
Computer Physics
Communications

ELSEVIER ComputerPhysicsCommunications83 (1994)197—214

Multiresolutionmoleculardynamicsalgorithmfor realistic
materialsmodelingon parallelcomputers

Aiichiro Nakano,Rajiv K. Kalia, PriyaVashishta

ConcurrentComputingLaboratoryfor Materials Simulations,DepartmentofComputerScience,Departmentof Physics&Astronomy,
LouisianaStateUniversity, BatonRouge,LA 70803-4001,USA

Received21 April 1994; revised1 August1994

Abstract

Forrealisticmodelingof materials,a molecular-dynamics(MD) algorithmis developedbasedon multiresolutions
in both spaceand time. Materialsof interestare characterizedby the long-rangeCoulomb,stericandcharge-dipole
interactionsaswell asthree-bodycovalentpotentials.The long-rangeCoulombinteractionis computedwith the fast
multipole method.For bulk systemswith periodic boundaryconditions, infinite summationover repeatedimage
chargesis carriedoutwith thereducedcell multipole method.Short-andmedium-rangenon-Coulombicinteractions
are computedwith the multiple time-stepapproach.A separabletensordecompositionschemeis usedto compute
three-bodypotentials.Fora 4.2 million-particleSi02 system,oneMD step takesonly 4.8 secondson the 512-node
Intel TouchstoneDelta machineand 10.3 secondson 64 nodesof an IBM SP1system.Theconstant-grainparallel
efficiencyof theprogramis ~‘ = 0.92 and the communicationoverheadis 8% on the Delta machine.On the SP1
system,~‘ = 0.91 andcommunicationoverheadis 7%.

1. Introduction

Moleculardynamics(MD) simulationis rapidly becominganintegralpartof computer-aidedmaterials
design.Design of materials like nanophasemetals and ceramicsrequireslarge-scaleMD simulations.
Thesematerials are synthesizedfrom atom clustersof nanometer(iO—~m) size [1]. Remarkable
improvementsin strengthand flexibility havebeen reportedfor nanophasemetalsand ceramics.MD
simulationscanprovideamicroscopicunderstandingof the structure-propertyrelationshipin nanophase
materials.

Since cluster-assemblednanophasematerials are composedof large-scalestructural units, each
consistingof iO~to i0~particles,the simulation systemmustcompriseat least106 to i0

7 particles.To
preparea well-thermalizedMD configurationandcalculatethe mechanicaland thermalproperties,it is
necessaryto carry outmultimillion-particlesimulationsfor i0~to iO~time steps.In orderfor simulations
to be completedwithin a reasonabletime, it is thereforecrucial to achievea speedof a few secondsper
step.

For systemsinteractingvia simple, short-rangedbinary potentials,it is possibleto simulatemultimil-
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lion particles at a speedof a few seconds/ step using recent advancesin numerical techniquesand
parallelcomputingtechnology[21.However,a vast majorityof materialsrequirehigh-qualityinteratomic
potentialsfor reliable atomisticsimulations.Forexample,interatomicpotentialsfor many ceramicsmust
include the effectsof long-rangeCoulomb interaction,charge-dipoleinteraction,steric hindrance,and
bendingandstretchingof covalentbonds[3]. Eachof thesepotentialsrequiresenormouscomputingand
thusa specialalgorithm.

The mostprohibitivecomputationalproblemis associatedwith the Coulomb potential.Becauseof its
long range,eachatom interactswith all the other atomsin the system.Thereforethe evaluationof the
Coulomb potential for an N-particle systemrequires 0(N2) operations,which makeslarge-scaleMD
simulationsdifficult. Recenthierarchicalalgorithms[4—6]haverevolutionizedthe computationof the
Coulombpotential. The fast multipole method(FMM) usesthe truncatedmultipole expansionand local
Taylor expansionfor the Coulomb potential field [61.By computingboth expansionsrecursivelyon a
hierarchyof cells, the Coulombpotential is computedwith 0(N) operations.

In many materialssimulations,periodicboundaryconditionsareusedto minimizesurfaceeffects.The
summation over infinitely repeatedimage chargesmust be carried out to compute the Coulomb
potential.The conditionallyconvergentinteractionis usuallycalculatedby theEwald method[7]. Though
the Ewald algorithmscalespracticallyas 0(N) for moderatesystemsize [7], the computationbecomes
prohibitive for largersystems.Ding, Karasawa,andGoddardhavedevelopedthe reducedcell multipole
method(RCMM) which makesthe computationof the Coulomb potential feasiblefor multimillion-par-
tide systemswith periodicboundaryconditions[8]. In RCMM, distantimagesof multimillion particles
are replacedby a small numberof fictitious particleswith the sameleadingmultipoles as the original
system.With little computationaleffort, the Ewald summationis appliedto thesereducedimages.

Anothercomputationaldifficulty is causedby the non-Coulombicpart of the interatomicpotential.In
most materials, the potential in the medium range (up to the cut-off length, r~= 5 — 10 A) is a
complicatedfunction of the interatomicdistance,r, so that the multipole expansionis not applicable.
The finest cell in the FMM mustbelarger than r~,andwithin the nearest-neighborcells the interaction
mustbe calculateddirectly without multipoles.With r~= 5 — 10 A, the direct force calculationfor each
atom involves hundredsof other atoms.The 0(102N) pair computationdominatesthe computation
time, consideringthe complicatedform of the potential at r < r~.We employ the multiple time-step
(MTS) approach[9] to reducethe computationin thisspatial regime.The MTS method is basedon the
fact that the farther the distancebetweenparticlesthe sloweris the time variationof forces.Therefore
different time steps are used to compute forces for different interparticle separations.The MTS
algorithm typically achievesa 5- to 7-fold speedup[9]. On parallel computers, the communication
overheadis significantly reducedby the MTS method[10,11].

The covalentbond-bendingand stretching forces are describedin the three-bodypotentials[3].
However,triple sumsin three-bodypotentialsmakethe computationinefficient. Thecomputationcanbe
madeefficient by decomposingthree-bodyinteractionsinto separabletensorcomponents[11,121.The
resultingexpressioninvolves only double sums,which canbe evaluatedefficiently with a speedupof a
factor of two [11].

Wehavedevelopeda highly efficient MD algorithmbasedon multiresolutionsin bothspaceandtime.
Thelong-rangeCoulomb potentialfor periodicsystemsarecomputedwith the RCMM andFMM, while
the medium-rangenon-Coulombicpotentials are computed by the MTS method. The three-body
interactionsarecalculatedwith the separabletensordecomposition.The performanceof the multireso-
lution molecular dynamics (MRMD) algorithm is tested on the 512-nodeIntel TouchstoneDelta
machineat Caltechandthe 128-nodeIBM SP1systemat ArgonneNationalLaboratory.

This paper is organizedas follows. In Section 2, we describethe key componentsof the MRMD
algorithm.The implementationof the MRMD algorithmon parallelcomputersis discussedin Section3.
The resultsof numericaltestsaregiven in Section4, andSeCtion5 containsthe conclusion.
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2. Multiresolution molecular dynamics algorithm

2.1. Variable-shapemoleculardynamics

In MD simulations,a physical systemconsistingof N atoms is representedby a set of atomic
coordinates,{r1 I i = 1 . . . N). With periodicboundarycondition, thereare identical particles at r, + z.’,

wherev = la +mb+ nc is a translationvector(1, m, and n are integers),a, b, and c representthe MD
box, see Fig. 1. We areconcernedwith systemsfor which the potential energyis a sumof two- and
three-bodypotentials,

N N’

V=~~~ ~ v~(r,~)+ ~ v~(reJ,rik), (1)
v i=lj=1 i,j<k

where ~ = r,1 , and = — ,~. In Eq. (1) the prime on the summationover the two-bodypotential,
v~kr~1),indicatesthe omissionof the i = j term when r’ = 0. The three-bodypotential, v~(T11,r~k),is
short-rangedandthe minimum-imageconventionis usedto evaluatethis term [13].

In this paper,we use the constant-pressureMD schemeby Parrinello and Rahman[14]. In this
scheme,the shapeandvolume of the simulationbox (i.e., the vectorsa, b, and c) changedynamically.
Introducing dimensionlessatomiccoordinates,Si’ through the relation, r7 = hs~,where h = (a, b, c) is
the 3 x 3 translationmatrix, the equationof motion for 5, is [14],

1= —G’G.~~+m1
1h1Fi, (2)

where m, is the mass of the ith particle; F~= — ôV/l~r~is the force acting on the ith particle; and
G = hTh is the metric tensorwith hT being the transposeof matrix h. In Eq. (2), time derivativesare
denotedby dots abovethe variables.

The equationof motion for h is derivedthrougha fictitious Lagrangianformalism [14]:

Wh=(lr_PI)Q(hT)1, (3)

where W is a fictitious massassociatedwith the simulationbox, P is the hydrostaticpressure,and I is
the unit matrix. In Eq. (3) thevolume of the system,Ii = det(h),andthe microscopicstresstensor, ir, is
calculatedfrom

N N N ‘ dv~2~ av~
Qw= ~ ~ ~ rij’_ã—~-_ T~— ~ ~ (4)

i~1 v i=1 j=1 r~

1 i,j.’zk T~1 Tik

where,~=

b~h SI a

Fig. 1. An MD box is formed by threevectors,a,b, and c. The three-dimensionalcoordinate,r,, of the ith atom is relatedto its
dimensionlesscoordinate,s,, throughthe relation, r, = ks, whereh = (a, b, c) is the translationmatrix.
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Fig. 2. Schematicrepresentationof spatialmultiresolutionfor a two-dimensionalsystem.(a)Periodically repeatedimagesof the
originalMD box (hatched).Replacingeachwell-separatedimageby a small numberof particleswith the sameleading multipole
expansionsreducesthecomputationenormouslywhile maintainingthe necessaryaccuracy.The nearest-neighborimages(shaded)
cannotbereplacedby the reducedimage.(b) A hierarchyof cellsin theFMM. The nearest-neighborcellsof the filled cell consist
of itself and the hatchedcells. The interactivecells are shaded.(c) The direct forceson a particle (solid circle) are due to the
primary (opencircleswithin the hatchedarea),secondary(opencircleswithin theshadedarea),andtertiary(the otheropencircles)
neighboratoms.

The equationsof motion, (2) and (3), are integratedwith Gear’s fifth-order predictor-corrector
method [15] using a time increment ~t in Eq. (2) and n1iXt(n1 is typically 15) in Eq. (3). The most
time-consumingpart of MD simulationsis the calculationof the potentialenergy,V, interatomicforces,
F,, and the microscopicstresstensor, ir. The MRMD algorithmshavebeen designedto efficiently
compute the contributions to these quantities from various spatial regimes. These algorithms are
describedin the following subsections.

2.2. Fastmultipolemethodand reducedcell multipolemethod

In the MRMD algorithm, the Coulomb interaction is calculatedwith the fast multipole method
(FMM, seeRef. [6]) andthereducedcell multipole method(RCMM, seeRef. [8]). Bothmethodsusethe
multipole expansionof the Coulombpotential.In the FMM, the Coulombpotential is computedusinga
hierarchyof cells. The hierarchyis definedby recursivelydecomposingthe MD box accordingto a tree
structurein which anodecorrespondsto a cell. The root of the treeis at level 0 andit correspondsto the
MD box shownin Fig. 1. With periodicboundaryconditions,the root cell is regardedasa unit cell whose
imagesarerepeatedinfinitely as shownin Fig. 2(a).At level I, aparentcell is decomposedinto 2 x 2 X 2
childrencellsof equalvolume at level 1 + 1, seeFig.2b. The numberof cells at level I is thus8’ perunit
cell. The recursivedecompositionstopsat the leaflevel, 1= L, wherefurther decompositionwould cause
childrencells to haveparallelfaceswith distancelessthanr~,seeFig.2c. We determiner~suchthat the
interatomic potential is purely Coulombic for r > r,~.Therefore any pair of particlesinteract via the
Coulomb potentialwhentheyresidein two different leafcells which do not shareany corners.

