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Abstract

For realistic modeling of materials, a molecular-dynamics (MD) algorithm is developed based on multiresolutions
in both space and time. Materials of interest are characterized by the long-range Coulomb, steric and charge-dipole
interactions as well as three-body covalent potentials. The long-range Coulomb interaction is computed with the fast
multipole method. For bulk systems with periodic boundary conditions, infinite summation over repeated image
charges is carried out with the reduced cell multipole method. Short- and medium-range non-Coulombic interactions
are computed with the multiple time-step approach. A separable tensor decomposition scheme is used to compute
three-body potentials. For a 4.2 million-particle SiO, system, one MD step takes only 4.8 seconds on the 512-node
Intel Touchstone Delta machine and 10.3 seconds on 64 nodes of an IBM SP1 system. The constant-grain parallel
efficiency of the program is n' =0.92 and the communication overhead is 8% on the Delta machine. On the SP1
system, %’ = 0.91 and communication overhead is 7%.

1. Introduction

Molecular dynamics (MD) simulation is rapidly becoming an integral part of computer-aided materials
design. Design of materials like nanophase metals and ceramics requires large-scale MD simulations.
These materials are synthesized from atom clusters of nanometer (10~° m) size [1]. Remarkable
improvements in strength and flexibility have been reported for nanophase metals and ceramics. MD
simulations can provide a microscopic understanding of the structure-property relationship in nanophase
materials.

Since cluster-assembled nanophase materials are composed of large-scale structural units, each
consisting of 10% to 10° particles, the simulation system must comprise at least 10 to 107 particles. To
prepare a well-thermalized MD configuration and calculate the mechanical and thermal properties, it is
necessary to carry out multimillion-particle simulations for 10° to 107 time steps. In order for simulations
to be completed within a reasonable time, it is therefore crucial to achieve a speed of a few seconds per
step.

For systems interacting via simple, short-ranged binary potentials, it is possible to simulate multimil-
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lion particles at a speed of a few seconds /step using recent advances in numerical techniques and
parallel computing technology [2]. However, a vast majority of materials require high-quality interatomic
potentials for reliable atomistic simulations. For example, interatomic potentials for many ceramics must
include the effects of long-range Coulomb interaction, charge-dipole interaction, steric hindrance, and
bending and stretching of covalent bonds [3]. Each of these potentials requires enormous computing and
thus a special algorithm.

The most prohibitive computational problem is associated with the Coulomb potential. Because of its
long range, each atom interacts with all the other atoms in the system. Therefore the evaluation of the
Coulomb potential for an N-particle system requires O(N?) operations, which makes large-scale MD
simulations difficult. Recent hierarchical algorithms [4-6] have revolutionized the computation of the
Coulomb potential. The fast multipole method (FMM) uses the truncated multipole expansion and local
Taylor expansion for the Coulomb potential field [6]. By computing both expansions recursively on a
hierarchy of cells, the Coulomb potential is computed with O(N) operations.

In many materials simulations, periodic boundary conditions are used to minimize surface effects. The
summation over infinitely repeated image charges must be carried out to compute the Coulomb
potential. The conditionally convergent interaction is usually calculated by the Ewald method [7]. Though
the Ewald algorithm scales practically as O(N) for moderate system size {7], the computation becomes
prohibitive for larger systems. Ding, Karasawa, and Goddard have developed the reduced cell multipole
method (RCMM) which makes the computation of the Coulomb potential feasible for multimillion-par-
ticle systems with periodic boundary conditions [8]. In RCMM, distant images of multimillion particles
are replaced by a small number of fictitious particles with the same leading multipoles as the original
system. With little computational effort, the Ewald summation is applied to these reduced images.

Another computational difficulty is caused by the non-Coulombic part of the interatomic potcntlal In
most materials, the potential in the medium range (up to the cut-off length, r.=5-10 A is a
complicated function of the interatomic distance, r, so that the multipole expansion is not applicable.
The finest cell in the FMM must be larger than r_, and within the nearest-neighbor cells the interaction
must be calculated directly without multipoles. With r.=5— 10 A the direct force calculation for each
atom involves hundreds of other atoms. The 0(102N ) pair computation dominates the computation
time, considering the complicated form of the potential at r <r.. We employ the multiple time-step
(MTS) approach [9] to reduce the computation in this spatial regime. The MTS method is based on the
fact that the farther the distance between particles the slower is the time variation of forces. Therefore
different time steps are used to compute forces for different interparticle separations. The MTS
algorithm typically achieves a 5- to 7-fold speedup [9]. On parallel computers, the communication
overhead is significantly reduced by the MTS method [10,11].

The covalent bond-bending and stretching forces are described in the three-body potentials [3].
However, triple sums in three-body potentials make the computation inefficient. The computation can be
made efficient by decomposing three-body interactions into separable tensor components [11,12]. The
resulting expression involves only double sums, which can be evaluated efficiently with a speedup of a
factor of two [11].

We have developed a highly efficient MD algorithm based on multiresolutions in both space and time.
The long-range Coulomb potential for periodic systems are computed with the RCMM and FMM, while
the medium-range non-Coulombic potentials are computed by the MTS method. The three-body
interactions are calculated with the separable tensor decomposition. The performance of the multireso-
lution molecular dynamics (MRMD) algorithm is tested on the 512-node Intel Touchstone Delta
machine at Caltech and the 128-node IBM SP1 system at Argonne National Laboratory.

This paper is organized as follows. In Section 2, we describe the key components of the MRMD
algorithm. The implementation of the MRMD algorithm on parallel computers is discussed in Section 3.
The results of numerical tests are given in Section 4, and Section 5 contains the conclusion.
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2. Multiresolution molecular dynamics algorithm
2.1. Variable-shape molecular dynamics

In MD simulations, a physical system consisting of N atoms is represented by a set of atomic
coordinates, {r;|i=1... N}. With periodic boundary condition, there are identical particles at r; + v,
where v = la + mb + nc is a translation vector {/, m, and n are integers). a, b, and ¢ represent the MD
box, see Fig. 1. We are concerned with systems for which the potential energy is a sum of two- and
three-body potentials,

N N’
V=L L X vP(ri) + X vQUrys ri), (1)
v i=1j=1 ij<k
where r;;=|r;|, and r;;=r,—r;. In Eq. (1) the prime on the summation over the two-body potential,
v{P(r,)), indicates the omission of the i =j term when v = 0. The three-body potential, vGr,;, r;), is
short-ranged and the minimum-image convention is used to evaluate this term [13].

In this paper, we use the constant-pressure MD scheme by Parrinello and Rahman [14]. In this
scheme, the shape and volume of the simulation box (i.e., the vectors a, b, and c¢) change dynamically.
Introducing dimensionless atomic coordinates, s;, through the relation, r; = hs;, where h =(a, b, ¢) is
the 3 X 3 translation matrix, the equation of motion for s; is [14],

§,= -G~ 'Gs;+m;'h"'F,, (2)

where m; is the mass of the ith particle; F;= —dV/9r; is the force acting on the ith particle; and
G = h"h is the metric tensor with A7 being the transpose of matrix k. In Eq. (2), time derivatives are
denoted by dots above the variables.

The equation of motion for A is derived through a fictitious Lagrangian formalism [14]:

Wh = (7 —PI)Q(KT) ", (3)

where W is a fictitious mass associated with the simulation box, P is the hydrostatic pressure, and I is
the unit matrix. In Eq. (3) the volume of the system, {2 = det(h), and the microscopic stress tensor, ar, is
calculated from

U L ) g
Nmr= Zmi"'zl'("z") -2 X X > ri "i;IF ’5_ > |r +r ) (4)
i=1 v i<k

ij ik
i=1j=1 or; oy

~.

where 7 = hs;.

14
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Fig. 1. An MD box is formed by three vectors, a, b, and ¢. The three-dimensional coordinate, r;, of the ith atom is related to its
dimensionless coordinate, s;, through the relation, r; = hs;, where h =(a, b, c¢) is the translation matrix.
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Fig. 2. Schematic representation of spatial multiresolution for a two-dimensional system. (a) Periodically repeated images of the
original MD box (hatched). Replacing each well-separated image by a small number of particles with the same leading multipole
expansions reduces the computation enormously while maintaining the necessary accuracy. The nearest-neighbor images (shaded)
cannot be replaced by the reduced image. (b) A hierarchy of cells in the FMM. The nearest-neighbor cells of the filled cell consist
of itself and the hatched cells. The interactive cells are shaded. (c) The direct forces on a particle (solid circle) are due to the
primary (open circles within the hatched area), secondary (open circles within the shaded area), and tertiary (the other open circles)

neighbor atoms.

The equations of motion, (2) and (3), are integrated with Gear’s fifth-order predictor-corrector
method [15] using a time increment A¢ in Eq. (2) and n,At(n, is typically 15) in Eq. (3). The most
time-consuming part of MD simulations is the calculation of the potential energy, V, interatomic forces,
F;, and the microscopic stress tensor, 7. The MRMD algorithms have been designed to efficiently
compute the contributions to these quantities from various spatial regimes. These algorithms are
described in the following subsections.

2.2. Fast multipole method and reduced cell multipole method

In the MRMD algorithm, the Coulomb interaction is calculated with the fast multipole method
(FMM, see Ref. [6]) and the reduced cell multipole method (RCMM, see Ref. [8]). Both methods use the
multipole expansion of the Coulomb potential. In the FMM, the Coulomb potential is computed using a
hierarchy of cells. The hierarchy is defined by recursively decomposing the MD box according to a tree
structure in which a node corresponds to a cell. The root of the tree is at level 0 and it corresponds to the
MD box shown in Fig. 1. With periodic boundary conditions, the root cell is regarded as a unit ceil whose
images are repeated infinitely as shown in Fig. 2(a). At level /, a parent cell is decomposed into 2 X 2 X 2
children cells of equal volume at level / + 1, see Fig. 2b. The number of cells at level [ is thus 8’ per unit
cell. The recursive decomposition stops at the leaf level, / = L, where further decomposition would cause
children cells to have parallel faces with distance less than r_, see Fig. 2c. We determine r_ such that the
interatomic potential is purely Coulombic for r>r.. Therefore any pair of particles interact via the
Coulomb potential when they reside in two different leaf cells which do not share any corners.

For the cth cell at level /, the nearest-neighbor cells are defined as the cell ¢ itself and any other cells
at the same level with which it shares a corner. At every level [, there are 27 nearest-neighbor cells for
each cell. All the other cells at the same level are said to be well-separated from the cth cell. The
interactive cells are defined to be well-separated from the cth cell and to be children of the nearest-
neighbor cells of ¢’s parent, see Fig. 3.

The FMM computes the multipole expansions, @, , and the local Taylor expansions, ¥, ., of the
Coulomb potential field recursively on the hierarchy of cells. For charges Z; distributed at positions r; in
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Fig. 3. Cells at tree levels 1 and 2 in a two-dimensional system. The nearest-neighbor cells of the filled cell consist of itself and the

hatched cells. All the other cells are well-separated. The shaded cells represent the interactive cells. The unit cell is bounded by
thick lines.

the cth cell at level /, the multipole expansion, @, =(Z, u,, Q.- -.), centered at the center of the cell
is expressed as,

Z p.r, Quglal
$(r)=—+=—5"+ =L+, (5)

r r

where ¢(r) is the Coulomb potential at position r relative to the center of the cell, « =x, y, z, and there
is implicit summation over repeated indices. The lower order moments are the charge - Z=Y,Z;
dipoles - u, = L, Z;7,,; and quadrupoles — Q.5 =X, Z,(3r,,r;5 ~ aﬂrz)/Z

We define a partial contribution, ¢, Ar), to the Coulomb potential field in the cth cell at level [ due to
all the particles in the well-separated cells,

Y (r)y= X Zl—ﬁ:R_I (6)

' &{nn(c)} jEC

where a set of the nearest-neighbor cells of the cth cell is denoted by {nn(c)}, and R, is a vector from
the center of the cth cell to that of the ¢’th cell. The variation of ¢, (r) is small since it is produced by
well-separated charges. Therefore we can expand the field in Taylor series about the center of the cell.
Denoting by ¥, = (¥, ¥D,, ¥2 ,,...), we have

lc;a?

‘»b[,c(") = 1]/1(’(3) + ¥R, ot WIS%‘);aﬁrarB + oo, (7

lca

where r is the position relative to the center of the cell.
Using these definitions, the total potential energy, Eq. (1), is rewritten as,

N
V=73 E Zy o) + 3 X > m(’q) + Z (rij’ Tik)s (8)
= i=1 je{nn(c(i)} i,j<k
ji

where c¢(i) denotes the finest cell at level L to which the ith atom belong. The first term of Eq. (8)
represents the long-range Coulomb potential between well-separated leaf cells, and the second term is
the two-body potential within the nearest-neighbor cells. The first term is called the far-field contribution
to the potential energy, while the second and third terms constitute the near-field contribution.
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Similarly the microscopic stress tensor, Eq. (4), is rewritten as

N r N N dvfz)
— 2 1 _1 -1_Y \.T
Qmw=Y mFi(F) +3 Y Ziw, (1) — 1 2 h ril T gy | T
i=1 i=1 i=1 je{mn(ci)) i
i

3 R
- Z r; trya— 1 (9)
i,j<k ! a ' or Tk

where 7, (r) is a partial contribution to the stress-tensor field at position r relative to the center of the

cth cell at level I due to all the particles in well-separated cells:

T
(r;r —RC’C)(r_rj—Rc'c)
T (1) = > Z p—
‘ ' ef{nn(c)} jeC d r— rch’c—I-a_

The local Taylor expansion, II, = (19,4, IfY,5, II2,5.,,-..), of the partial stress-tensor field,
7, (r), is also defined through the relation,

, (10)

_ 170 1
T eiap(r) =19, g TR pete + 2 el + (11)

The local expansions, ¥, . and II; _, include the contributions from all the particles in well-separated
cells at the leaf level. The straightforward computation of these terms requires O(N?) operations. The
FMM reduces the complexity to O(N) by computing multipoles and local expansions recursively on the
hierarchy of cells. This is implemented most conveniently by using five translation operators,
Ty > Ton> Tap> Sop» and Ss g, defined below [16].

The first operator, T , shifts the origin of a multipole expansion. It operates on a multipole
expansion centered at R, and gives the multipole expansion centered at the origin due to the same
charge distribution. By denoting &' =(Z', i, Qp,.-.) =Ty  (®) where @ =(Z, p,, Q,p,-..), the first
few relations involved in the translation are written as [17] Z'=Z and u_ =p, +ZR,,.

The second class of operators, T, x and S, g, act on a multipole expansion, P, centered at R, and give
the local Taylor expansions of the fields at the origin produced by the multipoles; T, r and S, ; give the
local expansions for the Coulomb potential, ¥, and the microscopic stress tensor, I, respectively. By
denoting ¥ = (1If(°) YD, WD ) =T, (D), the first relation due to the translation is written as [17]

lI,(o) &%E Q-&‘PM’W

+ T 12
R R R® (12)
Similarly IT= (I}, II$),, IIG,,, -+ ) =S, p(®P), where the first relation is
Z 3P\ P, n.RstugR, R,R,
HSB—R R (R3_ 21;’;,) ?3_4_—1?-3—_3”'711{71 RS-—RS(PGWR"!R +PI3"7 TIR )
R,R
Haltg
+3P. R.R, = (13)

In Eq. (13) P,; =¥, Z;r,, 1,5 is related to the quadrupole, Q,, =3P,z — P, 8,4)/2.
In the FMM algorithm, the tree of cells is traversed twice. First, starting from the leaf level, I = L, the
tree is traversed upward to compute the multipoles, @, ., for all the cells at all the levels. The local
Taylor expansions, ¥, , and II, ., are then computed from @, . for all the cells at all the levels, starting at
the root level [ = 0 and traversing the tree downward.
The computation of far-image interactions in the multiresolution molecular dynamics (MRMD)

algorithm starts by computing multipoles, @, ., for all the finest cells at the leaf level. Next the
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Fig. 4. Schematic of the far-ficld computation in a two dimensional system. (Left column) Starting from the leaf level, the tree of
cells is traversed upward to compute the multipoles for all the cells at all the levels. The multipole-to-multipole operator, T}, is
used to shift the multipoles of children cells. The multipole at the root level is used to compute the local Taylor expansion for the
Coulomb potential at level 0 based on the RCMM. (Right column) The tree is traversed downward to compute the local expansions
for all the cells at all the levels. The multipole-to-local translation operator, T, is used to compute the partial contribution to the
local expansion due to the interactive cells. The local-to-local translation operator, T3, is used to shift the local expansion of the
parent cell.

multipoles at coarser levels are calculated by combining the multipoles at deeper levels, see Fig. 4. At
level I, @, _ is calculated by shifting and adding up the multipoles of its 8 children cells, ®,, , ., by using
the multipole-to-multipole translation operator, T p:
‘pl,c = Z Tl,Rﬂ( D, 1,c’) > (14)
¢’ €{child(c))}
where {child(c)} is the set of the 8 children cells of the cth cell. Eq. (14) is used to traverse the tree
upward, /=L, L —1,...,1, 0, and compute the multipoles, @, ., for all the cells at all the levels.

At the next stage of the algorithm, the multipoles at the root level are used to compute the local
expansions at level 0. A difficulty arises in calculating ¥, and I1,, which involve the contributions from
infinitely repeated image charges that are well-separated from the original MD box. We use the RCMM
to compute these contributions to the local expansions [8]. The main idea of the RCMM is that even
though the unit cell contains multimillion particles, the force from a well-separated image is described
accurately by the first few terms of the multipole expansion. Then each well-separated images can be
replaced by a small number of particles, see Fig. 2a. To reproduce the multipole moments up to order X,
only M = (K + 1)K + 2XK + 3) /6 particles are needed [8].

Given the lowest K multipoles of the original N-particle system, @, each of the ® — 27 well-sep-
arated images is replaced by randomly distributed M charges whose lowest K multipoles equal the
corresponding multipoles of the original system. This requires solving a set of M linear equations [8].

The conditionally-convergent infinite summation over these reduced images is calculated by the
conventional Ewald method [7]. The Coulomb potential field from the well-separated images is thus
separated into rapidly convergent sums in Fourier and real spaces as [8]

1 (4% 212 ) . M Z; lr—r—»l
ry=— ——C—y k k e'k"— 2 E , ! erf ! ] 15
(/IO,O( ) 0 ; ( k2 p( ) velm) j=1 r—rj—Vl 27 ( )
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where k= (2w /QXIb X ¢ + mc X a + na X b) is a wave vector (I, m, and n are integers); ¥’ means that
k =0 is excluded from the summation; and {nn} denotes a set of translation vectors which connect the
center of the original MD box to those of the nearest-neighbor images. In Eq. (15) the charge density,
p(k), is calculated as

M
p(k) = ¥ Z, e7kn, (16)

j=1
and erf(z) is the error function. The convergence factor, v, is chosen to be £2!/3 /10. We also restrict the
k sum in Eq. (15) to | k| < 10w /0273, To derive Eq. (15), it must be noted that ¢r4(r) only includes the
contribution from well-separated images but not from the nearest-neighbor images. The ordinary Ewald
procedure using the Fourier transform must first be applied to the Coulomb potential which also
includes the nearest-neighbor contribution. The nearest-neighbor contribution is then subtracted in the

real-space sum [8].
The same procedure is applied to the calculation of the stress-tensor field, m(r),

1 2kkT
mo0(T) _'_6 2 Z [1_ K2 (1+72k2)]

Jj=1 k

.exp[—yzkz +ik-(r—r)]

; ;)Z»(r—rj—v)(r—rj—v)T
lr—r.—v ) 1

erfc - exp| = lr—r, —v|%/4y?
|r__r_v|3 ( 2,), \/17‘y|r—rj—v|2 Xp[ J / ’Y]

(17)

The local expansion coefficients, ¥, and II,,, are obtained by comparing the Taylor expansion of
Egs. (15) and (17) with respect to r with Egs. (7) and (11). In this approach, the local expansion
coefficients need to be evaluated only once for the entire system, instead of evaluating the complicated
expressions, Egs. (15) and (17), at each particle’s position, r;, millions of times [8]. Also the Ewald
summation for a M (a few tens) particle systems requires little computational effort (see the timing
results in Section 4).

We have thus obtained the local expansions at the root level. At the next stage of the algorithm,
starting from ¥, and I, at level 0, the local expansions at deeper levels are computed recursively by
traversing the tree downward, /=0, 1,. L —1, L, see Fig. 4. Suppose that we have calculated the
local expansions at level [ — 1. The contrlbutlons for the local expansion, ¥, , are classified into two
parts: (i) One due to all the particles in the parent’s well-separated cells, and (ii) the other from particles
within the interactive set (Fig. 3 shows the interactive sets for cells at level 1 and 2 in two dimensions).
The set of particles which contributes to (i) is the same as the one which contributes to the parent’s local
expansion, ¥;_, Jenic)- (Parent(c) denotes the parent cell of the cth cell.) Therefore, the contribution (i)
is obtained by simply shifting the origin of ¥, | . ..., by the local-to-local transformation operator,
T; g On the other hand, the contributions from the interactive set must be calculated from the
multipoles, @, ., of the interactive cells by using the multipole-to-local transformation operator, T, . In
summary,

V.= P> Tz,Rdc( Do)+ T3,R('pl— Lparent(c))’ (18)
¢’ {interactive(c)}

where {interactive(c)} denotes the set of interactive cells of the cth cell, and R is the vector from the
center of the cth cell to the center of the parent cell.
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Similarly the local expansions of the stress-tensor field is calculated as

Hl,c = Z SZ,RC:C( d)l,c’) + S3,R(HI— l,parent(c)) . (19)

¢’ €{interactive(c)}

After calculating the local expansions for all the cells at the leaf-level, L, ¥; . and II; . represent the
Coulomb potential field and the stress-tensor field due to all the particles (including the infinite sums
from repeated images) which are well-separated from the cth cell. The far-field interactions — the first
term in Eq. (8) and the second term in Eq. (9) — are computed by evaluating these local expansions at the
particle positions. The corresponding contribution to the force on the ith particle is obtained by
differentiating the first term of Eq. (8) with respect to r;.

