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The activated dynamics of proteins occurs on time scales of milliseconds and longer. Standard
all-atom molecular dynamics simulations are limited to much shorter times, of the order of tens of
nanoseconds. Therefore, many activated mechanisms that are crucial for the long-time dynamics
will not be observed in such molecular dynamics simulations: di�erent methods are required. Here,
we describe in detail the activation-relaxation technique (ART) that generates directly activated
mechanisms. The method is de�ned in the con�gurational energy landscape and de�nes moves in
a two step fashion: (a) a con�guration is �rst brought from a local minimum to a nearby saddle
point, the activation; and (b) the con�guration is relaxed to a new metastable state, the relaxation.
The method has already been applied to a wide range of problems in condensed matter, including
metallic glasses, amorphous semiconductors and silica glass. We will review the algorithm in detail,
discuss some of the previously published results and present simulations of activated mechanisms
for a two-helix bundle protein using an all-atom energy function.

I. INTRODUCTION

The simulation of proteins on a biological time scale,
microseconds to milliseconds, is a major challenge in
computational biology. For many proteins, such simula-
tions would allow to generate transition state ensembles
from the denatured state to the native (experimental) s-
tate. For instance, the C-terminal domain of the prion
protein has been found to fold in 170 �s and the helical
� repressor protein in only 20 �s [1]. Such studies would
also allow to understand how the amino-acid sequence
codes for the structure and to annotate the biological
function of the protein sequences that cannot be deter-
mined by comparative modelling, fold recognition and
motif search methods.
Within the framework of molecular dynamics (MD),

Duan and co-workers have actually reached the 1-�s mile-
stone in a simulation of a 36-residue peptide, in two
months of computation time on 256 parallel processors
of a CRAY T3E [2]. There is however still a large gap
between one 1-microsecond trajectory for a 36-residue
peptide and 10-100 trajectories of millisecond lengths for
200-residue proteins. Approaches that have been tried
to go beyond the nanosecond time scale of traditional
MD simulations include simulations with multiple time
steps, approximate schemes for longe range electrostatic
forces and simulations for hard spheres. Multiple time

step integration techniques have enlarged the time scales
accessible by MD. However still only a few nanoseconds
of simulation time are routinely accessible [3]. MD simu-
lations with square-well interactions have provided a ba-
sis for understanding behavior that is observed in helical
proteins, but their applicability to more realistic poten-
tial energy models remains to be determined [4].
Most approaches to study the energy landscape of pro-

teins rely on some simpli�cation of the problem. The
solvent, for example, is most often treated as a mean-
�eld addition to the con�gurational energy of models.
Accelerated methods tend to further modify the energy
landscape through the introduction of biases, the use of
bead-descriptions or discretization [5]. This list is not ex-
haustive and other methods have been proposed recently
to improve sampling while staying as close as possible to
a full description of the protein interactions.
The method that we discuss in this manuscript is the

activation-relaxation technique (ART), introduced a few
years ago by some of us [6]. This method focuses on
the the slow activated dynamics of the protein, which
brings it from one local minimum to another, in search
for the native structure, and removes the fast thermal
vibrations that contribute little to the relevant dynamics
of these molecules. Searching for activation paths direct-
ly in the energy landscape, ART is not sensitive to the
complexity of moves as seen in the real three-dimensional
space. This technique can therefore generate moves in-
volving hundreds of atoms or barriers many times higher
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than kBT.
In the last few years, ART has been applied with suc-

cess to a number of materials, including amorphous semi-
conductors [6{11], Lennard-Jones clusters [12] and binary
glasses [6,13], and silica glasses [14], identifying a wealth
of relaxation and di�usion mechanisms in these complex
materials. Here, we apply ART to a two-helix bundle
protein described by an all-atom potential. [15,16] The
application of ART to proteins is still in its �rst stage
and we will concentrate here mostly on the methodology.
In the next section, we give a general description of

the method, then discuss parameters and diÆculties en-
countered when applying ART to complex systems such
as proteins. We then discuss recent results obtained one
the two-helix bundle.

II. DESCRIPTION OF ART

As has been recognized for a long time, the mixture of
fast and slow dynamics in proteins makes their simula-
tion diÆcult. In particular, the thermal vibrations play
very little rôle in the long time dynamics of proteins,
which is dominated by the kinetic energy of the solvent,
but nevertheless impose a very short time step. As oth-
er techniques, ART addresses this problem by removing
the fast vibrations, and focussing on the activated events
that determine the long-time structure and dynamics of
proteins. This is achieved by considering moves from
minimumto minimum, following paths that pass through
a saddle point. Activated events, de�ned as such paths,
are de�ned in the con�gurational energy landscape, forc-
ing the atomic coordinates, de�ned in three-dimensional
space, to follow. The advantage of such a method over
standard real-space Monte Carlo methods is that it does
not impose a prede�ned set of moves and can generate
any amount of complexity that is naturally present in the
problem.
With ART, the trajectory from a local energy mini-

mum to another is divided into three parts: from the o-
riginal minimum (where all eigenvalues of the hessian are
positive) to a valley (with a negative eigenvalue), from
there to a �rst-order saddle point, and from this saddle
point down to the new minimum. The overall con�g-
urational energy increases in the �rst two stages, which
represent the activation. The energy decreases in the last
stage, which is therefore called the relaxation. Next, we
will discuss the three stages one by one.

A. Finding a valley

Before going into the details of this �rst stage in ART,
it is useful to discuss a few points about energy land-
scapes; a more complete description can be found in [7]
and [17].

Although we know of very few formal mathematical
results that can guide us in enumerating saddle points
or searching for them from a nearby local minimum, this
question has been addressed by a wide range of people
over the last 20 years. [18{22] One point needs reem-
phasized, however: the curvature matrix, or Hessian, at
the local minimumcontains no information regarding the
position or even number of saddle points surrouding this
minimum. This can be easily understood by considering
a steepest descent path, also called a minimum-energy
path, connecting a saddle point to its adjacent mini-
mum. As shown in Fig. 1, and by de�nition, this path
reaches the local minimumalong the direction parallel to
that with the lowest curvature. (In systems with special
symmetries, it is also possible for some minimum-energy
paths to enter along directions perpendicular to the di-
rection of lowest curvature.)

⊗

⊗

⊗

⊗

⊗

FIG. 1. Minimum energy paths, obtained by steepest de-
scent, for example, from nearby saddle points to the local
energy minimum. For generic situations, without any special
symmetry, all paths enter the harmonic basin through only
two points, parallel to the direction of lowest curvature.

Short of a full exploration of the basin around a mini-
mum, the search for saddle points must therefore be pre-
ceded by another process. First, one must search for
traces of a \valley", de�ned by a direction of negative
curvature and leading to a saddle point. Once such a
valley is found, the con�guration can be pushed up-hill
along this valley until a saddle point is encountered (the
second stage).
Since the Hessian at the minimumdoes not contain any

information regarding the location of saddle points, we
simply leave the minimum in a random direction. How-
ever, to avoid the generation of multiple events which are
spatially separated, we restrict typically the displacement
to one atom plus its nearest neighbors. To prevent insta-
bilities from arising, the con�guration is slowly pushed a-
long the initial random direction while the energy is min-
imized in the perpendicular hyperplane, until the lowest
eigenvalue, which is computed at every step, falls below
a given negative threshold. This threshold is non-zero to
ensure a greater chance of convergence to a local saddle
point.
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In the case of proteins, we know that activated events
do not involve an appreciable displacement along the
rigid directions (bond and bond-angle stretching). It is
therefore possible to select a random displacement in the
sub-space of soft directions only. Tests using this lim-
ited sub-space do not show any signi�cant improvment
in the convergence rate to saddle points, however, and
we are currently using the full force at every step in our
simulation.
There a are number of ways to leave the harmonic

basin. The best choice will depend in good part on the
exact nature of the system studied. The convergence to
the saddle point, to the contrary, requires few optimiz-
able parameters and is essentially problem-independent.
The success rate for �nding saddle points depends there-
fore almost completely on the details of the algorithm
chosen for leaving the harmonic basin.

B. Convergence to the saddle point

Once the con�guration is pushed outside the harmonic
well, a negative eigenvalue appears in the hessian, corre-
sponding to a direction of negative curvature. The con-
�guration is moved upwards along the eigendirection cor-
responding to this eigenvalue, while relaxing in the per-
pendicular 3N-1 dimensional hyperplane. If the negative
curvature persists, the algorithm guarantees convergence
to a �rst-order saddle point. In some cases, the nega-
tive eigenvalue becomes positive before convergence to a
saddle point is reached.
Since only the lowest eigenvalue and its corresponding