For the cth cell at level I, the nearest-neighborcellsaredefinedasthe cell c itself andanyothercells
at the samelevel with which it sharesacorner. At every level 1, thereare 27 nearest-neighborcells for
each cell. All the other cells at the same level are said to be well-separatedfrom the cth cell. The
interactive cells are definedto be well-separatedfrom the cth cell and to be children of the nearest-
neighborcells of c’s parent,seeFig. 3.

The FMM computesthe multipole expansions,~ and the local Taylor expansions,hj~1,c~of the
Coulombpotential field recursivelyon the hierarchyof cells.For chargesZ, distributedat positions Ti in
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Fig. 3. Cells at treelevels 1 and2 in a two-dimensionalsystem.Thenearest-neighborcellsof the filled cell consistof itself andthe
hatchedcells. All the othercells are well-separated.The shadedcells representthe interactivecells. The unit cell is boundedby
thick lines.

the cth cell at level 1, themultipole expansion,‘P,~= (Z, isa, Qap’~..)~ centeredat the centerof thecell
is expressedas,

(5)

whereçb(T) is the Coulombpotentialat position r relativeto thecenterof the cell, a = x, y, z, andthere
is implicit summationover repeatedindices. The lower order momentsare the charge — Z =

dipoles — = ~jZjrja; andquadrupoles— Q~= E,Z,(3r~,,r10 —

We definea partial contribution,~i1,~(r), to the Coulombpotential field in thecth cell at level 1 dueto
all the particlesin the well-separatedcells,

,I1i,~(T)= ~ — zi , (6)
c’~{nn(c)}f�c’ Ir T) c’c I

wherea set of the nearest-neighborcells of the cth cell is denotedby {nn(c)}, and ~ is a vectorfrom
the centerof the cth cell to that of the c’th cell. The variationof ~I1,~(T) is small sinceit is producedby
well-separatedcharges.Thereforewe can expandthe field in Taylorseriesaboutthe centerof the cell.
Denotingby 1I1~c~= ~ ~1’l,c;a~ ~ we have

= ~t~f~)+ 11/f ‘2aTa + ~ + ~ (7)

wherer is the position relativeto the centerof the cell.
Using thesedefinitions, the total potentialenergy,Eq. (1), is rewritten as,

~ ZjPi~,~~(Tj)+ ~ v~(r11)+ ~ vJ~(r11,Ttk), (8)
= I i I j E {nn(c(i))} i,j <k

j,~i

where c(i) denotesthe finest cell at level L to which the ith atom belong.The first term of Eq. (8)
representsthe long-rangeCoulombpotentialbetweenwell-separatedleaf cells,and the secondterm is
the two-bodypotentialwithin thenearest-neighborcells.The first termis calledthefar-field contribution
to the potentialenergy,while the secondand third termsconstitutethe near-fieldcontribution.
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Similarly the microscopicstresstensor,Eq. (4), is rewritten as

N N N
., ., T 1 1 —1 ~J T

~ m,T,(T~) + ~ ~ Z~ir~c~(1~)— r~r~1 -~---— r,1
i = 1 i = 1 {nn(c(i))) r~1

i#i

av~
— ~ r~1—~-~_+ r~k-~--—— (9)

i,j<k TI) T~k

where ir,~(r)is a partial contributionto the stress-tensorfield at position r relativeto the centerof the
cth cell at level I dueto all the particlesin well-separatedcells:

= ~ (~r~— R~~)(T— r1— R~,~)T (10)

c’~(nn(c)}juc’ r — ~

The local Taylor expansion, H,~= (Hf~ap,Hf~apt, ~ of the partial stress-tensorfield,
ir1~(r), is also definedthrough the relation,

7Ti,c;ap(T) =1If~~.ap+Hf~apfrf+Hf~’a$~rfr~+ . (11)

Thelocal expansions,1I1Lc and HLC, include the contributionsfrom all theparticlesin well-separated
cells at the leaflevel. The straightforwardcomputationof thesetermsrequires0(N

2) operations.The
FMM reducesthe complexity to 0(N) by computingmultipolesand local expansionsrecursivelyon the
hierarchy of cells. This is implemented most conveniently by using five translation operators,
T

1,5, TZR,T3R, S25,and S3,R, definedbelow[16].
The first operator, Tl,R, shifts the origin of a multipole expansion. It operateson a multipole

expansioncenteredat R, and gives the multipole expansioncenteredat the origin due to the same
chargedistribution.By denoting P’ = (Z’, isa’ ~ = T1R(1) where‘1 = (z, isa’ Qap’...)~ the first
few relationsinvolved in the translationarewritten as [17] Z’ = Z and is’a = isa + ZRa.

The secondclassof operators,T25 and S25,acton a multipole expansion,CII, centeredat R, andgive
the local Taylor expansionsof the fields at the origin producedby the multipoles; T2RandS2R give the
local expansionsfor the Coulomb potential, 1I~,and the microscopicstresstensor,H, respectively.By
denoting 11/ = (ip(°), i.J.t(i), il’(~,. . . ) = T25,(I), the first relationdue to the translationis written as [17]

Z j~tR QRR
= — + + + ~ (12)

R R
3 R5

Similarly H = (Hf~,~ ~ . . . ) = S~,~(P),where the first relation is

— ~ + + isa1~p+isp1~a 3is,~R,, ~ — ~

+~PE~RER,l 7 .... (13)

In Eq.(13) ~ = ~iZiria rip is relatedto the quadrupole,Qap = ~~“ap — Pyy6ap)/2.
In the FMM algorithm,thetreeof cells is traversedtwice. First,startingfrom the leaflevel, I = L, the

tree is traversedupward to compute the multipoles, cP
1~,for all the cells at all the levels. The local

Taylorexpansions,~ and H,~,arethencomputedfrom ‘k,~for all the cellsat all thelevels,startingat
the root level I = 0 and traversingthe tree downward.

The computationof far-image interactionsin the multiresolution molecular dynamics (MRMD)
algorithm starts by computing multipoles, ~~L,c’ for all the finest cells at the leaf level. Next the
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Fig. 4. Schematicof thefar-field computationin a two dimensionalsystem.(Left column) Startingfrom the leaf level, the treeof
cells is traversedupwardto compute themultipolesfor all the cells at all the levels. The multipole-to-multipoleoperator,T1, is
usedto shift the multipolesof childrencells. Themultipole at theroot level is usedto computethelocal Taylor expansionfor the
Coulombpotentialat level 0 basedon the RCMM.(Right column)The treeis traverseddownwardto computethelocal expansions
for all the cellsat all thelevels. The multipole-to-localtranslationoperator,T2, is usedto computethe partial contributionto the
local expansiondue to the interactive cells.The local-to-local translationoperator,T3, is usedto shift the local expansionof the
parentcell.

multipoles at coarserlevelsare calculatedby combiningthe multipoles at deeperlevels, seeFig. 4. At
level 1, P,~is calculatedby shifting andaddingup the multipolesof its 8 childrencells, ~I,+ ~ by using
the multipole-to-multipoletranslationoperator,T1R:

= ~ TiR~(P,±iC~), (14)

n{child(c))

where {child(c)} is the set of the 8 children cells of the cth cell. Eq. (14) is usedto traversethe tree
upward, I = L, L — 1,..., 1, 0, andcomputethe multipoles,‘P,~,for all the cells at all the levels.

At the next stageof the algorithm, the multipoles at the root level are usedto computethe local
expansionsat level 0. A difficulty arisesin calculating11’~and~ which involve thecontributionsfrom
infinitely repeatedimagechargesthat arewell-separatedfrom theoriginal MD box.We use the RCMM
to computethesecontributionsto the local expansions[81.The main idea of the RCMM is that even
thoughthe unit cell containsmultimillion particles,the force from a well-separatedimage is described
accuratelyby the first few termsof the multipole expansion.Then eachwell-separatedimagescanbe
replacedby a smallnumberof particles,seeFig. 2a.To reproducethe multipole momentsup to orderK,
only M = (K + 1)(K + 2XK + 3)/6 particlesareneeded[8].

Given the lowest K multipoles of the original N-particle system, ~ eachof the ~ — 27 well-sep-
aratedimages is replacedby randomly distributed M chargeswhose lowest K multipoles equal the
correspondingmultipolesof the original system.This requiressolvinga setof M linear equations[81.

The conditionally-convergentinfinite summation over thesereducedimages is calculatedby the
conventionalEwald method [7]. The Coulomb potential field from the well-separatedimagesis thus
separatedinto rapidly convergentsumsin Fourierandrealspacesas [81

~I00(T) = ~j ~‘(~e~2/c2p(k)) e’~’ — I ZJ erf( IT — rj — ii I) (15)
k vn{nn)J 1 T TJ vI
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wherek = (2ir/IlXIb x c + mc X a + na x b) is a wave vector(I, m, and n are integers);~‘ meansthat
k = 0 is excludedfrom the summation;and {nn} denotesa set of translationvectorswhich connectthe
centerof the original MD box to thoseof the nearest-neighborimages.In Eq. (15) the chargedensity,
p(k), is calculatedas

M

p(k) = ~ Z3 e”~’, (16)
f—I

anderf( z) is the errorfunction. The convergencefactor,y, is chosento be (2 i/3/ 10. We also restrictthe
k sumin Eq. (15) to I k I <10Tr/Q

1~3.To derive Eq.(15), it mustbe notedthat i~r
00(r)only includesthe

contributionfrom well-separatedimagesbutnot from the nearest-neighborimages.The ordinaryEwald
procedureusing the Fourier transform must first be applied to the Coulomb potential which also
includesthe nearest-neighborcontribution.The nearest-neighborcontribution is thensubtractedin the
real-spacesum[8].

The sameprocedureis applied to the calculationof the stress-tensorfield, 1r00(r),

1 M 2kJ~T 4’rrZ.
= -~ ~ ~‘ I— —~---(1+7

2k2) k2 exp[yk+ik(rr~)]
f—i k

M

— ~ Z
1(T—T~—v)(r—r~—v)

T
j1 pn{nn}

1 r—r
1—vI 1 2

X 3erfc — 2exp[—Ir—r1-—vI /4y2}
Ir—,~.—vI 2y v’rryjr—i~—vI

(17)

The local expansioncoefficients, lItoO and H00, are obtainedby comparingthe Taylor expansionof
Eqs. (15) and (17) with respectto r with Eqs. (7) and (11). In this approach,the local expansion
coefficientsneedto be evaluatedonly oncefor the entiresystem,insteadof evaluatingthe complicated
expressions,Eqs. (15) and (17), at eachparticle’s position, r,, millions of times [8]. Also the Ewald
summationfor a M (a few tens) particle systemsrequires little computationaleffort (see the timing
resultsin Section4).

We havethus obtainedthe local expansionsat the root level. At the next stageof the algorithm,
starting from 11’~~and H00 at level 0, the localexpansionsat deeperlevels arecomputedrecursivelyby
traversingthe tree downward, I = 0, 1,..., L — 1, L, seeFig. 4. Supposethat we havecalculatedthe
local expansionsat level I — 1. The contributionsfor the local expansion,~

1/1c’ are classifiedinto two
parts:(i) Onedueto all the particlesin the parent’swell-separatedcells, and(ii) the other from particles
within the interactiveset (Fig. 3 showsthe interactivesetsfor cells at level 1 and2 in two dimensions).
The set of particleswhichcontributesto (i) is the sameas the onewhich contributesto the parent’slocal
expansion,11t~_i,parent(c)~(Parent(c)denotestheparentcell of thecth cell.) Therefore,the contribution(i)
is obtainedby simply shifting the origin of l1/~_i,parent(c) by the local-to-local transformationoperator,
T

3R. On the other hand, the contributions from the interactive set must be calculated from the
multipoles,cP,~,,of the interactivecells by usingthe multipole-to-localtransformationoperator,T2,R. In
summary,

= T25,,((Pi~)+ T3R(11~l.1.pareflt(c)), (18)
c’ n {interactive(c)}

where{interactive(c)} denotesthe set of interactivecells of the cth cell, and R is the vector from the
centerof the cth cell to the centerof the parentcell.
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Similarly the local expansionsof the stress-tensorfield is calculatedas

11i,c = S
2R~(PlC,)+ S3R(H1_lParent(C)). (19)

c’ n {interactive(c))

After calculatingthe local expansionsfor all the cells at the leaf-level,L, IIIL and
11Lc representthe

Coulombpotential field and the stress-tensorfield due to all the particles(including the infinite sums
from repeatedimages)which arewell-separatedfrom the cth cell. The far-field interactions— the first
term in Eq. (8) andthe secondterm in Eq. (9) — arecomputedby evaluatingtheselocal expansionsat the
particle positions. The correspondingcontribution to the force on the ith particle is obtained by
differentiatingthe first term of Eq. (8) with respectto r,.

