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Accelerating phase-field-based microstructure evolution
predictions via surrogate models trained by machine
learning methods
David Montes de Oca Zapiain1, James A. Stewart2 and Rémi Dingreville 1✉

The phase-field method is a powerful and versatile computational approach for modeling the evolution of microstructures and
associated properties for a wide variety of physical, chemical, and biological systems. However, existing high-fidelity phase-field
models are inherently computationally expensive, requiring high-performance computing resources and sophisticated numerical
integration schemes to achieve a useful degree of accuracy. In this paper, we present a computationally inexpensive, accurate, data-
driven surrogate model that directly learns the microstructural evolution of targeted systems by combining phase-field and history-
dependent machine-learning techniques. We integrate a statistically representative, low-dimensional description of the
microstructure, obtained directly from phase-field simulations, with either a time-series multivariate adaptive regression splines
autoregressive algorithm or a long short-term memory neural network. The neural-network-trained surrogate model shows the best
performance and accurately predicts the nonlinear microstructure evolution of a two-phase mixture during spinodal decomposition
in seconds, without the need for “on-the-fly” solutions of the phase-field equations of motion. We also show that the predictions
from our machine-learned surrogate model can be fed directly as an input into a classical high-fidelity phase-field model in order to
accelerate the high-fidelity phase-field simulations by leaping in time. Such machine-learned phase-field framework opens a
promising path forward to use accelerated phase-field simulations for discovering, understanding, and predicting
processing–microstructure–performance relationships.
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INTRODUCTION
The phase-field method is a popular mesoscale computational
method used to study the spatio-temporal evolution of a
microstructure and its physical properties. It has been extensively
used to describe a variety of important evolutionary mesoscale
phenomena, including grain growth and coarsening1–3, solidifica-
tion4–6, thin-film deposition7,8, dislocation dynamics9–11, vesicles
formation in biological membranes12,13, and crack propaga-
tion14,15. Existing high-fidelity phase-field models are inherently
computationally expensive because they solve a system of
coupled partial differential equations for a set of continuous field
variables that describe these processes. At present, the efforts to
minimize computational costs have focused primarily on lever-
aging high-performance computing architectures16–21 and
advanced numerical schemes22–24, or on integrating machine-
learning algorithms with microstructure-based simulations25–31.
For example, leading studies have constructed surrogate models
capable of rapidly predicting microstructure evolution from
phase-field simulations using a variety of methods, including
Green’s function solution25, Bayesian optimization26,28, or a
combination of dimensionality reduction and autoregressive
Gaussian processes29. Yet, even for these successful solutions,
the key challenge has been to balance the accuracy with
computational efficiency. For instance, the computationally
efficient Green’s function solution cannot guarantee accurate
solutions for complex, multi-variable phase-field models. In
contrast, Bayesian optimization techniques can solve complex,
coupled phase-field equations, but at a higher computational cost

(although the number of simulations to be performed is kept to a
minimum, since each subsequent simulation’s parameter set is
informed by the Bayesian optimization protocol). Autoregressive
models are only capable of predicting microstructural evolution
for the values for which they were trained, limiting the ability of
this class of models to predict future values beyond the training
set. For all three classes of models, computational cost-
effectiveness decreases as the complexity of the microstructure
evolution process increases.
In this work, we create a cost-minimal surrogate model capable

of solving microstructural evolution problems in fractions of a
second by combining a statistically representative, low-
dimensional description of the microstructure evolution obtained
directly from phase-field simulations with a history-dependent
machine-learning approach (see Fig. 1). We illustrate this protocol
by simulating the spinodal decomposition of a two-phase mixture.
The results produced by our surrogate model were achieved in
fractions of a second (lowering the computational cost by four
orders in magnitude) and showed only a 5% loss in accuracy
compared to the high-fidelity phase-field model. To arrive at this
improvement, our surrogate model reframes the phase-field
simulations as a multivariate time-series problem, forecasting
the microstructure evolution in a low-dimensional representation.
As illustrated in Fig. 1, we accomplish our accelerated phase-field
framework in three steps. We first perform high-fidelity phase-field
simulations to generate a large and diverse set of microstructure
evolutionary paths as a function of phase fraction, cA and phase
mobilities, MA and MB (Fig. 1a). We then capture the most salient
features of the microstructures by calculating the microstructures’
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autocorrelations and we subsequently perform principal compo-
nent analysis (PCA) on these functions in order to obtain a faithful
low-dimensional representation of the microstructure evolution
(Fig. 1b). Lastly, we utilize a history-dependent machine-learning
approach (Fig. 1c) to learn the time-dependent evolutionary
phenomena embedded in this low-dimensional representation to
accurately and efficiently predict the microstructure evolution
without solving computationally expensive phase-field-based
evolution equations. We compare two different machine-
learning techniques, namely time-series multivariate adaptive
regression splines (TSMARS)32 and long short-term memory
(LSTM) neural network33, to gauge their efficacy in developing
surrogate models for phase-field predictions. These methods are
chosen due to their non-parametric nature (i.e. they do not have a
fixed model form), and their demonstrated success in predicting
complex, time-dependent, nonlinear behavior32,34–36. Based on
the comparison of results, we chose the LSTM neural network as