eigenvector is needed, it is not necessary to compute and
diagonalize at every step the 3N-dimensional Hessian, an
O(N3) operation. A number of schemes exist for extract-
ing extremal eigenvalues and eigenvectors in O(N) steps.
We use here a recursion method, the Lancz�os algorithm,
[23] which provides the lowest eigenvalues with a very
good accuracy in only 15 to 30 forces evaluations. The
algorithm is used extensively for the diagonalization of
parts of large matrices; details can be found in Refs. [24]
and a short overview can be found in Appendix VII.
Maximizing the energy along the direction correspond-

ing to the negative curvature while minimizing in the
3N-1 others, the con�guration can be brought in a stable
manner as close as desired to the saddle point; as the
force is zero at the saddle point, this becomes a stable
attractor within this algorithm.
Although the �nal point corresponds to the transition

point in transition state theory, the path followed to reach
it is not the minimum energy path. As mentioned above,
this would be the steepest descent path which is unstable
if followed upwards. The exact trajectory followed in
ART depends on a number of factors including the size
of the step along the direction of negative curvature as

well as on the speed at which we relax the energy in the
perpendicular direction.�

This can be seen in Fig. 2 where the energy stored
in the soft modes is plotted as a function of iteration
number. As the energy minimization in the hyperplane
perpendicular to the activated direction is performed in
parallel with the displacement upward along the nega-
tive curvature, the total energy tends to decrease as the
con�guration converges to the saddle point. Relaxation
at points along this trajectory always brings the protein
back to the initial minimum, indicating that although the
energy is high, the con�guration has not left the basin of
attraction of the initial minimum.
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FIG. 2. Conformational energy as a function of iteration
number for a generic event on a two-helix bundle away from
its native state. The negative iterations correspond to the
�rst stage of the algorithm, leaving the harmonic well. From
iteration 0 and up, the con�guration is pushed along a valley
to a saddle point. The energy mostly goes down because the
algorithm relaxes the energy in 3N-1 directions perpendicular
to the bottom of the valley as it pushes the con�guration up.
In inset, we plot the con�gurational energy as a function of
iteration for the minimization step.

C. Relaxation to the new minimum

Once the con�guration has converged to a saddle point,
de�ned by a total force reaching zero, an energy mini-
mization routine can bring the con�guration in either of
the two minima connected by this point. We therefore
push slightly the con�guration away from the initial min-
imum before starting our relaxation, to ensure that we

�Although the saddle points found do not depend on these
details, the parameters can a�ect strongly the success rate in
�nding a saddle point.
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move onto a new minimum. We have tested that pulling
back will bring us into the original minimum, see, for
instance, Ref. [12].
Any standard minimization routine can be used for this

step. We typically use a conjugate gradient minimization
algorithm [25].

III. A TYPICAL SIMULATION

ART has been used for a number of applications rang-
ing from the structural optimization of amorphous ma-
terials to the identi�cation of relaxation and di�usion
mechanisms in complex materials.
A typical optimization run starts from a con�guration

prepared by randomly packing atoms in a box, and lo-
cally relaxing this con�guration with the result that all
forces are zero. Next, an ART event is generated us-
ing the procedure described above; the new con�guration
is then accepted or rejected following a Metropolis test,
with a probability p = min(1; exp(��E=kBT )), where
�E is the energy di�erence between the �nal and initial
con�gurations. If the new con�guration is accepted, the
next ART event is started from the new con�guration,
otherwise it is started from the previous minimum. This
procedure is iterated many times.
This approach was used to produce well-relaxed con-

�gurations of disordered systems such as a-Si [10,11], a-
GaAs, [8,9] g-SiO2, [14] and Lennard-Jones glasses. [6,13]
In all cases, as the con�guration relaxes, its total ener-
gy converges to a plateau which is determined by the
Metropolis temperature. Variations on this scheme can
be used, for example, to study typical activation mecha-
nisms on a given energy surface.

IV. PROPERTIES OF ART

Although the basics of ART are well established, it
is important to characterize in some detail the sampling
biases of the method as well as the impact of the vari-
ous variables that appear in the implementation of the
algorithm on the events found and its completeness.
We have recently performed a detailed characterization

of the properties of ART using Lennard-Jones cluster-
s, for which considerable information already exists [26].
Details of the simulations and analysis can be found else-
where [12]; we give here only a brief description of the
procedure and the �nal results.
For this study, we looked at the energy landscape

around a generic local minimum for three Lennard-Jones
clusters with sizes 13, 38 and 55 atoms, respectively.
The local minima correspond to reasonably well-relaxed
structures but do not display any special symmetry that
could a�ect our results.