2.3. Multiple time-stepmethod

The algorithmin the last subsectioncompletesthe computationof the far-field contributionsto the
potential energy, interatomic forces, and microscopicstress tensor.We now computethe near-field
interactionsamongparticlesin the nearest-neighborleafcells. TheseinteractionsarenotCoulombic,so
they must be computeddirectly without using multipoles. We use the MTS method to computethe
interactionsin this regime[9—11].

The MTS methodis basedon the fact that the longer the distancethe sloweris the time variationof
interparticle interaction.Accordingly, forces from different spatial regimesare decomposedinto differ-
ent classes.In our implementation,the force, F,., actingon the ith particle is divided into threeparts:
Theprimary force, F,~,,arisesfrom the interactionwith otherparticlesin asphereof radius, ra, around
the ith particle. The primary cut-off length, ra, is chosenso that only the bondingatomscontributeto
F,~.Also, we choosera> r

0 so that three-bodyforces are entirely primary forces [11]. The secondary
force, F,,~,consistsof pairwiseinteractionsin the rangeTa <r,1 <r,~.The secondarycut-off length,r~,is
chosensuch that beyondthis length,the interatomicpotential is purely Coulombic.The tertiary force,

F,,,, arisesfrom particlesbeyondthesedistancesr~1> r,~but within the nearest-neighborcells. Fig. 2c
shows atomswhich are responsiblefor primary, secondary,and tertiary forces on a given atom in a
two-dimensionalsystem.In our MD simulationsof Si02 systems,we useTa = 2.6A and r~= 5.5 A. Then
for the normal-densitySi02 glass(2.2 g/cm

3), the primary, secondaryandtertiary forceson eachatom
are typically due to a few atoms,50 atoms,and300 atoms,respectively.

The secondaryforcevariesmoreslowly than theprimaryforce, andthetertiary forcevariesevenmore
slowly than the secondaryforce. We haveanalyzedthe power spectrumof force fluctuationsresolved
into different distances,andhave observeda superlinearincreaseof the characteristictime scalewith
distance[11].

In the MTS method, F,
1, is calculatedat every MD step. On the other hand, F,., and F,, are

calculatedat intervalsof n1I~tandn2~t,respectively.Typicalvalueswe choosefor n1 andn2 are 15 and
120. In betweenF,, and F,, arecalculatedfrom the Taylor series,

“max (J~t)’

A! F,~)(t), (20)

whereK = s or t, andFf~is the Ath time derivativeof F~,,.With theMTS, wetypically achieveanorder
of magnitudespeedup of the direct-forcecalculation[9—11].Note that thismethodis adaptivewithin the
length scaler,~becauseit is basedon concentricspheresattachedto eachatom or a neighborlist for
eachatom.

The MTS algorithmproceedsas follows. At every n1 steps(stepsmod n1 = 1, where stepsis the time
step),two-body forces and the time derivativesof the secondaryforces are first calculatedusing the
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Fig. 5. Schematicof the MTS methodusedin the MRMD algorithm. The Coulombpotential from the well-separatedimagesis
computedwith the RCMM at every n2 steps. The far-field potential within the nearest-neighborimagesis computedwith the
FMM at every n2 steps. The near-field forcesare classified into the primary, secondaryand tertiary forcesaccordingto the
interatomicdistances.Theyare updatedateveryone, n1, and n2 steps,respectively.

linked-cell-list method[7,10,11,13].A list of particlesresidingin eachfinest cell is constructedwith the
linked-list method. Direct forces on particles are then calculatedusing the linked list. The time
derivativesof the secondaryforces are storedin an array, F,~,to computetheseforces at subsequent
stepsusingEq. (20). If in addition stepsmod n2 = 1, the time derivativesof the tertiary forcesstoredin
anarray, Ff”), arealso updated.At the sametime, a list of primary pair particlesis constructedfor each
atom.

At subsequentn1 steps, instead of the above procedure,primary forces are calculatedusing the
neighbor list. On the other hand, the secondary-and tertiary-forcesare calculatedusing the stored
secondary-andtertiary-forcederivatives,~ andFf”), accordingto the Taylorexpansion,Eq. (20). The
three-bodyforcesarealwayscalculatedusingthe pair list.

In additionto the direct-forcecalculation,the different time scalesarealso appliedto the calculation
of the far-field interactions.The far-field forcesvary evenmoreslowly than the tertiaryforce within the
nearest-neighborcells. Accordingly, the local expansioncoefficients of the Coulomb potential and
microscopicstresstensor,IIIL,c and “L,c’ areupdatedat every n2 time steps,andno Taylor extrapolation
is madein between.The first termof Eq. (8) andthe secondtermof Eq. (9) areevaluatedat every time
step at the updatedatom positions, r,, but without updating the Taylor-expansioncoefficientsfor n2
steps.The far-field contributionsare then added to the direct contributionscomputedby the MTS
methoddescribedabove.Fig. 5 summarizesthe different time stepsusedin the MRMD algorithm.

2.4. Separablethree-bodyforce calculation

The near-fieldpotentialalso containsa three-bodycomponentrepresentingcovalentbonding.Triple
sums in the three-bodypotential makesthe computationinefficient, and thus the three-bodyforce
calculationis oneof themost time consumingpartsof the MRMD algorithm[11].

We use a tensordecompositionschemeto rewrite the potential into a separableform [11,12].In this
schemethe three-bodypotential in Eq. (1) is rewritten by decomposingit into tensorcomponents.The
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resultingexpressionis separableinto two factors,oneof which containsonly T~
1andthe other contains

only Tik:

~ rik) = ~ (21)

The detailedexpressionfor the decomposedpotentialis given in Ref. [11]. The resultingexpressionsfor
the potential energy,interatomic forces, and microscopicstress tensor involve only double sums. As
pointedout by Frenkel[12], all the functionsarethenevaluatedin a similar wayas pairwiseinteractions.
Speeduptechniquessuchas the useof Newton’s third law reducethe computationtime andoverall we
achievea speedupby a factor of two in the three-bodyforce calculation[11].

3. Implementation of the multiresolution molecular dynamics on parallel computers

3.1. Domain decompositionfor the direct-forcecalculation

We usethe divide-and-conquerstrategybasedon domain decompositionto implementthe MRMD
algorithmon parallelcomputers[2,7,10,11].The total volume of the systemis divided into p subsystems
of equalvolume, and each subsystemis assignedto a node in an array of p processors.The data
associatedwith particles of a subsystemare assignedto the correspondingnode. In the fifth-order
predictor-correctormethod [15], eachnode stores an array containingthe coordinatesand their time
derivativesup to the fifth order, r~(i = 1,..., N; A = 0,..., 5), whereN is the numberof particlesin
the subsystem(except for the messagepassingexplainedbelow,eachnodeprogramrunsautonomously,
sowe omit theprocessorindex here).In addition,anotherarrayo-,(i = 1,..., N) specifiesthe species(Si
or 0) of the particles.

To calculatethe direct force on a particle in a subsystem,the coordinatesof the particlesin the
boundariesof 26 neighbor subsystemsmust be copied from the correspondingnodes. Here, we
distinguishthe primary-andsecondary-boundaryparticles.In a subsystem,primaryboundaryparticlesto
the nth neighbor(n = 1,..., 26) subsystemare locatedwithin a distanceTa + ~ from the boundarywith
the nth neighbor,where8 is a smallpositivenumber.Similarly, secondaryboundaryparticlesare those
which are within a distancer,~+ 3’(6’ is anothersmall distance)from the boundarybut are not the
primaryparticles.

Wheneverstepsmod n1 = 1, lists of the primary- andsecondary-boundaryparticlesare constructed.
The data 0, and T~ (A = 0,..., Am~)for primary- and secondary-boundaryparticles are then
transmitted to the neighbor nodes using messagepassing routines. The arrays, a~and T~, are
augmentedincluding thecopiedparticles.Whenstepsmod n1 # 1, onlythepositionsof primary-boundary
particles which have been defined at the latest update of the primary-boundary-particlelist are
transmitted.In the actualcode,themessagepassingto the 26 neighbornodesis completedin six stepsby
sendingthe boundary-particleinformation to east,west, north, south, up and down neighbornodes
sequentially.The corner andedgeboundaryparticlesarecopiedto properneighbornodesby forwarding
some of the receivedboundaryparticlesto otherneighbornodes[11].

After every n1 MD steps(steps mod n1 = 0), a residentparticle may move out of its subsystem.
Therefore,we checkthe coordinatesof the N residentparticlesbeforethe next n1 stepsstart. Particles
whichhavemovedout of a subsystemaresentto theproperneighbornodes.Newly arrived dataare first
appendedto o~,.and T~ arrays,and then the arraysare compressedby removingthe elementswhich
havemoved out. At this stageof the algorithm, we updateN to represent the number of new resident
particles.
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In the parallel MTS algorithm, messagepassingassociatedwith the secondaryboundaryparticlesis
skipped for n1 steps,andthe only messagepassingperformedat every time stepis associatedwith the
primary boundaryparticleswhose numberis very small. Consequently,the MTS method dramatically
reducesthe sizeof messages[11].

The above messagepassing is implementedby using asynchronousreceiveand synchronouscopy
routines[18,191.A synchronoussendroutineblocks theexecutionof the subsequentlines in theprogram
until the messagehasbeensentout. On the otherhand,an asynchronousreceiveroutinedoesnotblock
the subsequentlines. In the program, an asynchronousreceive routine is first called, followed by a
correspondingsynchronoussendroutine, to ensurethat the information sent by a neighbornode is
receivedas soonasthe messagearrives.

3.2. Domain decompositionfor long-rangeforce calculation

The implementationof hierarchicalcodeson parallelcomputershavebeenreportedbefore[16,20,21].
Supposethe processorsare logically organizedas a cubeof size p~x p~,xp~.For a deepertree level,
1 � log2[max( p~,p,,, p5)], eachcell is uniquely assignedto a processor(We consideronly those cases
wheremax(p~,p,, p5) � 2 min(p~,p~,p5)). The calculationof the multipoles accordingto Eq. (14) is
local to a processor.To compute the local expansionsin Eqs. (18) and(19), we must distinguishthe
inheritedtennsfrom the parentandcontributionsfrom the interactiveset.The computationof inherited
terms is local to a processor.For the computationof the interactive-cellcontribution,the multipolesof
two skin-layer cells must be copied from the nearest-neighbornodes, see Fig. 3. In our MRMD
algorithm, the multipolesof 8’/p cells per node are augmentedwith the copiedmultipolesto form an
arrayconsistingof multipolesof (2’/p~+ 2)(2’/p~+ 2X2~!/p5+ 2) cells at each layer. Synchronouscopy
and asynchronousreceiveroutinesareagainusedto carry outnecessarymessagepassing.

However, for lower levels,the numberof cells becomessmallerthan the numberof processors.Here
morethan one processorsis assignedto a physical cell. Consequentlymany processorsbecomeidle or
alternatively they duplicate the samecomputation. In our parallel implementationof the MRMD
algorithm, the multipolesfor all the cells at a lower level, 1 <log2[max( p,, pb,, p5)], areset to beglobal
variables,seeFig. 6. In the upwardpasson the tree,eachnode computeslocally the multipolesof the
cells to which it is assigned.The local multipolesare thencombinedto obtain an arraycontainingall the
multipolesfor 8! cells.Global concatenationor gatherroutinesareusedto collect local contributionsand
form a globalarray[18,19].In the downwardpass,eachnodecomputesthelocal expansionsof a uniquely

node

Fig. 6. Assignmentof the hierarchyof cells to multiprocessorsfor a two-dimensionalsystem.Fordeeperlevels,cells arelocal to a
processor.For lower levels, cell information is madeglobal to all theprocessors.
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assignedcell for l <log2[max(p~,p,,, p5)], using global information for the multipoles. For I �
log2[max(p~,p,,, p5)}, eachnode computeslocal expansionsfor 8l/p cells using the augmentedmulti-
poles.A pseudocodefor oneMD stepof the MRMD algorithmis given in the Appendix.

The problemof idle processorsat lower levels is inherentin all hierarchicalalgorithms.It reducesthe
theoretical minimum parallel executiontime to be O(log N) for an N particle systemusing N
processors[16,20]. For multimillion-particle simulations on less than 512 processors,however, the
numberof thefinest cells,Nceii, is muchlargerthanp. For suchlargegrain sizes,we found that the idle
processorproblemis negligible and the programis practicallyscalableas demonstratedby the parallel
efficiencyanalysisin the next section.

4. Performance of multiresolution MD algorithm on parallel computers

We havecarriedoutperformancetestsof the MRMD algorithmon parallelcomputers.The physical
systemis Si02 modeledwith a realistic interatomicpotential [3]. The machinesweuse are the 512-node
Intel TouchstoneDelta at Caltechand the 128-nodeIBM SP1 at Argonne. Botharedistributed-memory
MIMD (multiple instructionmultiple data)machines.The SP1hasa high-speedswitch for interprocessor
communication.The low-latency EUIH interface is usedfor switch-basedcommunications[22]. The
programis basedon the message-passingprogrammingstyle. On the Delta, we use the iPSCFortran
whichusesthe nativeNX messagepassing[18]. On the SP1,we usethe Chameleonprogrammingsystem
[19] which is portableto manyparallelcomputers.All the calculationsaredone in 64-bit precision.

The accuracyand speedof the MRMD programdependon the parameters,n1, n2, and Am~, in the
MTS method.The dependenceof the accuracyandspeedon Am~is analyzedin Ref. [11]. Largern1 and
n2 achievea higherspeedbut with less accuracy.There is a trade-offbetweenspeedand accuracy,as
shownin Fig. 7, wherethe speedandaccuracyof the MRMD programareplotted asa function of n2.
The speedis expressedin termsof MD stepsexecutedperhour for a393, 216 particleSiO2 systemon
256 nodes of the Delta. The accuracyis the deviation in the total energy during 1,000 MD steps
normalizedby the total energy.Herewe choosethe otherMTS parametersto be n1 = 15 andAm,,,, = 3.

Hereandin the following benchmarktests,we useK = 2, i.e., we retaintermsup to quadrupoles.The
dependenceof the accuracyof the FMM and RCMM on the order of multipole expansions,K, is
systematicallystudiedin Refs. [8] and [17]. To test the accuracyof the MRMD algorithm, we have
implementedanotherparallelMD algorithmin which the long-rangeCoulombinteractionis computed

150C

~l000• /P 10~

0 40 80 120
Fig. 7. Speedof the MRMD programin termsof MD stepsexecutedper hoursolid curve).The resultsare for 393, 216-particle
Si02 systemon 256 nodesof the Delta. Also shownis the accuracyin termsof the changein the total energyduring 1,000 MD
stepsnormalizedby the total energydashedcurve).
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Fig. 8. Executiontime of the MRMD programsolid curves)for 8232p particle5i0
2 systemson p processors.Opensquaresand

opencircles are theresultson the Delta and SP1,respectively.Communicationoverheaddashedcurves)of the sameprogram.

usingthe conventionalEwald method[7]. The systemwe consideris densified(4.28 g/cm
3) liquid Si0

2
at 3000 K [23]. For a 10080-particleMD configuration,the potentialenergycalculatedwith the Ewald
method is —1.5953x 10’s i/particle, while it is —1.5972 x 1018 i/particle with the MRMD. The
relative error in the potential energy calculated by the MRMD is thus 1 X i0~. For the same
configuration,the microscopicstresstensor(Tr(~r)/3)is calculatedas 83.3 GPawith the Ewald method
and 81.3 GPa(relativeerror is 2 x 10—2)with the MRMD.

Fig. 8 showsthe executiontime of the MRMD programon the Delta and SP1 as a function of the
numberof processors,p. The MTS parametersarechosenas n1 = 15, n~= 120, and Ama,, = 1. Herewe
scalethe systemsize linearlywith the numberof processorsso that the numberof particles,N=

For a 4.2-million particleSiO2 systemon the 512 nodesDelta, oneMD steptakesonly 4.84seconds.The
executiontime increasesonly slightly for largersystems.

Fig. 8 also showsthe time spentfor communicationexpressedasa fractionof the total executiontime.
For the512-nodeDelta, communicationis only 8.1% of the total executiontime. The small communica-
tion overheadmakesthe programefficient evenfor largerp.

On the SP1the computationis morethanfour timesfasterthanon the Delta, but the communication
performanceis comparable,seeFig. 8. For a 0.53-million particle Si02 systemon 64 nodesof the SP1,
oneMD steptakes1.11 secondsandthe communicationoverheadis 15.2%.

oN = 65,856P

0.6 - oN = 8,232p

communication::: : overhea:~~~

of iO 102
P

Fig. 9. Constant-grainparallel efficiency,s~’,of the MRMD programfor Si02 systemssolid curves)on p processorsof theSF1.
Open circles andopensquaresare the resultsfor 823

2p particlesand 65856p particles, respectively.Communicationoverheads
dashedcurves)of the sameprogramare also shown.
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Next we examinethe parallel efficiencyof the MRMD program.We first define the speedof the
MRMD programas aproductof the total numberof particlesandtime stepsexecutedin a second.The
constant-grainspeedupis given by the ratio between the speedof p processorsand that of one
processor.The constant-grainefficiency, ~‘, is the constant-grainspeedupdivided by p [11].

For a 4.2-million particle SiO2 systemon the 512 nodes Delta, we estimate P77’ = 0.924. Since the
processingpower of a SP1 node is greaterthan that of Delta but the communicationspeedremains
similar (see Fig. 8), the parallel efficiency of the MRMD programon the SP1 is smallerthan on the
Delta. In Fig.9, opensquaresrepresentthe parallelefficiencyof the MRMD programas a functionof p
for a systemof 8232pparticleson the SP1.The parallelefficiencydecreasesasthe numberof processors
increases.

The abovelow efficiency is dueto the small grain size; largergrain sizesresult in higherefficiencies.
In Fig. 9, open circles representthe efficiencyfor systemswith 65856p particles.Also shown is the
communicationoverheadof the MRMD programas a function of p. The largergrain sizereducesthe
communicationoverhead.For a 4.2-million particle Si02 systemon 64 nodesof the SP1,we estimate

= 0.914with 7.3%communicationoverhead.
Figure 10 shows the decompositionof the executiontime into core computation tasks. Here, up

representsthe upperpassof the FMM to calculatethe multipoles,while ewaldrepresentsthecalculation
of the well-separatedimagecontributionto the Coulomb potentialand microscopicstresstensor.Both
on the Deltaand SP1,thesecomputationsconsumenegligible time. down is the calculationof thelocal
expansionsin the FMM by the downwardpass.

In our implementationof the MRMD program,direct — thedirect-forcecalculation— is themost time
consuming.Other tasksinclude the predictorandcorrectorproceduresin Gear’salgorithmto integrate
the equationsof motion (denotedas p& c). Messagepassingof the dataassociatedwith the boundary

0.8 I I
Delta

o.6:5r14j~

0.6~4,21,784-

up ewald down direct p&c cp&mv

Fig. 10. Decompositionof the executiontime per MD stepinto core computationtasksof the MRMD programon the Delta and
SP1. up and down representthe upward and downward passesof the FMM algorithm. The necessarymessagepassing of
multipolesis alsoincludedin up. ewald is thecomputationof theEwaldsummationof thewell-separatedimagecontributionto the
Coulombpotentialbasedon the RCMM. direct representsthe direct forcecalculationwithin thenearest-neighborfinestcells. p&c
is the predictorand correctorstepsin Gear’s predictor-correctormethod to integratethe equationsof motion. The copy and
receiveoperationsof the boundary-atominformation necessaryfor thedirect forcecalculation aredenotedby cp&,nv.
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particlesandthose leaving the boundary(denotedby cp&mv) is a small fraction of the executiontime.
Messagepassingassociatedwith the multipolesof the two skin-layercells is includedin the up category
in Fig. 10, andis negligibly small.

5. Conclusion

In conclusion,the multiresolutionMD algorithmis applicablefor large-scalesimulationswith realistic
interatomicpotential including the long-rangeCoulomb and three-bodypotentials.More specifically,
multimillion particlesimulationstakeonly a few secondsperstepon advancedparallelcomputerssuch
as the Intel TouchstoneDelta andIBM SP1.
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Appendix. Multiresolution MD algorithm

A. Predictor
predictorfor particles,r~
if stepsmod n1 = 1

predictorfor the MD box, h
endif

B. Far-field interaction
Updatethe local expansion,~P1C and il~, at everyn2 steps
if stepsmod n2 = 1

B.1. Upwardpass
Form multipoleexpansionsat the leveLs
for

Calculate‘DL,, at the leaf level
end
Form multipoleexpansionsat lower tree levels
for l=L—1,L—2,~,1,0

for c=0,...,8~!_1

for c’ E {child(c))
Multipole-to-multipoleshift (T1) ~ ~,c andaddit to ‘Di,,

end
end

end
Skin-layer-cellcopy
Augmentmultipoleswith the skin-layercells of the neighbornodes
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B.2 Ewald contributionto the local expansionfrom well-separatedimages
Determinethe M reducedchargesusingthe multipoles,~ of the unit MD box
Calculatelocal expansions,~ and ~ by theEwald summationon the M reducedchargesbased
on the RCMM

B.3. Downwardpass
Recursivelycakulatethe local expansions
for 1= 1, —, L

for c=0,...,8”—l
Inheritedlocal expansionfrom theparent
Local-to-localtransform(T3 and S3) of theparentlocal field, ~‘~1—1, parent(c) and
H1~1,parent(c)’ to obtain the inheritedcomponentsof 1I~and Hic
Contributionfrom interactiveset
for c’ e {interactive(c))

Multipole-to-local shift (T2 and S2) of ~ and addthem to 1Jf~,,and H1,~
end

end
end

endif
Evaluationofthefar-field interactionatthe leaflevel
Calculatethe Coulombic contributionto the potential energy,V, interatomic forces, F,, and pressure
tensor,ir, using the localexpansions,~“L.c(i) and

C. Boundary-atomcopy
if stepsmod n1 = 1

Copythe atomic positionsandderivativesof the primary and secondaryboundaryatoms
else

Copythe atomic positionsof the primaryboundaryatoms
endif

D. Directcalculationof the medium-rangeinteraction
if stepsmod n2 = 1

Computethe primary, secondary,andtertiary forcesdirectly
Constructa primary-neighborlist
Updatethe secondaryandtertiary forcesandstorethe time derivatives,~ and F~’~

elseif stepsmod n1 = 1
Computethe primary andsecondaryforcesdirectly
Constructa primary-neighborlist
Updateonly the secondaryforcesandstore the time derivatives,~
Taylor extrapolationof the tertiaryforces

else
Calculatethe binary, primary forces, F,,,, usingthe primary-neighborlist
Taylor extrapolationof the secondaryandtertiary forces

endif
Calculatethe three-bodyforcesusingthe primary-neighborlist



214 A. NakanoetaL/ComputerPhysicsCommunications83 (1994)197—214

E. Corrector
Corrector for particles,x,
if stepsmod n1 = 1

Corrector for the MD box, h
endif

F. Move atoms
if stepsmod n1 = 0

Move atomswhich havecrossthe subsystemborderto properprocessors
endif
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