the primary machine-learning architecture to accelerate phase-
field predictions (Fig. 1c), because the LSTM-trained surrogate
model yielded better accuracy and long-term predictability, even
though they are more demanding and finicky to train than the
TSMARS approach. Besides being computationally efficient and
accurate, we also show that the predictions from our machine-
learned surrogate model can be used as an input for a classical
high-fidelity phase-field model via a phase-recovery algorithm37,38

in order to accelerate the high-fidelity predictions (Fig. 1d).
Hence, the present study consists of three major parts: (i)

constructing surrogate models trained via machine-learning
methods based on a large phase-field simulation data set; (ii)
executing these models to produce accurate and rapid predictions
of the microstructure evolution in a low-dimensional representa-
tion; (iii) performing accelerated high-fidelity phase-field simula-
tions using the predictions from this machine-learned
surrogate model.

Fig. 1 Machine-learned surrogate model for accelerating phase-field based microstructure evolution predictions. a Data preparation to
generate training and testing phase-field data sets. b Low-dimensional representation of the microstructure evolution. c Time-series analysis
using a long short-term memory (LSTM) neural network to predict the time evolution of the microstructure principal component scores.
d Prediction from the accelerated phase-field framework based on the first three steps.
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RESULTS AND DISCUSSION
Low-dimensional representation of phase-field results
We base the formulation of our history-dependent surrogate model
on a low-dimensional representation of the microstructure evolu-
tion. To this end, we first generated large training (5000 simulations)
and moderate testing (500 simulations) phase-field data sets for the
spinodal decomposition of an initially random microstructure by
independently sampling the phase fraction, cA, and phase
mobilities, MA and MB, and using our in-house multiphysics
phase-field modeling code MEMPHIS (mesoscale multiphysics
phase-field simulator)8,39. The results of these simulations gave a
wide variety of microstructural evolutionary paths. Details of our
phase-field model and numerical solution are provided in
“Methods” and in Supplementary Note 1. Examples of microstruc-
ture evolutions as a function of time for different set of model
parameters (cA, MA, MB) are reported in Supplementary Note 2.
We then calculated the autocorrelation S A;Að Þ

2 r; tið Þ of the
spatially dependent composition field c(x, ti) at equally spaced

time intervals ti for each spinodal decomposition phase-field
simulation in our training set. Additional information on the
calculation of the autocorrelation is provided in “Methods”. For a
given microstructure, the autocorrelation function can be inter-
preted as the conditional probability that two points at positions
x1 and x2 within the microstructure, or equivalently for a random
vector r= x2− x1, are found to be in phase A. Because the
microstructures of interest comprise two phases, the microstruc-
ture’s autocorrelation and its associated radial average, Sðr; tiÞ,
contain the same information about the microstructure as
the high-fidelity phase-field simulations. For example, the volume
fraction of phase A, cA, is the value of the autocorrelation at
the center point, while the average feature size of the
microstructure corresponds to the first minimum of Sðr; tiÞ (i.e.
dSðr; tiÞ=dr ¼ 0). Collectively, this set of autocorrelations provides
us with a statistically representative quantification of the
microstructure evolution as a function of the model inputs (cA,
MA, MB)

40–42. Figure 2a illustrates the time evolution of the
microstructure, its autocorrelation, and the radial average of the

Fig. 2 Low-dimensional representation of the microstructure evolution. a Transformation of a two-phase microstructure realization (top
row) to its autocorrelation representation (middle row: autocorrelation; bottom row: radial average) at three separate frames (t0, t10, and t100).
b Microstructure evolution trajectories over 100 frames represented as a function of the first three principal components. c Cumulative
variance explained as a function of the number of principal components included in the representation of the microstructure.
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autocorrelation for phase A for one of our simulations at three
distinct time frames. For all the simulations in our training and
testing data set, we observe similar trends for the microstructure
evolution, regardless of the phase fraction and phase mobilities
selected. We first notice that, at the initial frame t0, the
microstructure has no distinguishable feature since the composi-
tional field is randomly distributed spatially. We then observe the
rapid formation of subdomains between frame t0 and frame t10,
followed by a smooth and slow coalescence and evolution of the
microstructure from frame t10 until the end of the simulation at
frame t100. Based on this observation, we trained our machine-
learned surrogate model starting at frame t10, once the micro-
structure reached a slow and steady evolution regime.
We simplified the statistical, high-dimensional microstructural

representation given by the microstructures’ autocorrelations via
PCA25,43,44. This operation enables us to construct a low-
dimensional representation of the time evolution of the micro-
structure spatial statistics, while at the same time still faithfully
capturing the most salient features of the microstructure and its
evolution. Details on PCA are provided in “Methods”. Figure 2b
shows the 5500 microstructure evolutionary paths from our
training and testing data sets for the first three principal
components. For the 5000 microstructure evolutionary paths in
our training data set, the principal components are fitted to the
phase-field data. For the 500 microstructure evolutionary paths in
our testing data set, the principal components are projected. In
the reduced space, we can make the same observations regarding
the evolution of the microstructure: a rapid microstructure
evolution followed by a steady, slow evolution. In Fig. 2c, we
show that we only need the first 10 principal components to
capture over 98% of the variance in the data set. Thus, we use the
time evolution of these 10 principal components to construct our
low-dimensional representation of the microstructure evolution.
Therefore the dimensionality of the microstructure evolution
problem was reduced from a (512 × 512) × 100 to a 10 × 100
spatio-temporal space.