The �rst questions addressed concern the reversibili-
ty of the trajectories as de�ned by three points in the
con�guration space: initial minimum, saddle point, and
�nal minimum. First, we must make sure that from the
saddle point, it is possible to relax back to the initial
minimum as well as reach a new minimum. The former
requirement ensures that the con�guration has not left
the original basin in the search for a saddle point, while
the latter just makes sure that a real saddle point was
indeed found. Because we �nd events, we know that new
minima can be generated. To check the reversibility, we
pull back slightly the con�guration away from the saddle
point and minimize the total energy using a conjugate
gradient scheme. This is repeated on 3000 saddle points
and we �nd that all con�gurations but four of the 3000
at saddle points can be relaxed back to the initial local
minimum. (The four ones relaxed to a shallow minimum
very close by.) These results demonstrate that if the ac-
tivation is done carefully, the saddle points found really
separate two neighboring minima.
Second, we verify that the whole trajectory is also re-

versible in the sense that a given event, going from mini-
mum A to minimum C through saddle point B, can also
be generated as a C-B-A event. This is checked by se-
lecting at random 30 events for each cluster size, going to
the new minima, and generating new events from there,
to try to �nd a reverse path, bringing the con�guration
back to the initial minimum through the same saddle
point. In all cases, this could be done: ART generates
fully reversible paths and identi�es properly the domi-
nant points on these paths.
Another question is that of completeness: does ART

miss any class of �rst-order saddle points? To answer this
question, we sample the saddle points around each min-
ima using two methods, ART and a related but di�er-
ently biased eigenvector-following technique introduced
by Doye and Wales [26]. Starting from the same gener-
ic minimum for both methods, the activated paths away
from this minimumare systematically searched with both
methods. Although the DW approach produces only a
fraction of all saddle points around a given minimum, we
expect that if ART missed classes, a number of events
found by DW method would not be found by ART. For
all cluster sizes, however, ART recovers all events gen-
erated by DW and many more. We can therefore be
con�dent that ART can �nd all �rst-order saddle points
around a minimum in a given system provided that the
sampling is exhaustive. Figure 3 shows the number of
di�erent saddle points and minima (after removing al-
l permutational isomers) generated by ART on 13-atom
cluster; within 14000 events, all 180 saddle points and 87
minima are visited at least once.
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FIG. 3. Number of di�erent saddle points and minima
found around a generic minimum in a 13-atom Lennard-Jones
cluster as a function of ART events. Permutational isomer-
s are removed. Each ART event starts within a randomly
chosen direction.

V. APPLICATIONS TO PROTEINS

As a �rst application of ART to proteins, we study
a 38-residue �-helical hairpin described by an all-atom
potential. This simple helix bundle was chosen because
it has been characterized by NMR spectroscopy to have
a helix content of 89% at pH 3.6 and 25ÆC. [27] Fur-
thermore this motif is an essential constituent in protein
structures. For this test, we do not try to converge to the
native (experimental) conformation | it is well known
that this task is currently beyond reach of all methods for
unbiased potentials and unbiased conformational moves
starting from the fully extended conformation, but rather
we relax the protein and examine the states we can gen-
erate.
In this section, we �rst describe the interaction po-

tential and then present the details of the simulation.
Results are discussed in the next section.

A. Interaction potential

The 38-residue peptide was modeled by using an
OPEP-like interaction including an o�-lattice represen-
tation and a knowledge-based potential. [15,16]
In this work, we use a exible-geometry peptide model

where each amino-acid is represented by six particles on
average, i.e. N, H, C�, C, O and one bead with an ap-
propriate van der Waals radius and position for the side
chains [15]. This chain representation reproduces exper-
imental structures exactly. This is not always possible in
other simpli�ed or lattice-based schemes. Furthermore,

this model includes many more local minima than most
simpli�ed representations using one or two particles per
amino acid.
Potential functions and parameters are commonly de-

rived from a population of known protein structures. Un-
like many simpli�ed force �elds, our potential does not
contain ad-hoc biases based on foreknowledge of the tar-
get structure (e.g. a priori location of secondary struc-
ture elements) and was optimized on the structure of four
training peptides with 10-28 residues. This was done by
maximizing the stability gap between the energy of the
native structure and a representative ensemble of non-
native structures [15]. This potential was then tested on
more complex topologies including two and three-helix
bundles and the ��� fold [28,16].
Since the main goal of this study is to determine the

