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An important application for a quantum computer is to com-
pute the ground state Ψ of a Hamiltonian Ĥ

I
 (refs. 1,2). This 

arises in simulations, for example, of the electronic structure 
of molecules and materials3–6, as well as in more general optimiza-
tion problems. While efficient ground-state determination cannot 
be guaranteed for all Hamiltonians, as this is a QMA-hard problem7, 
several heuristic quantum algorithms have been proposed, includ-
ing adiabatic state preparation with quantum phase estimation8,9 
and quantum-classical variational algorithms, such as the quantum 
approximate optimization algorithm10–12 and variational quantum 
eigensolver (VQE)13–15. Despite many advances, these algorithms 
also have potential disadvantages, especially in the context of near-
term quantum computing architectures with limited quantum 
resources. For example, phase estimation produces a nearly exact 
eigenstate, but appears impractical without error correction, while 
variational algorithms, though somewhat robust to coherent errors, 
are limited in accuracy by a fixed ansatz, and involve high-dimen-
sional noisy classical optimizations16.

In classical simulations, different strategies are employed to 
numerically determine nearly exact ground states. One popular 
approach is imaginary time evolution, which expresses the ground 
state as the long-time limit of the imaginary time Schrödinger equa-

tion �∂βjΦðβÞi ¼ ĤjΦðβÞi
I

, jΨ i ¼ lim
β!1

jΦðβÞi
ΦðβÞk k

I

 (for hΦð0ÞjΨ i≠0
I

). 

Unlike variational algorithms with a fixed ansatz, imaginary time 
evolution always converges to the ground state, as distinguished 
from imaginary time ansatz optimization17. Another family of 
approaches is variants of the iterative Lanczos method18. The 
Lanczos iteration constructs the Hamiltonian matrix H in a Krylov 

subspace fjΦi; ĤjΦi; Ĥ2jΦi¼ g
I

; diagonalizing H yields a varia-
tional estimate of the ground state, which tends to jΨ i

I
 for a large 

number of iterations. For an N-qubit Hamiltonian, the classical 
complexity of the imaginary time evolution and Lanczos algorithms 
scales as  exp ðOðNÞÞ

I
 in space and time. Exponential space comes 

from storing Φ(β) or the Lanczos vector, while exponential time 
comes from the cost of Hamiltonian multiplication ĤjΦi

I
, as well as, 

in principle though not in practice, the N-dependence of the num-
ber of propagation steps or Lanczos iterations. Thus it is natural to 
consider quantum versions of these algorithms that can overcome 
the exponential bottlenecks.

Here we describe the quantum imaginary time evolution (QITE), 
quantum Lanczos (QLanczos) and quantum analogue of the mini-
mally entangled typical thermal states (QMETTS) algorithms, to 
determine ground states, ground and excited states and thermal 
states on a quantum computer. Under the assumption of finite cor-
relation length, these methods rigorously use exponentially reduced 
space and time per propagation step or iteration, compared with 
their direct classical counterparts. Even when such assumptions do 
not hold, the inexact versions of the QITE and QLanczos algorithms 
remain valid heuristics that can be applied within a limited com-
putational budget, and offer advantages over existing ground-state 
quantum algorithms, as they do not use deep circuits and converge to  
their solutions without nonlinear optimization. A crucial common 
component is the efficient implementation of the non-Hermitian 
operation of an imaginary time step e�Δτ Ĥ

I
 (for small Δτ) assuming 

a finite correlation length in the state. Non-Hermitian operations 
are not natural on a quantum computer and are usually achieved 
using ancillae and postselection, but we describe how to implement 
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imaginary time evolution on a given state without these resources. 
The lack of ancillae and complex circuits makes our algorithms 
potentially suitable for near-term quantum architectures. We dem-
onstrate the algorithms on spin and fermionic Hamiltonians using 
exact classical emulation, and demonstrate proof-of-concept imple-
mentations on the Rigetti quantum virtual machine (QVM) and 
Aspen-1 quantum processing units (QPUs).