2.3. Multiple time-step method

The algorithm in the last subsection completes the computation of the far-field contributions to the
potential energy, interatomic forces, and microscopic stress tensor. We now compute the near-field
interactions among particles in the nearest-neighbor leaf cells. These interactions are not Coulombic, so
they must be computed directly without using multipoles. We use the MTS method to compute the
interactions in this regime [9-11].

The MTS method is based on the fact that the longer the distance the slower is the time variation of
interparticle interaction. Accordingly, forces from different spatial regimes are decomposed into differ-
ent classes. In our implementation, the force, F,, acting on the ith particle is divided into three parts:
The primary force, F;,, arises from the interaction with other particles in a sphere of radius, r,, around
the ith particle. The primary cut-off length, r,, is chosen so that only the bonding atoms contribute to
F;,. Also, we choose r,>r, so that three-body forces are entirely primary forces [11]. The secondary
force, F, consists of pairwise interactions in the range r, <r; <r.. The secondary cut-off length, r, is
chosen such that beyond this length, the interatomic potential is purely Coulombic. The tertiary force,
F,,, arises from particles beyond these distances r;; > r. but within the nearest-neighbor cells. Fig. 2c
shows atoms which are responsible for primary, secondary, and tertiary forces on a given atom in a
two-dimensional system. In our MD simulations of SiO, systems, we use r, = 2.6 A and r.=5.5 A. Then
for the normal-density SiO, glass (2.2 g/cm?), the primary, secondary and tertiary forces on each atom
are typically due to a few atoms, 50 atoms, and 300 atoms, respectively.

The secondary force varies more slowly than the primary force, and the tertiary force varies even more
slowly than the secondary force. We have analyzed the power spectrum of force fluctuations resolved
into different distances, and have observed a superlinear increase of the characteristic time scale with
distance [11].

In the MTS method, F,, is calculated at every MD step. On the other hand, F;; and F;, are
calculated at intervals of n,At and n,At, respectively. Typical values we choose for n, and n, are 15 and
120. In between F; and F;, are calculated from the Taylor series,

F, (t+JAt) = }fx Ar)"

F(A)
L SRR, (20)

where x = s or ¢, and F(“ is the Ath time derivative of F,,. With the MTS, we typically achieve an order
of magnitude speed up of the direct-force calculation [9~ 11] Note that this method is adaptive within the
length scale r_. because it is based on concentric spheres attached to each atom or a neighbor list for
each atom.

The MTS algorithm proceeds as follows. At every n, steps (steps mod n, = 1, where steps is the time
step), two-body forces and the time derivatives of the secondary forces are first calculated using the
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every ny ~ 120 steps

Tertiary Force

(rﬁ >Te)
Taylor expansion
every n, ~ 120 steps

Well-separated Cell
Neighbor Image FMM
every n, ~ 120 steps

Secondary Force

(l'a < l‘ij < l‘c)
Taylor expansion
every n; ~ 15 steps

Neighbor Cell

Primary Force

("ij <ry)
direct calculation
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Fig. 5. Schematic of the MTS method used in the MRMD algorithm. The Coulomb potential from the well-separated images is
computed with the RCMM at every n, steps. The far-field potential within the nearest-neighbor images is computed with the
FMM at every n, steps. The near-field forces are classified into the primary, secondary and tertiary forces according to the
interatomic distances. They are updated at every one, n;, and n, steps, respectively.

linked-cell-list method [7,10,11,13]. A list of particles residing in each finest cell is constructed with the
linked-list method. Direct forces on particles are then calculated using the linked list. The time
derivatives of the secondary forces are stored in an array, F*), to compute these forces at subsequent
steps using Eq. (20). If in addition steps mod n, = 1, the time derivatives of the tertiary forces stored in
an array, F", are also updated. At the same time, a list of primary pair particles is constructed for each
atom.

At subsequent n, steps, instead of the above procedure, primary forces are calculated using the
neighbor list. On the other hand, the secondary- and tertiary-forces are calculated using the stored
secondary- and tertiary-force derivatives, F* and F®, according to the Taylor expansion, Eq. (20). The
three-body forces are always calculated using the pair list.

In addition to the direct-force calculation, the different time scales are also applied to the calculation
of the far-field interactions. The far-field forces vary even more slowly than the tertiary force within the
nearest-neighbor cells. Accordingly, the local expansion coefficients of the Coulomb potential and
microscopic stress tensor, ¥; . and II, , are updated at every n, time steps, and no Taylor extrapolation
is made in between. The first term of Eq. (8) and the second term of Eq. (9) are evaluated at every time
step at the updated atom positions, r;, but without updating the Taylor-expansion coefficients for n,
steps. The far-field contributions are then added to the direct contributions computed by the MTS
method described above. Fig. 5 summarizes the different time steps used in the MRMD algorithm.