optimal ART strategy for proteins, we ignore the �-
helical, � strand and �L propensity contributions for
the amino acids described by the OPEP potential (Op-
timized Potential for EÆcient peptide-structure Predic-
tion). In summary, our OPEP-like potential includes har-
monic terms for maintaining the bond lengths and bond
angles near their equilibrium values and nonbonded in-
teraction terms. Nonbonded interactions between main
chain atoms were modeled by a Lennard Jones potential
and a coulombic potential with all interactions included.
All main chain parameters including force constants and
atomic charges were taken from the literature and the di-
electric function was set to 2r. Nonbonded interactions
were modeled by a 6-12 Lennard-Jones potential between
side chains with hydrophobic character and by a repulsive
12-potential otherwise. The maximum contact energy is
of the order of �3:0 kcal/mol for the isoleucine-isoleucine
interaction.

B. Details of simulation

The simulation is performed completely with ART.
Starting from the fully extended conformation, ART
moves to new minima are proposed iteratively; these new
minima are fully relaxed, at zero temperature. Each new
event is accepted or rejected following a Metropolis cri-
terion with a temperature of 300 K. As the con�guration
settles down in a deep minimum, it becomes evident that
a simulated annealing, at higher temperatures, is nec-
essary to sample the space of con�gurations away from
this state. Results presented here include therefore run-
s at Metropolis temperatures of 600 K and 1200 K. An
unfolding (increasing temperature) trajectory was not at-
tempted to determine the folding temperature.
The sequence of energies at the minima is given in Fig-

ure 4. For these events, we select a local initial random
displacement, involving about a third of the protein. As
mentioned above, the activation is restricted to the soft
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modes of the protein, excluding bond and bond-angle
stretching.
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FIG. 4. Sequence of energies at the �nal minimum as a
function of event number for the two-� helix bundle for a
temperature of 300 K. The initial con�guration is the fully
extended conformation. With the OPEP-like potential, the
energy of the native state is -422 kcal/mol. The overall ac-
ceptance rate for this run is about a third.

At each step, the lowest eigenvalue and its correspond-
ing eigenvector are obtained using a 15 step Lancz�os re-
cursion, starting from the eigenvector identi�ed at the
previous iteration. To ensure that there is no bias intro-
duced with this scheme, a 25 step lancz�os is computed
every 10 steps starting from a random vector; no signi�-
cant change in eigenvector or eigenvalue is found between
these two approaches. With the current parameters, it
takes on average 5000 force evaluations to reach a saddle
point, and about half that to relax to a new minimum.
On a fast workstation (500 Mhz Dec Alpha 21264), an
event requires on average slightly less than two minutes.
The deformation of the protein can vary signi�cant-

ly from event to event. The total displacement, de�ned
by the square root of the sum of squared atomic dis-
tances between the two con�gurations, can be anywhere
between 1 �A and 70 �A. The space of con�gurations can
be eÆciently sampled by ART.

C. Results

Before addressing the overal eÆciency of ART for sam-
pling the conformational energy landscape of proteins,
we �rst discuss individual events generated by ART. The
most common type of events involves almost all atoms
in the protein, and deforms it slightly without bringing
it to a con�guration which is qualitatively di�erent. The
typical total displacement for this kind of events varies

between 5 and 15 �A. Although these events reect the
structure of the conformational energy landscape, we �nd
that a series of them rarely leads to a qualitatively dif-
ferent con�guration; these moves tend to average out the
total displacement to zero.
The challenge for ART (and any other simulation tech-

nique) lies in the generation of more signi�cant moves
(often called basin-hop moves). These are generally asso-
ciated with large deformation of the protein, from about
20 �A to 70 �A or more. Figure 5, for example, show two
con�gurations separated by a single barrier. The propor-
tion of these events among all those generated depends
on a number of factors including parameters and the con-
formation itself; the more stable the protein, the more
diÆcult it is to generate hops. Taking as a threshold a
displacement of 20 �A, we �nd that for our best simula-
tions around 5 % of the events are signi�cant. This is still
slightly low because most of these moves are rejected; we
are actively working on improving this ratio.

Initial

Final

FIG. 5. A large ART event. The total displacement be-
tween the initial (-386 kcal/mol) and the �nal con�gurations
(-373 kcal/mol) is 70 �A. Although the energy di�erence is
too big for this move to be physically relevant, this move was
chosen because the di�erences between the two conformations
can be easily seen directly.

