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The accurate computation of Hamiltonian ground, excited and thermal states on quantum computers stands to impact many
problems in the physical and computer sciences, from quantum simulation to machine learning. Given the challenges posed in
constructing large-scale quantum computers, these tasks should be carried out in a resource-efficient way. In this regard, exist-
ing techniques based on phase estimation or variational algorithms display potential disadvantages; phase estimation requires
deep circuits with ancillae, that are hard to execute reliably without error correction, while variational algorithms, while flex-
ible with respect to circuit depth, entail additional high-dimensional classical optimization. Here, we introduce the quantum
imaginary time evolution and quantum Lanczos algorithms, which are analogues of classical algorithms for finding ground and
excited states. Compared with their classical counterparts, they require exponentially less space and time per iteration, and can
be implemented without deep circuits and ancillae, or high-dimensional optimization. We furthermore discuss quantum imagi-
nary time evolution as a subroutine to generate Gibbs averages through an analogue of minimally entangled typical thermal
states. Finally, we demonstrate the potential of these algorithms via an implementation using exact classical emulation as well

as through prototype circuits on the Rigetti quantum virtual machine and Aspen-1 quantum processing unit.

pute the ground state ¥ of a Hamiltonian H (refs. '?). This

arises in simulations, for example, of the electronic structure
of molecules and materials’~, as well as in more general optimiza-
tion problems. While efficient ground-state determination cannot
be guaranteed for all Hamiltonians, as this is a QMA-hard problem’,
several heuristic quantum algorithms have been proposed, includ-
ing adiabatic state preparation with quantum phase estimation®’
and quantum-classical variational algorithms, such as the quantum
approximate optimization algorithm'*"> and variational quantum
eigensolver (VQE)"°. Despite many advances, these algorithms
also have potential disadvantages, especially in the context of near-
term quantum computing architectures with limited quantum
resources. For example, phase estimation produces a nearly exact
eigenstate, but appears impractical without error correction, while
variational algorithms, though somewhat robust to coherent errors,
are limited in accuracy by a fixed ansatz, and involve high-dimen-
sional noisy classical optimizations'®.

In classical simulations, different strategies are employed to
numerically determine nearly exact ground states. One popular
approach is imaginary time evolution, which expresses the ground
state as the long-time limit of the imaginary time Schrodinger equa-

tion ~3y|b()) = HI(p). |¥) = lim {55 (for (@(0)]¥)0)

Unlike variational algorithms with a flxed ansatz, imaginary time
evolution always converges to the ground state, as distinguished
from imaginary time ansatz optimization'. Another family of
approaches is variants of the iterative Lanczos method. The
Lanczos iteration constructs the Hamiltonian matrix H in a Krylov

Q n important application for a quantum computer is to com-

subspace {|®@), H|®), H?|®)... }; diagonalizing H yields a varia-
tional estimate of the ground state, which tends to |¥) for a large
number of iterations. For an N-qubit Hamiltonian, the classical
complexity of the imaginary time evolution and Lanczos algorithms
scales as ~ exp (O(N)) in space and time. Exponential space comes
from storing @(f) or the Lanczos vector, while exponential time
comes from the cost of Hamiltonian multiplication H|®), as well as,
in principle though not in practice, the N-dependence of the num-
ber of propagation steps or Lanczos iterations. Thus it is natural to
consider quantum versions of these algorithms that can overcome
the exponential bottlenecks.

Here we describe the quantum imaginary time evolution (QITE),
quantum Lanczos (QLanczos) and quantum analogue of the mini-
mally entangled typical thermal states (QMETTS) algorithms, to
determine ground states, ground and excited states and thermal
states on a quantum computer. Under the assumption of finite cor-
relation length, these methods rigorously use exponentially reduced
space and time per propagation step or iteration, compared with
their direct classical counterparts. Even when such assumptions do
not hold, the inexact versions of the QITE and QLanczos algorithms
remain valid heuristics that can be applied within a limited com-
putational budget, and offer advantages over existing ground-state
quantum algorithms, as they do not use deep circuits and converge to
their solutions without nonlinear optimization. A crucial common
component is the efficient implementation of the non-Hermitian
operation of an imaginary time step e 27# (for small A7) assuming
a finite correlation length in the state. Non-Hermitian operations
are not natural on a quantum computer and are usually achieved
using ancillae and postselection, but we describe how to implement
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imaginary time evolution on a given state without these resources.
The lack of ancillae and complex circuits makes our algorithms
potentially suitable for near-term quantum architectures. We dem-
onstrate the algorithms on spin and fermionic Hamiltonians using
exact classical emulation, and demonstrate proof-of-concept imple-
mentations on the Rigetti quantum virtual machine (QVM) and
Aspen-1 quantum processing units (QPUs).

