 
(probability mass at a single location) is not conducive to using the 
Kullback–Leibler divergence.

For each bootstrap, we generated n = 100,000 samples from the 
predicted reward timing distributions and computed the 1-Wassertstein 
distance between the predicted reward timing and the true correspond-
ing reward delay (using the MATLAB function ws_distance from https://
github.com/nklb/wasserstein-distance). For each condition (expo-
nential fit, hyperbolic fit, average discount factor, simulation fit and 
their associated shuffled predictions), we obtained a distribution of 
1-Wasserstein distances across the bootstraps (n = 200). To assess the 
significance of the differences in reward timing predictions across 
conditions, we used the one-tailed Wilcoxon’s signed-rank test (using 
the MATLAB function signrank).

Analysing behavioural discounting through the lick rate in the 
cued delay task
To quantify the influence of behaviour on the discount factors inferred at 
the single-neuron level, we analysed the relationship between the behav-
ioural discounting and the neural discounting. To quantify behavioural 
discounting, we used the anticipatory lick rate in the 0.6 s following the 
delay cue. For each neuron, we computed the average lick rate for each of 
the four delays. We then fitted an exponential model (as for the neurons) 
to the four average lick rates for the four delays (shown in Extended Data 
Fig. 5a,d, left panels). For each neuron, we therefore obtained a behav-
ioural discount factor. To quantify the relationship between behavioural 
and neural discount factor, we used the Spearman rank correlation.

Comparing the neural discount factor as a function of lick rate
To investigate the effect of the of the lick rate on the discount factor 
measured in single neurons, we also compared the modulation of the 
inferred discount factor with the lick rate. For each neuron and each 
reward delay, we split the trials into low and high lick rate trials depend-
ing on whether the lick rate in the entire anticipation period was strictly 
below or above (or equal) to the median lick rate for this reward delay. 
We then fit the exponential discounting model separately for low lick 
rate trials and high lick rate trials. We compared the difference in the 
inferred discount factor for each neuron across the two conditions. We 
performed this analysis at the single-animal level for the two animals 
with sufficient number of neurons (Extended Data Fig. 5h,i).

Analysing behavioural discounting through the lick rate in the 
virtual reality task
To quantify the relationship between behaviour and neural activity 
in the virtual reality task as mice approach the reward location, we 
computed a measure of ramping in the lick rate and compared it with 
our measure of neural discounting. For each neuron, we computed the 
average lick rate during the reward anticipation period as the mice are 
moving along the linear track. We computed the average lick rate in 
three windows: early (−3.45 s to −2.95 s before reward delivery), middle 
(−1.95 s to −1.45 s before reward delivery) and late (−0.75 s to −0.25 s 
before reward delivery). Using these windows, we computed three 
modulation indices using the following equation:

MI =
Lick rate − Lick rate
Lick rate + Lick rate

(24)2−1
2 1

2 1

We compared these modulation indices to the inferred discount 
factors, showing no significant correlations, whereas the three meas-
ures of licking are strongly correlated among themselves (Extended 
Data Fig. 8).

Fitting neural activity in the virtual reality task
To quantify the heterogeneity of discount factors in the virtual reality 
task, we fit the neural activity in the last 4.30 s (t = 3.05 s after scene 
motion onset) of the approach to reward period in which the ramping 
activity was most pronounced. To assess the robustness of the fit, we 
used a bootstrap procedure in which for each bootstrap (n = 100bootstrap ), 
we partitioned the trials into two halves and computed the two average 
PSTHs using dt = 0.1 s as our discretization step. We then computed 
the mean value of the parameters across all bootstraps. We limit our 
analysis to neurons whose firing rate over the analysis period is larger 
than 2 spikes per second. We fit the two models (common value func-
tion and common reward timing expectation) to this data.

In the virtual reality task, the expectations vary smoothly as a func-
tion of time and distance and we therefore use the discretized formula-
tion of the TD error for continuous time in our fits45,47:









δ t b α γ

V t
t

γ γ V t( ) = +
d ( )

d
− ln( ) ( ) (25)i i i i

t
i

t
i

d d

Although this formulation is also discretized as the standard formu-
lation of the TD error, the presence of the derivative V t

t
d ( )

d
i  (which is 

computed numerically) improves the stability of the fitting procedure. 
The two models differ in whether value function is estimated directly 
(and shared across neurons) or indirectly (and distinct across neurons). 
The discount factor is also in units of seconds, allowing comparison 
with the values estimated in the cued delay task.

Common value function model
In the common value function model, V(t) is common across neurons 
and is directly fitted by the optimization procedure which minimizes:

∣∣ ∣∣min FR − Δ (26)α b γ V, , ,
2
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⋯
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We fit the gains, baseline, and discount factors of individual neurons 
(αi, bi and γi respectively) and the join value function V  using a con-
strained optimization procedure (fmincon in MATLAB, α ∈ [0.05,50]i , 
b ∈ [0.05,12]i , γ ∈ [0.05,0.999999]i , and V ∈ [0.05,5]).

We performed this analysis both on the full population of neurons 
that passed the inclusion criteria (Fig. 3) as we well as independently for 
the subsets of neurons belonging to m3044 (29 neurons) and m3054 
(24 neurons; Extended Data Fig. 8e–j).