Now that we have discussed individual events, we can
look at trajectories. Starting from the unfolded confor-
mation, the protein rapidly folds in a compact state;
in �ve to eight accepted events, the protein reaches a
metastable energy minimum, dropping its energy from
about -190 to -320 kcal/mol. The conformation reached
is almost spherical and, as expected, bears little resem-
blance to the native state. This new conformation shows
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a number of hydrogen bonds involving helical and �-
strand segments, and turns out to be rather stable. With
a Metropolis temperature of 300 K, the protein relaxes
down to -360 kcal/mol in less than 300 to 500 events
(less than 70 to 100 accepted events). At this point, the
structure still shows a compact, spherical shape (Fig. 6).
Further relaxation during 800 steps at this temperature
does not lead to any major structural change.

Event 2

Event 18

Event 280

FIG. 6. Three conformations of the 38-residue helical hair-
pin model in an ART-simulation at T=300K starting from
the fully extended state. The top conformation has an energy
of -233 kcal/mol. The middle, the 6th accepted event in the
series, -316 kcal/mol and the last one (61st accepted event),
-360 kcal/mol.

In order to sample the phase space suÆciently, it is
necessary to simulate at higher temperatures. Figure 7
shows a series of snapshots from one run at 1200 K. At
this temperature, it is possible to open up the spheri-
cal conformation and refold the protein in a native-like
shape. In the conformation 7(b), residues 2-15 are essen-
tially helical (vs. 2-15 in the NMR structure), residues
24-29 are helical (vs. 23-35 in the NMR structure) and
the C-terminal region is folded against residues 9-10 (vs.
2-3 in the NMR structure). We emphasize that we did

not try to escape from this partially unfolded state. How-
ever, not all runs move easily towards the �-helical hair-
pin shape; it is possible to remain in the vicinity of the
compact conformation described in 7(a) and lower the
energy down to -388 kcal/mol or so. Such a variety of
folding behaviors is expected in the framework of the
funnel concept and has been noted for �-helical proteins
modeled by one particle per residue [4,29]. As a result, it
can be very hard, using single-temperature runs, to �nd
the hairpin basin of attraction.

(a)

(b)

Native

FIG. 7. Starting from a spherically compact conformation
(a), of energy -360 kcal/mol, a 1000-event ART simulation at
T=1200 K leads to conformation (b), at -377 kcal/mol, which
starts to show the two-helices present in the native state (c).

To go beyond these limitations, it is necessary to use
more advanced sampling techniques such as parallel tem-
pering (See Appendix VIII). We are currently in the
process of implementing this technique.

VI. DISCUSSION AND CONCLUSION

We have shown through a series of snapshots that the
ART algorithm is able to generate in a reasonable amoun-
t of computer time a wide range of conformational sub-
states and states for the 38-residue helical hairpin model.
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Transitions from compact random structures to partially
helical-hairpin structures are detected. This preliminary
result is signi�cant since ART does not use a set of con-
formational moves, and escapes from compact structures
is a very diÆcult task by all-atom MD simulations. In
addition, the potential of mean force used to describe
the polypeptide energy surface is general (i.e. not biased
towards a particular conformation) and includes energy
components resulting from both high and low-frequency
motions. Although further study is needed to optimize
the ART strategy, ART can be a useful tool for exploring
two speci�c areas of the protein folding problem. The
�rst area involves searches for iso-energetic conforma-
tions of enzymes with hinge-bending motion capabilities.
The second direction involves determination of folding
mechanisms for all � and �� proteins with 70 amino-
acids using a potential favoring contacts present in the
native structure (Go-like potential). [30]
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VII. APPENDIX A: THE LANCZ�OS

ALGORITHM

The Lancz�os algorithm [23] provides an eÆcient way
to extract a limited spectrum of eigenvalues and eigen-
vectors for a high-dimensional problem without requiring
the evaluation and diagonalization of the full 3N � 3N
matrix. This algorithm is a recursion method based on
the repeated application of the local Hessian on a random
displacement vector. [24]
We therefore start with a random eigenvector, j~x0i,

representing a small displacement vector away from the
current point (which does not need to be a minimum),
~x. Applying the Hessian matrix H onto this vector is
equivalent to computing the di�erence between the force
at jxi + jx0i and at jxi. We do not need to compute,
therefore, the Hessian at any point.
The result of the application of the Hessian on jx0i

can be decomposed as a linear combination of this initial
random vector and a second one, jx1i, perpendicular to
the �rst. The full recursion scheme becomes:

Hjx0i = a0jx0i+ b1jx1i

Hjx1i = a1jx1i+ b1jx0i + b2jx2i

Hjx2i = a2jx2i+ b2jx1i + b3jx3i

... (1)

Hjxl�1i = al�1jxl�1i + bl�1jxl�2i+ bljxli

Hjxli = aljxli + bljxk�1i

where we force a closure at l < 3N , with 3N the dimen-
sion of the problem. The application of the Hessian to
the position requires a single force evaluation and is an
O(N ) operation. The complete construction of the l � l
matrix requires therefore 3lN operations. If l� 3N , this
step dominates over the diagonalization of the tridiagonal
matrix L,

L =

0
BBBBB@

a0 b1
b1 a1 b2

. . .

bl�1 al�1 bl
bl al

1
CCCCCA

(2)

Because of the arti�cial (and rather brutal) closure in
the recursion, only the lowest eigenvalues and eigenvec-
tors are accurate. This does not cause any problem here
since we only require the very lowest eigenvalue and it-
s corresponding eigenvector. Typically, 10 < l < 30 is
suÆcient to extract the lowest eigenvalue with suÆcient
accuracy. This is especially so because we can make use
of the eigendirection used in the previous iteration as a
seed for the new recursion.

VIII. APPENDIX B: PARALLEL TEMPERING

The basic idea behind parallel tempering is to perform
several simulations simultaneously on the same system,
but at di�erent temperatures. [31] The system which runs
at the lower temperature will have a stronger tendency
to be lower in energy. This tendency can however sup-
press activated processes heavily, and consequently slow
down the dynamics. During relaxation from an out-of-
equilibrium situation, it happens therefore regularly that
the system which runs at a low temperature gets stuck in
a region of phase space with relatively high energy, while
the system running at a higher temperature relaxes faster
and actually reaches lower energies.
In parallel tempering, one swaps the states of the sys-

tem in two of the simulations every so often, with a cer-
tain probability that is chosen so that the states of each
system still follow the Boltzmann distribution at the ap-
propriate temperature. More precisely, if the simulations
at T1 and T2 have energies E1 and E2, respectively, the
usual acceptance probability for a swap is given by

Aswap = Min

�
1; exp

�
�

�
1

kbT1
�

1

kbT2

�
(E2 �E1)

��
:

(3)

The result is that the higher-temperature simulation
helps the lower-temperature one across the energy barri-
ers in the system. (See Ref. [32] for more details.)

8



IX. REFERENCES

(a) E-mail: mousseau@helios.phy.ohiou.edu
[1] G. Wildegger, S. Liemann, and R. Glockshuber, Extreme-

ly rapid folding of the C-terminal domain of the prion

protein without kinetic intermediates, Nat. Struct. Biol.
6, 550-553 (1999).

[2] Y. Duan and P. Kollman, Pathways to a protein folding

intermediate observed in a 1-microsecond simulation in

aqueous solution, Science 282, 740 (1999).
[3] T. Schlick, E. Barth and M. Mandziuk, Biomolecular dy-

namics at long timesteps: Bridging the timescale gap be-

tween simulation and experimentation, Ann. Rev. Bio-
phys. Biomol. Struc. 26, 179-220 (1997).

[4] Y. Zhou and M. Karplus Interpreting the folding kinetics
of helical proteins, Nature 401, 400-403 (1999).

[5] E.I. Shakhnovich, Theoretical studies of protein-folding

thermodynamics and kinetics, Curr. Opinion in Struct
Biol. 7, 29-40 (1997); J-E. Shea, J.N. Onuchic and C.L.
Brooks, Exploring the origins of topological frustration:

Design of a minimally frustrated model of fragment B of

protein A, Proc. Natl. Acad. Sci. USA 96, 12512-12517
(2000).

[6] G. T. Barkema and N. Mousseau, Event{based relaxation
of continuous disordered systems, Phys. Rev. Lett. 77,
4358-4361 (1996).

[7] N. Mousseau et G. T. Barkema, Traveling through po-

tential energy landscapes of disordered materials: The

activation-relaxation technique, Phys. Rev. E 57, 2419
(1998).

[8] N. Mousseau et L. J. Lewis, Topology of amorphous

tetrahedral semiconductors on intermediate lengthscales,
Phys. Rev. Lett. 78, 1484-1487 (1997).

[9] N. Mousseau et L. J. Lewis, Structural, electronic and

dynamical properties of amorphous gallium arsenide: a

comparison between two topological models, Phys. Rev. B
56, 9461-9468 (1997).

[10] G. T. Barkema et N. Mousseau, Identi�cation of relax-

ation and di�usion mechanisms in amorphous silicon,
Phys. Rev. Lett. 81, 1865-1868 (1998).

[11] N. Mousseau et G. T. Barkema, Activated mechanisms

in amorphous silicon: an activation-relaxation-technique

study, Phys. Rev. B 61, 1898-1906 (2000).
[12] R. Malek and N. Mousseau, Dynamics of Lennard-Jones

clusters: A characterization of the activation-relaxation

technique, Preprint cond-mat/0006042 (2000).
[13] N. Mousseau, Cooperative motion in Lennard-Jones bi-

nary mixtures below the glass transition, Preprint cond-
mat/0004356 (2000).

[14] N. Mousseau, G.T. Barkema et S.W. de Leeuw, Ele-

mentary mechanisms governing the dynamics of silica,
J. Chem. Phys. 112, 960-964 (2000).

[15] P. Derreumaux, From polypeptide sequences to structures

using Monte Carlo simulations and an optimized poten-

tial, J. Chem. Phys. 111, 2301-2310 (1999).
[16] P. Derreumaux, Generating ensemble averages for smal-

l proteins from extended conformations by Monte Carlo

simulations, Phys. Rev. Lett. 85, 206-209 (2000).
[17] N. Mousseau and G.T. Barkema, Exploring high-

dimensional energy landscapes, Comp. Sci. Eng. 1, 74-82
(1999).

[18] M. J. Rothman and L. L. Lohr Jr., Analysis of an en-

ergy minimization method for locating transition-states

on potential-energy hypersurfaces, Chem. Phys. Lett. 70,
405-409 (1980).

[19] C. J. Cerjan and W. H. Miller, On �nding transition-

state, J. Chem. Phys. 75, 2800-2806 (1981).
[20] J. Simons, P. Jorgensen, H. Taylor and J. Ozment, Walk-

ing on potential-energy surfaces, J. Phys. Chem. 87,
2745-2753 (1983).

[21] R. S. Berry, H. L. Davis and T. L. Beck, Finding saddles
on multidimensional potential surfaces, Chem. Phys. Let-
t. 147, 13-17 (1988); I. V. Ionova and E. A. Carter, Ridge
method for �nding saddle-points on potential-energy sur-

faces, J. Chem. Phys. 98, 6377-6386 (1993).
[22] S. F. Chekmarev, A simple gradient-method for locating

saddles, Chem. Phys. Lett. 227, 354-360 (1994).
[23] C. Lanczos, Applied Analysis (Dover, New York, 1988).
[24] Otto F. Sankey, David A. Drabold and Andrew Gibson,

Projected random vectors and the recusion method in the

electronic-structure problem, Phys. Rev. B 50, 1376-1381
(1994).

[25] W. H. Press et al., Numerical Recipes, Cambridge Uni-
versity Press, Cambridge, 1988.

[26] J. P. K. Doye and D. J. Wales, Surveying a potential

energy surface by eigenvector-following, Z. Phys. D 40,
194-197 (1997).

[27] Y. Fezoui, P. J. Connolly, J. J. Osterhout, Solution Struc-
ture of alpha-t-alpha, a Helical Hairpin Peptide of De

Novo Design, Prot. Sci. 6, 1869-1877 (1997).
[28] P. Derreumaux, Predicting helical hairpins from se-

quences by Monte Carlo simulations, J. Comput. Chem.
21, 582-589 (2000).

[29] J.D. Bryngelson, J.N. Onuchic, N.D. Socci and P.G.
Wolynes, Funnels, pathways, and the energy landscape of
protein-folding - a synthesis,Proteins 21, 167-195 (1995).

[30] H. Taketomi, Y. Ueda and N. Go Studies on protein fold-

ing, unfolding and uctuations by computer simulation,
Int. J. Pept. Protein Res. 7, 445-459 (1975).

[31] E. Marinari and G. Parisi, Simulated tempering { a new

Monte-Carlo scheme, Europhys. Lett. 19, 451-458 (1992)
[32] M. E. J. Newman and G. T. Barkema , Monte Carlo

Methods in statistical physics, Oxford University Press
(Oxford), 480 pp., 1999.

9