Quantum imaginary time evolution

Define a geometric k-local Hamiltonian H= Dom h[ | (where each
term h[ | acts on at most k neighbouring qubits on an underlying
graph) and a Trotter decomposition of the corresponding imaginary
time evolution,
—pH _ (efﬂfﬁll]e*Afff[Z] )

LEENO!

)P+ O(AT); n= A

€

applied to a state |¥'). After a single Trotter step, we have

e—Arh[m] |;11> (2)
The basic idea is that the normalized state |‘?/)A— [ /11|l is
generated from |¥)by a unitary operator e '4*4" acting on a
neighbourhood of the qubits acted on by h[m], where A[m] can be
determined from tomography of |¥) in this neighbourhood up to
controllable errors. This is illustrated by the simple exa fple where
|¥) is a product state. The squared norm ¢ = (¥|e™? ach | ¥) can
be calculated from the expectation value of h[m], requiring mea-
surements over k qubits,

) =

c=1—2Az(¥Y|h[m]|¥) + O(AD?) 3)
Because |¥) is a product state, |#’) is obtained by applying the uni-
tary operator e 74" also on k qubits. A[m] can be expanded in
terms of an operator basis, for example the Pauli basis {6;} on k
qubits,

A[m} = Z a[m]il,,,ik&il"' i, = Za[””h&I (4)
T T

Up to O(Ar), the coefficients a[m]; are defined by the linear system
Sa[m] =b where the elements of S and b are expectation values over

k qubits,

= %w&mmnw

In general S has a null space, to ensure that a[m] is real, we mini-
mize H — (1 —iArAm] )¥||” with respect to real variations in
a[m] (Supplementary Information). Because the solution is deter-
mined from a linear problem, there are no local minima.

In this simple case, the normalized result of the imaginary time
evolution step could be represented by a unitary update over k qubits,
because |¥) had correlation length zero. After the initial step, this is
no longer the case. However, for a more general |¥) with finite cor-
relations over at most C qubits (that is, correlations between observ—
ables separated by distance L are bounded by exp(—L/C)), |#') can
be generated by a unitary acting on a domain of width at most O(C)
qubits surrounding the qubits acted on by h[m]. This follows from
Uhlmann’s theorem'’, which states that two pure states with margin-
als close to each other must be related by a unitary transformation
on the purifying subsystem (Supplementary Information). The uni-
tary e 12741 can then be determined by measurements and solving
the least squares problem in this domain (Fig. 1). For example, for
a nearest-neighbour local Hamiltonian on a d-dimensional cubic
lattice, the domain size D is bounded by O(C"). In many physical

Sir = (P|6i6r|¥), b (5)
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systems, we expect the maximum correlation length throughout the
Trotter steps to increase with f and saturate for Cyax << N (ref. ).
Figure 1 shows the mutual information between qubits i and j as a
function of imaginary time in the one-dimensional (1D) and two-
dimensional (2D) ferromagnetic transverse-field Ising models com-
puted by tensor network simulation (Supplementary Information),
demonstrating a monotonic increase and clear saturation.

The above replacement of imaginary time evolution steps by
unitary updates can be extended to more general Hamiltonians,
such as Hamiltonians with long-range interactions and fermionic
Hamiltonians. For fermions, in particular, the locality of the cor-
responding qubit Hamiltonian depends on the qubit mapping.
In principle, a geometric k-local fermionic Hamiltonian can be
mapped to a geometric local qubit Hamiltonian®*, allowing the
above techniques to be applied directly. Alternatively, we conjecture
that by constructing equation (4) with a local fermionic basis the
unitary update can be constructed over D ~ O(C%), C being the fer-
mionic correlation length (Supplementary Information).

Cost of QITE

The number of measurements and classical storage at a given time
step (starting propagation from a product state) is bounded by
exp(O(C%)) (with C the correlation length at that time step), since
each unitary at that step acts on at most O(C") sites; classical solu-
tion of the least squares problem has a similar scaling, exp(O(C%)),
as does the synthesis and application as a quantum circuit (com-
posed of two-qubit gates) of the unitary e 47" Thus, space and
time requirements are bounded by exponentials in C? but are poly-
nomial in N when we are interested in a local approximation of the
state (or quasipolynomial for a global approximation); the polyno-
mial in N comes from the number of terms in H (see Supplementary
Information for details).