Common reward expectation model
In the common reward expectation model, the reduction in uncer-
tainty in reward timing due to sensory feedback as the mice approach 
the reward leads to an upwards ramp in the average TD error signal 
across dopaminergic neurons44–46. In a task such as the cued delay task 
shown in Fig. 2, once the cue has been presented, the time estimation 
until the reward is based on the internal clock of the mice that experi-
ences scalar timing (that is, the standard deviation of the noise in the 
estimation grows linearly with the estimation time)26. In the virtual 
reality task, there is visual feedback, and as the mice approach the 
reward, the uncertainty is instead reduced (Extended Data Fig. 9a). 
We also showed that this alternative model also provides a similar 

https://github.com/nklb/wasserstein-distance
https://github.com/nklb/wasserstein-distance
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explanation of ramping diversity as originating from a heterogeneity 
of discount factors.

We use a joint fitting procedure in which we simultaneously fit the 
discount factors across neurons and the expected timing of reward as 
a function of position in the virtual track. Similarly to ref. 45, we inter-
pret the ramping in single neurons as originating from the reduction 
in uncertainty due to the visual feedback as the mice approach the 
reward. Although each neuron has a distinct discount factor and its 
own value function, the world model, which parametrizes the changes 
in reward expectation with visual feedback, is shared across dopamin-
ergic neurons. This arises as this shared model is the product of the 
integration of the diverse dopamine signals, as well as of other neural 
computations that control reward expectations69.

Individual neurons therefore act as independent agents estimating 
value given a shared expectation of reward timing. Each neuron has 
a distinct discount factor γi with which it computes value given the 
expected reward timing. We assumed that inference has converged 
and therefore we have the value Vi associated with neuron i:

∑V γ E r τ t T= ( | , , ) (28)i
τ t

T

i
τ t

=

−

Here we assumed that E r τ t T( | , , )  takes the form a folded normal 
distribution with parameters μ T t= −  and (fitted) standard deviation 
σ. The folded normal distribution reflects the weight of the negative 
component of a normal distribution back onto positive values70. The 
folded normal distribution formulation leads to the following distribu-
tion for the expected reward timing for τ > 0:
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In our analysis, the mean, μ T t= − , is given by the current position 
in the virtual reality track and the only fitted parameter is the standard 
deviation σ. At each timestep, we fit a different value of the standard 
deviation. As observed through the fitting procedure, the standard 
deviation was initially high and reduced as the mice approached the 
reward location. This is an indication that similarly than proposed in 
ref. 45, the ramping in activity in the dopaminergic neuron arises from 
the reduction in uncertainty due to the visual feedback as the mice 
approach the reward. We used a slightly different formulation than in 
ref. 45 as we required additional flexibility to fit data and specifically 
needed to go beyond the assumptions of Gaussian state uncertainty. 
Note also that here we assumed that the uncertainty is in the timing of 
the reward rather than in the state.

To normalize the contributions of the different neurons, we used a 
normalized firing rate and therefore only fit the discount factor γ and 
standard deviation σ of the reward expectation.

min FR − Δ (30)γ σ,
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We performed the constrained optimization with the MATLAB func-
tion fmincon and constrained the parameters such that γ ∈ [0.001,0.99] 
and σ ∈ [0.1,12].

Mixing in distributed RL models
When explaining how multi-timescale RL can explain the diversity 
of ramping activity, we proposed two possible interpretations: 

one with a common value function across all neurons and another 
with a common reward timing estimation; whereas in the cued 
delay task, each dopaminergic neuron contributed to learning an 
independent value function. Here we reconcile these approaches 
as shown in Extended Data Fig. 7f–k. We can understand these dif-
ferent models as a spectrum in which the value functions used for 
the computations for each discount factor is more or less shared  
across them.

In ‘classic’ multi-timescale TD learning19, the values (Vi) and RPEs (δi) 
for the different discounts (γi) are updated independently, which guar-
antees its convergence. Now consider a situation in which the value–RPE 
circuits of the multiple discounts share a common value function, to 
a degree λ between 0 and 1. In this case, the next value estimate in the 
timescale-independent TD backup is corrected by:

∼
V s V s α r γV s V s( ) ← ( ) + ( + ( ) − ( )) (32)i t i t t i i t i t+1

∼ ∼
V λV λ V= + (1 − ) (33)i i

Where 
∼
V  is the mean value function across all discounts. The main 

motivation for this modification of the traditional TD backup is neu-
roanatomical, as it is plausible to consider a degree of common shared 
activity across nearby value units. Unlike the model with a fully shared 
common value function (that is, λ = 1), multi-timescale learning with 
small values of the sharing parameter (for example, λ = 0.1) preserve, 
to a large degree, all the computational advantages of multi-timescale 
learning, while being more biologically realistic than fully separated 
circuits (that is, λ = 0). Using λ = 0.1 in the four tasks of Fig. 1e (while 
keeping the same simulation parameters as in Fig. 1; see ‘Decoding 
tasks’ in Methods), the accuracy of the report of the agent with three 
discounts {0.6,0.9,0.99} is 82 ± 5% in task 1, 94 ± 2% in task 2, 92 ± 3% in 
task 3 and 93 ± 3% in task 4. Therefore, regularizing the independent 
value functions with a small degree of shared activity preserves all the 
multi-timescale advantages highlighted so far.

With this modification to the learning rule, Vi does not converge to 
a pure exponential form anymore (compare dashed lines with solid 
lines in Extended Data Fig. 7f–h value panels, middle row), even with a 
small sharing parameter ( λ = 0.1 in Extended Data Fig. 7g). As a result, 
the RPE does not converge to 0 across the trajectory (Extended Data 
Fig. 7g,h, δ, bottom row), so TD learning does not fully converge at the 
level of individual value estimators. However, we found empirically 
that learning stabilizes completely after 1,000 TD backups (using 
α = 0.1). Crucially, owing to the non-exponential form of the learned 
value function, we observed that γ γ γ γ< ( > )∼ ∼  have RPEs that mostly 
ramp down (or up), so our characterization of cell-specific discounts 
based on ramping patterns is mostly independent of which of the ramp-
ing interpretations we adopt. These ramping patterns across timescales 
are robust when varying the magnitude of the sharing parameter  
λ (λ ∈ [0,1]), the learning rate α and the number of TD backups (we used 
a learning rate α of 0.01 and 2,000 TD backups for Extended Data 
Fig. 7f–h). For the simulations in Extended Data Fig. 7f–h, we used the 
discounts fitted experimentally in Fig. 3l (90 units), and plot only three 
discounts in Extended Data Fig. 7f–h (renormalized to lie between –1 
and 1) corresponding to the 20th, 70th and 90th percentiles, corre-
sponding to discounts 0.25, 0.56 and 0.88.

The model in the cued delay task corresponds to λ = 0. The common 
value function model that we propose would be similar to a value of 
λ = 1, but note that the common value model used for fitting in equa-
tion (25) is slightly different than in equation (32), as in equation (32) 
the shared value is only used for estimating future value. The model 
from equation (32) corresponds more closely to the common reward 
timing estimation model (Extended Data Fig. 9) in which the reduction 
in uncertainty with visual feedback affects the estimate of future value 
as outlined below. In this model, the TD error for neuron i can be writ-
ten as follow: δ γV V= ′ −i i i i.
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the value of the next state, including the sensory feedback  
and the reduction in uncertainty in reward timing. To highlight  
the contribution of the sensory feedback, we also introduced 
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value at the next step in the absence of sensory feedback (and therefore 
no reduction in uncertainty about reward timing).

We can rewrite the TD error as follows:

δ γV V γV γV γV V

δ γV V γ V
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(34)

i i i i i i i
t

i i
t

i i

i i
t

i i i i

+1 +1

+1

Here the correction due to the sensory feedback appears as ΔVi, 
which we can also write as γ E E∑ ( ′ − )τ t

T
i

τ t
τ τ= +1

− −1 . Similarly than in  
ref. 45, the sensory feedback acts as a correction term in the prediction 
error computation. Here the shared correction term is the reduction 
in uncertainty, so it takes a slightly different form than in the general 
formulation with shared value V

∼
 and would correspond to a case in 

which the sharing parameter depends on the discount factor. This 
source of ‘regularization’ could occur through different pathways. 
Here it is the reduction in uncertainty due to the structure of the virtual 
reality task that leads to a reduction in the uncertainty about reward 
timing as the mice approach the reward. This contribution of a shared 
signal or estimate from a parallel value estimation has also been used to 
explain non-canonical prediction errors in motor tasks71. In the cued 
delay task, there is no feedback about reward timing and therefore we 
have ΔVi = 0 in equation (34), and this would correspond to a situation 
in which the loops are entirely decoupled (λ = 0). In practice, we might 
expect some low level of coupling given the anatomical considerations 
outlined above. As long as the loops are not completely coupled (λ ≠ 1), 
there is enough information to leverage the computational advantages 
shown in Fig. 1 and perform the decoding shown in Fig. 2 (Extended 
Data Fig. 7i–k).

Comparing parameters across tasks
We used two methods to assess the relationship between the inferred 
discount factors in the approach-to-reward virtual reality task and the 
cued delay task. First, we used the mean parameters across bootstraps 
and computed the Spearman rank correlation. Next, we computed, for 
n = 10,000 randomly selected (with replacement) pairs of bootstraps, 
the Spearman rank correlation between the parameters across the two 
tasks and plotted the distribution of these correlation.

For the decoding of reward timing using parameters inferred in the 
virtual reality task, we also used a bootstrap approach. We computed 
the discount matrix and the decoding matrix for each bootstrap esti-
mate of the discount factors in the virtual reality task.

Simulations to assess limits on parameter estimation
To assess the contribution of the limits imposed by the number of tri-
als and the stochasticity in firing rates to the accuracy of the reward 
timing prediction and the similarity of inferred parameters across 
tasks, we ran a series of simulations with parameters chosen to match 
those inferred from the data. For the simulation parameters, we used 
the mean inferred value for the parameters across all the bootstraps 
for the respective task.

For the cued delay task, for each neuron, we generated n = 80 trials 
(n = 20 per delay), comparable with behavioural sessions in the task, 
simulated cue responses by taking samples from a Poisson distribu-
tion with a rate parameter corresponding to the value predicted by 
the exponential discount model for the corresponding reward delay. 
We used the same procedure as for analysing the recorded data by per-
forming n = 100 bootstraps and fitting the simulated data on random 
partitions of the data.