Quantum imaginary time evolution
Define a geometric k-local Hamiltonian Ĥ ¼ P

m ĥ½m
I

 (where each 
term ĥ½m

I
 acts on at most k neighbouring qubits on an underlying 

graph) and a Trotter decomposition of the corresponding imaginary 
time evolution,

e�βĤ ¼ ðe�Δτ ĥ½1e�Δτ ĥ½2 ¼ Þn þO Δτð Þ; n ¼ β

Δτ
ð1Þ

applied to a state jΨ i
I

. After a single Trotter step, we have

jΨ 0i ¼ e�Δτ ĥ½mjΨ i ð2Þ

The basic idea is that the normalized state j�Ψ 0i ¼ jΨ 0i= Ψ 0k k
I

 is 
generated from jΨ i

I
by a unitary operator e�iΔτ Â½m

I
 acting on a 

neighbourhood of the qubits acted on by ĥ½m
I

, where Â½m
I

 can be 
determined from tomography of jΨ i

I
 in this neighbourhood up to 

controllable errors. This is illustrated by the simple example where 
jΨ i
I

 is a product state. The squared norm c ¼ hΨ je�2Δτ ĥ½mjΨ i
I

 can 
be calculated from the expectation value of ĥ½m

I
, requiring mea-

surements over k qubits,

c ¼ 1� 2ΔτhΨ jĥ½mjΨi þ OðΔτ2Þ ð3Þ

Because jΨ i
I

 is a product state, jΨ 0i
I

 is obtained by applying the uni-
tary operator e�iΔτ Â½m

I
 also on k qubits. Â½m

I
 can be expanded in 

terms of an operator basis, for example the Pauli basis fσ̂ig
I

 on k 
qubits,

Â½m ¼
X

i1 ¼ ik

a½mi1 ¼ ik
σ̂i1 ¼ σ̂ik 

X

I

a½mI σ̂I ð4Þ

Up to OðΔτÞ
I

, the coefficients a[m]I are defined by the linear system 
Sa[m] = b where the elements of S and b are expectation values over 
k qubits,

SI;I0 ¼ hΨ jσ̂yI σ̂I0 jΨ i ; bI ¼
�iffiffi
c

p hΨ jσ̂yI ĥ½mjΨ i ð5Þ

In general, S has a null space; to ensure that a[m] is real, we mini-
mize Ψ

0 � ð1� iΔτ Â½mÞΨ
�� ��2

I
 with respect to real variations in 

a[m] (Supplementary Information). Because the solution is deter-
mined from a linear problem, there are no local minima.

In this simple case, the normalized result of the imaginary time 
evolution step could be represented by a unitary update over k qubits, 
because jΨ i

I
 had correlation length zero. After the initial step, this is 

no longer the case. However, for a more general jΨ i
I

 with finite cor-
relations over at most C qubits (that is, correlations between observ-
ables separated by distance L are bounded by exp(−L/C)), j�Ψ 0i

I
 can 

be generated by a unitary acting on a domain of width at most O(C) 
qubits surrounding the qubits acted on by ĥ½m

I
. This follows from 

Uhlmann’s theorem19, which states that two pure states with margin-
als close to each other must be related by a unitary transformation 
on the purifying subsystem (Supplementary Information). The uni-
tary e�iΔτ Â½m

I
 can then be determined by measurements and solving 

the least squares problem in this domain (Fig. 1). For example, for 
a nearest-neighbour local Hamiltonian on a d-dimensional cubic 
lattice, the domain size D is bounded by O(Cd). In many physical 

systems, we expect the maximum correlation length throughout the 
Trotter steps to increase with β and saturate for Cmax � N

I
 (ref. 20). 

Figure 1 shows the mutual information between qubits i and j as a 
function of imaginary time in the one-dimensional (1D) and two-
dimensional (2D) ferromagnetic transverse-field Ising models com-
puted by tensor network simulation (Supplementary Information), 
demonstrating a monotonic increase and clear saturation.

The above replacement of imaginary time evolution steps by 
unitary updates can be extended to more general Hamiltonians, 
such as Hamiltonians with long-range interactions and fermionic 
Hamiltonians. For fermions, in particular, the locality of the cor-
responding qubit Hamiltonian depends on the qubit mapping. 
In principle, a geometric k-local fermionic Hamiltonian can be 
mapped to a geometric local qubit Hamiltonian21,22, allowing the 
above techniques to be applied directly. Alternatively, we conjecture 
that by constructing equation (4) with a local fermionic basis the 
unitary update can be constructed over D  OðCdÞ

I
, C being the fer-

mionic correlation length (Supplementary Information).

Cost of QiTE
The number of measurements and classical storage at a given time 
step (starting propagation from a product state) is bounded by 
exp(O(Cd)) (with C the correlation length at that time step), since 
each unitary at that step acts on at most O(Cd) sites; classical solu-
tion of the least squares problem has a similar scaling, exp(O(Cd)), 
as does the synthesis and application as a quantum circuit (com-
posed of two-qubit gates) of the unitary e�iΔτ Â½m

I
. Thus, space and 

time requirements are bounded by exponentials in Cd, but are poly-
nomial in N when we are interested in a local approximation of the 
state (or quasipolynomial for a global approximation); the polyno-
mial in N comes from the number of terms in Ĥ

I
 (see Supplementary 

Information for details).
The exponential dependence on Cd can be greatly reduced in 

many cases, such as if Â½m
I

 has a locality structure, for example if 
it is (approximately) a p-local Hamiltonian (that is, all a½mi1 ¼ ik

I
 in 

equation (4) are zero except for those where at most p of the σî oper-
ators differ from the identity) then the cost of tomography becomes 
only CO(dp), while the cost of finding and implementing the unitary is 
O(pCdTe), Te being the cost of computing one entry of Â½m

I
 (ref. 23). 

If we assume further that Â½m
I

 is geometric local, the cost of tomog-
raphy is reduced further to O(pCd). However, it is important to note 
that even if C is too large to construct the unitaries exactly we can 
still run the algorithm as a heuristic, truncating the unitary updates 
to domain sizes that fit the computational budget. This gives the 
inexact QITE algorithm, described and studied in detail below.

Compared with a direct classical implementation of imaginary 
time evolution, the cost of a QITE time step (for bounded C) is 
linear in N in space and polynomial in N in time, thus giving an 
exponential reduction in space and time. Note that a finite cor-
relation length C0 in the ground state does not generally imply an 
efficient classical strategy. In the Supplementary Information, we 
analyse multiple classical heuristics under the assumption of finite 
ground-state correlations, including truncating the problem size at 
C0, classical simulation in the Heisenberg representation and tensor 
network calculations24–27.

inexact QiTE
Given limited resources, for example on near-term devices, we 
can choose to measure and construct the unitary over a domain D 
smaller than that induced by correlations, to fit the computational 
budget. For example, if D = 1, this gives a mean-field approxima-
tion of the imaginary time evolution, and larger D gives successively 
better approximations to the ground state. Importantly, while the 
unitary is no longer an exact representation of the imaginary time 
evolution, there is no issue of a local minimum in its construction, 
although the energy is no longer guaranteed to decrease at every 
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step. In this case, one can apply inexact imaginary time evolution 
until the energy stops decreasing; the energy will still be a varia-
tional upper bound. One can also use the QLanczos algorithm, 
described later.

illustrative QiTE calculations
To illustrate the QITE algorithm, we have carried out exact classical  
emulations (assuming perfect expectation values and gates) for  
several Hamiltonians (Supplementary Information): short-range 1D  
Heisenberg (with and without a field); 1D AFM transverse-
field Ising; long-range 1D Heisenberg with spin–spin coupling  
Jij = (|i − j| + 1)−1; 1D Hubbard at half-filling; a six-qubit 
MAXCUT10–12 instance and a minimal basis two-qubit dihydrogen 
molecular Hamiltonian28. To assess the feasibility of implementa-
tion on near-term quantum devices, we have carried out noisy 
classical emulation (sampling expectation values and with an error 
model) using the Rigetti QVM and a physical simulation using the 
Rigetti Aspen-1 QPUs, for a single-qubit field model ðX̂ þ ẐÞ=

ffiffiffi
2

p

I
 

(ref. 29) and a 1D AFM transverse-field Ising model. We also carried 
out measurement resource estimates for QITE on the short-range 
1D Heisenberg (with field) model studied in ref. 5 with VQE, and 
the 1D AFM transverse-field Ising model; we compared these with 
resource estimates using the publicly available VQE implementation 
in IBM’s Qiskit. We carried out QITE using different fixed D for the 
unitary or fermionic unitary (see Supplementary Information for 
descriptions of simulations and models).

Figures 2a–f and 3 show the energy obtained by QITE as a func-
tion of β and D for the various models. As we increase D, the asymp-
totic (β → ∞) energies rapidly converge to the exact ground state. 
For small D, the inexact QITE tracks the exact QITE for a time until 
the correlation length exceeds D. Afterwards, it may go down or up. 

