

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [USC University of Southern California]
On: 18 August 2010
Access details: Access Details: [subscription number 788830388]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Molecular Simulation
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713644482

Harvesting graphics power for MD simulations
J. A. van Meela; A. Arnolda; D. Frenkelb; S.F. Portegies Zwartc; R. G. Bellemand

a FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands b Department of
Chemistry, University of Cambridge, Cambridge, UK c Astronomical Institute “Anton Pannekoek”,
University of Amsterdam, Amsterdam, The Netherlands d Section Computational Science, University
of Amsterdam, Amsterdam, The Netherlands

To cite this Article van Meel, J. A. , Arnold, A. , Frenkel, D. , Portegies Zwart, S.F. and Belleman, R. G.(2008) 'Harvesting
graphics power for MD simulations', Molecular Simulation, 34: 3, 259 — 266
To link to this Article: DOI: 10.1080/08927020701744295
URL: http://dx.doi.org/10.1080/08927020701744295

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713644482
http://dx.doi.org/10.1080/08927020701744295
http://www.informaworld.com/terms-and-conditions-of-access.pdf

Harvesting graphics power for MD simulations

J.A. van Meela*, A. Arnolda, D. Frenkelb, S.F. Portegies Zwartc,d and R.G. Bellemand

aFOM Institute for Atomic and Molecular Physics, Kruislaan, Amsterdam, The Netherlands; bDepartment of Chemistry, University of
Cambridge, Cambridge, UK; cAstronomical Institute “Anton Pannekoek”, University of Amsterdam, Amsterdam, The Netherlands;
dSection Computational Science, University of Amsterdam, Amsterdam, The Netherlands

(Received 19 September 2007; final version received 12 October 2007)

We discuss an implementation of molecular dynamics (MD) simulations on a graphic processing unit (GPU) in the NVIDIA
CUDA language. We tested our code on a modern GPU, the NVIDIA GeForce 8800 GTX. Results for two MD algorithms
suitable for short-ranged and long-ranged interactions, and a congruential shift random number generator are presented. The
performance of the GPU’s is compared to their main processor counterpart. We achieve speedups of up to 40, 80 and 150
fold, respectively. With the latest generation of GPU’s one can run standard MD simulations at 107 flops/$.

Keywords: molecular dynamics simulation; GPGPU; random number generator

1. Introduction

Over the last 30 years computer simulations have

become an important tool in materials science, often

bridging the gap between theory and experiment.

Simulations can be used both to predict the outcome

of experiments and to test the assumptions of theories.

The basic idea of most classical simulations is to

calculate the forces acting on all particles, and then

integrate Newton’s equations of motion using these

forces. This approach is not limited to single atoms or

molecules: the same approach can be used to model the

motion of stars within galaxies.

With the rapid increase of available computational

power, more systems become tractable for simulations.

Nowadays it is possible to simulate the time evolution of

simple molecules over microseconds with atomistic

detail on a conventional personal computer. However,

for many systems, the computational power of a single

processor (CPU) is not sufficient. In this case,

simulations are run in parallel on many processors,

which allows us to simulate hundreds of thousands of

molecules over time-spans of milliseconds. The increase

of computational power comes at a price: the different

processors have to exchange information on the

simulated system continuously. This communication

costs time, reducing the effective performance of a

parallel system to typically less than 80% [1,2] of the

total performance of all its individual CPUs. And

although there are standardised software tools for the

implementation of this communication, such as PVM [3],

MPI [4] or OpenMP [5], writing a code for parallel

execution is not trivial. Moreover, the necessary very low

latency, high throughput communication hardware often

costs as much as the processing units themselves.

An alternative approach speeds up the simulations by

using special purpose hardware. For example, in simu-

lations of stars or charged molecules, more than 90% of the

computation time is typically spent on the calculation of the

gravitational or electrostatic interaction. Most prominently,

the GRAPE board [6] is a special purpose hardware

designed to calculate such interactions; recently, a variant

called MDGRAPE [7] has been put forward to calculate the

interactions of more general pair potentials. Due to their

specificity, these boards can achieve several orders of

magnitude higher throughput compared to conventional

CPUs, but are only of interest for a limited community of

researchers. This makes these boards relatively expensive

and their development cycle long.

Since 2003, a new route to gain additional compu-

tational power has opened: the graphics processors

(graphic processing units, GPUs) of recent PC hardware

have become general purpose processors, which can be

programmed using C-like programming environments

such as the GL shader language [8], C for graphics (Cg) [9]

or the NVIDIA compute unified device architecture

(CUDA) [10]. Their computational power exceeds that of

the CPU by orders of magnitude: while a conventional

CPU has a peak performance of around 20 Gigaflops, a

NVIDIA GeForce 8800 Ultra reaches theoretically 500

Gigaflops. This means, that 4 graphics cards can replace a

complete 64 processor PC cluster, saving space and

reducing the necessary power supply from 15 kW to

around 2 kW. Moreover, graphics processors follow a

Moore-law with a computational power doubling every 9

ISSN 0892-7022 print/ISSN 1029-0435 online

q 2008 Taylor & Francis

DOI: 10.1080/08927020701744295

http://www.informaworld.com

*Corresponding author. Email: vanmeel@amolf.nl

Molecular Simulation

Vol. 34, No. 3, March 2008, 259–266

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
S
C

U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
e
r
n

C
a
l
i
f
o
r
n
i
a
]

A
t
:

1
8
:
2
9

1
8

A
u
g
u
s
t

2
0
1
0

months, in contrast to 18 months for conventional

CPUs. For the end of 2007, the first Teraflops-cards are

expected.

There have been early attempts to harvest this

computational power for various applications, including

fast Fourier transforms [11], matrix operations [12], lattice

Boltzmann simulations [13] or Monte Carlo (MC)

simulations of the 2D Ising model [14]. Recently,

Portegies Zwart et al. [15,16] presented a N-body

simulation with gravitational interactions, where the

force calculation was performed on the GPU. For the

latter application, the graphics cards are in direct

competition with the GRAPE boards, and achieve similar

performances at much lower costs and higher reliability.

Yang et al. already presented a proof-of-concept molecular

dynamics (MD) simulation for the thermal conductivity of

solid argon [17]; their implementation is however limited

to the simulation of defect-free solids.

In this article, we aim to assess the portability of

classical molecular simulation systems onto GPUs using

NVIDIA’s CUDA [10]. Unlike the previous attempts of

putting only the computationally most expensive parts of

the simulation onto the graphics cards, we demonstrate

that in fact the entire simulation can be ported to the

graphics cards. The resulting program reproduces all data

obtained from a standard single-processor simulation. We

report benchmarks of three codes: two simulating the

classical “work-horse” of coarse-grained molecular

simulation, the Lennard-Jones system, and a classical

rand48 random number generator [18]. We tested these

codes on a system consisting of an Intel Xeon CPU

running at 3.2 GHz and a NVIDIA GeForce 8800 GTX

(16 multiprocessors (MPs), running at 675 MHz each). For

both the simulation and the calculation of random

numbers, we achieve an about 25- to 150-times speedup

using the GPU compared to the CPU.

1.1 GPU architecture

To facilitate the discussion on the technical implemen-

tations, it is necessary to briefly summarise the key aspects

of the GPUs hardware architecture and its nomenclature

(see also Figure 1). We use the NVIDIA CUDA system

for programming the GPU, which allows to write functions

for the GPU, so-called kernels, in a C-like language. For

detailed information we refer to NVIDIA CUDA

programming guide [10].

The NVIDIA GeForce 8800 GTX consists of 16

MPs. Each MP has a single-instruction-multiple-data

(SIMD) architecture and is capable of performing the

same operation on different data 32 times per two clock

cycles. Many copies of a kernel, so-called threads, are

executed in parallel on all available MPs on the GPU. To

fit the SIMD architecture, groups of 32 threads form a

warp which is executed on the same MP. If a kernel

contains a branch and threads of the same warp take

different routes, then both routes are executed sequen-

tially and the total run time is the sum of both branches.

This warp divergence can have a serious impact on

performance.

Threads can store data in 8192 32-bit registers per MP,

and a high-speed shared memory of 16 kB per MP is

available to share data among threads running on the same

MP. For this, threads are grouped into blocks of up to

512 threads which are forced to run on the same MP. A

Figure 1. Schema of the multiprocessor and memory organisation of current NVIDIA GPUs. While registers are bound to a thread, all
threads of the same SIMD block have access to a common shared memory, and all threads on all MPs have access to the global memory.

J.A. van Meel et al.260

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
S
C

U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
e
r
n

C
a
l
i
f
o
r
n
i
a
]

A
t
:

1
8
:
2
9

1
8

A
u
g
u
s
t

2
0
1
0

slower global memory of 768 MB is also available that is

shared among all MPs. To hide register read–write

latencies of one to two clock cycles, it is recommended

that block sizes of 192 or more threads be used, and more

than one block per MP should be scheduled in order to hide

the much larger global memory read latencies of 200 to

400 clock cycles. Note however, that GPU global memory

is still ten times faster than the main memory of recent

PCs.

As a final remark we point out that nowadays graphics

hardware only supports single precision floating point

arithmetic. This might not suffice for systems where

energy conservation is crucial. But for systems in thermal

equilibrium, i.e. with a stochastic thermostat, this forms no

limitation.

2. N-squared MD

We start with the most simple MD algorithm in which each

particle interacts with all other particles. Therefore, the

total force calculation scales quadratic with the particle

number N. The force ~fi on a particle i is given by

~fi ¼ 2
XN
j¼1
j–i

f ðj~rj 2 ~rijÞ
~rj 2 ~ri

j~rj 2 ~rij
; ð1Þ

where f(r) is the well-known Lennard–Jones pair force,

truncated at a distance rc ¼ 2:5s and shifted such that the

force at the cutoff distance was zero. The full Lennard–

Jones pair force is given by

f LJðrÞ ¼ 24e 2
s

r

� �13

2
s

r

� �7
� �

; ð2Þ

our truncated and shifted force by

f ðrÞ ¼
f LJðrÞ2 f LJðrcÞ r , rc

0 r $ rc
:

(
ð3Þ

The Velocity Verlet algorithm was applied to integrate

Newton’s equations of motion [19].

2.1 Implementation details

A MD simulation is naturally suited for a SIMD

architecture, because it performs the same set of

operations on each particle. The most simple way to

parallelise this algorithm is to have one independent thread

per particle. However, naively implementing Equation (1)

turns out to be far from efficient. The reason for this is that

every thread loads all particle positions from global

memory, which is not cached. Each read access comes

with some latency, causing the processor to idle until the

data arrives. A huge improvement can be achieved by

taking advantage of the fact that all threads need the same

data. By grouping threads into blocks, data can be shared

among them, effectively reducing memory bandwidth and

idle times.

Our implementation works as follows: each thread

loads one different particle from global memory and stores

it into shared memory. Then all threads of a block are

synchronised to ensure loading has finished. Now the data

of all threads are accessible through high-speed shared

memory, and each thread can calculate the interactions of

its dedicated particle with all other particles in shared

memory (see Figure 2). For a block of nB threads, this

reduces memory bandwidth by a factor 1/nB. In addition,

each thread can now compute more interactions per

memory read, allowing the thread scheduler to more

efficiently hide global memory latencies. The optimal

block size depends on the resources used by the kernel:

number of registers and shared memory size. A block size

of nB ¼ 64 turned out to be the optimal choice for our

program. For details about the interplay between register

usage, shared memory usage, block size and number of

blocks per MP, we refer to NVIDIA’s CUDA programming

guide [10].

2.2 Results

To compare the performance of the GPU and CPU

implementations on our test system, we measured the time

required to integrate a single MD time step as a function of

Figure 2. Schema of the splitting of the force calculation into
blocks. Each of the nb threads is dedicated to calculating all
interactions of particle i. All particles j are loaded in blocks of
again nb particles, which are then shared among all threads.

Molecular Simulation 261

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
S
C

U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
e
r
n

C
a
l
i
f
o
r
n
i
a
]

A
t
:

1
8
:
2
9

1
8

A
u
g
u
s
t

2
0
1
0

system size N. The speedup factor x is defined as

x ¼
TCPU

TGPU

; ð4Þ

where TCPU is the time used by the CPU implementation and

TGPU the time used by the GPU implementation. In addition

to the GPU implementation with CUDA, we also present

results from a GPU implementation in Cg [9], a language

designed for graphic processing. It is supported by the

majority of current graphics hardware, but does not provide

the flexibility required for more complex MD algorithms.

The left graph in Figure 3 shows the average time used

to integrate a single MD time step. The quadratic scaling

of run time with system size is clearly visible for the CPU

version. For the GPU code at small system sizes, the

overhead of invoking the graphic program is comparable

to the actual computation time. Therefore, the quadratic

scaling regime is reached when this overhead becomes

negligible, which corresponds to a system size of

approximately 4000 particles.

The speedup factor for the GPU implementation is

depicted in the right graph in figure 3. Although the GPU

version is faster for all our system sizes, it requires a

system size larger than 4000 particles to reach its full

speedup of around 80.

3. Cell-lists MD

If the pair interaction is short-ranged, the simulation box is

typically decomposed into smaller domains, so-called

cells, with a side length equal to or greater than the

maximum interaction range. For a given particle, all

interaction partners are then located in the same and

directly neighbouring cells. Therefore, the algorithm scales

linearly with the number of particles, but suffers some

penalty due to the overhead associated with maintaining the

cell structure. For small systems, this might be disadvanta-

geous compared to the N-squared algorithm, but for large

systems it generally results in a huge performance gain. The

system size at which both algorithms perform equally well

is called break-even point.

Another way of optimisation are the so-called Verlet

lists. For each particle, a list holds all neighbour particles

within a sphere of rV ¼ rc þ Dr, the Verlet radius. The

Verlet lists skin with width Dr prevents particles to move

into interaction range unnoticed and generally acts as an

invalidation criterion. Every time a particles list is updated,

the particles current position is stored as Verlet list centre. If

this particle moved further than Dr/2 away from its Verlet

list centre, the list has expired and needs to be rebuild.

Obviously, the largerDr, the less frequent the lists have to be

updated, but the more unnecessary interactions with r . rc

have to be computed. Updating Verlet lists is rather

expensive and scales like O(N 2). Therefore, cell lists are

often used to reduce its costs toO(N). Compared to cell lists,

Verlet lists further reduce the number of possible interaction

partners and result in a theoretical seven fold speedup.

Yang et al. [17] used the Verlet lists approach to

compute the thermal conductivities in solid argon on a

GPU. However, their Verlet lists were computed only once

(on the CPU) and never updated, which restricts its use to

defect-free solids. To fit the SIMD architecture, they added

virtual particles to obtain the same list size for all particles.

Moreover, to avoid inner-loop branching which deterio-

rates the performance, the interaction cutoff distance was

set to the Verlet list radius rV. In doing so, they removed the

essential skin from their Verlet lists allowing interactions

due to fluctuations to be ignored. This shows that Verlet

lists are not particularly suited for a SIMD architecture.

The MD code of [17] is therefore useful as a proof of

concept, but cannot be used for production runs.

Figure 3. Left: Time (in seconds) required to integrate a single MD time step as a function of system size N. Right: Speedup factor for
both GPU implementations, Cg and CUDA. The speedup saturates once both the processor and GPU versions have reached the quadratic
scaling regime.

J.A. van Meel et al.262

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
S
C

U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
e
r
n

C
a
l
i
f
o
r
n
i
a
]

A
t
:

1
8
:
2
9

1
8

A
u
g
u
s
t

2
0
1
0

In our program we applied only cell lists. They seem

more suitable for the hardwares architecture and could be

implemented to run entirely on the GPU. Care was taken

not to neglect any interactions and to include cell list

updates.

3.1 Implementation details

There are plenty of schemes to implement the cell lists

technique [19]. One approach uses one linked list per cell

to store the identities of the particles located in it. The

advantage is that this scheme works well for all densities

without parameter modifications, because there are no size

limitations on a linked list. The disadvantage is that

memory access is random, not sequential, and therefore a

linked list cannot be loaded in parallel.

Another way is to assign a fixed sized array of

placeholders (AOP) to every cell and physically copy

particles position into this array. The advantage of this

scheme is that interacting particles are physically close

together in memory allowing for fast parallel loading. The

disadvantage is that it generally requires more memory,

because each AOP has to provide space enough to store

particles at the highest possible density.

Our implementation uses the latter scheme. Per cell,

one thread is devoted to one placeholder. Empty places are

filled with virtual particles. Each thread i of a cell c0 loads

the data of placeholder i of cell cn from global memory and

stores it into shared memory. It synchronises with the

other threads of the same cell c0 to ensure loading

has finished. Now it computes the interactions of particle

i with all particles in shared memory. Note that this is

done for virtual particles, too. These steps are performed

for the centre cell, cn ¼ c0, and all neighbour cells,

n ¼ 1, . . . , 26.

But the force computation is not the only task. As

particles move, the cell lists have to be updated. While this

is straightforward on a single CPU, the parallel version

comes with some difficulties. If a cell realises that one of

its particles is about to move to a neighbour cell, it cannot

move the particle there without the risk of memory-write

conflicts and data inconsistency.

To safely update a cell in a parallel environment, we

first remove all particles from the list which left the cell.

Then all particles from neighbouring cells are checked to

see if they moved in and need to be added to this list.

Double-buffering ensures that all old lists stay intact until

all cells have updated their list. Both for removing the

particles from a cell that have left the cell and adding

the particles that have moved in, we have to first test where

a particle belongs, and then update the corresponding

particle list by either deleting or adding particles.

Testing particles can be done in parallel. Each thread

of a cell computes the cell id for one particle and stores it

in shared memory. Now one thread sequentially loops over

these particles and adds those with a correct cell id to the

list. To prevent memory-write conflicts, this task has to be

performed by a single thread per cell, leaving all other

threads idle.

Updating a cell list requires all particles from this cell

and its neighbour cells to be loaded from memory. In order

not to load the same data twice, we perform this task

during force calculation, not directly after the integration

of positions. As a drawback the cell lists are not precisely

up-to-date, but one time-step behind. In order not to

neglect any interactions, the cells have to have a side

length larger than the maximum interaction range plus a

so-called skin of thickness l, where l is the maximum

particle displacement per time step. For MD simulations it

is common practise to use an even larger skin and therefore

update the cell lists only every couple of time steps.

3.2 Results

As for the N-squared MD algorithm in Section 2, we

compared the GPU implementation with its CPU

counterpart. Because the algorithmic complexity exceeded

the capabilities of Cg, only CUDA could be used.

The system size lower limit is given by the

requirement to have at least 3 cells per dimension at a

density of r ¼ 1.0. The upper limit for the density was

given by the array size associated with every cell, which

was n ¼ 32 in the data presented here. For a minimum cell

size of rc ¼ 2:5s and a density of r ¼ 1.0, on average

rr3
c < 16 places per cell are occupied. This implies that

most of the time half of the threads are calculating

interactions of virtual particles which do not contribute.

This deteriorates at lower densities.

The run time is density dependent: the more particles

per cell, the more interactions have to be computed, and

the computation time rises. This is true for the CPU

version. However, our GPU version behaves differently. In

contrast to the CPU version, the GPU version’s run time is

dominated by the total number of cells, not by the number

of interactions per cell. This is because interactions are

always calculated for all placeholders; at low densities,

most of them are however empty. At constant number of

particles, the number of cells decreases with the density,

and therefore the run time decreases. This effect saturates

once all placeholders of a cell are used.

The left graph of figure 4 shows the speedup factor for

our GPU implementation. At the lowest density of

r ¼ 0.1, the GPU version is twice as fast as the CPU

version. At higher densities, the GPU outperforms the

CPU by up to a factor 40. The errors for these speedup

factor are smaller than the symbol sizes and the kinks and

bumps reproducible. They relate to the cell size, which

fluctuates in order to get an integer number of cells per

Molecular Simulation 263

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
S
C

U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
e
r
n

C
a
l
i
f
o
r
n
i
a
]

A
t
:

1
8
:
2
9

1
8

A
u
g
u
s
t

2
0
1
0

dimension. Assume a box length of Lx ¼ 11s and a

minimum cell size of rc ¼ 2.5s; then the number of cells

for this dimension is nx ¼ int[Lx/rc] ¼ int[4.4] ¼ 4 and the

actual cell size is r0c ¼ Lx=nx ¼ 2:75s. This increase of

10% results in 33% more particles per cell, leading to 77%

more interactions, decreasing the CPU performance. But

for the GPU version a few more threads compute real

particle interactions instead of virtual ones, resulting in no

penalty.

The absolute computation times required per MD time

step are depicted in the right graph of Figure 4. For

comparison, the (density independent) N-squared MD data

is shown as well. The cell-list data feature a different slope

than the N-squared data, indicating linear and quadratic

scaling, respectively. Intersection points with the N-

squared curve would indicate the break even points, where

both algorithms perform equally well. However, for all

system sizes and densities depicted in Figure 4, the cell-

lists version performed better than its N-squared

counterpart.

4. Random number generation

For many applications in computer simulations, e.g. MC

simulations or MD simulations with a stochastic thermo-

stat, a large quantity of (pseudo-)random numbers is

required. Typically, simple linear congruential generators

such as the lrand48 are used [18]. Given a number xn, the

following number in its series is generated as follows:

xnþ1 ; axn þ c mod 248; ð5Þ

where a and c are some integer constants. The pseudo-

random number xnþ1 is then converted to the pseudo-

random number Ynþ1 of the required data type. For Ynþ1,

one uses the d most-significant bits of xnþ1, where d is the

bit size of the required data type (e. g. d ¼ 31 for

nonnegative 32-bit integers).

4.1 Implementation details

To parallelise generation rule (5), we note that

xnþm ; Axn þ C mod 248; ð6Þ

where

A ; am mod 248 and C ;
Xm
i¼0

aic mod 248: ð7Þ

The random number generator is then implemented as

follows. We choose a number S of random numbers to

generate in parallel. To start the random number generator,

we choose a seed x0, and generate the first xi, i ¼ 1, . . . , S

according to the serial rule (5). The next set of S pseudo-

random numbers is then generated from this set according

to rule (6). Since the calculation of xiþS only requires

knowledge about xi, all xiþS, i ¼ 1, . . . , S can be calculated

in parallel. If some multiple RS of S random numbers is

required, each set xi, xiþS, . . . , xiþ(R 2 1)S can be calculated

independently by an isolated processor.

For the implementation on current GPUs, this is very

convenient: using S independent threads, each thread first

loads its current state xi. Then, it generates the following

pseudo-random numbers xiþS, calculates the output value

YiþS and stores it. This step is repeated for all xiþnS, until in

total R random numbers have been generated and stored.

Finally, the thread saves the current state xiþ(R 2 1)S. For

Figure 4. Left: Speedup of the GPU version at various densities. The kinks and bumps are reproducible. For details, see main text. Right:
absolute times (in seconds) for a single MD step. The density-independent N-squared MD data is presented as a reference. The
intersection points with this reference data would indicate the break-even points for the cell-lists algorithm. But for all system sizes shown
here, the cell-lists MD is faster than its N-squared counterpart.

J.A. van Meel et al.264

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
S
C

U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
e
r
n

C
a
l
i
f
o
r
n
i
a
]

A
t
:

1
8
:
2
9

1
8

A
u
g
u
s
t

2
0
1
0

our test, we used S ¼ 6144 independent threads, grouped

into 32 blocks of 192 threads each.

Note that all arithmetics is done modulo 248. However,

GPUs (as well as standard CPUs) do not offer 48-bit data

types. In principle, a 48-bit number can be represented by

three 16-bit numbers, but for performance reasons it is

better to represent the 48-bit number as one 64-bit integer

or two 32-bit integers. We have chosen to represent the xn
by two 32-bit integers, which contain the 24 most-

significant and 24 lowest-significant bits.

4.2 Results

We compare our implementation of the lrand48 random

number generator on the GPU both to the standard GNU-

libc lrand48() function as well as a self-written CPU

version using 64-bit arithmetics. For each implementation,

we measured the time necessary to generate the first N

random numbers of the lrand48 series for

10,240 # N # 40,960,000. The resulting speedup factors

of our implementations relative to the GNU-libc

implementations are shown in Figure 5.

The optimised CPU version is consistently faster than

the system implementation by a factor of almost four. This

simply demonstrates the high 64-bit performance of

current PC processors. However, the GPU achieves a

much higher performance. For generating more than a

million random numbers, the GPU is faster than the

standard-libc lrand48 by a factor of 150. Compared to our

optimised CPU-version, the speedup is still almost 40.

Although the speedup factor for this pure integer

arithmetics problem is therefore not as high as for typical

floating-point problems, the GPU is still competitive for

the generation of random numbers. Moreover, our

implementation stores the output random numbers in the

relatively slow main memory of the graphics card.

Depending on the problem at hand, it is however often

possible to generate random numbers on the fly, which will

increase the speedup factor.

5. Summary and outlook

The computational power of recent graphics cards is fifty

times as large as the power of a conventional processor. It

has been shown previously that this speed can be harvested

for many problems, e.g. matrix multiplication or the

calculation of electrostatic interactions. In this article, we

have demonstrated that it is possible to run a conventional

MD simulation entirely on a graphics card. The

simulations run 25–80 times faster than on a single

conventional processor, at comparable prices. Similar

results are reported by Anderson et al. [20] using a

different technical approach. This shows that it is also

possible to harvest this computational power for MD

simulations.

Although our code features only the simple Lennard-

Jones potential, it is trivial to replace this potential by other

pair-potentials, including the coulombic interaction. By

this, our code can in fact be used for many systems of

interest. Moreover, the GPUs are indeed general purpose

processors by now, and therefore it should be possible to

implement many other techniques equally efficiently, such

as Ewald summation methods or SHAKE for constrained

dynamics. Currently the GPUs are limited to single

precision floating point operations. For long non-

thermalized simulations, in which energy conservation is

crucial, this precision might not be sufficient. However,

double-precision GPUs are expected for the end of this

year.

While MD simulation techniques can be easily ported

onto the GPU architecture, this does not hold for the

equally wide-spread family of MC methods. Tomov et al.

[14] have implemented a MC scheme for the 2D Ising

model showing that lattice-based probabilistic simulations

can be ported to the GPUs SIMD architecture. However,

off-lattice many particle MC simulations are difficult to

parallelise, both on conventional parallel architectures and

on SIMD hardware. Reasons for this are the random

acceptance moves causing unpredictable branching, and

the permanent access to global information to obey

detailed balance.

The difference in computational power between

conventional processors and GPUs is expected to increase

further. At the end of this year, NVIDIA GPUs are

expected to reach Teraflops performance on a single card,

and will feature double precision floating point operations,

at a rate of 250 Gigaflops. Even with current off-the-shelf

PC mainboards it is possible to build systems equipped

Figure 5. Speedup of a self-written CPU and a GPU version of
the rand48 random number generator versus the standard glibc
implementation.

Molecular Simulation 265

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
S
C

U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
e
r
n

C
a
l
i
f
o
r
n
i
a
]

A
t
:

1
8
:
2
9

1
8

A
u
g
u
s
t

2
0
1
0

with four graphics cards. A single PC can therefore obtain

Teraflops performance, and a small cluster of such PCs

provides a computational power of 10 Teraflops for a price

of less than $100,000.

Acknowledgements

This work is part of the research program of the Stichting voor
Fundamenteel Onderzoek der Materie (FOM), which is
supported by the Nederlandse Organisatie voor Wetenschappe-
lijk Onderzoek (NWO). AA acknowledges support from the
Marie-Curie programme of the European Commission. SPZ and
RB acknowledge support by NWO (via grant #635.000.303 and
#643.200.503) and the Netherlands Advanced School for
Astrophysics.

References

[1] H.-J. Limbach et al., Espresso—an extensible simulation
package for research on soft matter systems, Comput. Phys.
Commun. 174 (2006), pp. 704–727.

[2] LAMMPS, Benchmarks of the LAMMPS Molecular
Dynamics Simulator, 2005.

[3] V.S. Sunderam, PVM: a framework for parallel distributed
computing, Concurr. Pract. Exp. 2 (1990), pp. 315–339.

[4] E. Gabriel et al., Open MPI: Goals, concept, and design of a
next generation MPI implementation, Proceedings, 11th
European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, 2004, pp. 97–104

[5] L. Dagum and R. Menon, OpenMP: An industry-standard
API for shared-memory programming, IEEE Comput. Sci.
Eng. 5 (1998), pp. 46–55.

[6] J. Makino and M. Taiji, Scientific simulations with special
purpose computers: the GRAPE systems, John Wiley &
Sons, New York, 1998.

[7] R. Susukita et al., Hardware accelerator for molecular
dynamics: MDGRAPE-2, Comput. Phys. Commun. 155
(2003), pp. 115–131.

[8] R.J. Rost, OpenGL Shading Language, 1st ed., Pearson
Education, Upper Saddle River, 2004.

[9] R. Fernando and M.J. Kilgard, The Cg Tutorial: The
Definitive Guide to Programmable Real-Time Graphics,
Addison-Wesley Professional, Boston, 2003.

[10] NVIDIA, CUDA Programming Guide Version 1.0, 2006.
[11] K. Moreland and E. Angel, The FFT on a GPU, Graphics

Hardware (2003), pp. 112–119.
[12] E.S. Larsen and D. McAllister, Fast matrix multiplies using

graphics hardware, Proceedings of the ACM/IEEE
conference on Supercomputing, 2001, p. 55.

[13] W. Li, X. Wei, and A. Kaufman, Implementing lattice
boltzmann computation on graphics hardware, Vis.
Comput. 19 (2003), pp. 444–456.

[14] S. Tomov et al., Benchmarking and implementation of
probability-based simulations on programmable graphics
cards, Comput. Graphics 29 (2005), pp. 71–80.

[15] S.F.P. Zwart, R.G. Belleman, and P.M. Geldof, High-
performance direct gravitational N-body simulations on
graphics processing units, New Astron. 12 (2007), pp.
641–650.

[16] R.G. Belleman, J. Bédorf, and S.F.P. Zwart, High
performance direct gravitational N-body simulations on
graphics processing units II: An implementation in CUDA,
Accepted for publication in New Astron, 2007.

[17] J. Yang, Y. Wang, and Y. Chen, GPU accelerated mole-
cular dynamics simulation of thermal conductivities,
J. Comput. Phys. 221 (2007), pp. 799–804.

[18] The Open Group. The Single UNIX Specification, Version 3,
2002.

[19] D. Frenkel and B. Smit, Understanding Molecular
Simulation, Academic Press, London, 2002.

[20] J.A. Anderson, C.D. Lorenz, and A. Travesset, General
purpose molecular dynamics simulations fully implemented
on graphics processing units, Submitted to J. Comput.
(2007).

J.A. van Meel et al.266

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
S
C

U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
e
r
n

C
a
l
i
f
o
r
n
i
a
]

A
t
:

1
8
:
2
9

1
8

A
u
g
u
s
t

2
0
1
0