For the virtual reality task, for each neuron, we generated n = 80 trials, 
comparable with behavioural sessions in the task, by taking samples 
from a Poisson distribution with a rate parameter corresponding to the 
predicted activity given equation (22). We then performed the fitting 
procedures similarly than for the experimental data.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Decoding simulations for multi-timescale vs. single-
timescale agents. (a-c). Experiment corresponding to Task 1 in Fig. 1. a, MDP 
with reward R at time tR. b, Diagram of the decoding experiment. In each 
episode, the reward magnitude and time are randomly sampled from discrete 
uniform distributions, which defines the MDP in a. Values are learned until  
near convergence using TD-learning. Values with different discount factors  
are learned independently. The learned values for the cue (s) are fed into a  
non-linear decoder which learns, across MDPs, to report the reward time.  
c, Decoding performance as the decoder is trained. Different colors indicate the 
discount factors used in TD-learning. (d-f). Experiment corresponding to Task 2 
in Fig. 1. d, MDP with reward R at time tR. e, Diagram of the decoding experiment. 
In each episode, the reward magnitude and time are randomly sampled from 
discrete uniform distributions, which defines the MDP in a. Values are learned 
until near convergence using TD-learning. Values with different discount 
factors are learned independently. The learned values for the cue (s) are fed 
into a non-linear decoder which learns, across MDPs, to report the hyperbolic 
value of the cue. f, Decoding performance as the decoder is trained. Different 
colors indicate the discount factors used in TD-learning. (g-i). Experiment 
corresponding to Task 3 in Fig. 1. g, MDP with reward equal to 1 at time tR.  
h, Diagram of the decoding experiment. In each episode, the reward time and 
the number of TD iterations (N) are sampled from discrete uniform distributions. 
Values are learned by performing N TD-learning backups on the MDP. Values with 
different discount factors are learned independently. The learned values for  
the cue (s) are fed into a non-linear decoder which learns, across MDPs, to report 
the reward time. i, Decoding performance as the decoder is trained. Different 
colors indicate the discount factors used in TD-learning. ( j-l). Experiment 
corresponding to Task 4 in Fig. 1. j, MDP with reward equal to 1 at time tR, and  
a noisy reward added to every state. k, Diagram of the decoding experiment.  
In each episode, the reward time is sampled from discrete uniform distributions. 
Values are learned by performing a single iteration of TD-learning backwards 
through the MDP. Values with different discount factors are learned 
independently. The learned values for the cue (s) are fed into a non-linear 
decoder which learns, across MDPs, to report the true value of the cue after 
experiencing the trajectory an infinite number of times (this is, ignoring the 

random rewards). l, Decoding performance as the decoder is trained. Different 
colors indicate the discount factors used in TD-learning. (m-o) Experiment with 
two rewards. m, MDP with two rewards of magnitude R1 and R2 at times tR1 < tR2. 
Value estimates Vγ(s) are fed into a non-linear decoder which learns, across MDPs, 
to report both reward times. o, Decoding performance as the decoder is trained. 
Different colors indicate the discount factors used in TD-learning. (p-r) Experiment 
to determine the shortest branch when learning from incomplete information. 
p, MDP with two possible trajectories. In this example, the upwards trajectory is 
longer than the downwards trajectory. q, Diagram of the decoding experiment. 
In each episode, the length of the two branches D and the number of times that 
TD-backups are performed for each branch are randomly sampled from uniform 
discrete distributions. Then, TD-backups are perform ed for the two branches 
the corresponding number of times. After this, they are fed into a decoder which 
is trained, across episodes, to report the shorter branch. r, Decoding performance 
as the decoder is trained. Different colors indicate the discount factors used in 
TD-learning. s-w: Temporal estimates are available before convergence for 
multi-timescale agents. s, Two experiments, one with a short wait between the 
cue and reward (pink), and one with a longer wait (cyan). t, The identity of the cue 
with the higher value for a single-timescale agent (here γ = 0.9) depends on the 
number of times that the experiments have been experienced. When the longer 
trajectory has been experienced significantly more often than the short one, the 
single-timescale agent can incorrectly believe that it has a larger value. u, For a 
multi-timescale agent, the pattern of values learned across discount factors is 
only affected by a multiplicative factor that depends on the learning rate, the prior 
values and the asymmetric learning experience. The pattern therefore contains 
unique information about outcome time. v,w, When plotted as a function of the 
number of times that trajectories are experienced, the pattern of values across 
discount factors is only affected by a multiplicative factor. In other words, for 
the pink cue, the larger discount factors are closer together than they are to  
the smaller discount factor, and the opposite for the cyan cue. This pattern is 
maintained at every point along the x-axis, and therefore is independent of the 
asymmetric experience, and it enables a downstream system to decode reward 
timing. Error bars are the standard deviations (s.d.) across 100 test episodes and 
3 trained policy gradient (PG) networks.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | The myopic learning bias. a, Illustration of the myopic 
learning bias. Consider a scenario in which the upwards and downwards paths 
from s and s’ are experienced only once, such that at least one path in the small 
bifurcations is left unexplored. In state s’ (blue) the far future is more uncertain 
than the near future, and in state s (red) the near future is more uncertain  
than the far future. b, When experiencing the upwards and downwards paths 
only once, there are 4 possible scenarios depending on which path of the 
corresponding bifurcations is visited. When learning from limited information, 
the myopic (low γ) and farsighted (high γ) estimates would make different 
decisions depending on whether the V UP estimate is larger, smaller or 
approximately equal to V DOWN (V UP ≈ V DOWN occurs when both estimates have 
similar magnitudes and some small variations in the precise magnitude of 
rewards, the prior values or the learning parameters could change whether 
V UP < V DOWN or V UP > V DOWN). In both s and s’, the correct decision is to follow the 
upwards path (the ‘correct’ decision is the decision made by a hypothetical RL 
agent that experiences all possible trajectories an infinite number of times). 
Below we show the approximate probability that the agent chooses the correct 
path, if it follows the myopic estimates (low γ) or far-sighted estimates (high γ). 
Illustration of a mouse in panel a and silhouette of a raptor in panels a,b were 
adapted from the NIAID NIH BIOART Source. Illustration of a block of cheese  
in panels a,b, was adapted from SVG Repo under a CC0 1.0 licence. c, Task 
structure to evaluate the myopic learning bias when uncertainty arises due  
to stochastic rewards. The three dots collapse 5 transitions between black 
states. Black states give a small stochastic reward and orange states give a  
large deterministic reward. d, Accuracy at selecting the branch with the large 
deterministic reward under incomplete learning conditions. At state s (orange), 
agents with larger discount factors (far-sighted) are more accurate. At state s’ 