LSTM neural network parameters and architecture
The previous step captured the time history of the microstructure
evolution in a statistical manner. We combine the PCA-based
representation of the microstructure with a history-dependent
machine-learning technique to construct our microstructure
evolution surrogate model. Based on performance, we employed
a LSTM neural network, which uses the model inputs (cA, MA, MB)
and the previous known time history of the microstructure
evolution (via a sequence of previous principal scores) to predict
future time steps (results using TSMARS, which uses the “m” most
recent known and predicted time frames of the microstructure
history to predict future time steps, are discussed in Supplemen-
tary Note 3).
In order to develop a successful LSTM neural network, we first

needed to determine its optimal architecture (i.e. the number of
LSTM cells defining the neural network, see Supplementary Note 4
for additional details) as well as the optimal number of frames on
which the LSTM needs to be trained. We determined the optimal
number of LSTM cells by training six different LSTM architectures
(architectures comprising 2, 4, 14, 30, 40, and 50 LSTM cells) for
1000 epochs. For all these architectures, we added a fully
connected layer after the last LSTM cell in order to produce the
desired output sequence of principal component scores. We
trained each of these architectures on the sequence of principal
component scores from frame t10 to frame t70 for each of the
5000 spinodal decomposition phase-field simulations in our
training data set. As a result, each different LSTM architecture
was trained on a total of 300,000 time observations (i.e.
5000 sequences comprised of 60 frames). To prevent overfitting,
we kept the number of training weights among all the different

architectures constant at approximately one half of the total time
observations (i.e. ~150,000) by modifying the hidden layer size of
each different architecture accordingly. The training of each LSTM
architecture required 96 hours of training using a single node with
2.1 GHz Intel Broadwell®E5-2695 v4 processors with 36 cores per
node and 128 GB RAM per node. Details of the LSTM architecture
are provided in Supplementary Note 4.
In Fig. 3a, we report our training and validation loss results for

the 6 different LSTM architectures tested for the first principal
component. Our results show that the architectures with two and
four cells significantly outperformed the architectures that have a
higher number of cells. These results are not a matter of
overfitting with more cells, since the sparser (in number of cells)
networks train better as well. Rather, this performance can be
explained by the fact that, just as in traditional neural networks,
the deeper the LSTM architecture, the higher number of
observations the network needs in order to learn. The main
reason as to why the LSTM architectures with fewer number of
cells outperform the architectures with a higher number of cells is
due to the “limited” data set on which we are training the LSTM
networks. Additionally, for those same reasons, we note that the
two-cell LSTM architecture converged faster than the four-cell
LSTM architecture, and it is therefore our architecture of choice. As
a result, the best performing architecture, and the one we chose
for the rest of this work, is the architecture with two-cell LSTM
network with one fully connected layer.
Regarding the optimal number of frames, we assessed the

accuracy of the six different LSTM architectures using two error
metrics for each of the realizations k in our training and testing
data sets and for each frame ti. The first error metric is based on
the absolute relative error AREðkÞ tið Þ which quantifies the accuracy
of the model to predict the average microstructural feature size.
The second error, DðkÞ tið Þ, uses the Euclidean distance between
the predicted and true autocorrelations normalized by the
Euclidean norm of the true autocorrelation. This error metric
provides insights into the local accuracy of the predicted
autocorrelation on a per-voxel basis. Upon convergence of these
two metrics, the optimal number of frames on which the LSTM
needs to be trained guarantees that the predicted autocorrelation
is accurate at a local level but also in terms of the average feature
size. Descriptions of the error metrics are provided in “Methods”.
We trained the different neural networks starting from frame t10
onwards. We then evaluated the following number of training
frames: 1, 2, 5, 10, 20, 40, 60, and 80. Recall that the number of
frames controls the number of time observations. Therefore, just
as before, in order to prevent overfitting, we ensured that the
number of weights trained was roughly half of the time
observations.
In Fig. 3b, c, we provide the results for both AREðkÞ t100ð Þ and

DðkÞ t100ð Þ with respect to the number of frames for which the
LSTM was trained. The mean value of each distribution is indicated
with a thick black line, and the dashed green line indicates the 5%
accuracy difference target. Our convergence study shows that we
achieved a good overall accuracy for the predicted autocorrelation
when the LSTM neural network was trained for 80 frames. It is
interesting to note that fewer frames were necessary to achieve
convergence for the normalized distance (Fig. 3c) than the
average feature size (Fig. 3b).