The exponential dependence on C? can be greatly reduced in
many cases, such as if A[m] has a locality structure, for example if
it is (approximately) a p-local Hamiltonian (that is, all a[m]; , in
equation (4) are zero except for those where at most p of the 6, oper-
ators differ from the identity) then the cost of tomography becomes
only C°“), while the cost of finding and implementing the unitary is
O(pC*T,), T, being the cost of computing one entry of A[m] (ref. »).
If we assume further that A[m)] is geometric local, the cost of tomog-
raphy is reduced further to O(pC?). However, it is important to note
that even if C is too large to construct the unitaries exactly we can
still run the algorithm as a heuristic, truncating the unitary updates
to domain sizes that fit the computational budget. This gives the
inexact QITE algorithm, described and studied in detail below.

Compared with a direct classical implementation of imaginary
time evolution, the cost of a QITE time step (for bounded C) is
linear in N in space and polynomial in N in time, thus giving an
exponential reduction in space and time. Note that a finite cor-
relation length C, in the ground state does not generally imply an
efficient classical strategy. In the Supplementary Information, we
analyse multiple classical heuristics under the assumption of finite
ground-state correlations, including truncating the problem size at
C,, classical simulation in the Heisenberg representation and tensor
network calculations®".

Inexact QITE

Given limited resources, for example on near-term devices, we
can choose to measure and construct the unitary over a domain D
smaller than that induced by correlations, to fit the computational
budget. For example, if D=1, this gives a mean-field approxima-
tion of the imaginary time evolution, and larger D gives successively
better approximations to the ground state. Importantly, while the
unitary is no longer an exact representation of the imaginary time
evolution, there is no issue of a local minimum in its construction,
although the energy is no longer guaranteed to decrease at every
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Fig. 1| Physical foundations of the QITE algorithm. a, Schematic of the QITE algorithm. Top: imaginary time evolution under a geometric k-local operator

h[m] can be reproduced by a unitary operation acting on D> k qubits. Bottom: exact imaginary time evolution starting from a product state requires
unitaries acting on a domain D that grows with correlations. b,¢, Left: mutual information I(i, j) between qubits j, j as a function of distance d(i, j) and
imaginary time g3, for a 1D (b) and a 2D (c) ferromagnetic transverse-field Ising model, with h=1.25, 50 qubits and h=3.5, 21x 31 qubits respectively. I(j, j)

saturates at longer times. Right: relative error in the energy AE and fidelity F = [(®(f)

¥)|? between the finite-time state ®(f) and infinite-time state ¥

as a function of g. The noise in the 2D fidelity error at large f arises from the approximate nature of the algorithm used (see Supplementary Information

for details).

step. In this case, one can apply inexact imaginary time evolution
until the energy stops decreasing; the energy will still be a varia-
tional upper bound. One can also use the QLanczos algorithm,
described later.

lllustrative QITE calculations

To illustrate the QITE algorithm, we have carried out exact classical
emulations (assuming perfect expectation values and gates) for
several Hamiltonians (Supplementary Information): short-range 1D
Heisenberg (with and without a field); 1D AFM transverse-
field Ising; long-range 1D Heisenberg with spin-spin coupling
J;=(i—=j|+1)7 1D Hubbard at half-filling; a six-qubit
MAXCUT'*"" instance and a minimal basis two-qubit dihydrogen
molecular Hamiltonian®. To assess the feasibility of implementa-
tion on near-term quantum devices, we have carried out noisy
classical emulation (sampling expectation values and with an error
model) using the Rigetti QVM and a physical simulation using the
Rigetti Aspen-1 QPUs, for a single-qubit field model (X + Z)/v/2
(ref. ) and a 1D AFM transverse-field Ising model. We also carried
out measurement resource estimates for QITE on the short-range
1D Heisenberg (with field) model studied in ref. * with VQE, and
the 1D AFM transverse-field Ising model; we compared these with
resource estimates using the publicly available VQE implementation
in IBM’s Qiskit. We carried out QITE using different fixed D for the
unitary or fermionic unitary (see Supplementary Information for
descriptions of simulations and models).

Figures 2a-f and 3 show the energy obtained by QITE as a func-
tion of # and D for the various models. As we increase D, the asymp-
totic (f— oo) energies rapidly converge to the exact ground state.
For small D, the inexact QITE tracks the exact QITE for a time until
the correlation length exceeds D. Afterwards, it may go down or up.
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The non-monotonic behaviour is strongest for small domains: in
the MAXCUT example, the smallest domain D=2 gives an oscil-
lating energy; the first point at which the energy stops decreasing
is a reasonable estimate of the ground-state energy. In all models,
increasing D past a maximum value (less than N) no longer affects
the asymptotic energy, showing that the correlations have saturated
(this is true even in the MAXCUT instance). Figure 2g,h shows
an estimate from classical emulation of the number of Pauli string
expectation values to be measured in the QITE algorithm as well as
the hardware-efficient VQE ansatz (using the optimization protocol
in ref. °) to obtain an energy accuracy of 1% in the 1D Heisenberg
model with field J=B=1 (Fig. 2g) and 1% or 2% in the 1D AFM
transverse-field Ising model (Fig. 2h; the looser threshold was cho-
sen to enable convergence of VQE). QITE is competitive with VQE
for the four-site model and requires many fewer measurements
in the six-site model. While the number of measurements could
potentially be reduced in VQE by different optimizers and ansatze,
the data suggest that QITE is a promising alternative to VQE on
near-term devices.

Figure 2e,f shows the results of running the QITE algorithm on
Rigetti’s QVM and Aspen-1 QPUs for one and two qubits, respec-
tively. The error bars are due to gate, readout, incoherent and cross-
talk errors. Sufficient samples were used to ensure that sampling
error is negligible. Encouragingly for near-term simulations, despite
these errors it is possible to converge to a ground-state energy close
to the exact energy for the single-qubit case. This result reflects a
robustness that is sometimes informally observed in imaginary
time evolution algorithms, in which the ground-state energy is
approached even if the imaginary time step is not perfectly imple-
mented. In the two-qubit case, although the QITE energy converges,
there is a systematic shift, which is reproduced on the QVM using
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Fig. 2 | Classical simulation and experimental implementation of QITE and QLanczos algorithms. a,b, QITE energy E() (a) and F between &(f) and

¥ (b) as a function of 3, for a 1D 10-site Heisenberg model, showing convergence with increasing D. ¢,d, QITE (dashed lines) and QLanczos (solid lines)
energies as a function of g, for a 1D Heisenberg model with N=20 qubits, using D=2 (¢) and 4 qubits (d), showing improved convergence of QLanczos
over QITE. ef, QITE and QLanczos energy as a function of § for a single-qubit model (e) and a two-qubit AFM transverse-field Ising model using QVMs
and QPUs (f). Black lines denote the exact ground-state energy or maximum fidelity. g,h, Estimate of the number of Pauli string expectation values (P,
needed for QITE and VQE to converge within 1% of the exact energy for a four-site (left) and six-site (right) 1D Heisenberg model with magnetic field (g)
and 1% (2%) of the exact energy for a four-site (six-site) 1D AFM transverse-field Ising model (h). Error bars represent s.d. computed from multiple runs.
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Fig. 3 | Application of QITE to long-range spin and fermionic models, and a combinatorial optimization problem. a, QITE energy as a function of g for a

six-site 1D long-range Heisenberg model, for D=2-6 (a), and a four-site 1D Hubbard model with interaction strength U/t=1, for D=2, 4 (b). ¢, Probability
of MAXCUT detection, P(C=C

in the STO-6G basis as a function of bond length R and . The black line is the exact ground-state energy/probability of detection.

available noise parameters for readout, decoherence and depolar-

hardware are probably attributable to cross-talk between parallel
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max:

), as a function of imaginary time g, for the six-site graph in the inset. d, QITE energy (in hartrees, Ha) for the H, molecule

gates not included in the noise model (Supplementary Information).
izing noise®. Remaining discrepancies between the emulator and  However, reducing decoherence and depolarizing errors in the QVM

or using different sets of qubits with improved noise characteristics
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Fig. 4 | Classical simulation and experimental implementation of the QMETTS algorithm. a, Thermal (Gibbs) average (H) at temperature 8 from
QMETTS for a 1D six-site Heisenberg model (exact emulation). The black line is the exact thermal average without sampling error. b,c, Thermal average

(H) at temperature g from QMETTS for a single-qubit field model using QVMs and QPUs (b) and a two-qubit AFM transverse-field Ising model using
QVM (c). Error bars represent (block) s.d. computed from multiple samples/runs.

(Supplementary Information) all lead to improved convergence to
the exact ground-state energy.

