
International Journal of Parallel Programming, Vol. 29, No. 3, 2001

Improving Memory Hierarchy
Performance for Irregular Applications
Using Data and Computation
Reorderings1

John Mellor-Crummey,2, 4 David Whalley,3

and Ken Kennedy2

Received October 1999; revised September 2000

The performance of irregular applications on modern computer systems is hurt
by the wide gap between CPU and memory speeds because these applications
typically under-utilize multi-level memory hierarchies, which help hide this gap.

217

0885-7458�01�0600-0217�19.50�0 � 2001 Plenum Publishing Corporation

1 This research was supported in part the National Science Foundation under cooperative
agreement CCR-9120008 and Grants ETA-9806525 and CCR-9904943, the Department of
Energy's Accelerated Strategic Computing Initiative under research subcontract 13347884,
the Los Alamos National Laboratory Computer Science Institute (LACSI) through LANL
contract number 03891-99-23 as part of the prime contract (W-7405-ENG-36) between the
Department of Energy and the Regents of the University of California, and by DARPA and
Rome Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-
96-1-0159. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as
representing the official policies or endorsements, either expressed or implied, of DARPA
and Rome Laboratory or the U.S. Government. This paper has been approved for public
release by Los Alamos National Laboratory and was assigned reference number LA-UR-00-
5672. A preliminary version of this research was described in the Proceedings of the ACM
International Conference on Supercomputing, June 1999, under the title ``Improving Memory
Hierarchy Performance for Irregular Applications.''

2 Department of Computer Science, MS 132, Rice University, 6100 Main, Houston, Texas
77005. E-mail: johnmc�cs.rice.edu, ken�cs.rice.edu

3 Computer Science Department, Florida State University, Tallahassee, Florida 32306-4530.
E-mail: whalley�cs.fsu.edu

4 To whom correspondence should be addressed. E-mail: johnmc�cs.rice.edu



This paper investigates using data and computation reorderings to improve
memory hierarchy utilization for irregular applications. We evaluate the impact
of reordering on data reuse at different levels in the memory hierarchy. We focus
on coordinated data and computation reordering based on space-filling curves
and we introduce a new architecture-independent multi-level blocking strategy
for irregular applications. For two particle codes we studied, the most effective
reorderings reduced overall execution time by a factor of two and four, respec-
tively. Preliminary experience with a scatter benchmark derived from a large
unstructured mesh application showed that careful data and computation order-
ing reduced primary cache misses by a factor of two compared to a random
ordering.

KEY WORDS: Memory hierarchy optimization; data reordering; computa-
tion reordering; space-filling curves; multi-level blocking.

1. INTRODUCTION

The gap between CPU speed and memory speed is increasing rapidly as
new generations of computer systems are introduced. Multi-level memory
hierarchies are the standard architectural design used to address this
memory access bottleneck. As the gap between CPU speed and memory
speed widens, systems are being constructed with deeper hierarchies.
Achieving high performance on such systems requires tailoring the
reference behavior of applications to better match the characteristics of
a machine's memory hierarchy. Techniques such as loop blocking(1�6) and
data prefetching(4, 7, 8) have significantly improved memory hierarchy utiliza-
tion for regular applications. A limitation of these techniques is that they
aren't as effective for irregular applications. Improving performance for
irregular applications is extremely important since large-scale scientific and
engineering simulations are increasingly using adaptive irregular methods.

Irregular applications are characterized by patterns of data and com-
putation that are unknown until runtime. In such applications, accesses to
data often have poor spatial and temporal locality, which leads to ineffec-
tive use of a memory hierarchy. Improving memory system performance
for irregular applications requires addressing problems of both latency and
bandwidth. Latency is a problem because poor temporal and spatial reuse
result in elevated cache and translation lookaside buffer (TLB) miss rates.
Bandwidth is a problem because indirect references found in irregular
applications tend to have poor spatial locality. Thus, when accesses cause
blocks of data to be fetched into various levels of the memory hierarchy,
items within a block are either referenced only a few times or not at all
before the block is evicted due to conflict and�or capacity misses, even
though these items will be referenced later in the execution.

218 Mellor-Crummey, Whalley, and Kennedy



One strategy for improving memory hierarchy utilization for such
applications is to reorder data dynamically at the beginning of a major
computation phase. This approach assumes that the benefits of increased
locality through reordering will outweigh the cost of the data movement.
Data reordering can be particularly effective when used in conjunction with
a compatible computation reordering. The aim of data and computation
reorderings is to decrease latency and more effectively utilize bandwidth at
different levels of the memory hierarchy by (1) increasing the probability
that items in the same block will be referenced close together in time; and
(2) increasing the probability that items in a block will be reused more
extensively before the block is replaced. This paper explores strategies
for data reordering and computation reordering along with integrated
approaches to evaluate how effectively they improve memory hierarchy
utilization on machines with multi-level memory hierarchies. We also intro-
duce multi-level blocking as a new computation reordering strategy for
irregular applications.

A common class of irregular applications considers particles or mesh
elements in spatial neighborhoods. Figure 1 shows a simple n-body simula-
tion that we use as an example throughout the paper. Although we explain
our techniques in terms of this example, they apply more broadly to other
types of irregular applications, especially those that simulate physical
systems in two or more dimensions. Our sample n-body simulation con-
siders particles within a defined volume, represented here as a two-dimen-
sional area for simplicity. Each particle interacts with other particles within
a specified cutoff radius. Particles Pj and Pk are shown in the physical
space along with a cutoff radius surrounding each particle. Interactions are
between a particle and other particles within its cutoff radius. The particles
can change positions over time in the physical space of the problem. To
adapt to these changes, the application periodically recalculates which
particles can interact.

Figure 1 also shows the problem data space for this sample applica-
tion. The information for each particle includes its coordinates in the physi-
cal space and other attributes, such as velocity and the force exerted upon
it. The interaction list indicates the pairs of particles that can interact. The
data for the particles is irregularly accessed since the order of access is
determined by the interaction list. The number of interactions is typically
much greater than the number of particles. Note that there are many
possible variations on how the data space can be organized.

The remainder of this paper has the following organization. First, we
introduce related work that uses blocking, data reordering, and space-
filling curves to improve the memory hierarchy performance of applica-
tions. Second, we outline the general data and computation reordering

219Improve Memory Hierarchy Performance for Irregular Applications



File: 828J 171704 . By:XX . Date:26:04:01 . Time:07:26 LOP8M. V8.B. Page 01:01
Codes: 2457 Signs: 1937 . Length: 44 pic 2 pts, 186 mm

Fig. 1. A classical irregularly structured application.

techniques that we consider in this paper. Third, we describe three irregular
programs, explain how we manually apply specific combinations of data
and computation reordering techniques by inserting calls to library
routines, and present the results of applying these techniques on these
programs. Finally, we present a summary and conclusions of the paper.

