
Efficient Large-Scale Language Model Training on GPU Clusters
Using Megatron-LM

Deepak Narayanan‡★, Mohammad Shoeybi†, Jared Casper†, Patrick LeGresley†,
Mostofa Patwary†, Vijay Korthikanti†, Dmitri Vainbrand†, Prethvi Kashinkunti†,

Julie Bernauer†, Bryan Catanzaro†, Amar Phanishayee∗, Matei Zaharia‡
†NVIDIA ‡Stanford University ∗Microsoft Research

ABSTRACT

Large language models have led to state-of-the-art accuracies across

several tasks. However, training these models efficiently is chal-

lenging because: a) GPU memory capacity is limited, making it

impossible to fit large models on even a multi-GPU server, and

b) the number of compute operations required can result in un-

realistically long training times. Consequently, new methods of

model parallelism such as tensor and pipeline parallelism have

been proposed. Unfortunately, naive usage of these methods leads

to scaling issues at thousands of GPUs. In this paper, we show how

tensor, pipeline, and data parallelism can be composed to scale

to thousands of GPUs. We propose a novel interleaved pipelining

schedule that can improve throughput by 10+% with memory foot-

print comparable to existing approaches. Our approach allows us

to perform training iterations on a model with 1 trillion parameters

at 502 petaFLOP/s on 3072 GPUs (per-GPU throughput of 52% of

theoretical peak).

1 INTRODUCTION

Transformer-based language models [13, 27, 33–35, 42, 46] in Nat-

ural Language Processing (NLP) have driven rapid progress in re-

cent years as computation at scale has become more available and

datasets have become larger. Recent work [11, 40] has shown large

languagemodels to be effective zero- or few-shot learners, with high

accuracy on many NLP tasks and datasets. These large language

models have a number of exciting downstream applications such

as client feedback summarization, automatic dialogue generation,

semantic search, and code autocompletion [1, 4, 5]. As a result, the

number of parameters in state-of-the-art NLP models have grown

at an exponential rate (Figure 1). Training such models, however,

is challenging for two reasons: (a) it is no longer possible to fit the

parameters of these models in the main memory of even the largest

GPU (NVIDIA recently released 80GB-A100 cards), and (b) even if

we are able to fit the model in a single GPU (e.g., by swapping pa-

rameters between host and device memory [38]), the high number

of compute operations required can result in unrealistically long

★
Work done as an intern at NVIDIA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC ’21, November 14–19, 2021, St. Louis, MO, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476209

Figure 1: Trend of sizes of state-of-the-art Natural Language Pro-

cessing (NLP) models with time. The number of floating-point op-

erations to train these models is increasing at an exponential rate.

training times (e.g., training GPT-3 with 175 billion parameters [11]

would require approximately 288 years with a single V100 NVIDIA

GPU). This calls for parallelism. Data-parallel scale-out usually

works well, but suffers from two limitations: a) beyond a point, the

per-GPU batch size becomes too small, reducing GPU utilization

and increasing communication cost, and b) the maximum number

of devices that can be used is the batch size, limiting the number of

accelerators that can be used for training.

Various model parallelism techniques have been proposed to

address these two challenges. For example, recent work [39, 40] has

shown how tensor (intra-layer) model parallelism, where matrix

multiplications within each transformer layer are split over multiple

GPUs, can be used to overcome these limitations. Although this

approach works well for models of sizes up to 20 billion parameters

on NVIDIA DGX A100 servers (with 8 80GB-A100 GPUs), it breaks

down for larger models. Larger models need to be split across

multiple multi-GPU servers, which leads to two problems: (a) the

all-reduce communication required for tensor parallelism needs

to go through inter-server links, which are slower than the high-

bandwidth NVLink [9] available within a multi-GPU server, and

(b) a high degree of model parallelism can create small matrix

multiplications (GEMMs), potentially decreasing GPU utilization.

Pipeline model parallelism [14, 20, 23, 29, 30, 45] is another tech-

nique to support the training of large models, where layers of a

model are striped over multiple GPUs. A batch is split into smaller

microbatches, and execution is pipelined across these microbatches.

Layers can be assigned to workers in various ways, and various

schedules for the forward and backward passes of inputs can be

used. The layer assignment and scheduling strategy results in dif-

ferent performance tradeoffs. Regardless of schedule, to preserve

strict optimizer semantics, optimizer steps need to be synchronized

across devices, leading to a pipeline flush at the end of every batch,

where microbatches are allowed to complete execution (and no

new microbatches are injected). As much as 50% of time can be

SC ’21, November 14–19, 2021, St. Louis, MO, USA

spent flushing the pipeline depending on the number of micro-

batches injected into the pipeline. The larger the ratio of number

of microbatches to the pipeline size, the smaller the time spent in

the pipeline flush. Therefore, to achieve high efficiency, a larger

batch size is often necessary. In this work, we also introduce a new

pipeline schedule that improves efficiency at small batch sizes.

Users can thus train their large models using various techniques,

each with different tradeoffs. Moreover, these techniques can be

combined. However, combining these techniques leads to non-trivial

interactions, which need to be reasoned through carefully for good

performance. In this paper, we address the following question:

How should parallelism techniques be combined to max-

imize the training throughput of large models given a

batch size while retaining strict optimizer semantics?

In particular, we show how to combine pipeline, tensor, and

data parallelism, a technique we call PTD-P, to train large language

models with good computational performance (52% of peak device

throughput) on 1000s of GPUs. Our method leverages the com-

bination of pipeline parallelism across multi-GPU servers, tensor

parallelism within a multi-GPU server, and data parallelism, to

practically train models with a trillion parameters with graceful

scaling in an optimized cluster environment with high-bandwidth

links between GPUs on the same server and across servers. We can

use similar ideas to train larger models as well, given more train-

ing resources. In our experiments, we demonstrate close to linear

scaling to 3072 A100 GPUs, with an achieved end-to-end training

throughput of 163 teraFLOP/s per GPU (including communication,

data processing, and optimization), and an aggregate throughput

of 502 petaFLOP/s, on a GPT model [11] with a trillion parame-

ters using mixed precision. This throughput facilitates practical

training times: we estimate end-to-end training of this model to

take ∼ 3 months. We believe this is the fastest training throughput

achieved for this size of model: past systems [29, 40] cannot train

such large models since they do not combine pipeline and tensor

parallelism. We also compared to ZeRO [36], and found that our

approach outperforms ZeRO-3 by 70% for models with 175 and 530

billion parameters due to less cross-node communication. These

models are too large to fit on a multi-GPU server.

Achieving this throughput at scale required innovation and care-

ful engineering along multiple axes: efficient kernel implementa-

tions that allowed most of the computation to be compute-bound

as opposed to memory-bound, smart partitioning of computation

graphs over the devices to reduce the number of bytes sent over net-

work links while also limiting device idle periods, domain-specific

communication optimization, and fast hardware (state-of-the-art

GPUs and high-bandwidth links between GPUs on the same and

different servers). We are hopeful that our open-sourced software

(available at https://github.com/nvidia/megatron-lm) will enable

other groups to train large NLP models efficiently at scale.

In addition, we studied the interaction between the various com-

ponents affecting throughput, both empirically and analytically

when possible. Based on these studies, we offer the following guid-

ing principles on how to configure distributed training:

• Different forms of parallelism interact in non-trivial ways:

the parallelization strategy has an impact on the amount of

communication, the compute efficiency with which kernels

are executed, as well as the idle time workers spend waiting

for computation due to pipeline flushes (pipeline bubbles).

For example, in our experiments, we found that sub-optimal

combinations of tensor and pipeline model parallelism can

lead to up to 2× lower throughput, evenwith high-bandwidth

network links between servers; tensor model parallelism

is effective within a multi-GPU server, but pipeline model

parallelism must be used for larger models.

• The schedule used for pipeline parallelism has an impact

on the amount of communication, the pipeline bubble size,

and memory used to store activations. We propose a novel

interleaved schedule that can improve throughput by as

much as 10% compared to previously-proposed schedules [20,

30] with comparable memory footprint.

• Values of hyperparameters such as microbatch size have an

impact on the memory footprint, the arithmetic efficiency of

kernels executed on the worker, and the pipeline bubble size.

In our experiments, the optimal value of the microbatch size

is problem-dependent and can increase throughput by 15%.

• At scale, distributed training is communication-intensive.

When training a trillion-parameter model on 3072 GPUs, our

implementation used an effective bisection bandwidth of 892

GB/s for pipeline-parallel communication, and 13 TB/s for

data-parallel communication. Using slower inter-node in-

terconnects or more communication-intensive partitionings

would hinder scaling performance.

We should note that we do not automatically explore the search

space of parallelism strategies (such as FlexFlow [22], PipeDream [29],

Tarnawski et al. [41], and DAPPLE [14]), but instead suggest heuris-

tics (in §3) that we found work well in practice.

2 MODES OF PARALLELISM

In this section, we discuss the parallelism techniques that facilitate

the efficient training of large models that do not fit in the memory of

a single GPU. In this work, we combine pipeline model parallelism

and tensor model parallelism (combination shown in Figure 2) with

data parallelism. We call this PTD-P for short.

2.1 Data Parallelism

With data parallelism [25, 43], each worker has a copy of the full

model, the input dataset is sharded, and workers aggregate their

gradients periodically to ensure that all workers see a consistent

version of the weights. For large models which do not fit on a single

worker, data parallelism can be used on smaller model shards.

2.2 Pipeline Model Parallelism

With pipeline parallelism, the layers of a model are sharded across

multiple devices. When used on models with the same transformer

block repeated, each device can be assigned an equal number of

transformer layers. We do not consider more asymmetric model ar-

chitectures, where assignment of layers to pipeline stages is harder;

we defer to related work [22, 29, 41] to solve this problem.

A batch is split into smaller microbatches; execution is then

pipelined across microbatches. Pipelining schemes need to ensure

that inputs see consistent weight versions across forward and back-

ward passes for well-defined synchronous weight update semantics.

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM SC ’21, November 14–19, 2021, St. Louis, MO, USA

Figure 2: Combination of tensor and pipeline model parallelism (MP) used in this work for transformer-based models.

Figure 3: GPipe pipeline schedule with forward passes (blue) for all microbatches (represented by numbers) followed by backward passes

(green). The gray area represents the pipeline bubble. For simplicity, we assume that the backward pass takes twice as long as the forward

pass. The efficiency of the pipeline schedule does not depend on this factor. Each batch in this example consists of 8 microbatches, and the

numbers in each blue or green box are unique identifiers given to the corresponding microbatch (in particular, the first batch consists of

microbatches 1 − 8, the second batch consists of microbatches 9 − 16, and so on). The optimizer is stepped and weight parameters updated at

the pipeline flush to ensure strict optimizer semantics, leading to idle devices and a pipeline bubble.

Figure 4: Default and interleaved 1F1B pipeline schedules. The top figure shows the default non-interleaved 1F1B schedule. The bottom figure

shows the interleaved 1F1B schedule, where each device is assigned multiple chunks (in this case, 2). Dark colors show the first chunk and

light colors show the second chunk. The size of the pipeline bubble is smaller (the pipeline flush happens sooner in the interleaved timeline).

Specifically, naive pipelining can lead to an input seeing weight

updates in the backward pass not seen in the forward pass.

To retain strict optimizer semantics exactly, we introduce peri-

odic pipeline flushes so that optimizer steps are synchronized across

devices. At the start and end of every batch, devices are idle. We

call this idle time the pipeline bubble, and want to make it as small

as possible. Asynchronous and bounded-staleness approaches such

as PipeMare, PipeDream, and PipeDream-2BW [23, 29, 30, 45] do

away with flushes completely, but relax weight update semantics.

We defer consideration of such schemes to future work.

There are several possible ways of scheduling forward and back-

ward microbatches across devices; each approach offers different

tradeoffs between pipeline bubble size, communication, and mem-

ory footprint. We discuss two such approaches in this section.

2.2.1 Default Schedule. GPipe [20] proposes a schedule where the

forward passes for all microbatches in a batch are first executed,

SC ’21, November 14–19, 2021, St. Louis, MO, USA

followed by backward passes for all microbatches (shown in Fig-

ure 3). We can quantify the size of GPipe’s pipeline bubble (𝑡𝑝𝑏).
We denote the number of microbatches in a batch as𝑚, the number

of pipeline stages (number of devices used for pipeline parallelism)

as 𝑝 , the ideal time per iteration as 𝑡𝑖𝑑 (assuming perfect or ideal

scaling), and the time to execute a single microbatch’s forward and

backward pass as 𝑡𝑓 and 𝑡𝑏 . In this schedule, the pipeline bubble

consists of 𝑝 − 1 forward passes at the start of a batch, and 𝑝 − 1

backward passes at the end. The total amount of time spent in the

pipeline bubble is then 𝑡𝑝𝑏 = (𝑝 − 1) · (𝑡𝑓 + 𝑡𝑏). The ideal processing
time for the batch is 𝑡𝑖𝑑 =𝑚 · (𝑡𝑓 + 𝑡𝑏). Therefore, the fraction of

ideal computation time spent in the pipeline bubble is:

Bubble time fraction (pipeline bubble size) =
𝑡𝑝𝑏

𝑡𝑖𝑑
=
𝑝 − 1

𝑚
.

For the bubble time fraction to be small, we thus need𝑚 � 𝑝 .
However, for such large𝑚, this approach has a high memory foot-

print as it requires stashed intermediate activations (or just input

activations for each pipeline stage when using activation recompu-

tation) to be kept in memory for all𝑚 microbatches through the

lifetime of a training iteration.

Instead, we use the PipeDream-Flush schedule [30]. In this sched-

ule, we first enter a warm-up phase where workers perform dif-

fering numbers of forward passes as shown in Figure 4 (top). This

schedule limits the number of in-flight microbatches (the number of

microbatches for which the backward pass is outstanding and acti-

vations need to be maintained) to the depth of the pipeline, instead

of the number of microbatches in a batch. After the warm-up phase,

each worker then enters a steady state, where workers perform

one forward pass followed by one backward pass (1F1B for short).

Finally, at the end of a batch, we complete backward passes for

all remaining in-flight microbatches. The time spent in the bubble

is the same for this new schedule, but the number of outstanding

forward passes is at most the number of pipeline stages for the

PipeDream-Flush schedule. As a result, this schedule requires acti-

vations to be stashed for 𝑝 or fewer microbatches (compared to𝑚
microbatches for the GPipe schedule). Consequently, when𝑚 � 𝑝 ,
PipeDream-Flush is much more memory-efficient than GPipe.

2.2.2 Schedule with Interleaved Stages. To reduce the size of the

pipeline bubble, each device can perform computation for multiple

subsets of layers (called a model chunk), instead of a single contigu-

ous set of layers. For example, if each device had 4 layers before

(i.e., device 1 had layers 1 − 4, device 2 had layers 5 − 8, and so on),

we could have each device perform computation for two model

chunks (each with 2 layers), i.e., device 1 has layers 1, 2, 9, 10; device
2 has layers 3, 4, 11, 12; and so on. With this scheme, each device

in the pipeline is assigned multiple pipeline stages (each pipeline

stage has less computation compared to before).

As before, we can use an “all-forward, all-backward” version of

this schedule, but this has a high memory footprint (proportional to

𝑚). Instead, we developed an interleaved schedule that adapts the

memory-efficient 1F1B schedule from before. This new schedule is

shown in Figure 4, and requires the number of microbatches in a

batch to be an integer multiple of the degree of pipeline parallelism

(number of devices in the pipeline). For example, with 4 devices,

the number of microbatches in a batch must be a multiple of 4.

As shown in Figure 4, the pipeline flush for the same batch

size happens sooner in the new schedule. If each device has 𝑣
stages (or model chunks), then the forward and backward time

for a microbatch for each stage or chunk will now be 𝑡𝑓 /𝑣 and 𝑡𝑏/𝑣 .

The pipeline bubble time thus reduces to 𝑡 int.
𝑝𝑏

=
(𝑝−1) ·(𝑡𝑓 +𝑡𝑏)

𝑣 , and

the bubble time fraction is then:

Bubble time fraction (pipeline bubble size) =
𝑡 int.
𝑝𝑏

𝑡𝑖𝑑
=

1

𝑣
·
𝑝 − 1

𝑚
.

This means that the new schedule reduces the bubble time by 𝑣 .
This reduced pipeline bubble size, however, does not come for free:

this schedule requires extra communication. Quantitatively, the

amount of communication also increases by 𝑣 . In the next section,

we discuss how we can utilize the 8 InfiniBand networking cards in

a multi-GPU server (e.g., a DGX A100 node) to reduce the impact

of this extra communication.

2.3 Tensor Model Parallelism

With tensor model parallelism, individual layers of the model are

partitioned overmultiple devices. In this paper, we use the particular

partitioning strategy used by Megatron [40] for transformer layers,

the bedrock of language models. We can apply similar ideas to other

types of models, like CNNs, as well. We briefly outline this strategy,

illustrated in Figure 5, below.

A transformer layer consists of a self-attention block followed

by a two-layer multi-layer perceptron (MLP). Further details of the

transformer layer can be found in Vaswani et al [42].

TheMLP block consists of twoGEMMs and a GeLU non-linearity:

𝑌 = GeLU(𝑋𝐴) . 𝑍 = Dropout(𝑌𝐵) .

We can split 𝐴 along its columns 𝐴 = [𝐴1, 𝐴2]. This partitioning

allows the GeLU non-linearity to be independently applied to the

output of each partitioned GEMM:

[𝑌1, 𝑌2] = [GeLU(𝑋𝐴1),GeLU(𝑋𝐴2)] .

This is advantageous as it removes the need for synchronization

(needed if 𝐴 is split along its rows since GeLU is non-linear).

The rows of the second weight matrix 𝐵 can then be split along

its rows to remove the need for any communication between the

GEMMs (shown in Figure 5a), as shown below:

𝐵 =

[
𝐵1
𝐵2

]
, 𝑌 = [𝑌1, 𝑌2] .

The output of the second GEMM is then reduced across the GPUs

before the dropout layer.

We exploit the inherent parallelism in the multi-head attention

operation to partition the self-attention block (shown in Figure 5b).

The key (𝐾), query (𝑄), and value (𝑉) matrices can be partitioned in

a column-parallel fashion. The output linear layer can then directly

operate on the partitioned output of the attention operation (weight

matrix partitioned across rows).

This approach splits GEMMs in theMLP and self-attention blocks

across GPUs while requiring only two all-reduce operations in the

forward pass (𝑔 operator) and two all-reduces in the backward pass

(𝑓 operator). We implemented 𝑓 and 𝑔 in a few lines of code.

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM SC ’21, November 14–19, 2021, St. Louis, MO, USA

(a) MLP.

(b) Self-Attention.

Figure 5: Blocks of transformer model partitioned with tensor

model parallelism (figures borrowed from Megatron [40]). 𝑓 and 𝑔
are conjugate. 𝑓 is the identity operator in the forward pass and all-

reduce in the backward pass, while 𝑔 is the reverse.

3 PERFORMANCE ANALYSIS OF
PARALLELIZATION CONFIGURATIONS

In this section, we consider the performance implications of com-

bining pipeline and tensor model parallelism with data parallelism.

Given a fixed budget of GPUs and batch size, one can use different

degrees of the parallelism types in PTD-P to train models; each

dimension exposes tradeoffs between memory footprint, device

utilization, and amount of communication.

We discuss these tradeoffs in the rest of this section, and then

show empirical results in §5.4. We present analytical models where

relevant for the pipeline bubble size. We qualitatively describe how

communication time behaves and present cost models for amount

of communication; however, we do not present direct cost models

for communication time, which is harder to model for a hierarchical

network topology where interconnects between GPUs on the same

server have higher bandwidth than interconnects between servers.

To the best of our knowledge, this is the first work to analyze the

performance interactions of these parallelization dimensions.

3.1 Notation

We use the following notation in this section:

• (𝑝, 𝑡, 𝑑): Parallelization dimensions. 𝑝 for the pipeline-model-

parallel size, 𝑡 for the tensor-model-parallel size, and 𝑑 for

the data-parallel size.

• 𝑛: Number of GPUs. We require 𝑝 · 𝑡 · 𝑑 = 𝑛.
• 𝐵: Global batch size (provided as input).

• 𝑏: Microbatch size.

• 𝑚 = 1
𝑏 · 𝐵𝑑 : Number of microbatches in a batch per pipeline.

3.2 Tensor and Pipeline Model Parallelism

Tensor and pipeline model parallelism can both be used to partition

a model’s parameters over multiple GPUs. As stated earlier, using

pipeline parallelismwith periodic flushes results in a pipeline bubble

of size (𝑝 − 1)/𝑚. Let us assume that 𝑑 = 1 (data-parallel size);

consequently, 𝑡 · 𝑝 = 𝑛. The pipeline bubble size in terms of 𝑡 is:

𝑝 − 1

𝑚
=
𝑛/𝑡 − 1

𝑚
.

As 𝑡 increases, the pipeline bubble thus decreases for fixed 𝐵, 𝑏, and
𝑑 (𝑚 = 𝐵/(𝑏 · 𝑑) is fixed as well).

The amount of communication performed between different

GPUs is also affected by the values of 𝑝 and 𝑡 . Pipeline model par-

allelism features cheaper point-to-point communication. Tensor

model parallelism, on the other hand, uses all-reduce communi-

cation (two all-reduce operations each in the forward and back-

ward pass, see §2.3). With pipeline parallelism, the total amount

of communication that needs to be performed between every pair

of consecutive devices (for either the forward or backward pass)

for each microbatch is 𝑏𝑠ℎ, where 𝑠 is the sequence length and ℎ
is the hidden size. With tensor model parallelism, tensors of total

size 𝑏𝑠ℎ need to be all-reduced among 𝑡 model replicas twice each

in the forward and backward pass for each layer, leading to a total

communication of 8𝑏𝑠ℎ
(
𝑡−1
𝑡

)
per layer per device for each micro-

batch. Each device typically has multiple layers; the total amount

of tensor-parallel-communication per device for each microbatch

is then 𝑙stage ·
(
8𝑏𝑠ℎ

(
𝑡−1
𝑡

))
, where 𝑙stage is the number of layers in

a pipeline stage.

Consequently, we see that tensor model parallelism increases

the amount of communication between devices. Thus, when 𝑡 is
larger than the number of GPUs in a single node, the overhead of

performing tensor model parallelism across slower inter-node links

can be impractical. We see these results empirically in §5.4.

Takeaway #1: When considering different forms of model par-

allelism, tensor model parallelism should generally be used up

to degree 𝑔 when using 𝑔-GPU servers, and then pipeline model

parallelism can be used to scale up to larger models across servers.

3.3 Data and Model Parallelism

We also want to consider the interaction between data parallelism

and the two types of model parallelism. In this section, we consider

these interactions independently for simplicity.

3.3.1 Pipeline Model Parallelism. Let 𝑡 = 1 (tensor-model-parallel

size). The number of microbatches per pipeline is𝑚 = 𝐵/(𝑑 · 𝑏) =
𝑏 ′/𝑑 , where 𝑏 ′ := 𝐵/𝑏. With total number of GPUs 𝑛, the number

of pipeline stages is 𝑝 = 𝑛/(𝑡 · 𝑑) = 𝑛/𝑑 . The pipeline bubble size is:

𝑝 − 1

𝑚
=
𝑛/𝑑 − 1

𝑏 ′/𝑑
=
𝑛 − 𝑑

𝑏 ′
.

As 𝑑 becomes larger, 𝑛 − 𝑑 becomes smaller, and thus the pipeline

bubble becomes smaller. Figure 6 shows the behavior of the pipeline

bubble size for various values of 𝑑, 𝑛, and 𝑏 ′. It might not be pos-

sible to increase 𝑑 all the way to 𝑛 for all models, since a model’s

full training memory footprint might be larger than the memory

capacity of a single accelerator.

SC ’21, November 14–19, 2021, St. Louis, MO, USA

Figure 6: Fraction of time spent idling due to pipelineflush (pipeline

bubble size) versus data-parallel size (𝑑), for different numbers of

GPUs (𝑛) and ratio of batch size to microbatch size (𝑏′ = 𝐵/𝑏).

Figure 7: Per-GPU throughput versus microbatch size for a GPT

model with a billion parameters (128 attention heads, hidden size

of 4096, 4 transformer layers).

Overall throughput will thus increase if the all-reduce commu-

nication needed for data parallelism does not drastically increase

with higher 𝑑 , which should hold since the communication time

for a ring-based implementation scales with 𝑑−1
𝑑 = 1 − 1

𝑑 .

We can also analyze the impact of increasing the batch size 𝐵.
For a given parallel configuration, as the batch size 𝐵 increases,

𝑏 ′ = 𝐵/𝑏 increases, (𝑛 − 𝑑)/𝑏 ′ decreases, consequently increasing

throughput. All-reduce communication required by data parallelism

also becomes more infrequent, further increasing throughput.

3.3.2 Data and Tensor Model Parallelism. With tensor model paral-

lelism, all-reduce communication needs to be performed for every

microbatch. This can be expensive across multi-GPU servers. On

the other hand, data parallelism only needs to perform expensive

all-reduce communication once per batch. Moreover, with tensor

model parallelism, each model-parallel rank performs a subset of

the computation in each model layer, and thus for insufficiently-

large layers, modern GPUs might not perform these sub-matrix

computations with peak efficiency.

Takeaway #2: When using data and model parallelism, a total

model-parallel size of𝑀 = 𝑡 · 𝑝 should be used so that the model’s

parameters and intermediate metadata fit in GPU memory; data

parallelism can be used to scale up training to more GPUs.

3.4 Microbatch Size

The choice of the microbatch size 𝑏 also affects model-training

throughput. For example, we see in Figure 7 that per-GPU through-

put increases by up to 1.3×with a larger microbatch size on a single

Figure 8: Behavior of normalized estimated throughput (time com-

puted as 𝑡 = (𝑏′/𝑏 + 𝑝 − 1) ·
(
𝑡𝑓 (𝑏) + 𝑡𝑏 (𝑏)

)
) with respect to the mi-

crobatch size 𝑏 for the same GPT model from Figure 7.

GPU. We now want to determine the optimal microbatch size 𝑏
given a parallel configuration (𝑝, 𝑡, 𝑑) and batch size 𝐵. The amount

of data-parallel communication will be the same regardless of the

microbatch size. Given functions 𝑡𝑓 (𝑏) and 𝑡𝑏 (𝑏) that map the mi-

crobatch size to the forward and backward computation times for a

single microbatch, the total time spent computing a batch, ignoring

communication cost, is (as before, define 𝑏 ′ as 𝐵/𝑑):

(
𝑏 ′/𝑏 + 𝑝 − 1

)
·
(
𝑡𝑓 (𝑏) + 𝑡𝑏 (𝑏)

)
. (1)

The microbatch size thus affects both the arithmetic intensity of

operations as well as the pipeline bubble size (by affecting𝑚). Fig-

ure 8 shows estimated throughput (equation (1) used to estimate

processing time) for a GPT model with a billion parameters and

(𝑝, 𝑡) = (8, 8). The optimal 𝑏 for both batch sizes is 4.

Takeaway #3: The optimal microbatch size 𝑏 depends on the

throughput and memory footprint characteristics of the model, as

well as the pipeline depth 𝑝 , data-parallel size 𝑑 , and batch size 𝐵.

3.5 Activation Recomputation

Activation recomputation [12, 18, 20, 21] is an optional technique

that trades off an increase in the number of compute operations per-

formed for additional memory footprint, by running the forward

pass a second time just before the backward pass (and stashing

only the input activations for a given pipeline stage, as opposed to

the entire set of intermediate activations, which is much larger).

Activation recomputation is required to train reasonably large mod-

els with pipeline parallelism to keep memory footprint acceptably

low. Previous work like PipeDream-2BW [30] has looked at the

performance ramifications of activation recomputation.

The number of activation checkpoints does not impact through-

put, but impacts memory footprint. Let 𝐴input be the size of the

input activations of a layer, and 𝐴intermediate be the size of interme-

diate activations per layer. If a model stage has 𝑙 layers, and if 𝑐 is
the number of checkpoints, the total memory footprint is going to

be 𝑐 ·𝐴input + 𝑙/𝑐 ·𝐴intermediate. The minimum value of this function

is obtained when 𝑐 =
√
𝑙 ·

(
𝐴intermediate/𝐴input

)
. In practice, we

measure 𝐴intermediate empirically. For most cases, checkpointing

every 1 or 2 transformer layers is optimal.

Other techniques such as activation partitioning [36] can also

be used in conjunction with tensor model parallelsim to reduce the

memory footprint due to activations further.

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM SC ’21, November 14–19, 2021, St. Louis, MO, USA

(a) W/o scatter/gather optimization. (b) With scatter/gather optimization.

Figure 9: Scatter/gather communication optimization. Light blue

blocks are layers in the first pipeline stage, and dark blue blocks

are layers in the second pipeline stage. Without the scatter/gather

optimization, the same tensor is sent redundantly over inter-node

InfiniBand links. Instead, at the sender, we can scatter the tensor

into smaller chunks, reducing the sizes of tensors sent over Infini-

Band links. The final tensor can then be rematerialized at the re-

ceiver using a gather operation.

4 IMPLEMENTATION

We implemented PTD-P as an extension to the Megatron-LM code-

base. Our implementation is built using PyTorch [32]. We use

NCCL [7] for communication between devices. To obtain good

performance, we implemented optimizations targeting both com-

munication and computation, which we outline below.

4.1 Communication Optimizations

When using pipeline parallelism, we want to send and receive ten-

sors in the forward and backward direction in parallel. Each DGX

A100 is equipped with 8 InfiniBand (IB) networking cards. Unfor-

tunately, sends and receives are point-to-point, and only happen

between a pair of GPUs on two servers, making it hard to leverage

all 8 cards for a single communication call within the pipeline.

However, we can leverage the fact that we use both tensor model

parallelism and pipeline model parallelism to reduce the overhead

of cross-node communication. In particular, we note that the output

of each transformer layer is replicated (after 𝑔 in MLP block, see

Figure 5a) across the tensor-parallel ranks. As a result, ranks in two

consecutive pipeline stages that are performing tensor model par-

allelism send and receive the exact same set of tensors (Figure 9a).

For large enough models, we use a tensor-model-parallel size

of 8. This means we are sending the same set of tensors 8 times

between corresponding GPUs on adjacent multi-GPU servers. To

reduce this redundancy, we can instead split the tensor on the send

side into equal-sized chunks, and then only send one chunk to

the corresponding rank on the next node using the rank’s own

InfiniBand card (e.g., rank 1 sends to rank 3 and rank 2 sends to

rank 4 in Figure 9). With 8 tensor-model-parallel ranks, each chunk

would be one-eighth smaller. Then, on the receive side, we can

perform an all-gather over NVLink, which is much faster than the

InfiniBand interconnect, to re-materialize the full tensor. This is

shown in Figure 9b. We call this the scatter/gather communication

optimization. This optimization helps better leverage the multiple

IB cards on the DGXA100 servers, and makes more communication-

intensive schedules such as the interleaved one feasible.

Quantitatively, with the scatter-gather communication optimiza-

tion, the total amount of communication that needs to be performed

between every pair of consecutive stages is reduced to 𝑏𝑠ℎ
𝑡 , where

𝑡 is the tensor-model-parallel size, 𝑠 is the sequence length, and ℎ
is the hidden size (𝑡 = 8 in our experiments).

4.2 Computation Optimizations

We implemented three model-specific optimizations to the compu-

tation graph to attain high performance. First, we changed the data

layout in the transformer layer to avoid memory-intensive trans-

pose operations, and to enable the use of strided batched GEMM

kernels. Specifically, we changed the data layout from [𝑏, 𝑠, 𝑎, ℎ] to
[𝑠, 𝑏, 𝑎, ℎ], where 𝑏, 𝑠 , 𝑎, and ℎ are batch, sequence, attention-head,

and hidden-size dimensions, respectively. Second, we generated

fused kernels for a sequence of element-wise operations (bias +

GeLU and bias + dropout + add) using PyTorch JIT [10]. Third, we

created two custom kernels to enable the fusion of scale, mask, and

softmax (reduction) operations: one to support general masking

(used in models such as BERT) and another to support implicit

causal masking (used in auto-regressive models such as GPT). We

quantify the effect of these optimizations in the next section.

5 EVALUATION

In this section, we seek to answer the following questions:

• How well does PTD-P perform? Does it result in realistic

end-to-end training times?

• How well does pipeline parallelism scale for a given model

and batch size? Howmuch impact does the interleaved sched-

ule have on performance?

• How do different parallelization dimensions interact with

each other? What is the impact of hyperparameters such as

microbatch size?

• What is the impact of the scatter-gather communication

optimization? What types of limits do we put on hardware

when running training iterations at scale?

All of our results are run with mixed precision on the Selene

supercomputer [8]. Each cluster node has 8 NVIDIA 80-GB A100

GPUs [6], connected to each other by NVLink and NVSwitch [9].

Each node has eight NVIDIA Mellanox 200Gbps HDR Infiniband

HCAs for application communication, with an additional two HCAs

per node for dedicated storage. The nodes are connected in a three-

level (leaf, spine, core) fat-tree topology with 850 switches. This

topology allows efficient all-reduce communication (dominant com-

munication pattern in deep learning training). The cluster uses an

all-NVME shared parallel filesystem for high-performance data ac-

cess and storage. The peak device throughput of an A100 GPU with

16-bit precision is 312 teraFLOP/s. For most of our results, we report

throughput per GPU. Aggregate throughput can be computed by

multiplying with the number of GPUs used.

For our experiments, we use GPT models of appropriate sizes. In

particular, for any given microbenchmark, the model needs to fit on

the number of model-parallel GPUs used in the experiment. We use

standard model architectures such as GPT-3 [11] when appropriate.

5.1 End-to-End Performance

We consider the end-to-end performance of our system on GPT

models ranging from a billion to a trillion parameters, using ten-

sor, pipeline, and data parallelism (degrees picked using heuristics

described in §3). In particular, we use the interleaved pipeline sched-

ule with the scatter/gather optimization enabled. All models use a

vocabulary size (denoted by 𝑉) of 51,200 (multiple of 1024) and a

SC ’21, November 14–19, 2021, St. Louis, MO, USA

Table 1: Weak-scaling throughput for GPT models ranging from 1 billion to 1 trillion parameters.

sequence length (𝑠) of 2048. We vary hidden size (ℎ), number of at-

tention heads, and number of layers (𝑙). The number of parameters

in a model, 𝑃 , can be computed as:

𝑃 = 12𝑙ℎ2
(
1 +

13

12ℎ
+
𝑉 + 𝑠

12𝑙ℎ

)
. (2)

As the model size increases, we also increase the batch size (𝐵) and
the number of GPUs (𝑛). The majority of floating-point operations

in the model are performed in the matrix multiplications (GEMMs)

in the transformer and logit layers. