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We study the satisfiability of random Boolean expressions built from many
clauses with K variables per clause (K-satisfiability). Expressions with a ratio �
of clauses to variables less than a threshold �c are almost always satisfiable,
whereas those with a ratio above this threshold are almost always unsatisfiable.
We show the existence of an intermediate phase below �c, where the prolif-
eration of metastable states is responsible for the onset of complexity in search
algorithms. We introduce a class of optimization algorithms that can deal with
thesemetastable states; one such algorithm has been tested successfully on the
largest existing benchmark of K-satisfiability.

The K-satisfiability problem (Ksat) asks
whether one can satisfy simultaneously a set
of M constraints between N Boolean vari-
ables, where each constraint is a clause built
as the logical OR involving K variables (or
their negations). Ksat is at the core of com-
binatorial optimization theory (1) and often
serves as a benchmark for search algorithms
in artificial intelligence and computer sci-
ence. An efficient algorithm for solving Ksat
for K � 3 would immediately lead to other
algorithms for efficiently solving thousands
of different hard combinatorial problems.
The class of combinatorial problems sharing
such a crucial feature is called NP-complete
(2), and it is a basic conjecture of modern
computer science that no such efficient algo-
rithm exists. Algorithms that are used to
solve real-world NP-complete problems dis-
play a huge variability of running times,
ranging from linear to exponential. A theory
for the typical-case behavior of algorithms,
on classes of random instances chosen from a
given probability distribution, is therefore the
natural complement to the worst-case analy-
sis (3–5). Whereas 1sat and 2sat problems are
solved efficiently by polynomial time algo-
rithms (6), K � 2 randomly generated Bool-
ean formulae may become extraordinarily
difficult to solve: It has been observed nu-
merically (7, 8) that computationally hard
random instances are generated when the
problems are critically constrained [i.e., close
to the satisfiable-unsatisfiable (SAT-
UNSAT ) phase boundary]. The study of crit-
ical instances represents a theoretical chal-

lenge toward a greater understanding of the
onset of computational complexity and the
analysis of algorithms. Moreover, such hard
instances are a popular test bed for the per-
formance of search algorithms (9).

The random Ksat problem has close sim-
ilarities with models of complex materials
such as spin glasses, which are fundamental
systems in the statistical physics of disor-
dered systems (10). Spin glasses deal with
binary variables (“spins”) interacting with
random exchange couplings. Each pair of
interacting spins can be seen as a constraint,
and finding the state of minimal energy in a
spin glass amounts to minimizing the number
of violated constraints. Although the con-
straints in spin glasses and Ksat differ with
respect to their precise form, in both cases the
difficulty comes from the possible existence
of “frustration” (11), which makes it difficult
to find the global optimal state by a purely
local optimization procedure. Links between
combinatorial optimization and statistical
physics have been known for years (10, 12,
13). Techniques from statistical physics are
particularly useful when the size of the in-
stance is large.

Two main categories of questions can be
addressed. One type is algorithmic (e.g., find-
ing an algorithm that decides whether an
instance is SAT or UNSAT, or that tries to
minimize the number of violated constraints).
Another one is more theoretical and deals
with random instances for which one wants to
predict the typical behavior (e.g., phase tran-
sitions and structure of the solution space).

We address the two types of questions in
the 3sat problem. When the numbers of vari-
ables N and of clauses M both increase at a
fixed value of � � M/N, random Ksat prob-
lems become generically SAT at small � and
generically UNSAT at large �. The existence
of a SAT-UNSAT phase transition in the
infinite N limit has been established rigorous-
ly for any K (14), but the critical value �c

(that separates the two phases) has been
found only in the (polynomial) K � 2 prob-
lem where �c � 1 (15–17). For the NP-
complete case K � 3, much less is known.
The present best numerical estimate for �c at
K � 3 is 4.26 (18), and the rigorous bounds
are 3.42 � �c � 4.506 (19, 20); previous
statistical mechanics analysis, using the rep-
lica method, has found �c(3) � 4.48 (21) and
�c(3) � 4.396 (22) in the framework of vari-
ational approximations. The SAT-UNSAT
decision problem is also known experimen-
tally to be algorithmically harder to solve in
the neighborhood of �c, depending on the
characteristics of the SAT-UNSAT phase
transition. Indeed, 2sat and 3sat are different
in this respect (23).