(blue), agents with a small discount factor (myopic) are more accurate. Error 
bars are half s.d. across 10,000 episodes, maximums are highlighted with  
stars. e, Mean performance in this task by the agent in Fig. 1d (see main text  
and Methods). f, Maze to highlight the myopic learning bias in cases where 
uncertainty arises due to incomplete exploration of the state space. Rewards 
are indicated with water and fire. An example trajectory is shown with 
transparent arrows. The red and blue bars to the right denote the states in  
the Lower and Upper half. g, True (grey) and estimated (green and brown) 
values for the example trajectory on top and shown in panel a. In the x-axis we 
highlight the starting timestep with s, the timestep when the fire is reached and 
the timestep when the water is reached. Image of fire in panels f,g was created 
by dstore via SVG Repo under a CC0 1.0 licence. Images of water droplet in 
panels f,g were adapted from SVG Repo under a CC0 1.0 licence. h, Accuracy 
(y-axis) is measured as the Kendall tau coefficient between the estimate with  
a specific gamma (x-axis) and the true value function Vγ = 0.99. Error bars are 
deviations across 300 sets of sampled trajectories. The red (blue) curve shows 
average accuracy for the states on the upper (lower) half of the maze, indicated 
with color lines on panel a. i, As the sampled number of trajectories increases, 
the myopic learning bias disappears. j, Architecture that learns about multiple 
timescales as auxiliary tasks. k, States are separated according to the agent 
being close to the goal (blue) or far from the goal (orange). Images in panels j,k 
were adapted from Farama Foundation under an MIT licence. l, Accuracy of the 
Q-values in the Lunar Lander environment as a function of their discount factor, 
estimated as the fraction of concordant state pairs between the empirical value 
function and the discount specific Q-value estimated by the network. Error 
bars are s.e.m across 10 trained networks, maximums are highlighted with 
stars. See Methods for details.

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Single neuron responses and robustness of fit in the 
cued delay task. a, PSTHs of single selected neurons (n = 50) responses to the 
cues predicting a reward delay of 0.6 s, 1.5 s, 3.75 s, and 9.375 s (from top to 
bottom). Neurons are sorted by the inferred value of the discount factor γ. 
Neural responses are normalized by z-scoring each neuron across its activity to 
all 4 conditions. b, PSTHs of single non-selected neurons (n = 23) responses to 
the cues predicting a reward delay of (from top to bottom). Neurons are sorted 
by the inferred value of the discount factor γ. Neural responses are normalized 
by z-scoring each neuron across its activity to all 4 conditions. c, Variance 
explained for training vs testing data for the exponential model. For each 
bootstrap, the variance explained was computed on both the half of the trials 
used for fitting (train) and the other half of the trials (test). Neurons (n = 13) with 
a negative variance explained on the test data are excluded from the decoding 
analysis (grey dots). d, Same as panel c but for the fits for the hyperbolic model. 
e, Mean goodness of fit on held-out data across 100 bootstraps for each 
selected neuron for the exponential and hyperbolic models. The data lies 
above the diagonal line suggesting a better fit from the exponential model as 
shown in Fig. 2f. Error bars indicate 95% confidence interval using bootstrap, 
see Methods. f, The values of the inferred parameters in the exponential model 
are robust across bootstraps. top row, Inferred value of the parameters across 
two halves of the trials (single bootstrap) for the gain α, baseline b and discount 
factor γ, respectively. Bottom row, Distribution across n = 100 bootstraps of 

the Pearson correlations across neurons between the inferred parameter 
values in the two halves of the trials. Reported mean is the mean correlation 
across bootstraps and reported p-value is the highest p-value for all the 
bootstraps for a given parameters assessed via Student’s t-test. Distribution  
of correlations for the gain α (mean = 0.84, P < 1 × 10−20), baseline b (v, mean = 0.9, 
P < 1.0 × 10−32) and discount factor γ (vi, mean = 0.93, P < 1.0 × 10−46). g, Same as 
panel f (lower row) but for the hyperbolic model with distribution of correlations 
for the gain α (mean = 0.86, P < 1 × 10−26), baseline b (v, mean = 0.88, P < 1.0 × 10−28) 
and shape parameter k (vi, mean = 0.76, P < 1.0 × 10−11). h, Same as panel f (lower 
row) but for the exponential model simulated responses with distribution of 
correlations for the gain α (mean = 0.86, P < 1.0 × 10−10), baseline b (v, mean = 0.88, 
P < 1.0 × 10−24) and discount factor γ (vi, mean = 0.76, P < 1.0 × 10−26). Note that the 
distributions of inferred parameters are in a similar range than the fits to the data 
suggesting that trial numbers constrain the accuracy of parameter estimation.  
i, similar to the panel f (lower row) for the neurons recorded in mouse m3044, 
showing that across bootstraps, the estimates are consistent for the gain α (mean = 
0.64, P < 0.05 for 88/100 bootstraps, light blue P > 0.05, dark blue P < 0.05), 
baseline b (mean = 0.86, P < 0.012) and discount factor γ (mean = 0.72, P < 0.05 for 
97/100 bootstraps, light blue P > 0.05, dark blue P < 0.05). j, same as panel f (lower 
row) for the neurons recorded in mouse m3054. The estimates are consistent for 
the gain α (mean = 0.90, P < 0.0048), baseline b (mean = 0.93, P < 1.0 × 10−5) and 
discount factor γ (mean = 0.79, P < 0.0069).
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Extended Data Fig. 4 | Decoding reward timing using the regularized 
pseudo-inverse of the discount matrix. (a-c), Singular value decomposition 
(SVD) of the discount matrix. a, left singular vectors (in the neuron space).  
b, Singular values. The black line at 2 indicates the values of the regularization 
term α. c, right singular vectors (in the time space). d, Decoding matrix based 
on the regularized pseudo-inverse. e, Distribution of 1-wassertein distances 
between the reward timing and the predicted reward timing from the decoding 
on the test data from exponential fits (shown in Fig. 2k, top row) and on the 
average exponential model (shown in Fig. 2k, bottom row). Decoding is better  
for the exponential model from Fig. 2 than the average exponential model except 
for the shortest delay (P(t = 0.6 s) = 1, P(t = 1.5 s) <1.0 × 10−31, P(t = 3.75) = 0.0135, 