The non-monotonic behaviour is strongest for small domains: in 
the MAXCUT example, the smallest domain D = 2 gives an oscil-
lating energy; the first point at which the energy stops decreasing 
is a reasonable estimate of the ground-state energy. In all models, 
increasing D past a maximum value (less than N) no longer affects 
the asymptotic energy, showing that the correlations have saturated 
(this is true even in the MAXCUT instance). Figure 2g,h shows 
an estimate from classical emulation of the number of Pauli string 
expectation values to be measured in the QITE algorithm as well as 
the hardware-efficient VQE ansatz (using the optimization protocol 
in ref. 5) to obtain an energy accuracy of 1% in the 1D Heisenberg 
model with field J = B = 1 (Fig. 2g) and 1% or 2% in the 1D AFM 
transverse-field Ising model (Fig. 2h; the looser threshold was cho-
sen to enable convergence of VQE). QITE is competitive with VQE 
for the four-site model and requires many fewer measurements 
in the six-site model. While the number of measurements could 
potentially be reduced in VQE by different optimizers and ansatze, 
the data suggest that QITE is a promising alternative to VQE on 
near-term devices.

Figure 2e,f shows the results of running the QITE algorithm on 
Rigetti’s QVM and Aspen-1 QPUs for one and two qubits, respec-
tively. The error bars are due to gate, readout, incoherent and cross-
talk errors. Sufficient samples were used to ensure that sampling 
error is negligible. Encouragingly for near-term simulations, despite 
these errors it is possible to converge to a ground-state energy close 
to the exact energy for the single-qubit case. This result reflects a 
robustness that is sometimes informally observed in imaginary 
time evolution algorithms, in which the ground-state energy is 
approached even if the imaginary time step is not perfectly imple-
mented. In the two-qubit case, although the QITE energy converges, 
there is a systematic shift, which is reproduced on the QVM using 
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Fig. 1 | Physical foundations of the QiTE algorithm. a, Schematic of the QITE algorithm. Top: imaginary time evolution under a geometric k-local operator 
ĥ½m
I

 can be reproduced by a unitary operation acting on D > k qubits. bottom: exact imaginary time evolution starting from a product state requires 
unitaries acting on a domain D that grows with correlations. b,c, Left: mutual information I(i, j) between qubits i, j as a function of distance d(i, j) and 
imaginary time β, for a 1D (b) and a 2D (c) ferromagnetic transverse-field Ising model, with h = 1.25, 50 qubits and h = 3.5, 21 × 31 qubits respectively. I(i, j) 
saturates at longer times. right: relative error in the energy ΔE and fidelity F ¼ jhΦðβÞjΨij2

I
 between the finite-time state Φ(β) and infinite-time state Ψ  

as a function of β. The noise in the 2D fidelity error at large β arises from the approximate nature of the algorithm used (see Supplementary Information  
for details).
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available noise parameters for readout, decoherence and depolar-
izing noise30. Remaining discrepancies between the emulator and 
hardware are probably attributable to cross-talk between parallel 

gates not included in the noise model (Supplementary Information). 
However, reducing decoherence and depolarizing errors in the QVM 
or using different sets of qubits with improved noise characteristics  
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(Supplementary Information) all lead to improved convergence to 
the exact ground-state energy.

QLanczos algorithm
Given the QITE subroutine, we now consider how to formulate the 
QLanczos algorithm, which is an especially economical realization of 
a quantum subspace method31,32. An important practical motivation 
is that the Lanczos algorithm typically converges much more quickly 
than imaginary time evolution, and often in physical simulations 
only tens of iterations are needed to converge to good precision. In 
addition, Lanczos provides a natural way to compute excited states. 
Consider the sequence of imaginary time vectors jΦli ¼ e�lΔτ Ĥ jΦi

I
, 

l = 0, 1, …, n, where cl ¼ Φlk k
I

. In QLanczos, we consider the vectors  
after even numbers of time steps jΦ0i; jΦ2i; ¼

I
 to form a basis for  

the ground state. (Supplementary Information describes the equiv-
alent treatment in terms of normalized imaginary time vectors.) 
These vectors define an overlap matrix whose elements can be com-
puted entirely from norms, Sll0 ¼ hΦljΦl0 i ¼ c2ðlþl0Þ=2

I
, where cðlþl0Þ=2

I
 

is the norm of another integer time-step vector, and the overlap 
matrix elements for n/2 vectors can be accumulated for free after 
n steps of time evolution. The Hamiltonian matrix elements satisfy 
the identity Hll0 ¼ hΦljĤjΦl0 i ¼ hΦðlþl0Þ=2jĤjΦðlþl0Þ=2i

I
. Although 

the Hamiltonian has ~n2 matrix elements in the basis of the Φl states, 
there are only ~n unique elements, and importantly each is a simple 
expectation value of the energy during the imaginary time evolu-
tion. This economy of matrix elements is a property shared with the 
classical Lanczos algorithm. Whereas the classical Lanczos iteration 
builds a Krylov space in powers of Ĥ

I
, QLanczos builds a Krylov 

space in powers of e�2Δτ Ĥ

I
; in the limit of small Δτ these Krylov 

spaces are identical. Diagonalization of the QLanczos Hamiltonian 
matrix is guaranteed to give a ground-state energy lower than that 
of the last imaginary time vector Φn (while higher roots approxi-
mate excited states).