Setting out the statistical physics
problem. The Ksat problem deals with N
Boolean variables xi, i � {1, . . . , N}. Each
clause a � {1, . . . , M} involves K variables
{xi1(a), . . . , xiK(a)}. Each such variable can be
negated or not, and the clause is built as the
OR function of the K resulting variables. In
physical terms, the variable xi can be repre-
sented by a “spin” si � �1 through the
one-to-one mapping si � �1 if xi is false and
si � �1 if xi is true. For each variable xir(a)

appearing in clause a, one introduces a “cou-
pling” Ja

r � �1 if the variable appears negat-
ed in the clause; otherwise the coupling is Ja

r

� 1. The sets of indices i1(a), . . . , iK(a) and of
“couplings” Ja � {Ja

1, . . . , Ja
K} define an in-

stance of the problem under study. Given a
spin configuration, the “energy” εJa(si1(a), . . . ,
sik(a)) of clause a is equal to 0 if the clause is
satisfied, or equal to 1 if it is violated (24).
The total energy E equals the number of
violated clauses.

In statistical physics, one assigns to each
of the 2N spin configurations a Boltzmann
probability exp(�	E)/Z, where 	 is an aux-
iliary parameter playing the role of the in-
verse of temperature, and Z is a normalization
term; here we are interested in the 	 3 

“zero-temperature” limit, where Boltzmann’s
law selects optimal states.

The spin glass approach. We first study
the large N limit of the random 3sat problem,
where the indices in each clause are chosen
randomly, as well as the sign of each cou-
pling, with uniform distributions. Our ap-
proach to these problems uses a general strat-
egy initiated years ago in spin glass theory
(10). The first concept we need to introduce is
that of a state. Roughly speaking, states cor-
respond to connected regions of configura-
tions, such that one must cross energy barri-
ers that diverge when N3 
 to go from one
state to another. The archetype of such a
situation is the ferromagnetic transition
where the spins collectively polarize, either
toward an “up” state or toward a “down”
state. In frustrated systems such as satisfiabil-
ity problems, many states can exist: The
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number of states with energy E behaves as
exp[N �(e)], where e � E/N; the function
�(e), called the complexity, is a crucial con-
cept in studies of structural glasses. The
ground-state energy density e can be found
by the condition �(e) � 0. Here we choose a
restricted zero-temperature definition that ap-
plies to random Ksat: A state is simply a
cluster of configurations of equal energy re-
lated by single spin-flip moves, such that the
energy cannot be decreased by any sequence
of single spin flips (25). Generalizing the
approach of (26), one can develop a whole
“zero-temperature thermodynamics” of the
states by introducing a “free energy” function
(y) defined from

exp��Ny� y�� � �de exp�N���e� � ye��

(1)

The reweighting y is a Lagrange parameter
(similar to an inverse temperature) that al-
lows the energy of the states to be fixed.
Larger reweighting selects states of lower
energies until one reaches y � y*, corre-
sponding to the lowest energy states (y* � 

in the SAT region).

The cavity method: Message-passing
procedures. To compute (y), we use the
zero-temperature cavity method (27, 28), in
which the basic ingredients are the cavity
fields and the cavity biases, which are defined
in each state. The cavity field hi3a measures
the tendency of spin i to be up, when one of
the clauses, a, to which i belongs, has been
disconnected (Fig. 1). It is equal to the sum of
cavity biases ub3i, sent to site i from all the
other clauses b to which it belongs. In com-
puter science terminology, cavity fields are
messages sent from a variable node to a
function node, whereas cavity biases are mes-
sages sent from a function node to a variable
node (29). The cavity biases are determined
by a local optimization procedure. Consider
one clause a, involving K variables s1, . . . , sK,
and a penalty function εJ(s1, . . . , sK). The
optimization on the variables s2, . . . , sK, ex-
pressed as

min
s

2
, . . . , s

K
�εJ�s1, . . . , sK� �

1

2 �
j � 2

K

hjsj�
� �

1

2
�aJ �h2, . . . , hK� � s1uJ�h2, . . . , hK��

(2)
defines the mean energy shift aJ and the
cavity bias ua31 � uJ(h2, . . . , hK) propagated
from this clause to the variable s1 (30).

The advantage of cavity biases and cavity
fields in large (N �� 1) random Ksat and spin
glass problems is the special structure of the
interaction graph: It is locally tree-like, and
the connectivity fluctuates from site to site
with a Poisson distribution of mean K� (see
Fig. 1). On a more global scale, these random

graphs have loops with a typical length grow-
ing as log(N). As the cavity fields h2, . . . , hK

are defined in the absence of the clause,
they correspond to faraway variables [with
a distance of order log(N)]. The “clustering
property,” valid inside each state, implies
that their correlations go to zero at large N
(on a real tree they would be fully uncor-
related). The topology of the graph implies
that the cavity equations are exact on finite
subgraphs.

To determine the statistical properties of
the set of cavity biases and how they change
from state to state, we introduce “surveys,”
which are histograms of cavity biases. For
each state �, there is one cavity bias u a31

�

propagated from one clause a to site 1; it can
be computed from Eq. 2, where the cavity
fields are those corresponding to the state �.
For a given value of the reweighting, the
survey propagated to spin s1 in Fig. 1 is
defined as Q a31

(y) (u) � C���(u � ua31
� ),

where C is a normalization constant ensuring
that Q a31

(y) (u) is a probability distribution,
and the sum over � is restricted to the states
having the energy density e selected by the
reweighting y.

The survey propagation rules on the graph
of Fig. 1 take the precise form

Qa3 1
� y� �u� � C�� �

r � 1

q

dwrQ br32
� y� �wr�

� �
s � 1

q�

dvsQ cs33
� y� �vs�

��u � uJ�W,V�� exp� yaJ�W,V�� (3)

where W � w1 � . . . � wq, V � v1 � . . . �
vq�, and C� is a normalization constant. The
exponential term in Eq. 3 takes care of the
energy-level crossings induced by the propa-
gation. Once the surveys are known, the free
energy (y) can be computed using the for-
mulae of (27, 28), and the complexity can be
deduced from Eq. 1. The order parameter of
the theory is the collection of the surveys.

Phase diagram. In the zero-temperature
3sat problem, one sees from the definition (2)
that a given cavity bias ua3i takes either the
values {0,1} (if the variable xi appears negat-
ed in clause a) or the values {0,�1}. The
corresponding survey Q a3i

(y) (u) is thus char-
acterized by a single number, the probability
that u � 0. Using this simplification, we have
been able to compute (31) the statistical dis-
tribution of surveys in random graphs in the
infinite volume limit. We find two critical
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Fig. 1. In the random 3sat problem, the graph of clauses is locally isomorphic to a tree. Variables
(spins) are depicted by a circle, and clauses by a square. The cavity bias ua31 sent from the red
clause a to the variable s1 summarizes the effects of optimizing clause a on s2, s3, taking into
account all the blue � green (top) part of the graph, when the yellow (bottom) part has been taken
away. In the absence of the red clause, the cavity field h23a sums up all cavity biases w1, . . . , wq
arriving onto s2 from the blue clauses, and the cavity field h33a sums up all cavity biases v1, . . . , vq�
arriving onto s3 from the green clauses.
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values of � at �d � 3.921 and �c � 4.256.
For � � �d, the solution is of a paramagnetic
type [all the surveys equal �(u)], a generic
instance is satisfiable, and the solution can be
found even by a simple zero-temperature Me-
tropolis algorithm ( ZTMA) (32). For �d �
� � �c, the space of configurations breaks up
into many states, and there exists a nontrivial
complexity (33). Some of the states have zero
energy; therefore, we are still in the SAT
phase. It can be argued that algorithms like
ZTMA will generically get trapped into the
most numerous states, which have an exten-
sive (proportional to N) energy Eth.

At � � 4.2 we find analytically Eth �
0.0036N, and we have checked that ZTMA
converges to a similar value of energy. The
fact that eth � Eth/N is small explains the
good performance of smarter algorithms on
instances involving a few thousand variables.
At � � �c, the system is in its UNSAT phase,
and the lowest possible energy is positive.
The phase diagram is summarized in Fig. 2.

Survey propagation algorithm. We
now consider one given instance (31), that is,
one fixed large graph. We have seen experi-
mentally that in the glassy region � � �d, the
standard (y � 0) iteration of cavity biases
either ceases to converge or converges to the
trivial paramagnetic solution where all
ua3i � 0. If i is the rth site connected to the
function node a, we introduce a survey
Q a3i

(y) (u) � �a3i�(u) � (1 � �a3i)�(u � J a
r)

that is characterized by the single number
�a3i. The survey propagation of Eq. 3 per-
formed with random sequential updating is a
message-passing procedure that defines a dy-
namical process in the space of the KN vari-
ables �a3i. We have implemented it on large
random instances in the hard part of the SAT
phase, with � � 4.2 to 4.25, using a suffi-
ciently large value of y (typically y � 4 to 6).
The process is found to converge to a unique
nontrivial solution. We expect that this sur-
vey propagation technique can be of interest
in many problems of statistical inference.

The set of all surveys Q a3i
(y) (u) found after

convergence provides a nontrivial informa-
tion on the structure of the states. From all the
surveys sent onto one site i, we reconstruct
through a reweighted convolution (34) the
probability distribution of local fields on this
site, Pi(H). This is a distribution on integers
[Pi(H) � �r�(H � r)w i

r]. The total weight
wi

� � �r�1

 wi

r of Pi(H) on positive integers
gives the fraction of zero-energy states where
si � 1; similarly, the total weight wi

� �
�r��


�1 wi
r of Pi(H) on negative integers gives

the fraction of zero-energy states where si �
�1. We have checked numerically, on single
instances with N � 10,000, that these frac-
tions predicted from survey propagation
agree with those obtained by averaging on a
few hundreds of ground states.

A decimation algorithm. This informa-
tion can be exploited to invent new types of
algorithms (31) or to improve existing ones.
We have worked out one such application,
the survey inspired decimation (SID), which
shows promising performance, but other al-
gorithms probably could be found using the
same type of information. Given an instance,
we first compute all the surveys by the survey
propagation algorithm with a sufficiently
large value of y (e.g., y � 6). Then we deduce
the distribution of local fields, and in partic-
ular their weights wi

� on positive and nega-
tive integers. We then fix the variable i with
largest  wi

� � wi
� to the value si �

Sign(wi
� � wi

�). Satisfied clauses are elim-
inated, and unsatisfied K-clauses involving i
are transformed into K � 1 clauses, leading to
a new instance with a reduced number of
variables (and of clauses). The surveys can be
propagated again on this new instance (start-
ing from the previous ones) until conver-
gence, and the procedure is iterated. When-
ever a paramagnetic state is found (signaled
by all �a3i � 1) or at some intermediate
steps, a rapid search process like simulated
annealing at a fixed cooling rate is run.

This SID algorithm has been tested suc-
cessfully on the largest (up to N � 2000)
existing benchmarks (9) of random 3sat

instances in the hard regime. Satisfying
assignments have been found for all bench-
marks. We have applied the SID to much
larger instances, increasing N up to N �
105 at a fixed � � 4.2. The algorithm is
very efficient: It always finds a SAT con-
figuration, and its apparent complexity
scales like N2, although more systematic
studies with higher statistics will be neces-
sary to establish this behavior. For the very
same large instances, the only existing al-
gorithm able to find solutions, at a consid-
erable computational cost, is a highly opti-
mized version of the walksat algorithm (9,
35).

Conclusions. We have proposed an ana-
lytical method that predicts quantitatively the
phase diagram of the random 3sat problem in
the limit of infinite number of clauses and
opens the way to other types of algorithms. The
existence of an intermediate phase with many
metastable states close to the SAT-UNSAT
transition explains the slowing down of algo-
rithms in this region. We would like to stress
that the solution we propose is typical of a
“one-step replica symmetry-breaking” solution,
as it is called in spin glasses (10). All the
consistency checks of the analytic results lead
us to believe that this solution is exact for the
3sat problem. From the strict mathematical
point of view, the phase diagram we propose
should be considered as a conjecture, as for the
great majority of the theoretical results in sta-
tistical physics. Our computation implies that a
way to provide a fully rigorous proof of the
transition behavior in random Ksat problems
could be based on the study of the decomposi-
tion of the probability measure into states en-
dowed with the clustering property (36). On the
other hand, the predictions of our theory can be
compared with numerical experiments, and our
first such tests have confirmed its validity. On
the basis of the analytical study, our algorithm
looks promising in that it can solve large in-
stances exploring a rather small number of spin
configurations. It will be interesting to explore
its application to other optimization problems.
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White Collar–1, a Circadian Blue
Light Photoreceptor, Binding to

the frequency Promoter
Allan C. Froehlich,1 Yi Liu,1* Jennifer J. Loros,1,2†

Jay C. Dunlap1†

In the fungus Neurospora crassa, the blue light photoreceptor(s) and signaling
pathway(s) have not been identified. We examined light signaling by exploiting
the light sensitivity of the Neurospora biological clock, specifically the rapid
induction by light of the clock component frequency (frq). Light induction of frq
is transcriptionally controlled and requires two cis-acting elements (LREs) in the
frq promoter. Both LREs are bound by aWhite Collar–1 (WC-1)/White Collar–2
(WC-2)–containing complex (WCC), and light causes decreasedmobility of the
WCC bound to the LREs. The use of in vitro–translated WC-1 and WC-2
confirmed that WC-1, with flavin adenine dinucleotide as a cofactor, is the blue
light photoreceptor that mediates light input to the circadian system through
direct binding (with WC-2) to the frq promoter.

In Neurospora, a wide range of processes is
light sensitive, including suppression and
phase shifting of circadian rhythms, photo-
tropism of perithecial beaks (1), and carot-
enoid biosynthesis (initially described in the
first published study of Neurospora in 1843)
(2). The photoreceptor(s) involved in these
blue light–influenced processes has not been
identified, but screens in Neurospora for mu-
tants involved in light perception and signal-
ing have repeatedly turned up two indispens-
able loci, wc-1 and wc-2 (3). WC-1 and
WC-2 are nuclear transcription factors con-

taining trans-activation and zinc-finger (Zn-
finger) DNA binding domains (4, 5). They
form a White Collar Complex (WCC) by
heterodimerizing via PAS (PER ARNT SIM)
domains (6, 7 ) and act as positive elements in
light signaling, most likely through direct
binding of DNA (4, 5); in true wc-1KO and
wc-2KO strains, all examined light responses
are lost (8, 9). This requirement suggested to
us and others that either WC-1 or WC-2 is the
photoreceptor, or that they both are required
to mediate the response of an unidentified,
perhaps duplicated, receptor (1, 10, 11).

In Neurospora, generation of circadian
rhythms is dependent on WCC-mediated rhyth-
mic production of frq transcript and protein,
both of which are central clock components
(12, 13). Light causes a rapid induction of frq
message, the central means by which light in-
fluences the clock (14). In the absence of WC-1
or WC-2, light induction of frq is completely

abolished, highlighting the WCs’ central role in
light input to the clock (8, 9, 15).

Effects of light in vivo. To examine the
contribution of transcription to the light-in-
duced accumulation of frq transcript, the frq
promoter was fused to a reporter gene, hph,
and the resulting construct, pYL40B, was
transformed into a frq� strain. Light treat-
ment of transformants resulted in a marked
increase in hph transcript level, similar to that
of frq (Fig. 1A). Because only frq promoter
sequence was fused to hph, light induction of
the hph transcript, and consequently of en-
dogenous frq message, is controlled at the
transcriptional level.

We identified cis-acting elements mediat-
ing light induction of frq by transforming frq
promoter deletion constructs into a frqKO

strain and the testing for light induction of frq
message (Fig. 1B). Deletion of two light re-
sponse elements (LREs) in the frq promoter
decreased light induction of frq message. We
noted an �50% reduction with the distal LRE
deleted (AF26) and an �70% reduction with
the proximal LRE deleted (AF33) (Fig. 1C).
Deletion of both LREs (AF36) abolished
light induction of frq transcript (Fig. 1C),
which suggests that light induction of frq is
controlled entirely at the transcriptional level.
Both LREs were also sufficient to confer
light inducibility on an hph reporter construct
(pAF35), both individually (pAF43 and
pAF44) and together (pAF45) (Fig. 1D).

The effects of the LRE deletions on cir-
cadian clock function were examined using
race tubes to monitor Neurospora’s rhythmic
conidiation (11). In a wild-type strain, trans-
ferring race tubes from light to dark results in
a decrease in frq transcript that sets the clock
to subjective dusk, after which the clock con-
tinues to run (11, 14 ). Control ABC1 trans-
formants, containing the entire frq locus, dis-
played a period and phase similar to those of
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