P(t = 9.375 s) <1.0 × 10−14), one-tailed Wilcoxon signed rank test, see Methods).  
f, The ability to decode the timing of expected future reward is not due to a 
general property of the discounting matrix and collapses if we randomize the 
identity of the cue responses (see Methods). g, Distribution of 1-Wassertein 
distances between the reward timing and the predicted reward timing from the 
decoding on the test data exponential fits (shown in Fig. 2k, top row) and on the 
shuffled data (shown in panel f). The prediction from the test data are better 
predictions (smaller 1-Wasserstein distance) than shuffled data (P = 1.2 × 10−4 
for 0.6 s reward delay, P < 1.0 × 10−20 for the other delays, one-tailed Wilcoxon 
signed rank test, see Methods).
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Extended Data Fig. 5 | Comparing behavioral and neural discounting and 
decoding reward timing in single animals. (a-c): mouse 3044. a, left panel. 
Normalized lick responses to the cues predicting reward delays across the 
population. For each neuron, the response was normalized to the highest 
response across the 4 possible delays. Neurons are sorted by the inferred 
behavioral discount factor. Right panel: Normalized neural responses to the 
cues predicting reward delays across the population (sorted by the behavioral 
discount factor). b, The behavioral and neural discount factors are not 
correlated (r = −0.29, P = 0.27, Spearman’s rank correlation, two-tailed Student’s 
t-test). c, Discount matrix for the neurons recorded in mouse 3044. This is the 
matrix used for decoding in panel g, top row. (d-f): same as panels (a-c) for 
mouse 3054. e, The behavioral and neural discount factors are not correlated in 
mouse 3054 (r = −0.029, P = 0.9, Spearman’s rank correlation, two-tailed 
Student’s t-test). f, Discount matrix for the neurons recorded in mouse 3054. 

This is the matrix used for decoding in panel g, bottom row. g, Decoding of 
reward timing at the single animal level for mouse 3044 (top row) and mouse 
3054 (bottom row). The decoding is present but slightly less accurate as 
expected from the smaller number of neurons. h, discount factor inferred  
for neurons in mouse m3044 when dividing trials between low and high 
anticipatory lick rate. left panel, scatter plot of the value across neurons.  
right panel, the distribution across neurons of differences in inferred discount 
across the two conditions is not significant (mean = −0.0024, P = 0.96, two-
tailed Student’s t-test). i, Same as panel h for mouse m3054. The difference  
in inferred value between low and high lick rate is significant (mean = 0.086, 
P = 0.0062, two-tailed Student’s t-test) but the mean effect is small compared 
to the standard deviation of inferred discount factors across neurons  
(s.d. = 0.19 for neurons in m3054).
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Extended Data Fig. 6 | Decoding reward timing from the hyperbolic model 
and exponential model simulations. a, Distribution of the inferred discount 
parameter k across the neurons. b, Correlation between the discount factor 
inferred in the exponential model of the discount parameter k from the 
hyperbolic model (r = −0.9, P < 1.0 × 10−30, Student’s t-test). Note the in the 
hyperbolic model a larger value of k implies faster discounting hence the 
negative correlation. c, Discount matrix for the hyperbolic model. For each 
neuron we plot the relative value of future events given its inferred discount 
parameter. Neurons are sorted by decreasing estimated value of the discount 
parameter. d, Decoded subjective expected timing of future reward E r t( | ) using 
the discount matrix from the hyperbolic model (see Methods). e, Distribution 
of 1-Wassertein distances between the reward timing and the predicted reward 
timing from the decoding on the test data with the exponential model (shown 
in Fig. 2k, top row) and on the test data with the hyperbolic model (shown in d). 

Decoding is better for the exponential model from Fig. 2 than the hyperbolic 
model except for the shortest delay (P(t = 0.6 s) = 1, P(t = 1.5 s) <1.0 × 10−31, 
P(t = 3.75) < 1.0 × 10−33, P(t = 9.375 s) <1.0 × 10−3), one-tailed Wilcoxon signed rank 
test, see Methods). f, Decoded subjective expected timing of future reward 
E r t( | ) using simulated data based on the parameters of the exponential model 
(see Methods). g, Distribution of 1-Wassertein distances between the reward 
timing and the predicted reward timing from the decoding on the test data 
from exponential fits (shown in Fig. 2k, top row) and on the simulated data from 
the parameters of the exponential fits (shown in f). Decoding is marginally 
better for the data predictions (P(t = 0.6 s) = 0.002, P(t = 1.5 s) = 0.999, 
P(t = 3.75) < 1 × 10−12, P(t = 9.375 s) = 0.027), one-tailed Wilcoxon signed rank test, 
see Methods), suggesting that decoding accuracy is limited by the number of 
trials.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Ramping, discounting, anatomy and distributed RL 
models. a, Ramping in the prediction error signal is controlled by the relative 
contribution of value increases and discounting. If the value increase (middle) 
exactly matches the discounting, there is no prediction error (middle equation, 
right). If the discounting is smaller than the value increase (large discount 
factor) then there is a positive TD error (top equation, right). If the discounting 
is larger (small discount factor) than the value increase then there a negative  
TD error (bottom equation, right). A single timescale agent with no state 
uncertainty will learn an exponential value function but if there is state 
uncertainty (see ref. 69) or the global value function arises from combining the 
contribution of single-timescale agents then the value function is likely t be 
non-exponential. Image of a magnifying glass was created by googlefonts via 
SVG Repo under an Apache Licence. b, Intuition for diversity of ramping with  
a hyperbolic value function. Agents with a small discount factor exhibit a 
monotonic downward ramp (pink), while those with a large discount factor 
exhibit a monotonic upward ramp (brown). Agents with an intermediary 
discount factor tend to exhibit a downward then upward ramp. The hyperbolic 
value function gets increasingly convex as the reward approaches, so an 
increasing fraction of the agents have a positive prediction error as they 
approach the reward. c, The discount factor inferred in the VR task is not 
correlated with the medio-lateral (ML) position of the implant (Pearson’s 
r = 0.015, P = 0.89, two-tailed Student’s t-test). d, The baseline parameter 
inferred in the VR task is not correlated with the medio-lateral (ML) position  
of the implant (Pearson’s r = −0.011, P = 0.92, two-tailed Student’s t-test). e, The 
inferred gain in the VR task reduces with increasing medio-lateral (ML) position 
but the effect does not reach significance (Pearson’s r = −0.19, P = 0.069, two-
tailed Student’s t-test). In panels c-e, the line correspond to the best fit linear 
regression and the uncertainty shading represents 95% confidence interval on 
a linear regression fit. f-h. Ramping in the reward prediction error with mixing 
in distributed RL models. Inferred value functions (V) and RPEs (δ) for the 

mixed RL model as a function of the common value function sharing-parameter 
λ, in a linear MDP of 30 steps (x-axis in the plots) with a deterministic reward 
equal to 1 in the last step and 0 everywhere else. Plots are shown after learning 
has empirically stabilized (after 3,000 TD-learning iterations with a learning 
rate of 0.1). The dashed value function is the exponential value function without 
common value sharing (λ = 0), which would lead to a flat RPE equal to 0 at every 
state. The actual value functions (solid lines) are not purely exponential, and 
thus lead to ramping RPEs. f, Circuit model in which each value estimation and 
their corresponding prediction error are part completely independent loops 
(λ = 0). At convergence, there is no more prediction error in the reward 
anticipation period (bottom row). g, Circuit model in which the prediction 
error for each dopamine neuron is influenced by both the independent value 
signal and the shared a common value signal (C, λ = 0.1). The dashed line 
indicate the value function corresponding to completely separate loops, and 
the solid function the actual value function due to the influence of the common 
value signal. The difference between them leads to ramping in the reward 
prediction error signals (bottom row). h, Circuit model with a strong influence 
of the common value signal (λ = 1) which also leads to ramping in the reward 
prediction error signals. See Methods for details. i, Decoded reward times for  
4 experimental conditions with rewards at times 5, 10, 15 and 30 (pink to cyan), 
by applying a regularized inverse Laplace decoder (analogous to the one used 
in Fig. 2 of the main text) to the values at the moment of the cue, under the 
model without mixing λ = 0. j, Same as (i) but using a mixing factor of λ = 0.1. 
The small mixing factor does not affect the quality of the temporal decoding, 
while creating a ramping reward prediction error (panel g). Therefore, a small 
mixing factor constitutes a common model that can qualitatively account for 
the two tasks studied in the paper. k, Same as (i) but using a mixing factor of 
λ = 1. Using a fully shared value function the relative differences between 
discount factors disappear, so temporal decoding is no longer possible.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Behavioral and neural discounting at the single 
animal. a, Time course of the lick rate in the VR task as mice approach the 
reward location. gray line, lick rate for individual neurons, blue line, mean lick 
rate. The three black lines on top indicate the three windows used to compute 
early, middle and late lick rate in the analysis presented in panels c-d. b, The 
inferred discount factor and the slope in spiking activity (see Fig. 3b) are 
strongly correlated (r = 0.81, P = 0, Spearman rank correlation, two-tailed 
Student’s t-test) suggesting that slope is a good measure of discounting.  
c, Correlations of measures of behavioral and neural discounting for mouse 
m3044 (Spearman rank correlation, two-tailed Student’s t-test). i-iii: the neural 
discount factor and the ramp in licking activity is not correlated irrespective  
of the window used to compute the ramp in licking activity when using the 
following windows to compute ramping activity in the lick rate: i, modulation 
between the late and early window, r = 0.09, P = 0.64. ii, modulation between 
the late and middle windows, r = −0.05, P = 0.79. iii, modulation between the 
early and middle windows, r = 0.17, P = 0.37. iv-vi: The measures of ramping in 
licking activity are strongly correlated to each other: i, correlation between  
the late-middle and late-early modulation measures, r = 0.65, P = 1.3 × 10−4.  
ii, correlation between the middle-early and late-early modulation measures, 
r = 0.96, P = 7 × 10−17. iii, correlation between the middle-early and late-middle 
modulation measures, r = 0.53, P = 0.0028. d, Correlations of measures  
of behavioral and neural discounting for mouse m3054 (Spearman rank 
correlation, two-tailed Student’s t-test). i-iii: the neural discount factor and  
the ramp in licking activity is not correlated irrespective of the window used  
to compute the ramp in licking activity when using the following windows to 

compute ramping activity in the lick rate: i, modulation between the late and 
early window, r = −0.1, P = 0.62. ii, modulation between the late and middle 
windows, r = 0.032, P = 0.88. iii, modulation between the early and middle 
windows, r = −0.11, P = 0.61. iv-vi: The measures of ramping in licking activity 
are strongly correlated to each other: i, correlation between the late-middle 
and late-early modulation measures, r = 0.82, P = 6.7 × 10−7. ii, correlation 
between the middle-early and late-early modulation measures, r = 0.94, 
P = 4.7 × 10−12. iii, correlation between the middle-early and late-middle 
modulation measures, r = 0.66, P = 4.2 × 10−4. e, The VR model fits (right panel) 
to m3044 neurons alone captures the diversity of ramping activity observed 
across single neurons (left panel). f, Inferred value function for m3044. Thin 
gray line, individual bootstrap fits. Blue line, mean value fit. g, The VR model 
fits (right panel) to m3054 neurons alone captures the diversity of ramping 
activity observed across single neurons (left panel). h, Inferred value function 
for m3054. Thin gray line, individual bootstrap fits. Blue line, mean value fit.  
i, The inferred parameter values between the fit for m3044 and the full 
population fit are strongly correlated (Spearman rank correlation, two-
tailed Student’s t-test) for the gain parameter (left panel, r = 0.78, P = 2.1 × 10−6), 
the baseline parameter (middle panel, r = 0.75, P = 5.7 × 10−6) and the discount 
factor (right panel, r = 0.75, P = 6.8 × 10−6). j, The inferred parameter values 
between the fit for m3054 and the full population fit are strongly correlated 
(Spearman rank correlation, two-tailed Student’s t-test) for the gain parameter 
(left panel, r = 0.97, P = 1.3 × 10−6), the baseline parameter (middle panel, r = 0.98, 
P = 1.1 × 10−6) and the discount factor (right panel, r = 0.88, P = 2.6 × 10−6).  
All reported correlations are Spearman rank correlations.
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Extended Data Fig. 9 | Discounting heterogeneity explains ramping 
diversity in a common reward expectation model. a, Uncertainty in reward 
timing reduces as mice approach the reward zone. Not only does the mean 
expected reward time reduces but the standard deviation of the estimate also 
reduces. Distribution in the bottom row from fitted data (see panels c-e).  
b, A model where each neuron contributes to its individual value function but 
share a common reward expectation predicts ramping heterogeneity across 
neurons. Left panel, as mice approach reward, the uncertainty, quantified  
by the standard deviation, of reward timing reduces. 2nd panel from left, The 
Expectation of reward timing takes the form of a folded normal distribution.  
As the mice approach the reward there is a reduction of both the mean and the 
standard deviation of the expected reward timing distribution. 3rd panel from 
left, each neuron computes a distinct value function given their individual 
discount factor and the common expected reward timing distribution with. 
Right panel, The diverse value functions across neurons lead to ramping 
heterogeneity across neurons in the reward prediction error. (see Methods 
‘Common Reward Expectation model’). c, The inferred standard deviation of 

the reward expectation model reduces as a function of time to reward. Line 
indicates the mean inferred standard deviation and the shading indicates the 
standard error of the mean over 100 bootstraps. d, Expected timing of the 
reward as a function of true time to reward. As the mice approach the reward 
not only does the mean expected time to reward reduces but the uncertainty of 
the reward timing captured by the standard deviation shown in c also reduces. 
This effect leads to increasingly convex value functions that lead to the 
observed ramps in dopamine neuron activity. e, Value function for each 
individual neuron (same order as in h-i). f, Distribution of inferred discount 
factors under the common reward expectation model. g, Although the range of 
discount factor between the fits from the common value (x axis) and common 
reward expectation ( y axis) models differs, the inferred discount factors are 
strongly correlated for single neurons (Spearman’s ρ = 0.93, P < 1.0 × 10−20, two-
tailed Student’s t-test). h, Predicted ramping activity from the model fits under 
the common reward expectation model. i, Diversity of ramping activity across 
single neurons as mice approach reward (aligned by inferred discount factor in 
the common reward expectation model).
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Extended Data Fig. 10 | Decoding reward timing in the cued delayed reward 
task using parameters inferred in the VR task and details of recordings.  
a, Discount matrix computed using the parameters inferred in the VR tasks  
for neurons recorded across both tasks and used in the cross-task decoding.  
b, Dopamine neurons cue responses in the cued delay task. Neurons are aligned 
as in a according to increasing discount factor inferred in the VR task. c, Top 
row: Decoded reward timing using discount factors inferred in the VR task. 
Bottom row: The ability to decode reward timing is lost when shuffling the 

identities of the cue responses. d, Except for the shortest delay, decoded 
reward timing is more accurate than shuffle as measured by the 1-Wassertsein 
distance (Pt = 0.6s = 1, Pt = 1.5s < 1.1 × 10−20, Pt = 3.75s < 3.8 × 10−20, Pt = 9.375s < 2.9 × 10−5).  
e, Breakdown of the number of recorded neurons per animal and task. The 
numbers in parenthesis indicate the number of neurons included in the analysis. 
± indicates standard deviation across sessions. The maximum number of 
neurons recorded in a single session was 4 in both the cued delay task and the 
VR task.
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