With a limited computational budget, we can use inexact QITE 
to generate Φl, Φ0

l
I

. However, in this case the above expressions for 
Sll′ and Hll′ in terms of expectation values no longer exactly hold, 
which can create numerical issues (for example the overlap may no 
longer be positive). To handle this, as well as errors due to noise and 
sampling in real experiments, the QLanczos algorithm needs to be 
stabilized by ensuring that successive vectors are not nearly linearly 
dependent (Supplementary Information).

We demonstrate the QLanczos algorithm using classical emu-
lation on the 1D Heisenberg Hamiltonian, as used for the QITE 
algorithm in Fig. 2 (Supplementary Information). Using exact 
QITE (large domains) to generate matrix elements, exact QLanczos 
converges much more rapidly than imaginary time evolution. 
Convergence of inexact QITE (small domains), however, can both 
be faster and reach lower energies than inexact QLanczos. We also 

assess the feasibility of QLanczos in the presence of noise, using 
emulated noise on the Rigetti QVM as well as on the Rigetti Aspen-1 
QPUs. In Fig. 2, we see that QLanczos also provides more rapid con-
vergence than QITE with both noisy classical emulation and on the 
physical device for one and two qubits.

Quantum thermal averages
The QITE subroutine can be used in a range of other algorithms. 
For example, we discuss how to compute thermal averages 
Tr½Ô e�βĤ =Tr½e�βĤ 
I

 using imaginary time evolution. Several proce-
dures have been proposed for quantum thermal averaging, ranging 
from generating the finite-temperature state explicitly by equilibra-
tion with a bath33 to a quantum analogue of Metropolis sampling34 
that relies on phase estimation, as well as ancilla-based Hamiltonian 
simulation methods with postselection35 and approaches based 
on recovery maps36. However, given a method for imaginary time 
evolution, one can generate thermal averages of observables with-
out any ancillae or deep circuits. This can be done by adapting 
to the quantum setting the classical METTS algorithm37,38, which 
generates a Markov chain from which the thermal average can be 
sampled. The QMETTS algorithm can be carried out as follows: 
(1) start from a product state, carry out imaginary time evolution 
(using QITE) up to time β; (2) measure the expectation value of Ô

I
 to 

produce its thermal average; (3) measure a product operator such as 
Ẑ1Ẑ2 ¼ ẐN
I

, to collapse back onto a random product state; (4) repeat 
(1). Note that in step (3) we can measure in any product basis, and 
randomizing the product basis can be used to reduce the autocor-
relation time and avoid ergodicity problems in sampling. In Fig. 4  
we show the results of QMETTS (using exact classical emulation) 
for the thermal average hĤi

I
 as a function of temperature β, for the 

six-site Heisenberg model for several temperatures and domain 
sizes: sufficiently large D converges to the exact thermal average 
at each β; error bars reflect only finite QMETTS samples. We also 
show an implementation of QMETTS on the Aspen-1 QPU and 
QVM with a single-qubit field model (Fig. 4b), and using the QVM 
for a two-qubit AFM transverse-field Ising model (Fig. 4c).

Conclusions
In summary, the quantum analogues of imaginary time evolution, 
Lanczos and METTS algorithms that we have presented enable a 
new class of eigenstate and thermal state quantum simulations, 
that can be carried out without ancillae or deep circuits and that, 
for bounded correlation length, achieve exponential reductions in 
space and time per iteration relative to known classical counter-
parts. Encouragingly, these algorithms appear useful in conjunction 
with near-term quantum architectures, and serve to demonstrate 
the power of quantum elevations of classical simulation techniques, 
in the continuing search for quantum supremacy.
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Fig. 4 | Classical simulation and experimental implementation of the QMETTS algorithm. a, Thermal (Gibbs) average hĤi
I

 at temperature β from 
QMETTS for a 1D six-site Heisenberg model (exact emulation). The black line is the exact thermal average without sampling error. b,c, Thermal average 
hĤi
I

 at temperature β from QMETTS for a single-qubit field model using QVMs and QPUs (b) and a two-qubit AFM transverse-field Ising model using 
QVM (c). Error bars represent (block) s.d. computed from multiple samples/runs.
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