Surrogate model prediction and validation
We then evaluated the quality and accuracy of the best
performing LSTM surrogate model (i.e. the one that has the
two-cell architecture, one fully connected layer and trained for 80
frames) for predicted microstructure evolution for frames ranging
from t91 to t100 and for each set of parameters in both our testing
and training sets. We report these validation results in Fig. 4.

D. Montes de Oca Zapiain et al.

4

npj Computational Materials (2021)     3 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



For our error metrics AREðkÞ tið Þ and DðkÞ tið Þ, our results show an
approximate average 5% loss in accuracy compared to the high-
fidelity phase-field results, as seen in Fig. 4a, b. The mean value of
the loss of accuracy for AREðkÞ tið Þ is 5.3% for the training set and
5.4% for the testing set. The mean value of the loss of accuracy for
DðkÞ tið Þ is 6.8% for the training set and 6.9% for the testing set.
Additionally, the loss of accuracy from our machine-learned

surrogate model is constant as we further predict the micro-
structure evolution in time beyond the number of training frames.
This is not surprising since the LSTM neural network utilizes the
entire previous history of the microstructure evolution to forecast
future frames.
In Fig. 4c–e, we further illustrate the good accuracy of our

machine-learned surrogate model by analyzing in detail our

Fig. 3 LSTM architecture and calibration. a Learning curves as a function of the number of epochs for both training and validation sets.
b Accuracy of the LSTM network for the absolute relative error, AREðkÞ tið Þ, as a function of the number of frames used for training. c Accuracy
of the LSTM network for the normalized distance, DðkÞ tið Þ, as a function of the number of frames used for training. In b and c, the dashed green
line indicates the 5% error value, while the black lines indicate the mean value of the absolute relative error and normalized distance
respectively at various frames ti.

Fig. 4 Performance and predictability of LSTM-trained surrogate model. a Predicted absolute relative error, AREðkÞ tið Þ, from frames t91 to
t100. b Predicted normalized distance, DðkÞ tið Þ, from frames t91 to t100. In a, b the dashed green line indicates the 5% error value, while the black
lines indicate the mean value of the absolute relative error and normalized distance, respectively, at various frames ti. c Point-wise error
comparison of the predicted vs. true autocorrelation for a microstructure randomly selected in our test set. d Cumulative probability
distribution of the ARE at frame t100 for that microstructure. e Comparison of the predicted (dotted red line) vs. true (solid blue line) radial
average autocorrelation.
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predictions for a randomly selected microstructure (i.e. for a
randomly selected set of model inputs cA, MA, and MB) in our
testing data set at frame t100. In Fig. 4c, we show the point-wise
error between the predicted and true autocorrelation for that
microstructure, and the corresponding cumulative probability
distribution. Overall, we notice a good agreement between the
two microstructure autocorrelations, with the greatest error
incurred for the long-range microstructural feature correlations.
The agreement is easily understood, given the relatively small
number of principal components retained in our low-dimensional
microstructural representation. An even better agreement could
have been achieved if additional principal components had been
included. As seen in Fig. 4e, the predictions for the characteristic
feature sizes in the microstructure given by our surrogate model
are in good agreement with those obtained directly from the
high-fidelity phase-field model. These results show that, despite
some local errors, both microstructures simulated by the high-
fidelity phase-field model and the ones predicted by our machine-
learned surrogate model are statistically similar. Finally, we note
that both our training and testing data sets cover a range of
phase-field input parameters that correspond to a majority of
problems of interests, avoiding issues with extrapolating outside
of that range.

Computational efficiency
The results above not only illustrated the good accuracy relative to
the high-fidelity phase-field model for the broad range of model
parameters (cA, MA, MB), but they were also computationally
efficient. The two main computational costs in our accelerated
phase-field protocol were one-time costs incurred during (i) the
execution of Nsim ¼ 5000 high-fidelity phase-field simulations to
generate a data set of different microstructure evolutions as a
function of the model parameters and (ii) the training of the LSTM
neural network. Our machine-learned surrogate model predicted
the time-shifted principal component score sequence of 10 frames
(i.e. a total of 5,000,000 time steps) in 0.01 s, and an additional
0.05 s to reconstruct the microstructure from the autocorrelation
on a single node with 36 processors. In contrast, the high-fidelity
phase-field simulations required approximately 12minutes on 8
nodes with 16 processors per node using our high-performance
computing resources for the same calculation of 10 frames. The
computational gain factor was obtained by first dividing the total
time of the LSTM-trained surrogate model by 3.55 (given the fact
that the LSTM-trained model uses approximately four times less
computational resources). Subsequently, the total time of the
high-fidelity phase-field model to compute 10 frames (i.e.
12 minutes) was divided by the time obtained in the previous
step. As such, the computational efficiency of the LSTM model
yields results 42,666 times faster than the full-scale phase-field
method. Although the set of model inputs can introduce some
variability in computing time, once trained, the computing time of
our surrogate model was independent of the selection of input
parameters to the surrogate model.

Acceleration of phase-field predictions
We have demonstrated a robust, fast, and accurate way to predict
microstructure evolution by considering a statistically representa-
tive, low-dimensional description of the microstructure evolution
integrated with a history-dependent machine-learning approach,
without the need for “on-the-fly” solutions of phase-field
equations of motion. This computationally efficient and accurate
framework opens a promising path forward to accelerate phase-
field predictions. Indeed, as illustrated in Fig. 5, we showed that
the predictions from our machine-learned surrogate model can be
fed directly as an input to a classical high-fidelity phase-field
model in order to accelerate the high-fidelity phase-field
simulations by leaping in time. We used a phase-recovery

algorithm30,37,38 to reconstruct the microstructure (Fig. 5a) from
the microstructure autocorrelation predicted by our LSTM-trained
surrogate model at frame t95 (details of the phase-recovery
algorithm are provided in Supplementary Note 5). We then used
this reconstructed microstructure as the initial microstructure in a
regular high-fidelity phase-field simulation and let the micro-
structure further evolve to frame t100 (Fig. 5b). Our results in Fig.
5c–e showed that the microstructures predicted solely from a
high-fidelity phase-field simulation and that obtained from our
accelerated phase-field framework are statistically similar. Even
though our reconstructed microstructure has some noise due to
some deficiencies associated with the phase-recovery algorithm30,
the phase-field method rapidly regularized and smoothed out the
microstructure as it further evolved. Hence, besides drastically
reducing the computational time required to predict the last five
frames (i.e. 2,500,000 time steps), our accelerated phase-field
framework enables us to “time jump” to any desired point in the
simulation with minimal loss of accuracy. This maneuverability is
advantageous since we can make use of this accelerated phase-
field framework to rapidly explore a vast phase-field input space
for problems where evolutionary mesoscale phenomena are
important. The intent of the present framework is not to embed
physics per se, rather our machine-learned surrogate model learns
the behavior of a time-dependent functional relationship (which is
a function of many input variables) to represent the microstruc-
ture evolution problem. However, even though we have trained
our machine-learned surrogate model over a broad range of input
parameter values, and over a range of initial conditions, these may
not necessarily be representative of the generality of phase-field
methods, which can have many types of nonlinearities and non-
convexities in the free energy. We further discuss this point in the
section “Beyond spinodal decomposition”.

Comparison with other machine-learning approaches
The comparison of the TSMARS- and LSTM-trained surrogate
model highlights both the advantages and inconveniences of
using the LSTM neural network as the primary machine-learning
architecture to accelerate phase-field predictions (see Supple-
mentary Note 3 for TSMARS results). The TSMARS-trained model,
which is an autoregressive, time-series, forecasting technique,
proved to be less accurate for extrapolating the evolution of the
microstructure than the LSTM-trained model, and demonstrated a
dramatic loss of accuracy as the number of predicted time frames
increases, with predictions acceptable only for a couple of time
frames beyond the number of training frames. The TSMARS model
proved unsuitable for establishing our accelerated phase-field
framework because it uses predictions from previous time frames
to predict subsequent time frames, thus compounding minor
errors as the number of time frames increases. The LSTM
architecture does not have this problem, since it only uses the
microstructure history from previous time steps and not predic-
tions to forecast a time-shifted sequence of future microstructure
evolution. However, the LSTM model is computationally more
expensive to train than the TSMARS model. Our LSTM architecture
required 96 hours of training using a single node with 2.1 GHz
Intel Broadwell®E5-2695 v4 processors with 36 cores per node and
128 GB RAM per node, whereas the TSMARS model only required
214 seconds on a single node on the same high-performance
computer. Therefore, given its accuracy for predicting the next
frame and its inexpensive nature, the TSMARS-trained model may
prove useful for data augmentation in cases where the desired
prediction of the microstructure evolution is not far ahead in time.

Beyond spinodal decomposition
There are several extensions to the present framework that can be
implemented in order to improve the accuracy and acceleration
performances. These improvements are related to (i) the
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dimensionality reduction of the microstructure evolution problem,
(ii) the history-dependent machine-learning approach that can be
used as an “engine” to accelerate predictions, and (iii) the
extension to multi-phase, multi-field microstructure evolution
problems. The first topic is related to improve the accuracy of the
low-dimensional representation of the microstructure evolution in
order to better capture nonlinearities, non-convexities of the free
energy representative of the system. The second and third topics
are related to replace the LSTM “engine” with another approach
that can either improve accuracy, reduce the required amount of
training data, or enable extrapolation over a greater number of
frames. As we move forward, we anticipate that these extensions
will enable better predictions and capture more complex
microstructure evolution phenomena beyond the case study
presented here.
Regarding the dimensionality reduction, several ameliorations

can be made to the second step of the protocol presented in Fig.
1b. First, we can further improve the efficiency of our machine-
learned surrogate model by incorporating higher-order spatial
correlations (e.g., three-point spatial correlations and two-point
cluster-correlation functions)45,46 in our low-dimensional repre-
sentation of the microstructure evolution in order to better
capture high- and low-order spatial complexity in these simula-
tions. Second, algorithms such as PCA, or similarly independent
component analysis and non-negative matrix factorization, can be
viewed as matrix factorization methods. These algorithms
implicitly assume that the data of interest lies on an embedded
linear manifold within the higher-dimensional space describing
the microstructure evolution. In the case of the spinodal
decomposition exemplar problem studied here, this assumption

is for the most part valid, given the linear regime seen in all the
low-dimensional microstructure evolution trajectories presented
in Fig. 2b. However, for microstructure evolution problems where
these trajectories are no longer linear and/or convex, a more
flexible and accurate low-dimensional representation of the
(nonlinear) microstructure evolution can be obtained by using
unsupervised algorithms learning the nonlinear embedding.
Numerous algorithms have been developed for nonlinear
dimensionality reduction to address this issue, including kernel
PCA47, Laplacian eigenmaps48, ISOMAP49, locally linear embed-
ding50, autoencoders51, or Gaussian process latent variable
models52 for instance (for a more comprehensive survey of
nonlinear dimensionality-reduction algorithms, see Lee and
Verleysen53). In this case, a researcher would simply substitute
PCA with one of these (nonlinear) manifold learning algorithms in
the second step of our protocol illustrated in Fig. 1b.
The comparison between the TSMARS- and LSTM-trained

surrogate model in the previous subsection demonstrated the
ability of the LSTM neural network to successfully learn the time
history of the microstructure evolution. At the root of this
performance is the ability of the LSTM network to carry out
sequence learning and store traces of past events from the
microstructure evolutionary path. LSTM are a subclass of the
recurrent neural network (RNN) architecture in which the memory
of past events is maintained through recurrent connections within
the network. Alternatives RNN options to the LSTM neural network
such as the gated recurrent unit54 or the independently RNN
(IndRNN)55 may prove to be more efficient at training our
surrogate model. Other methods for handling temporal informa-
tion are also available, including memory networks56 or temporal

Fig. 5 Accelerated phase-field predictions. a Reconstructed microstructure from the LSTM-trained surrogate model using a phase-recovery
algorithm. b Phase-field predictions using LSTM-trained surrogate model as an input. c Point-wise error between predicted and true
microstructure evolution. d Cumulative probability distribution of the absolute relative error on characteristic microstructural feature size.
e Comparison of radial average of the microstructure autocorrelation between predicted (red) and true (black) microstructure evolution.
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convolutions57. Instead of RNN architectures, a promising avenue
may be to use self-modifying/plastic neural networks58 which
harness evolutionary algorithms to actively modulate the time-
dependent learning process. Recurrent plastic networks have
demonstrated their higher potential to be successfully trained to
memorize and reconstruct sets of new, high-dimensional, time-
dependent data as compared to traditional (non-plastic) recurrent
network58,59. Such networks may be more efficient “engine”
solutions to accelerate phase-field predictions for complex
microstructure evolutionary paths, especially when dealing with
very large computational domains and multi-field, phase-field
models, or for nonlinear, non-convex microstructural evolutionary
paths. Ultimately, the best solution will depend on both the
accuracy of the low-dimensional representation and the complex-
ity of the phase-field problem at hand.
The machine-learning framework presented here is also not

limited to the spinodal decomposition of two-phase mixture, and
it can also be applied more generally to other multi-phase and
multi-field models, although this extension is non trivial. In the
case of a multi-phase model, there are numerous ways by which
the free energy functional can be extended to multiple phases/
components, and it is a well-studied topic in the phase-field
community60,61. As it relates to this work, it is certainly possible to
build surrogate models for multi-components systems based on
some reasonable model output metrics (e.g., microstructure phase
distribution in the current work)—although the choice of this
metric may not be trivial or straightforward. For example, in a
purely interfacial-energy-driven grain-growth model or grain
growth via Ostwald-ripening model, one may build a surrogate
model by tracking each individual order parameter for every grain
and the composition in the system, which may become
prohibitive for many grains. However, one could reduce the
number of grains to a single metric using the condition that
∑(ϕi)= 1 at every grid point and be left with a single order
parameter (along with the composition parameter) defining grain
size, distribution, and time evolution as a function of the input
variables (e.g., mobilities). Thus the construction of surrogate
models based on these metrics with two-point statistics and PCA
becomes straightforward. Another possibility would be to
calculate and concatenate all n-point spatial statistics deemed
necessary to quantify each multi-phase microstructure, and then
perform PCA on the concatenated autocorrelation vector. Note
that in the present case study, we only needed one autocorrela-
tion to fully characterize the two-phase mixture, more autocorre-
lations would be needed when the number of phases increases.
In the case of a multi-field phase-field model, in which there are

multiple coupled field variables (or order parameters) describing
different evolutionary phenomena8, it would be essentially
required to track the progression of each order parameter
separately, along with the associated cross-correlation terms.
However, actual details in each step of the protocol are a little
more convoluted than those presented here, as it will depend on
(i) the accuracy of the low-dimensional representation and (ii) the
complexity of the phase-field problem considered. We envision
that for the low-dimensional representation step illustrated in Fig.
1b, the dimensionality-reduction technique to be used would
depend on the type of field variable considered. Similarly,
depending on the complexity (e.g., linear vs. nonlinear) of the
low-dimensional trajectories of the different fields considered, we
may be forced to use different history-dependent machine
approaches for each field separately used in the step presented
in Fig. 1c. An interesting alternative31 might be to use neural
network techniques such as convolutional neural networks to
learn and predict the homogenized, macroscopic free energy and
phase fields arising in a multi-component system.
To summarize, we developed and used a machine-learning

framework to efficiently and rapidly predict complex microstruc-
tural evolution problems. By employing LSTM neural networks to

learn long-term patterns and solve history-dependent problems,
we reformulate microstructural evolution problems as multivariate
time-series problems. In this case, the neural network learns how
to predict the microstructure evolution via the time evolution of
the low-dimensional representation of the microstructure. Our
results show that our machine-learned surrogate model can
predict the spinodal evolution of a two-phase mixture in a fraction
of a second with only a 5% loss in accuracy compared to high-
fidelity phase-field simulations. We showed that surrogate model
trajectories can be used to accelerate phase-field simulations
when used as an input to a classical high-fidelity phase-field
model. Our framework opens a promising path forward to use
accelerated phase-field simulations for discovering, understand-
ing, and predicting processing–microstructure–performance rela-
tionships in problems where evolutionary mesoscale phenomena
are critical, such as in materials design problems.

METHODS
Phase-field model
The microstructure evolution for spinodal decomposition of a two-phase
mixture62 specifically uses a single compositional order parameter c x; tð Þ,
to describe the atomic fraction of solute. The evolution of c is given by the
Cahn–Hilliard equation62 and is derived from an Onsager force–flux
relationship63 such that

∂c
∂t

¼ ∇ � Mc cð Þ∇ ωc c3 � c
� �þ κc∇2c

� �� �
; (1)

where ωc is the energy barrier height between the equilibrium phases and
κc is the gradient energy coefficient, respectively. The concentration
dependent Cahn–Hilliard mobility is taken to be Mc= s(c)MA+ (1− s(c))MB,
where MA and MB are the mobilities of each phase, and sðcÞ ¼ 1

4 ð2�
cÞð1þ cÞ2 is a smooth interpolation function between the mobilities. The
free energy of the system in Eq. (1) is expressed as a symmetric double-
well potential with minima at c= ±1. For simplicity, both the mobility and
the interfacial energy are isotropic. This model was implemented, verified,
and validated for use in Sandia’s in-house multiphysics phase-field
modeling capability MEMPHIS8,39.
The values of the energy barrier height between the equilibrium phases

and the gradient energy coefficient were assumed to be constant with
ωc= κc= 1. In order to generate a diverse and large set of phase-field
simulations exhibiting a rich variety of microstructural features, we varied
the phase concentrations and phase mobilities parameters. For the phase
concentration parameter, we decided to focus on the cases where the
concentration of each phase satisfies ci ≥ 0.15, i= A or B. Note that we only
need to specify one phase concentration, since cB= 1− cA. For the phase
mobility parameters, we chose to independently vary the mobility values
over four orders of magnitude such that Mi ∈ [0.01, 100], i= A or B. We
used a Latin Hypercube Sampling (LHS) statistical method to generate
5000 sets of parameters (cA, MA, MB) for training, and an additional 500 sets
of parameters for validation.
All simulations were performed using a 2D square grid with a uniform

mesh of 512 × 512 grid points, dimensionless spatial and temporal
discretization parameters, a spatial discretization of Δx= Δy= 1, and a
temporal discretization of Δt= 1 × 10−4. The composition field within the
simulation domain was initially randomly populated by sampling a
truncated Gaussian distribution between −1 and 1 with a standard
deviation of 0.35 and means chosen to generate the desired nominal
phase fraction distributions. Each simulation was run for 50,000,000 time
steps with periodic boundary conditions applied to all sides of the domain.
The microstructure was saved every 500,000 time steps in order to capture
the evolution of the microstructure over 100 frames. Each simulation
required approximately 120 minutes on 128 processors on our high-
performance computer cluster. Illustrations of the variety of microstructure
evolutions obtained when sampling various combinations of cA, MA, and
MB are provided in Supplementary Note 2.

Statistical representation of microstructures
We use the autocorrelation of the spatially dependent concentration field,
c x; tið Þ, to statistically characterize the evolving microstructure. For a given
microstructure, we use a compositional indicator function, IA x; tið Þ to
identify the dominant phase A at a location x within the microstructure
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and tesselate the spatial domain at each time step such that,

IA x; tið Þ ¼ 1; if cðx; tiÞ> 0

0; otherwise

�
: (2)

Note that, in our case, the range of the field variable c is −1 ≤ c ≤ 1, thus
motivating our use of 0 as the cutoff to “binarize” the microstructure data.
The autocorrelation S A;Að Þ

2 r; tið Þ is defined as the expectation of the product
IA x1; tið ÞIA x2; tið Þ, i.e.

S A;Að Þ
2 r; tið Þ ¼ S A;Að Þ

2 x1; x2; tið Þ ¼ hIA x1ð ÞIA x2ð Þi; with r ¼ x2 � x1: (3)

In this form, the microstructure’s autocorrelation resembles a convolu-
tion operator and can be efficiently computed using fast Fourier
transform38 as applied to the finite-difference discretized scheme.

Principal component analysis
The autocorrelations describing the microstructure evolution cannot be
readily used in our accelerated framework since they have the same
dimension as the high-fidelity phase-field simulations. Instead, we describe
the microstructure evolutionary paths via a reduced-dimensional repre-
sentation of the microstructure spatial autocorrelation by using PCA. PCA is
a dimensionality-reduction method that rotationally transforms the data
into a new, truncated set of orthonormal axes that captures the variance in
the data set with the fewest number of dimensions64. The basis vectors of
this space, φj are called principal components (PC), and the weights, αj, are
called PC scores. The principal components are ordered by variance. The
PCA representation SðkÞpca of the autocorrelation of phase A for a given
microstructure is given by,

SðkÞpca tið Þ ¼
XQ
j¼1

α
ðkÞ
j tið Þφj þ S; (4)

where Q is the number of PC direction retained, and the term S represents

the sample mean of the autocorrelations, S A;Að ÞðkÞ
2 , for k ¼ 1¼Nsim, with

Nsim being the number of simulations in our training data set. In the
construction of our model, PCA is only fitted to the training data. The
testing data are projected into the fitted PCA space.

History-dependent machine-learning approaches
Our machine-learning approach establishes a functional relationship F
between the low-dimensional representation descriptors of the micro-
structures (i.e. the principal component scores) at a current time and prior
lagged values (ti−1…ti−n) of these microstructural descriptors and other
simulation parameters affecting the microstructure evolution process such
that, each principal component score, αðkÞj , can be approximated as

α
ðkÞ
j tið Þ ¼ F α

ðkÞ
1 ti�1ð Þ; ¼ ; α

ðkÞ
1 ti�nð Þ; ¼ ; α

ðkÞ
Q ti�1ð Þ; ¼ ; α

ðkÞ
Q ti�nð Þ; cðkÞA ;MðkÞ

A ;MðkÞ
B

� �
:

(5)

This functional relationship can rapidly (in a fraction of a second as
opposed to hours if we use our high-fidelity phase-field model in
MEMPHIS) predict a broad class of microstructures as a function of
simulation parameters with good accuracy. There are many different ways
by which we can establish the desired functional relationship F . In the
present study, we compared two different history-dependent machine-
learning techniques, namely the TSMARS and LSTM neural network. We
chose LSTM based on its superior performance.
LSTM networks are RNN architectures, wherein nodes are looped,

allowing information to persist between consecutive time steps by
tracking an internal (memory) state. Since the internal state is a function
of all the past inputs, the prediction from the LSTM-trained surrogate
model depends on the entire history of the microstructure. In contrast,
instead of making predictions from a state that depends on the entire
history, TSMARS is an autoregressive model which predicts the micro-
structure evolution using only “m”most recent inputs of the microstructure
history. Details of both algorithms are provided in the Supplementary
Notes 3 and 4.

Error metrics
The loss used to train our neural network is the mean squared error (MSE)
in terms of the principal component scores MSEαj which is defined as

MSEαj ¼
1
KN

XK
k¼1

XN
i¼1

α̂
ðkÞ
j tið Þ � ~α

ðkÞ
j tið Þ

� �2
; (6)

where N denotes the number of time frames for which the error is
calculated, K denotes the total number of microstructure evolution
realizations for which the error is being calculated (i.e. number of
microstructure in the training data set), and α

ðkÞ
j is the jth principal

component score of microstructure realization k at time ti. The hat, α̂, and
tilde, ~α, notations indicate the true and predicted values of the principal
component score, respectively. The MSE scalar error metric for each
principal component does not convey information about the accuracy of
our surrogate model as a function of the frame being predicted. For this
purpose, we calculated the ARE between the true (‘̂) and predicted (~‘)
average feature size at each time frame ti and for each microstructure
evolution realization k in our data set, such that

AREðkÞðtiÞ ¼ j‘̂ðkÞ tið Þ � ~‘
ðkÞ

tið Þj
‘̂
ðkÞ

tið Þ
: (7)

The average feature size corresponds to the first minimum of the radial
average of the autocorrelation. For each microstructure realization k and
for each time frame ti, we also calculated the Euclidean distance D(k)

between the true and predicted autocorrelation, normalized by the
Euclidean of the true autocorrelation such that

DðkÞðtiÞ ¼
P

r Ŝ
A;Að ÞðkÞ
2 ðr; tiÞ � ~S

A;Að ÞðkÞ
2 ðr; tiÞ

	 
2

P
r Ŝ

A;Að ÞðkÞ
2 ðr; tiÞ

	 
2 ; (8)

where Ŝ
A;Að ÞðkÞ
2 ðr; tiÞ and ~S

A;Að ÞðkÞ
2 ðr; tiÞ index the true (̂ ) and predicted (~)

autocorrelations respectively at time frame ti. Note that by summing over
all r vectors for which the autocorrelations are defined, this metric
corresponds to the normalized Euclidean distance between the predicted
and the true autocorrelations.
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