2.4. Separable three-body force calculation

The near-field potential also contains a three-body component representing covalent bonding. Triple
sums in the three-body potential makes the computation inefficient, and thus the three-body force
calculation is one of the most time consuming parts of the MRMD algorithm [11].

We use a tensor decomposition scheme to rewrite the potential into a separable form {11,12]. In this
scheme the three-body potential in Eq. (1) is rewritten by decomposing it into tensor components. The
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resulting expression is separable into two factors, one of which contains only r;; and the other contains
only r;:

Uj(?lz("ij’ Tik) = Zwsl)(rij)wt(l?)(rik)' (21)
44
The detailed expression for the decomposed potential is given in Ref. [11]. The resulting expressions for
the potential energy, interatomic forces, and microscopic stress tensor involve only double sums. As
pointed out by Frenkel [12], all the functions are then evaluated in a similar way as pairwise interactions.
Speedup techniques such as the use of Newton’s third law reduce the computation time and overall we
achieve a speedup by a factor of two in the three-body force calculation [11].

3. Implementation of the multiresolution molecular dynamics on parallel computers

3.1. Domain decomposition for the direct-force calculation

We use the divide-and-conquer strategy based on domain decomposition to implement the MRMD
algorithm on parallel computers [2,7,10,11]. The total volume of the system is divided into p subsystems
of equal volume, and each subsystem is assigned to a node in an array of p processors. The data
associated with particles of a subsystem are assigned to the corresponding node. In the fifth-order
predictor-corrector method [15], each node stores an array containing the coordinates and their time
derivatives up to the fifth order, r*(i=1,..., N; A=0,..., 5), where N is the number of particles in
the subsystem (except for the message passing explained below, each node program runs autonomously,
so we omit the processor index here). In addition, another array o,(i = 1,..., N) specifies the species (Si
or O) of the particles.

To calculate the direct force on a particle in a subsystem, the coordinates of the particles in the
boundaries of 26 neighbor subsystems must be copied from the corresponding nodes. Here, we
distinguish the primary- and secondary-boundary particles. In a subsystem, primary boundary particles to
the nth neighbor (n =1,..., 26) subsystem are located within a distance r, + é from the boundary with
the nth neighbor, where & is a small positive number. Similarly, secondary boundary particles are those
which are within a distance r,+ 8(8’ is another small distance) from the boundary but are not the
primary particles.

Whenever steps mod n, = 1, lists of the primary- and secondary-boundary particles are constructed.
The data o; and r® (A=0,..., Ap,) for primary- and secondary-boundary particles are then
transmitted to the neighbor nodes using message passing routines. The arrays, o; and r, are
augmented including the copied particles. When steps mod n, # 1, only the positions of primary-boundary
particles which have been defined at the latest update of the primary-boundary-particle list are
transmitted. In the actual code, the message passing to the 26 neighbor nodes is completed in six steps by
sending the boundary-particle information to east, west, north, south, up and down neighbor nodes
sequentially. The corner and edge boundary particles are copied to proper neighbor nodes by forwarding
some of the received boundary particles to other neighbor nodes [11].

After every n, MD steps (steps mod n, =0), a resident particle may move out of its subsystem.
Therefore, we check the coordinates of the N resident particles before the next n, steps start. Particles
which have moved out of a subsystem are sent to the proper neighbor nodes. Newly arrived data are first
appended to o; and r* arrays, and then the arrays are compressed by removing the elements which
have moved out. At this stage of the algorithm, we update N to represent the number of new resident
particles.
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In the parallel MTS algorithm, message passing associated with the secondary boundary particles is
skipped for n, steps, and the only message passing performed at every time step is associated with the
primary boundary particles whose number is very small. Consequently, the MTS method dramatically
reduces the size of messages [11].

The above message passing is implemented by using asynchronous receive and synchronous copy
routines [18,19}. A synchronous send routine blocks the execution of the subsequent lines in the program
until the message has been sent out. On the other hand, an asynchronous receive routine does not block
the subsequent lines. In the program, an asynchronous receive routine is first called, followed by a
corresponding synchronous send routine, to ensure that the information sent by a neighbor node is
received as soon as the message arrives.

3.2. Domain decomposition for long-range force calculation

The implementation of hierarchical codes on parallel computers have been reported before [16,20,21].
Suppose the processors are logically organized as a cube of size p, Xp, Xp,. For a deeper tree level,
I > log,[max(p,, p,, p,)], each cell is uniquely assigned to a processor (We consider only those cases
where max(p,, p,, p,) <2 min(p,, p,, p,)). The calculation of the multipoles according to Eq. (14) is
local to a processor. To compute the local expansions in Egs. (18) and (19), we must distinguish the
inherited terms from the parent and contributions from the interactive set. The computation of inherited
terms is local to a processor. For the computation of the interactive-cell contribution, the multipoles of
two skin-layer cells must be copied from the nearest-neighbor nodes, see Fig. 3. In our MRMD
algorithm, the multipoles of 8'/p cells per node are augmented with the copied muitipoles to form an
array consisting of multipoles of (2'/p, + 2X2'/p, + 2X2 /p, + 2) cells at each layer. Synchronous copy
and asynchronous receive routines are again used to carry out necessary message passing.

However, for lower levels, the number of cells becomes smaller than the number of processors. Here
more than one processors is assigned to a physical cell. Consequently many processors become idle or
alternatively they duplicate the same computation. In our parallel implementation of the MRMD
algorithm, the multipoles for all the cells at a lower level, / <log,[max(p,, p,, p,)], are set to be global
variables, see Fig. 6. In the upward pass on the tree, each node computes locally the multipoles of the
cells to which it is assigned. The local multipoles are then combined to obtain an array containing all the
multipoles for 8’ cells. Global concatenation or gather routines are used to collect local contributions and
form a global array [18,19]. In the downward pass, each node computes the local expansions of a uniquely

tree level

N \\.

NN ‘
JEE [ CIEIEIET | |EIEDRDED ) EIEIESES || EJEIEDED

N

0 1 2 3 4 5 6 7
node

Fig. 6. Assignment of the hierarchy of ceils to multiprocessors for a two-dimensional system. For deeper levels, cells are local to a
processor. For lower levels, cell information is made global to all the processors.
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assigned cell for /<log,[max(p,, p,, p,)], using global information for the multipoles. For />
log,[max(p,, p,, p,)], each node computes local expansions for 8!/p cells using the augmented multi-
poles. A pseudocode for one MD step of the MRMD algorithm is given in the Appendix.

The problem of idle processors at lower levels is inherent in all hierarchical algorithms. It reduces the
theoretical minimum parallel execution time to be O(log N) for an N particle system using N
processors [16,20]. For multimillion-particle simulations on less than 512 processors, however, the
number of the finest cells, N, is much larger than p. For such large grain sizes, we found that the idle
processor problem is negligible and the program is practically scalable as demonstrated by the parallel
efficiency analysis in the next section.

4. Performance of multiresolution MD algorithm on parallel computers

We have carried out performance tests of the MRMD algorithm on parallel computers. The physical
system is SiO, modeled with a realistic interatomic potential [3]. The machines we use are the 512-node
Intel Touchstone Delta at Caltech and the 128-node IBM SP1 at Argonne. Both are distributed-memory
MIMD (multiple instruction multiple data) machines. The SP1 has a high-speed switch for interprocessor
communication. The low-latency EUIH interface is used for switch-based communications [22]. The
program is based on the message-passing programming style. On the Delta, we use the iPSC Fortran
which uses the native NX message passing [18]. On the SP1, we use the Chameleon programming system
[19] which is portable to many parallel computers. All the calculations are done in 64-bit precision.

The accuracy and speed of the MRMD program depend on the parameters, n,, n,, and A, in the
MTS method. The dependence of the accuracy and speed on A, is analyzed in Ref. [11]. Larger n, and
n, achieve a higher speed but with less accuracy. There is a trade-off between speed and accuracy, as
shown in Fig. 7, where the speed and accuracy of the MRMD program are plotted as a function of n,.
The speed is expressed in terms of MD steps executed per hour for a 393, 216 particle SiO, system on
256 nodes of the Delta. The accuracy is the deviation in the total energy during 1,000 MD steps
normalized by the total energy. Here we choose the other MTS parameters to be n, =15 and A, = 3.

Here and in the following benchmark tests, we use K = 2, i.e., we retain terms up to quadrupoles. The
dependence of the accuracy of the FMM and RCMM on the order of multipole expansions, K, is
systematically studied in Refs. [8] and [17]. To test the accuracy of the MRMD algorithm, we have
implemented another parallel MD algorithm in which the long-range Coulomb interaction is computed
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Fig. 7. Speed of the MRMD program in terms of MD steps executed per hour solid curve). The results are for 393, 216-particle
SiO, system on 256 nodes of the Delta. Also shown is the accuracy in terms of the change in the total energy during 1,000 MD
steps normalized by the total energy dashed curve).
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Fig. 8. Execution time of the MRMD program solid curves) for 8232p particle SiO, systems on p processors. Open squares and
open circles are the results on the Delta and SP1, respectively. Communication overhead dashed curves) of the same program.

using the conventional Ewald method [7]. The system we consider is densified (4.28 g/cm?) liquid SiO,
at 3000 K [23]. For a 10080-particle MD configuration, the potential energy calculated with the Ewald
method is —1.5953 X 10~ '8 J/particle, while it is —1.5972 X 107 '8 J /particle with the MRMD. The
relative error in the potential energy calculated by the MRMD is thus 1X 1073, For the same
configuration, the microscopic stress tensor (Tr(r)/3) is calculated as 83.3 GPa with the Ewald method
and 81.3 GPa (relative error is 2 X 10~2) with the MRMD.

Fig. 8 shows the execution time of the MRMD program on the Delta and SP1 as a function of the
number of processors, p. The MTS parameters are chosen as n, = 15, n, = 120, and A, = 1. Here we
scale the system size linearly with the number of processors so that the number of particles, N = 8232 p.
For a 4.2-million particle SiO, system on the 512 nodes Delta, one MD step takes only 4.84 seconds. The
execution time increases only slightly for larger systems.

Fig. 8 also shows the time spent for communication expressed as a fraction of the total execution time.
For the 512-node Delta, communication is only 8.1% of the total execution time. The small communica-
tion overhead makes the program efficient even for larger p.

On the SP1 the computation is more than four times faster than on the Delta, but the communication
performance is comparable, see Fig. 8. For a 0.53-million particle SiO, system on 64 nodes of the SP1,
one MD step takes 1.11 seconds and the communication overhead is 15.2%.
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Fig. 9. Constant-grain parallel efficiency, n’, of the MRMD program for SiO, systems solid curves) on p processors of the SP1.
Open circles and open squares are the results for 8232p particles and 65856p particles, respectively. Communication overheads
dashed curves) of the same program are also shown.
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Next we examine the parallel efficiency of the MRMD program. We first define the speed of the
MRMD program as a product of the total number of particles and time steps executed in a second. The
constant-grain speedup is given by the ratio between the speed of p processors and that of one
processor. The constant-grain efficiency, 7', is the constant-grain speedup divided by p [11].

For a 4.2-million particle SiO, system on the 512 nodes Delta, we estimate n’ = 0.924. Since the
processing power of a SP1 node is greater than that of Delta but the communication speed remains
similar (see Fig. 8), the parallel efficiency of the MRMD program on the SP1 is smaller than on the
Delta. In Fig. 9, open squares represent the parallel efficiency of the MRMD program as a function of p
for a system of 8232 p particles on the SP1. The parallel efficiency decreases as the number of processors
increases.

The above low efficiency is due to the small grain size; larger grain sizes result in higher efficiencies.
In Fig. 9, open circles represent the efficiency for systems with 65856p particles. Also shown is the
communication overhead of the MRMD program as a function of p. The larger grain size reduces the
communication overhead. For a 4.2-million particle SiO, system on 64 nodes of the SP1, we estimate
7' =0.914 with 7.3% communication overhead.

Figure 10 shows the decomposition of the execution time into core computation tasks. Here, up
represents the upper pass of the FMM to calculate the multipoles, while ewald represents the calculation
of the well-separated image contribution to the Coulomb potential and microscopic stress tensor. Both
on the Delta and SP1, these computations consume negligible time. down is the calculation of the local
expansions in the FMM by the downward pass.

In our implementation of the MRMD program, direct — the direct-force calculation - is the most time
consuming. Other tasks include the predictor and corrector procedures in Gear’s algorithm to integrate
the equations of motion (denoted as pdc). Message passing of the data associated with the boundary
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Fig. 10. Decomposition of the execution time per MD step into core computation tasks of the MRMD program on the Delta and
SP1. up and down represent the upward and downward passes of the FMM algorithm. The necessary message passing of
multipoles is also included in up. ewald is the computation of the Ewald summation of the well-separated image contribution to the
Coulomb potential based on the RCMM. direct represents the direct force calculation within the nearest-neighbor finest cells. pdc
is the predictor and corrector steps in Gear’s predictor-corrector method to integrate the equations of motion. The copy and
receive operations of the boundary-atom information necessary for the direct force calculation are denoted by cpdmv.
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particles and those leaving the boundary (denoted by cp&mv) is a small fraction of the execution time.
Message passing associated with the multipoles of the two skin-layer cells is included in the up category
in Fig. 10, and is negligibly small.

5. Conclusion

In conclusion, the multiresolution MD algorithm is applicable for large-scale simulations with realistic
interatomic potential including the long-range Coulomb and three-body potentials. More specifically,
multimillion particle simulations take only a few seconds per step on advanced parallel computers such
as the Intel Touchstone Delta and IBM SP1.
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Appendix. Multiresolution MD algorithm

A. Predictor
predictor for particles, r;
if steps mod n, =1
predictor for the MD box, h
endif

B. Far-field interaction
Update the local expansion, V¥, . and 11, ., at every n, steps
if steps mod n,=1
B.1. Upward pass
Form multipole expansions at the levels
for c=0,...,8: -1
Calculate @, . at the leaf level
end
Form multipole expansions at lower tree levels
for |=L-1,L-2,---,1,0
for c=0,...,8 -1
for ¢’ € {child(c)}
Multipole-to-multipole shift (T;) &,,, . and add it to &,
end
end
end
Skin-layer-cell copy
Augment multipoles with the skin-layer cells of the neighbor nodes
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B.2 Ewald contribution to the local expansion from well-separated images

Determine the M reduced charges using the multipoles, @, ,, of the unit MD box

Calculate local expansions, ¥, and Il;,, by the Ewald summation on the M reduced charges based
on the RCMM

B.3. Downward pass
Recursively calculate the local expansions
for [=1,---,L
for c=0,...,8' -1
Inherited local expansion from the parent
Local-to-local transform (T and ;) of the parent local field, ¥;_; .. en () @and
II;_ | parent (c)» tO Obtain the inherited components of ¥, . and II,,
Contribution from interactive set
for ¢’ € {interactive(c)}
Multipole-to-local shift (T, and S,) of @, , and add them to ¥, and II,,
end
end
end
endif
Evaluation of the far-field interaction at the leaf level
Calculate the Coulombic contribution to the potential energy, V, interatomic forces, F;, and pressure
tensor, 7, using the local expansions, ¥; ., and IT, .,

C. Boundary-atom copy
if steps mod n, =1
Copy the atomic positions and derivatives of the primary and secondary boundary atoms
else
Copy the atomic positions of the primary boundary atoms
endif

D. Direct calculation of the medium-range interaction
if steps mod n,=1
Compute the primary, secondary, and tertiary forces directly
Construct a primary-neighbor list
Update the secondary and tertiary forces and store the time derivatives, F{® and F{®
else if steps mod n, =1
Compute the primary and secondary forces directly
Construct a primary-neighbor list
Update only the secondary forces and store the time derivatives, F(®
Taylor extrapolation of the tertiary forces
else
Calculate the binary, primary forces, F; ,, using the primary-neighbor list
Taylor extrapolation of the secondary and tertiary forces
endif

Calculate the three-body forces using the primary-neighbor list
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E. Corrector
Corrector for particles, x;
if steps mod n,; =1
Corrector for the MD box, k
endif

F. Move atoms
if steps mod n, =0
Move atoms which have cross the subsystem border to proper processors
endif
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