Math Background

1. Show that (assume $|x|<1$)

$$
1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}
$$

2.

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=?
$$

3. Write down the real and imaginary parts of z, where

$$
z=\frac{2+i}{1-i}, \quad i=\sqrt{-1}
$$

4. Expand $\cos (A+B)$ in terms of cosines and sines of A and B.
5. Write down partial derivatives of

$$
f(x, y)=x^{2} \sin (y)+y \cos \left(x^{2}\right)
$$

with respect to x and y.
6. Given a continuous probability distribution function,

$$
p(x)=A e^{-\alpha|x|}, \quad-\infty<x<+\infty .
$$

Express A in terms of α.
7. Integrate

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2}}
$$