2. RELATED WORK

Blocking for improving the performance of memory hierarchies has
been a subject of research for the last few decades. Early papers focused on
blocking to improve paging performance, (9, 10) but recent work has focused
more narrowly on improving cache performance.(2, 4�6) Techniques similar
to blocking have also been effectively applied to improvement of reuse
in registers.(1) Most of these methods deal with one level of the memory
hierarchy only, although the cache and register techniques can be effec-
tively composed. A recent paper by Navarro et al. examines the effective-
ness of multi-level blocking techniques on dense linear algebra(11) and a
paper by Kodukula et al. presents a data-centric blocking algorithm that
can be effectively applied to multi-level hierarchies.(12)

The principal strategy for improving bandwidth utilization for regular
problems, aside from blocking for reuse, has been to transform the program
to increase spatial locality. Loop interchange is a standard approach to
achieving stride-1 access in regular computations. This transformation has
been specifically studied in the context of memory hierarchy improvement
by a number of researchers.(13, 14)

As described earlier, data reordering can be used to reduce bandwidth
requirements of irregular applications. Ding and Kennedy(15) explored
compiler and runtime support for a class of runtime data reordering techni-
ques. They examine an access sequence and use it to greedily reorder data

220 Mellor-Crummey, Whalley, and Kennedy



File: 828J 171705 . By:XX . Date:02:04:01 . Time:09:29 LOP8M. V8.B. Page 01:01
Codes: 2874 Signs: 2353 . Length: 44 pic 2 pts, 186 mm

aiming to increase spatial locality as the access sequence is traversed. They
consider only a very limited form of computation reordering in their work.
Namely, for computations expressed in terms of an access sequence com-
posed of tuples of particles or objects, they apply a grouping transforma-
tion to order tuples in the sequence to consider all interactions involving
one object before moving to the next. Das et al.(16) applied this same
computation reordering in an unstructured mesh application. Ding and
Kennedy(15) did not specifically consider reordering for multi-level memory
hierarchies although they proposed a strategy for grouping information
about data elements to increase spatial locality, which has the side effect of
improving TLB performance. In our work, we applied this grouping strategy
before taking baseline performance measurements. Also, we evaluate Ding
and Kennedy's dynamic strategy, first-touch reordering, along with other
strategies.

In recent years, space-filling curves have been used for managing
locality for both regular and irregular applications. A space-filling curve for
some finite space of d dimensions (d�2) is a continuous, nonsmooth curve
that passes arbitrarily close to every point. Each point in a d-dimensional
space can be mapped to the nearest position along a one-dimensional
space-filling curve by applying a sequence of bit-level logical operations to
its d-dimensional coordinates. Space-filling curves, their properties, and the
details of their construction are described elsewhere.(17, 18) A Hilbert space-
filling curve is one type of space-filling curve. Figure 2 shows a fifth-order
Hilbert curve in two dimensions. This curve has an important property: its
recursive structure preserves locality. Points close in the multi-dimensional
space traversed by the curve are typically close along the curve. In par-
ticular, the successor of any point along the curve is one of its adjacent
neighbors along one of the coordinate dimensions. Figure 3 shows a Morton
curve. Like a Hilbert curve, a Morton curve also has a recursive structure;
however, lattice points along a Morton curve are not always adjacent neigh-
bors, which results in a slightly lower degree of locality. Morton curves are

Fig. 2. Fifth-order Hilbert
curve through two dimensions.

221Improve Memory Hierarchy Performance for Irregular Applications



File: 828J 171706 . By:XX . Date:02:04:01 . Time:09:29 LOP8M. V8.B. Page 01:01
Codes: 2683 Signs: 2175 . Length: 44 pic 2 pts, 186 mm

Fig. 3. Fifth-order Morton
curve through two dimensions.

popular because they are simple to compute: a point's position along the
curve is determined by a bitwise interleaving of its coordinates.

Space-filling curves or related ordering techniques(19) have been used
to partition data and computation among processors in parallel computer
systems. They have been applied in problem domains that include n-body
problems, (19, 20) graph partitioning, (21) and adaptive mesh refinement.(22)

Ordering data elements by their position along a space-filling curve and
assigning each processor a contiguous range of elements of equal (possibly
weighted) size is a fast partitioning technique that tends to preserve physi-
cal locality in the problem domain. Namely, data elements close together
in physical space tend to be in the same partition. Ou et al.(21) present
results that show that other methods, such as recursive spectral bisection
and reordering based on eigenvectors, can produce partitionings with better
locality according to some metrics; however, the differences among the
methods (in terms of the locality of partitionings produced) diminished
when these methods were applied to larger problem sizes. Also, they found
that using space-filling curves to compute reorderings is orders of magnitude
faster than the other methods they studied.

Several researchers have proposed using recursive data layouts for com-
putation on dense matrices. To improve locality for matrix multiplication,
Thottethodi et al.(23) explored ordering matrix elements by their position
along a space-filling curve rather than typical row-major or column-major
orderings, and Frens and Wise(24) proposed recursive matrix layouts based
on quad trees. The hierarchical locality resulting from these recursively
defined orderings is a good match for divide-and-conquer matrix algorithms.

Several researchers have investigated strategies for improving memory
hierarchy performance for algorithms on graphs and unstructured meshes.
Al-Furaih and Ranka(25) used a simple breadth-first node numbering. Das
et al.(16) applied breadth-first traversal strategy known as Reverse Cuthill�

222 Mellor-Crummey, Whalley, and Kennedy



McKee to order elements in an unstructured mesh to improve locality. This
reordering technique was developed by George and Liu(26) for a different
purpose: bandwidth and profile minimization of sparse matrices. George's
strategy was a refinement of a breadth-first ordering technique developed
by Cuthill and McKee.(27) The Cuthill�McKee and Reverse Cuthill�McKee
orderings use an adjacency list representation of an undirected graph and
renumber graph nodes using a breadth-first traversal in which all unnum-
bered neighbors of a node x are added to a FIFO queue of nodes to be
numbered by order of increasing degree. Sloan(28) developed a related but
more sophisticated reordering strategy. First, he more carefully selects the
first node in the ordering to yield orderings with narrower level structure.
Then, at each step instead of simply adding nodes to the queue in order of
increasing degree, he uses priorities that are a function of distance to the
end node as well as node degree. A principal application of Sloan's method
is for ordering elements in a finite element mesh for efficient computation
using frontal solution techniques.

Al-Furaih and Ranka(25) also studied the impact of data reorderings
based on Hilbert curves for reducing the execution time of particle-in-cell
codes. Our work differs from theirs principally in that we consider coor-
dinated data and computation reordering, whereas they consider data reor-
derings exclusively.

3. DATA REORDERING APPROACHES

A data reordering involves changing the location of the elements of the
data, but not the order in which these elements are referenced. Consider
again the data space shown in Fig. 1. A data reordering would change the
order of elements within the particle information vector and update the
interaction list to point to the new particle locations. By placing data
elements near one another if they are referenced together, data reordering
approaches can improve spatial locality. Temporal locality would not be
affected since the order in which data elements are accessed remains
unchanged. The following subsections describe the data reordering
approaches investigated.

3.1. First Touch Data Reordering

First-touch data reordering is a greedy approach for improving spatial
locality of irregular references.(15) Consider Fig. 4, which represents the
data space in Fig. 1 before and after data reordering using the first-touch
approach. A linear scan of the interaction list is performed to determine the
order in which the particles are first touched. The particle information is

223Improve Memory Hierarchy Performance for Irregular Applications



File: 828J 171708 . By:XX . Date:02:04:01 . Time:09:29 LOP8M. V8.B. Page 01:01
Codes: 2714 Signs: 2194 . Length: 44 pic 2 pts, 186 mm

Fig. 4. Data reordering using a first touch approach.

reordered and the indices in the interaction list now point to the new posi-
tions of the particles. However, the order in which the particles are referenced
is unchanged. The idea is that if two particles are referenced near each other
in time in the interaction list, then they should be placed near each other
in the particle list. An advantage of first-touch data reordering is that the
approach is simple and can be accomplished in linear time. A disadvantage
is that the computation order (interaction list in Fig. 4) must be known
before reordering can be performed.

3.2. Space Filling Curve Data Reordering

Figure 5 shows an example data space before and after data reordering
using a space-filling curve. Assume that the first three particles on the curve
are Px , Py , and Pz . To use a k-level space-filling curve to reorder data for
particles whose coordinates are represented with real numbers, several
steps are necessary. First, each particle coordinate must be normalized into
a k-bit integer. The integer coordinates of each particle's position are con-
verted into a position on the space-filling curve by a sequence of bit-level
logical operations. The particles are then sorted into ascending order by
their position on the curve. Sorting particles into space-filling curve order
tends to increase spatial locality. Namely, if two particles are close together
in physical space, then they tend to be nearby on the curve. One advantage
of using a space-filling curve for data reordering is that data can be
reordered prior to knowing the order of the computation. This allows
some computation reorderings to be accomplished with no overhead. For
instance, if the data is reordered prior to establishing the access order (e.g.,
an interaction list), then the access order will be affected if it is established
as a function of the order of the data. A potential disadvantage of using
space-filling curves is that it is possible that the reordering may require
more overhead than a first-touch reordering due the sort of the particle
information. Of course, the relative overheads of the two approaches would

224 Mellor-Crummey, Whalley, and Kennedy



File: 828J 171709 . By:XX . Date:26:04:01 . Time:07:26 LOP8M. V8.B. Page 01:01
Codes: 1940 Signs: 1282 . Length: 44 pic 2 pts, 186 mm

Fig. 5. Data reordering using a space filling curve.

depend on the number of data elements versus the number of references to
the data.

4. COMPUTATION REORDERING APPROACHES

A computation reordering involves changing the order in which data
elements are referenced, but not the locations in which these data elements
are stored. Consider again the data space shown in Fig. 1. A computation
reordering would reorder the pairs of elements within the interaction list.
The vector of particle information accessed by the computation would
remain unchanged. Computation reordering approaches can improve both
temporal and spatial locality by reordering the accesses so that the same
or neighboring data elements are referenced close together in time. The
following subsections describe the computation reordering approaches
considered in this work.

4.1. Space-Filling Curve Computation Reordering

Reordering a computation in space-filling curve order requires deter-
mining the position along the curve for each data element and using these
positions as the basis for reordering accesses to these data elements.
Figure 6 shows an example data space before and after computation

Fig. 6. Computation reordering using a space-silling curve.

225Improve Memory Hierarchy Performance for Irregular Applications



reordering. Assume that the first three particles in space-filling curve order
are Px , Py , and Pz . To reorder the computation, entries in the interaction
list, as shown in Fig. 5, are sorted according to the space-filling curve posi-
tion of the particles they reference. The order of the particle information
itself remains unchanged. A space-filling curve based computation reorder-
ing can improve temporal locality. For instance, if particle X interacts with
a nearby particle Y, then it is likely that particle Y will be referenced again
soon since Y in turn will interact with other particles.

4.2. Computation Reordering by Blocking

As described earlier in the paper, blocking computation via loop nest
restructuring has been used successfully to improve memory hierarchy
utilization in regular applications for multi-level memory hierarchies. Here
we describe how blocking can be used as a computation reordering technique
for some irregular applications as well.

In terms of our n-body example, the following loop nest is an abstract
representation of the natural computation ordering for the given data
order:

FOR i=1 to number of particles DO
FOR j in the set particles�that�interact�with[i] DO

process interaction between particles i and j

To block this computation, we first assign each particle to some block.
(One way of computing a block number for a particle is to take its address
and ignore some number of low-order bits.) Then, rather than considering
all interactions for each particle at once, one can consider all interactions
between particles in each pair of blocks while traversing pairs of blocks in
some orderly fashion. The following code fragment illustrates this idea for
one possible traversal order of the blocks.

FOR i=1 to number of blocks of particles DO
FOR j=i to number of blocks of particles DO

process interactions between all interacting
particle pairs with the first particle in block i
and the second in block j

Mitchell et al.(29) concurrently developed a related blocking technique for
irregular references that they call bucket tiling. They improve the locality of
a stream of accesses for a single non-affine reference by reordering com-
putation into blocks so that the stream of accesses from the same block of
computation falls into the same region of memory. They don't consider

226 Mellor-Crummey, Whalley, and Kennedy



orderings for multiple references (such as particle pairs), or hierarchical
orderings for multi-level memory hierarchies.

To extend blocking strategies to multi-level memory hierarchies, it is
necessary to block for each level in the hierarchy. In an earlier version
of this work, we described a k-level blocking strategy for k-level memory
hierarchies.(30) Unfortunately, choosing the best blocking factor for each
level is difficult and experimentation is necessary. The best blocking factors
for an application depend not only upon the architectural characteristics of
the target machine's memory hierarchy but also upon characteristics of the
application itself. Architectural characteristics that affect the choice of
blocking factor for a cache include the size of the blocks managed by that
cache (i.e., line size for data caches or page size for TLB), the number of
sets in the cache, the associativity, and even the replacement policy.
Application characteristics that affect the choice of blocking factors for a
computational kernel include the number of data references in the kernel,
whether the access streams for each reference are disjoint or overlapping,
and the spatial and temporal reuse among all of the references. For
irregular problems, the amount of spatial and temporal reuse achievable is
a function of an application's input data and depends upon factors such as
the average density of particles per unit of space or the average degree of
nodes in an unstructured mesh.

Over the last several years, recursive divide and conquer strategies
have been advocated for blocking regular computations for machines with
multi-level memory hierarchies in an architecture-independent fashion.(24, 31)

The rationale for this approach is that if the computation at a particular
level of recursion doesn't fit into some level of the memory hierarchy, the
computation at some deeper level of recursion will. The divide-and-conquer
approach essentially blocks the computation at all possible levels and some
of those levels will be an effective blocking for any particular machine.

We can achieve a similar machine-independent multi-level blocking of
irregular computations as well by careful computation ordering. In terms of
our n-body example, computation order is represented by an interaction
list and we can block computation by sorting interactions by the block
numbers of the particles they reference. Applying a lexicographical sort(32)

to the interaction pairs using [block�of (p1), block�of (p2)] as the sorting
key for pair [p1, p2] achieves a single level of blocking. To block for a
multi-level memory hierarchy in a machine-independent fashion, we modify
the approach slightly. First, we compute a sort key for an interaction using
a bit-wise interleaving of the block numbers for the particles in the pair.
Next, we sort interactions using these keys. This effectively blocks the inter-
action list for all possible levels in any memory hierarchy. Forming an
interaction's sorting key as the bit-wise interleaving of its particle block

227Improve Memory Hierarchy Performance for Irregular Applications



numbers amounts to computing the position of the interaction along a 2D
Morton space-filling curve through the space of block pairs. Sorting inter-
actions by their position along a Morton curve recursively blocks the com-
putation. Section 5.1 explains how we accomplish this quickly in practice.
As an alternative to simply performing a bit-wise interleaving of the block
numbers to achieve a recursive blocking based on Morton ordering, a pair
of block numbers can be simply treated as coordinates in a two-dimen-
sional space that can be converted to a position along any space-filling
curve, such as a Hilbert curve, as we describe in Section 5.3. Sorting by the
position along a Hilbert curve will produce a similar recursive blocking.
A Morton ordering is faster to compute, but a Hilbert ordering offers more
potential locality because it avoids long edges.

5. APPLYING THE TECHNIQUES

This section describe our experiences in applying data and computa-
tion reordering techniques to improve the performance of two particle
codes, moldyn and magi. Also, we describe our preliminary experiences with
a scatter benchmark derived from CHAD, a large unstructured mesh appli-
cation. Moldyn is a synthetic benchmark, whereas magi and CHAD are
production programs. These codes are described in more detail in the
following subsections. Moldyn and magi are irregular programs that exhibit
poor spatial and temporal locality, which are typical problems exhibited by
this class of applications. CHAD is in large part a vector computation, but
spends a significant fraction of time performing irregular gather�scatter
operations to move data between the nodes and edges of an unstructured
mesh.

We chose to perform our experiments with moldyn and magi on an
SGI O2 workstation based on the R10000 MIPS processor since it
provides hardware counters that enable collection of detailed performance
measurements and we were able to use the workstation in isolation. Both
programs were compiled with the highest level of optimization available for
the native C and Fortran compilers. [Note: Although these compilers can
insert data prefetch instructions to help reduce latency, prefetching is less
effective for irregular accesses because prefetches are issued on every
reference rather than every cache line.(8) Our experience was that data
prefetching support in the SGI Origin C and Fortran compilers did not
improve performence for the applications we studied and we did not use it
on our experiments.] Table I displays the configurations of the different
levels of the memory hierarchy on this machine. Each entry in the TLB
contains two virtual to physical page number translations, where each page

228 Mellor-Crummey, Whalley, and Kennedy



File: 828J 171713 . By:XX . Date:02:05:01 . Time:08:56 LOP8M. V8.B. Page 01:01
Codes: 2512 Signs: 1777 . Length: 44 pic 2 pts, 186 mm

Table I. SGI O2 Workstation Cache Configurations

Cache configuration

Cache type Cache size Associativity Block size

L1 Data 32KB 2-way 32B
L2 Data 1MB 2-way 128B

TLB 512KB 64-way 8KB

contains 4KB of data. Thus, the 8KB block size for the TLB is the amount
of addressable memory in two pages associated with a TLB entry.

5.1. The Moldyn Benchmark

Moldyn is a synthetic benchmark for molecular dynamics simulation.
The computational structure in moldyn is similar to the nonbonded force
calculation in CHARMM,(33) and closely resembles the structure represented
in Fig. 1 of the paper. An interaction list is constructed for all pairs of inter-
actions that are within a specified cutoff radius. These interactions are pro-
cessed every timestep and are periodically updated due to particles changing
their spatial location.

A high-level description of the computation for moldyn is shown in
Fig. 7. The time-consuming portion of the algorithm is the inner FOR loop
which corresponds to the computeforces function in the benchmark. This
function traverses the interaction list performing a force calculation for
each pair of particles. We applied different data and computation reordering
techniques in an attempt to make the computeforces function more efficient.

For our experiments, we set the number of particles to 256,000, which
resulted in over 27 million interactions. We chose this problem size to
cause the data structures to be larger than the secondary cache and the
amount of memory that can be contained in the pages associated with the
TLB. Figure 8 depicts the data structures used in the computeforces func-
tion. The coordinates and forces have three elements for each particle since

Fig. 7. Structure of the computation in Moldyn.

229Improve Memory Hierarchy Performance for Irregular Applications



File: 828J 171714 . By:XX . Date:02:05:01 . Time:09:41 LOP8M. V8.B. Page 01:01
Codes: 2695 Signs: 2211 . Length: 44 pic 2 pts, 186 mm

Fig. 8. Main data structures in the Moldyn benchmark.

the physical space of the problem is in three dimensions. The length of the
interaction list was long enough to contain all interacting pairs of particles.
Each of the elements of the coordinates and forces are double precision
values and the interaction list elements are integers used as indices into the
coordinate and force arrays.

To make the moldyn benchmark more amenable to performing
experiments with a large number of particles, we changed the approach for
building the interaction list. Previously, a straightforward algorithm with
O(n2) complexity was used to find all the interacting pairs of particles that
were within the specified cutoff radius. We used an approach of dividing
the physical space into cubes, where the length of each cube side was the
size of the cutoff radius. We then assigned each particle to its respective
cube. For a given particle, only the particles in current and immediate
surrounding cubes had to be checked as possible interaction partners. (This
is a well-known technique that is used by the magi application as well.)
This allowed the interaction list to be built in a couple of minutes instead
of several hours.

Before performing experiments with data and computation reor-
derings, we manually applied three transformations to remove orthogonal
memory hierarchy performance problems.

1. We interchanged the dimensions of the coordinates and the forces
arrays so information for each particle would be contiguous in
memory.

2. We fused the coordinates and forces together (approximating an
array of structures) to provide better spatial locality.

3. We adjusted the loop that computes forces so that when a
sequence of interactions references the same first particle, the data
for the first particle is only loaded from memory once.

The purpose of this static program restructuring was to establish a good
performance baseline for our experiments so that improvements in reuse of
dynamic data are not ``lost in the noise.'' In our results below, all of our
performance comparisons are with respect to this statically-tuned version
of the program that we refer to as Baseline.

230 Mellor-Crummey, Whalley, and Kennedy



File: 828J 171715 . By:XX . Date:02:05:01 . Time:08:57 LOP8M. V8.B. Page 01:01
Codes: 1948 Signs: 1350 . Length: 44 pic 2 pts, 186 mm

Table II. Miss Information

Cache type Baseline misses Baseline miss ratio

L1 1,613,065,560 0.23439
L2 995,152,174 0.61693

TLB 664,457,217 0.09655

Table II shows information about misses in the caches and the TLB
for our Baseline version of moldyn benchmark. To investigate the nature of
the poor memory hierarchy performance, we used the MHSIM memory
hierarchy simulator we developed to collect an L1 miss trace for the
application. Figure 9 shows a plot of L1 misses over the first 100,000 inter-
actions within the computeforces in the Baseline version of moldyn. While
all memory references were simulated, only the misses associated with the
particle information are displayed in the plot. The block numbers in the
plot are the portion of the addresses (tag and index) used to access the L1
cache and the interaction numbers indicate on which interaction each miss
occurred. The band of misses is initially as wide as the array of particles.
Figure 10 shows a plot of L1 misses over 100,000 interactions when a
Hilbert curve was used to reorder both the particle data and computation.
This plot was drawn at the same scale as the plot in Fig. 9 and the total
number of misses for the first 100,000 interactions was reduced by a factor

Fig. 9. L1 Baseline misses over the first 100,000 interac-
tions.

231Improve Memory Hierarchy Performance for Irregular Applications



File: 828J 171716 . By:XX . Date:02:05:01 . Time:08:58 LOP8M. V8.B. Page 01:01
Codes: 2195 Signs: 1745 . Length: 44 pic 2 pts, 186 mm

Fig. 10. L1 misses over the first 100,000 interactions
after using Hilbert curves to reorder the data and com-
putation.

of 14. The difference between these plots illustrates the dramatic perfor-
mance benefits that can be achieved by applying data and computation
reorderings.

To accomplish multi-level blocking of the moldyn nonbonded forces
computation, the interaction list must be reordered to match the charac-
teristics of the memory hierarchy of the target machine. As described in
Section 4.2, we compute a key for each interaction by interleaving the
particle block numbers. To sort interaction pairs quickly, we break each
key into 4 bit ``digits'' and then apply a most significant digit radix sort.(32)

We chose 4-bit digits to avoid thrashing the TLB for large data sizes. Too
many bins for the radix sort implies too many pages. [Note: Prokop(31)

describes two alternative sorting algorithms that are cache oblivious with
asymptotically optimal reuse that would also be appropriate.]

To show how our multi-level blocking algorithm regularizes the
memory accesses of moldyn's molecular dynamics force computation, we
include Figs. 11�13 which show the pattern of L1 misses due to the com-
puteforces function for the first 10,000, 100,000, and 1,000,000 primary
cache misses. These plots show only the misses for irregular accesses to the
particle information; misses for the interaction list were simulated, but not
shown. The plots are based on traces that were collected using a cache
simulator configured for the memory model of the SGI O2. For the
measured computation, no reordering was applied to the data and but the
computation was blocked using Morton ordering as described in Section 4.2.

232 Mellor-Crummey, Whalley, and Kennedy



File: 828J 171717 . By:XX . Date:02:05:01 . Time:08:58 LOP8M. V8.B. Page 01:01
Codes: 1307 Signs: 801 . Length: 44 pic 2 pts, 186 mm

Fig. 11. Plot of 10K L1 misses.

The figures plot the block number of a data address that caused a primary
cache miss (a representation of a data addresses normalized to cache-line
sized units) versus the count of the number of particle pair interactions
simulated by computeforces up to the point this miss occurred (which
represents the advance of time in the simulation). The scales of these three
plots differ on each axis. The recursive structure of the blocked computation
order can be seen by comparing the three figures, which are at different scales.
The recursive structure of the computation causes the figures to have the
same basic form at all scales. At all scales, the pattern of misses has been

Fig. 12. Plot of 100K L1 misses.

233Improve Memory Hierarchy Performance for Irregular Applications



File: 828J 171718 . By:XX . Date:02:05:01 . Time:08:59 LOP8M. V8.B. Page 01:01
Codes: 1866 Signs: 1241 . Length: 44 pic 2 pts, 186 mm

Fig. 13. Plot of 1M L1 misses.

transformed into a memory hierarchy friendly pattern. In any vertical slice
of each plot, only two blocks are active at that scale: one to which the first
particle in the pairs belongs, and one to which the second particle belongs.
Since the Morton ordering of the computation recursively blocks the pat-
tern of misses for each power of two, the computation will be appropriately
blocked for each level of a memory hierarchy where the sizes of the levels
are powers of two.

Table III shows the results for applying the different combinations of
data and computation reorderings to moldyn on an SGI O2 workstation.
All reorderings were applied by manually inserting calls to general-purpose

Table III. Results of the Different Data and Computation Reorderings
for Moldyna

Data Computation L1 cache L2 cache TLB
reordering reordering misses misses misses cycles

RCM None 0.96441 0.81847 0.49658 0.86650
First touch None 0.87487 0.76548 0.31928 0.79069
Hilbert None 0.87978 0.78074 0.26397 0.80731
None Hilbert 0.45053 0.12157 0.74006 0.37778
None Blocking 0.30376 0.23557 0.19278 0.61910
First touch Hilbert 0.33735 0.14314 0.00806 0.38773
Hilbert Hilbert 0.25816 0.10139 0.00624 0.26550

a Ratios as compared to the baseline measurements.

234 Mellor-Crummey, Whalley, and Kennedy



library routines we developed for computing ordering keys and then
permutations based on these keys. RCM stands for the Reverse Cuthill�
McKee approach described in Section 2. These results show ratios of
end-to-end performance as compared to execution of the Baseline version
of moldyn without any runtime data or computation reordering.

There are several aspects of the results that are worth noting. First,
data and computation reorderings are most effective at reducing misses for
caches with a large block or line size. For this reason reductions in TLB
misses were the greatest, and those for L2 were greater than those for
primary cache. Second, a combination of data and computation reorderings
performed dramatically better than using any specific type of data or com-
putation reordering in isolation. Hilbert data reordering combined with
Hilbert computation reordering reduced TLB misses by a factor of 160, L2
misses by a factor of 10, and primary cache misses by a factor of 4. This
strategy reduced the miss ratios for L1 cache from 23.40 to 6.10, for L2
cache from 61.70 to 6.30, and for TLB from 9.70 to 0.060. [It is worth
noting that since we are measuring end-to-end performance, the miss rates
quoted for executions with reordering include all misses incurred perform-
ing the reordering as well as misses during the rest of the program execu-
tion. When we consider the performance of the computeforces routine
alone, improvements are far greater.] In terms of reducing execution cycles,
Hilbert-based data and computation reordering performed the best, yield-
ing a factor of four overall reduction in cycles. While the Morton blocking
strategy was competitive even without data reordering, once the data and
computation are in Hilbert order for this density of interactions, there is
essentially no benefit to blocking. Particles do not have so many neighbors
that evaluating all interactions for a single particle causes significant evic-
tions. (The average interaction density in these experiments was 105 inter-
actions per particle.) In addition to the blocking results reported in the
table, we also experimented with multi-level blocking based on Hilbert
rather than Morton orderings. For the interaction density we studied, the
higher overhead of computing Hilbert keys for the interactions masked any
potential performance benefits.

5.2. The Magi Application

The magi application is a particle code used by the U.S. Air Force
for performing hydrodynamic computations that focus on interactions of
particles in spatial neighborhoods. The computational domain consists of
objects comprised of particles and void space. A 3D rectangular space
containing particles is divided into boxes, where the neighboring particles
within a sphere of influence of a given particle are guaranteed to be in the

235Improve Memory Hierarchy Performance for Irregular Applications



File: 828J 171720 . By:XX . Date:26:04:01 . Time:07:27 LOP8M. V8.B. Page 01:01
Codes: 2807 Signs: 2253 . Length: 44 pic 2 pts, 186 mm

Fig. 14. Structure of the computation in Magi.

same box or an adjacent box. A high-level description of the computation
for magi is given in Fig. 14. For our experiments, we used DoD-provided
test data involving 28,000 particles. For this test case, the size of the data
structures is larger than the secondary cache and the amount of memory
that can be contained in the pages associated with the TLB.

The utility that created the input data set for magi ordered the
particles using Sloan's method.(28) This ordering was accomplished by first
constructing an undirected graph in which all particles within a cutoff
radius are linked as neighbors and then applying Sloan's method to the
resulting graph to compute a refined ordering for the particles.

Just as in the moldyn benchmark, we manually tuned the magi applica-
tion to improve memory hierarchy performance to provide a better baseline
for our experiments.

1. We transposed several arrays containing particle information so
this information would be contiguous in memory.

2. We fused some arrays together (approximating an array of struc-
tures) to provide better spatial locality when different kinds of
particle information are referenced together.

Unlike the moldyn benchmark, a separate interaction list is created for
each particle on each time step and is discarded after being used once.
There is never an explicit representation of all the interactions. Therefore,
computation reordering techniques that require reordering of the inter-
action list as presented in the moldyn benchmark would not be applicable
for magi. Likewise, some types of data reordering cannot be accomplished
in the same manner since there is no persistent representation of an interac-
tion list that can be updated to point to the new location of the particles.
Therefore, we used the following approaches to accomplish data and com-
putation reordering for magi.

1. We used an indirection vector containing the new positions of the
particles when applying data reordering without computation
reordering so the order in which the particles were referenced
would be unaffected. This requires an additional level of indirec-
tion each time information about a particle is referenced, which

236 Mellor-Crummey, Whalley, and Kennedy



can potentially have an adverse effect on both the performance of
the memory hierarchy and the execution cycles.

2. Data reordering using a space-filling curve does not depend on the
order of the interactions and was performed before the first time
step with a manually-inserted call to a reordering library. First-
touch data reordering was accomplished by (a) collecting the
order of the references during the first time step across the different
particle interaction lists; and (b) reordering the particles before
they are referenced on the second time step with a manually-inserted
call to a reordering library.

3. When applying computation reordering, we simply did not use the
indirection vector. Thus, the order of a subsequently generated
interaction list is affected by the data reordering of the particle
information.

4. We composed a data reordering using a Hilbert space-filling curve
followed by a data reordering using a first-touch approach without
using an indirection vector to cause computation reordering.
Placing the particles in Hilbert order results in a space-filling
curve based computation order, which increases the likelihood that
consecutive particles being processed will have many common
neighbors in their interaction lists and improves temporal locality.
Applying a first-touch reordering to the space-filling curve based
computation order after the first time step greedily increases spa-
tial locality. Note this approach is similar to applying computation
reordering using a Hilbert space-filling curve approach and data
reordering using a first-touch approach as was accomplished in
moldyn. The only difference is that interaction lists in magi are
established at the beginning of each time step, which causes the
first-touch data reordering to affect the computation order.

Table IV shows the results of applying combinations of data and com-
putation reorderings that were beneficial for the magi application. Several
of the combinations of data and computation reorderings applied to the
moldyn benchmark are not shown in this table for two reasons. First, we
found that applying data reordering only for magi did not improve perfor-
mance. The cost of accessing data through an indirection vector offset the
benefits that were achieved by reordering data. One should note that data
reordering without computation reordering can achieve benefits as shown
for moldyn in Table III. However, achieving such benefits may require that
there is an inexpensive method to access the reordered data, such as updating
an interaction list once to refer to the new data locations rather than

237Improve Memory Hierarchy Performance for Irregular Applications



Table IV. Results of the Different Data and Computation Reorderings
for Magi a

Data Computation L1 cache L2 cache TLB
reordering reordering misses misses misses Cycles

First touch First touch 0.42959 0.27032 0.49173 0.56321
Hilbert Hilbert 0.28621 0.11916 0.15704 0.43751
Hilbert�first touch Hilbert�first touch 0.32670 0.11695 0.13513 0.43607

a Ratios as compared to the baseline measurements.

incurring the cost of dereferencing an element of the indirection vector on
each data reference. Second, the combinations of data and computation
reordering were also restricted by the fact that the interaction list for a par-
ticle was regenerated on each time step. Regeneration of the interaction
lists prevented direct computation reordering. Likewise, separate and small
interaction lists for each particle made the use of blocking inappropriate.

The results in Table IV show that the combination of reordering par-
ticle data and and interaction computations according to particle positions
along a Hilbert curve (which probabilistically increases spatial and tem-
poral locality) followed by a first-touch data reordering (which greedily
improves spatial locality) achieves the lowest L2 and TLB misses and the
best overall cycle time by a very slim margin. The table shows that apply-
ing a first-touch data reordering after the Hilbert-based reordering amor-
tizes the cost of the first-touch reordering by reducing L2 and TLB misses,
but the barely perceptible improvement in overall performance does not
justify the additional programming effort.

5.3. Scatter Benchmark from CHAD

CHAD is a parallel unstructured mesh application developed at Los
Alamos National Laboratory for simulating three-dimensional fluid flows
with chemical reactions and fuel sprays. The code operates on a static
unstructured mesh composed of arbitrarily mixed hexahedral and lower-
order degenerate elements (e.g., pyramids, prisms, or tetrahedra). Although
an arbitrary number of elements can be associated with a node, most nodes
have degree close to six.

Computation in CHAD consists mostly of dense vector operations on
data values associated with the edges and mesh elements. The principal
irregular data access patterns occur in gather�scatter operations. On a
16039 node mesh with 47718 edges (the largest test case available to us, but
a small one compared to those used in production runs), a sequential version

238 Mellor-Crummey, Whalley, and Kennedy



File: 828J 171723 . By:XX . Date:26:04:01 . Time:07:27 LOP8M. V8.B. Page 01:01
Codes: 2325 Signs: 1894 . Length: 44 pic 2 pts, 186 mm

of the code spent 250 of its time performing gather and scatter operations
between mesh nodes and endpoints or midpoints of edges. Initially, our
aim was to study the effects of data and computation reordering in the con-
text of the entire CHAD code; however, working remotely on an unfamiliar
code of this size (roughly 88,000 lines) proved to be a bottleneck for com-
pleting this investigation. When mesh nodes and edges are reordered in this
code, many auxiliary data arrays must be updated as well. To accelerate
our research, we abstracted out a scatter benchmark that represents the
data access patterns when moving data between nodes and edges.

In our experiments with this benchmark, we used a memory hierarchy
simulator to evaluate locality because it enabled us to collect detailed infor-
mation about misses, including traces. Miss traces enable us to see where
and why misses occur and provide insight into the structure of the com-
putation. To collect these traces we used MHSIM, our locally-developed
memory hierarchy simulator, which we configured to simulate a 2-way set-
associative 32KB primary cache��the configuration found in the MIPS
R10K processor used in the SGI O2.

Our scatter benchmark performs a scatter-add that independently
accumulates X, Y, and Z quantities at each node from the appropriate
endpoint of each incident edge. Figure 15 shows the organization of the
nodes of the mesh we used in our experiments. The nodes are closely
spaced along radial spines centered at the origin. The ordering of the nodes
is largely in terms of concentric shells. Figure 16 shows a plot of node
number versus distance of the node from the origin. When the original
node ordering is drawn by connecting all of the nodes, the resulting figure

Fig. 15. Organization of 16038 mesh nodes for
CHAD scatter benchmark.

239Improve Memory Hierarchy Performance for Irregular Applications



File: 828J 171724 . By:XX . Date:02:04:01 . Time:09:31 LOP8M. V8.B. Page 01:01
Codes: 1212 Signs: 718 . Length: 44 pic 2 pts, 186 mm

Fig. 16. Node number versus distance from the origin.

looks like a ball of string. The structure becomes apparent when viewing
the plot at high magnifications, or plots of subsets of the data. Figure 17
shows a plot connecting the positions of 600 consecutive nodes from the
node vector in the order given by the original dataset. The line moves
through one node on each spine, then repeats the traversal of the spines in
the same order at a different radial distance.

In our experiments, we measured the number of primary cache misses
that occurred during one trip through the CHAD scatter kernel to

Fig. 17. Plot connecting 600 nodes in CHAD scatter
benchmark mesh (original order).

240 Mellor-Crummey, Whalley, and Kennedy



File: 828J 171725 . By:XX . Date:02:04:01 . Time:09:32 LOP8M. V8.B. Page 01:01
Codes: 2251 Signs: 1854 . Length: 44 pic 2 pts, 186 mm

Fig. 18. L1 misses for CHAD scatter benchmark using
original node order.

accumulate edge-based data at the node endpoints. Figure 18 shows the
pattern of misses for one execution of the CHAD scatter kernel using the
original node order. The irregular accesses for updating the X, Y, and Z
node values in the scatter operation appear as three parallel roughly
horizontal bands at the top of the figure. At the left edge of these bands are
three diagonal lines where the values are initialized to zero. The three
central diagonal bands correspond to misses for stride-1 accesses to the
separate X, Y, and Z vectors that hold values for each of the edge
endpoints. The bottommost diagonal shows the misses to the vector con-
tains a pair of node coordinates for each edge. For this ordering, 120 of
the misses come from the irregular access pattern to the node values.
However, the irregular misses are important for two reasons. First, they
represent an opportunity for temporal reuse. The only other temporal reuse
is that each node number for an edge endpoint is used three times to
scatter X, Y, and Z data. Second, the other stride-1 misses are predictable
and can be mitigated by prefetching.

To investigate the impact of data and computation reordering on this
scatter benchmark, we investigated manual application of several different
node and edge ordering strategies. Node and edge orderings determine the
spatial and temporal locality of the irregular accesses in the scatter.
Without a good node ordering, no spatial locality will be realized for the
irregular accesses in the scatter computation. An edge ordering amounts to
a computation ordering, since it determines the pattern of irregular access
to the nodes during a scatter computation. A good edge order will capitalize

241Improve Memory Hierarchy Performance for Irregular Applications



on spatial locality in the node ordering and orchestrate temporal reuse of
data by bringing multiple irregular accesses to the same node close together
in time.

We considered four different node orderings, and three different edge
orderings. Not all combinations are considered. The node orderings we
compared include the original order from the test dataset, Hilbert order,
random order, and the order determined by applying Reverse Cuthill�
McKee to the sparse adjacency matrix representing the edges. After a node
reordering, edge endpoints must be renumbered. The edge orderings we
considered include the original order, lexicographic order (of the (src,dest)
edge pairs), and Hilbert order. Comparing different data orderings with
random is interesting because the parallel version of the CHAD code uses
the ParMETIS graph partitioner(34) to partition the nodes and edges of the
computational mesh among available processors. ParMETIS computes its
partitionings in a hierarchical fashion and swaps nodes and edges between
partitions. After partitioning, the locality properties of the mesh pieces are
believed to resemble those for meshes with random node orderings.(35)

We compute Hilbert order for nodes by normalizing each node's X, Y,
and Z coordinates, which are a triple of integer coordinates, each in the
range [0..221]. We then convert this triple to a position along a 63-bit
Hilbert curve running through this space, and sort the nodes by their
position along the curve. Computing Hilbert order for edges is analogous:
we treat the pair of node numbers identifying the edge endpoints as coor-
dinates in a two-dimensional space, normalize them, and then convert
them to Hilbert position and sort them. To improve the quality of lexico-
graphic and Hilbert edge orderings, we flip edges, if necessary, to ensure
that the smallest numbered endpoint is always the first in the edge pair.

Table V shows the relative number of primary cache misses measured
for a scatter operation performed using different combinations of node and
edge orderings for the CHAD test mesh. We didn't measure secondary
cache or TLB misses at all for this experiment because of the modest data
size. The values shown for L1 cache misses are all ratios between the num-
ber of misses measured with the simulator for that particular data and
computation ordering, divided by the number of misses measured using the
original node and computation orderings. Unlike moldyn and magi, which
have respective degrees of data reuse on the order of 100 and 20 for each
particle in each timestep, the CHAD test mesh used by the scatter
benchmark has an average degree of 6. Thus, there is less reuse to exploit
with good node and edge orderings. For the test mesh, our results show
that the original node and edge order is quite good: it is nearly a factor of
2 better than random. Both the space-filling curve and the Reverse Cuthill�
McKee node order produce similar results. In these experiments, the

242 Mellor-Crummey, Whalley, and Kennedy



Table V. Results of the Different Data and Computation Reorderings for
Scatter Benchmark

Node reordering Edge reordering L1 cache misses

original lexicographic 0.962
Hilbert original 1.28
Hilbert lexicographic 0.978
Hilbert Hilbert 1.03
RCM lexicographic 0.972
RCM Hilbert 1.01
random original 1.61
random lexicographic 1.92

Hilbert edge order is 4�60 slower than the lexicographic order. Compar-
ing the two orders, lexicographic order greedily exploits temporal locality
of the first node of an edge pair at the expense of the second. Combined
with a good edge order, lexicographic order can be quite effective when the
number of incident edges per node is modest (the data for all of a node's
partners fits in cache). Hilbert edge order attempts to balance locality
between the edge endpoints. This can be beneficial when the number of
neighbors per node is high, but here the sacrifice of greedy temporal
locality for the first endpoint of an edge is a net loss.

6. CONCLUSIONS

Typically, irregular applications make poor use of memory hierarchies
and performance suffers as a result. Improving memory hierarchy utiliza-
tion involves improving reuse at multiple levels, typically including TLB
and one or more levels of cache. Our measurements show how coordinated
orderings of data and computation can dramatically improve utilization in
memory hierarchies at multiple levels. We also have shown that neither
data reordering nor computation reordering alone is nearly as effective as
a coordinated approach involving both. We introduced multi-level block-
ing as a new computation reordering strategy for irregular applications and
demonstrated significant benefits by combining reordering techniques based
on space-filling curves with other data or computation reordering techniques.

Using space-filling curves as the basis for data and computation reor-
derings offers several benefits. First, reordering data elements according to
their position along a space-filling curve probabilistically increases spatial
locality. In space-filling curve order, neighboring elements in physical space,
which tend to be referenced together during computation, are clustered

243Improve Memory Hierarchy Performance for Irregular Applications



together in memory. This clustering helps improve utilization of long cache
lines and TLB entries. Second, reordering computation to traverse data
elements in their order along a space-filling curve also improves temporal
locality. By following the space-filling curve, neighboring elements in physi-
cal space are processed close together in time, and thus computations that
operate on a data element and its spatial neighbors repeatedly encounter
the same elements as the computation traverses all elements in a neighbor-
hood. Finally, data reordering based on position along a space-filling curve
is fast. The cost of such a reordering is typically small relative to the rest
of a program's computation.

With the moldyn application, we demonstrated dramatic improvements
in memory hierarchy utilization by using Hilbert-based data reordering
and either multi-level blocking or a Hilbert-based strategy for reordering
computation. The Hilbert-based computation reordering has an advantage
over blocking for moldyn in that it is accomplished at no cost by simply
performing Hilbert-based data reordering before building the interaction
list in the canonical fashion. In our experiments, blocking offered no addi-
tional benefit over Hilbert computation order because the interaction density
was not high enough to cause capacity misses while computing interactions
for a single particle. Blocking would offer benefits with higher interaction
densities.

With the magi application, Hilbert curve based strategies for data and
computation reordering improved end-to-end performance by over a factor
of two. The best memory hierarchy utilization came from considering
particles in space-filling curve order to improve temporal locality, and
using that as the basis for a first-touch data and computation reordering
that greedily improves spatial locality. It is interesting to note that the
improvements we achieved for magi with our data reorderings are relative
to a baseline computation for which input particle data has already been
carefully ordered using Sloan's method for profile minimization.(28)

Similarly, space-filling curve based reordering methods provided substan-
tially superior overall performance than the Reverse Cuthill�McKee profile
minimization method for moldyn.

With the scatter benchmark from the CHAD application, the Hilbert
and Reverse Cuthill�McKee data orderings combined with lexicographic
data ordering produced results closely comparable to the original careful
ordering. The key point, is that these ordering strategies achieved this level
of performance without any a priori knowledge and that the level of
locality they achieved is nearly a factor of two better than that achieved for
a random ordering. These results suggest that these reordering techniques
may provide substantial benefits when applied to pieces of partitioned
meshes that are not well ordered.

244 Mellor-Crummey, Whalley, and Kennedy



As the gap between processor and memory speeds continues to grow
and large-scale scientific computations continue their shift towards using
adaptive and irregular structures, techniques for improving the memory
hierarchy performance of irregular adaptive applications will become
increasingly important. In this paper, we have demonstrated that data and
computation reordering based on space-filling curves can be used to
improve the locality of sequential computations. However, these techniques
are more broadly applicable. Our colleagues have recently also applied
space-filling curve based reorderings to improve the parallel efficiency of
shared-memory and software distributed shared memory computations
by improving data locality, which reduces communication and false shar-
ing.(36, 37) Our experiences show that good data and computation orders
can be achieved for irregular problems using dynamic reorderings, and that
the gain in locality from using good data and computation orders can be
dramatic.

ACKNOWLEDGMENTS

Discussions with Vikram Adve and Rob Fowler helped shape this
work. Doug Moore provided us with a library for mapping between multi-
dimensional coordinate spaces and positions along a Hilbert space-filling
curve. Gina Goff and Ehtesham Hayder provided us access to an SGI O2
workstation for our experiments. Initial experimentation for this work was
performed on an SGI Onyx2 at the Biomedical Computation and Visual-
ization Laboratory of the Baylor College of Medicine supported by grant
BIR-9512521 from the National Science Foundation. Later experimen-
tation was performed on the Blue Mountain SGI Origin system at Los
Alamos National Laboratory.

REFERENCES

1. D. Callahan, S. Carr, and K. Kennedy, Improving Register Allocation for Subscripted
Variables, Proc. ACM SIGPLAN Conf. Progr. Lang. Design Implementation, pp. 53�65
(June 1990).

2. D. Gannon, W. Jalby, and K. Gallivan, Strategies for Cache and Local Memory Manage-
ment by Global Program Transformation, J. Parallel Distributed Computing, 5:587�616
(1988).

3. M. S. Lam, E. E. Rothberg, and M. E. Wolf, The Cache Performance and Optimizations
of Blocked Algorithms, Proc. Fourth Int'l. Conf. Architectural Support Progr. Lang. Oper.
Syst., pp. 63�74 (April 1991).

4. A. K. Porterfield, Software Methods for Improvement of Cache Performance on Super-
computer Applications, Ph.D. Dissertation, Rice University, Houston, Texas (May 1989).

5. M. E. Wolf and M. S. Lam, A Data Locality Optimizing Algorithm, Proc. SIGPLAN
Conf. Progr. Lang. Design and Implementation, pp. 30�44 (June 1991).

245Improve Memory Hierarchy Performance for Irregular Applications



6. J. Ferrante, V. Sarkar, and W. Thrash, On Estimating and Enhancing Cache Effective-
ness, Proc. Fourth Workshop on Lang. Compilers for Parallel Computing (August 1991).

7. D. M. Tullsen and S. J. Eggers, Effective Cache Prefetching on Bus-Based Multipro-
cessors, ACM Trans. Computer Syst., 13(1):57�88 (February 1995).

8. T. C. Mowry, M. S. Lam, and A. Gupta, Design and Evaluation of a Compiler Algorithm
for Prefetching, Proc. Fifth Int'l. Conf. Architectural Support Progr. Lang. Oper. Syst.,
pp. 62�73 (October 1992).

9. A. C. McKeller and E. G. Coffman, The Organization of Matrices and Matrix Operations
in a Paged Multiprogramming Environment, Commun. ACM, 12(3):153�165 (1969).

10. W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie, Automatic Program Transformations for
Virtual Memory Computers, Proc. Nat'l. Computer Conf., pp. 969�974 (June 1979).

11. J. J. Navarro, E. Garcia, and J. R. Herrero, Proc. Tenth ACM Int'l. Conf. Supercomputing
(ICS) (1996).

12. I. Kodukula, N. Ahmed, and K. Pingali, Data-Centric Multi-level Blocking, Proc. ACM
SIGPLAN Conf. Progr. Lang. Design Implementation, pp. 346�357 (June 1997).

13. J. R. Allen and K. Kennedy, Automatic Loop Interchange, Proc. SIGPLAN Symp.
Compiler Construction SIGPLAN Notices, 19(6):233�246 (June 1984).

14. K. S. McKinley, S. Carr, and C.-W. Tseng, Improving Data Locality with Loop Transfor-
mations, ACM Trans. Progr. Lang. Syst., 18(4):424�453 (July 1996).

15. C. Ding and K. Kennedy, Improving Cache Performance of Dynamic Applications with
Computation and Data Layout Transformations, Proc. ACM SIGPLAN Conf. Progr.
Lang. Design Implementation, pp. 229�241 (May 1999).

16. R. Das, D. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy, The Design and Implemen-
tation of a Parallel Unstructured Euler Solver Using Software Primitives, AIAA J.,
32:489�496 (1994).

17. H. Sagan, Space-Filling Curves, Springer-Verlag, New York (1994).
18. H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing

and GIS, Addison�Wesley, New York (1989).
19. J. P Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy, Load Balancing and Data

Locality in Adaptive Hierarhcical N-body Methods: Barnes-Hut, Fast Multipole, and
Radiosity, J. Parallel Distributed Computing (June 1995).

20. M. S. Warren and J. K. Salmon, A Parallel Hashed Oct-Tree N-Body Algorithm, Proc.
Supercomputing (November 1993).

21. C. Ou, M. Gunwani, and S. Ranka, Architecture-Independent Locality-Improving Trans-
formations of Computational Graphs Embedded in k-Dimensions, Proc. Int'l. Conf.
Supercomputing (1995).

22. M. Parashar and J. C. Browne, On Partitioning Dynamic Adaptive Grid Hierarchies,
Proc. Hawaii Conf. Syst. Sci. (January 1996).

23. M. Thottethodi, S. Chatterjee, and A. R. Lebeck, Tuning Strassen's Matrix Multiplication
Algorithm for Memory Efficiency, Proc. SC98: High Performance Computing and
Networking (November 1998).

24. J. Frens and D. Wise, Auto-blocking Matrix Multiplication or Tracking BLAS3 Perfor-
mance from Source Code, Proc. ACM SIGPLAN Conf. Progr. Lang. Design Implementa-
tion, pp. 206�216 (June 1997).

25. I. Al-Furaih and S. Ranka, Memory Hierarchy Management for Iterative Graph Struc-
tures, Proc. Int'l. Parallel Processing Symp. (March 1998).

26. A. George and G. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice Hall, Englewood Cliffs, New Jersey (1981).

27. E. Cuthill and J. McKee, Reducing the Bandwidth of Sparse Symmetric Matrices, Proc.
ACM National Conf., Association of Computing Machinery (1969).

246 Mellor-Crummey, Whalley, and Kennedy



28. S. Sloan, An Algorithm for Profile and Wavefront Reduction of Sparse Matrices, Int'l. J.
Numerical Methods Engng., 23:239�251 (1986).

29. N. Mitchell, L. Carter, and J. Ferrante, Localizing Nonaffine Array References, Proc.
Parallel Architectures and Compilation Techniques (October 1999).

30. J. Mellor-Crummey, D. Whalley, and K. Kennedy, Improving Memory Hierarchy Perfor-
mance for Irregular Applications, Proc. ACM Int'l. Conf. Supercomputing, pp. 425�433
(June 1999).

31. H. Prokop, Cache-Oblivious Algorithms, Master's thesis, MIT Department of Electrical
Engineering and Computer Science (June 1999).

32. D. Knuth, The Art of Computer Programming Volume 3: Sorting and Searching,
Addison�Wesley, New York (1973).

33. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus,
CHARMM: A Program for Macromolecular Energy, Minimization and Dynamics
Calculations, J. Computational Chemistry, 4:187�217 (1983).

34. G. Karypis and V. Kumar, Parallel Multilevel k-way Partition Scheme for Irregular
Graphs, SIAM Review, 41: 278�300 (1999).

35. R. Robey, Personal Communication (September 2000).
36. Y. C. Hu, A. Cox, and W. Zwaenepoel, Improving Fine-Grained Irregular Shared-

Memory Benchmarks by Data Reordering, Proc. Supercomputing (November 2000).
37. V. Pai and S. Adve, Code Transformations to Improve Memory Parallelism, Proc.

MICRO-32 (November 1999).

247Improve Memory Hierarchy Performance for Irregular Applications