QLanczos algorithm

Given the QITE subroutine, we now consider how to formulate the
QLanczos algorithm, which is an especially economical realization of
a quantum subspace method*"*>. An important practical motivation
is that the Lanczos algorithm typically converges much more quickly
than imaginary time evolution, and often in physical simulations
only tens of iterations are needed to converge to good precision. In
addition, Lanczos provides a natural way to compute excited states.
Consider the sequence of imaginary time vectors |®;) = e~/47H|®),
1=0,1, ..., n, where ¢, = ||®;||. In QLanczos, we consider the vectors
after even numbers of time steps |Dy), |P,), ... to form a basis for
the ground state. (Supplementary Information describes the equiv-
alent treatment in terms of normalized imaginary time vectors.)
These vectors define an overlap matrix whose elements can be com-
puted entirely from norms, Sy = (®1|®r) = )/, Where ciip) /2
is the norm of another integer time-step vector, and the overlap
matrix elements for n/2 vectors can be accumulated for free after
n steps of time evolution. The Hamiltonian matrix elements satisfy
the identity Hy = <¢1‘H|¢]r> <¢(l+l/)/2|H|(p(l+l’)/2>- Although
the Hamiltonian has ~#? matrix elements in the basis of the @, states,
there are only ~n unique elements, and importantly each is a simple
expectation value of the energy during the imaginary time evolu-
tion. This economy of matrix elements is a property shared with the
classical Lanczos algorithm. Whereas the classical Lanczos iteration
builds a Krylov space in powers of H, QLanczos builds a Krylov
space in powers of e 247H; in the limit of small Az these Krylov
spaces are identical. Diagonalization of the QLanczos Hamiltonian
matrix is guaranteed to give a ground-state energy lower than that
of the last imaginary time vector @, (while higher roots approxi-
mate excited states).

With a limited computational budget, we can use inexact QITE
to generate @, @]. However, in this case the above expressions for
Sy and Hy, in terms of expectation values no longer exactly hold,
which can create numerical issues (for example the overlap may no
longer be positive). To handle this, as well as errors due to noise and
sampling in real experiments, the QLanczos algorithm needs to be
stabilized by ensuring that successive vectors are not nearly linearly
dependent (Supplementary Information).

We demonstrate the QLanczos algorithm using classical emu-
lation on the 1D Heisenberg Hamiltonian, as used for the QITE
algorithm in Fig. 2 (Supplementary Information). Using exact
QITE (large domains) to generate matrix elements, exact QLanczos
converges much more rapidly than imaginary time evolution.
Convergence of inexact QITE (small domains), however, can both
be faster and reach lower energies than inexact QLanczos. We also

NATURE PHYSICS | VOL 16 | FEBRUARY 2020 | 205-210 | www.nature.com/naturephysics

assess the feasibility of QLanczos in the presence of noise, using
emulated noise on the Rigetti QVM as well as on the Rigetti Aspen-1
QPUs. In Fig. 2, we see that QLanczos also provides more rapid con-
vergence than QITE with both noisy classical emulation and on the
physical device for one and two qubits.

Quantum thermal averages

The QITE subroutine can be used in a range of other algorithms.
For example, we discuss how to compute thermal averages
Tr[O e "]/ Tr[e "] using imaginary time evolution. Several proce-
dures have been proposed for quantum thermal averaging, ranging
from generating the finite-temperature state explicitly by equilibra-
tion with a bath® to a quantum analogue of Metropolis sampling*
that relies on phase estimation, as well as ancilla-based Hamiltonian
simulation methods with postselection® and approaches based
on recovery maps*’. However, given a method for imaginary time
evolution, one can generate thermal averages of observables with-
out any ancillae or deep circuits. This can be done by adapting
to the quantum setting the classical METTS algorithm®*, which
generates a Markov chain from which the thermal average can be
sampled. The QMETTS algorithm can be carried out as follows:
(1) start from a product state, carry out imaginary time evolution
(using QITE) up to time f; (2) measure the expectation value of Oto
produce its thermal average; (3) measure a product operator such as
212, ... Zy;, to collapse back onto a random product state; (4) repeat
(1). Note that in step (3) we can measure in any product basis, and
randomizing the product basis can be used to reduce the autocor-
relation time and avoid ergodicity problems in sampling. In Fig. 4
we show the results of QMETTS (using exact classical emulation)
for the thermal average (H) as a function of temperature j, for the
six-site Heisenberg model for several temperatures and domain
sizes: sufficiently large D converges to the exact thermal average
at each f; error bars reflect only finite QMETTS samples. We also
show an implementation of QMETTS on the Aspen-1 QPU and
QVM with a single-qubit field model (Fig. 4b), and using the QVM
for a two-qubit AFM transverse-field Ising model (Fig. 4c).

Conclusions

In summary, the quantum analogues of imaginary time evolution,
Lanczos and METTS algorithms that we have presented enable a
new class of eigenstate and thermal state quantum simulations,
that can be carried out without ancillae or deep circuits and that,
for bounded correlation length, achieve exponential reductions in
space and time per iteration relative to known classical counter-
parts. Encouragingly, these algorithms appear useful in conjunction
with near-term quantum architectures, and serve to demonstrate
the power of quantum elevations of classical simulation techniques,
in the continuing search for quantum supremacy.
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Code availability
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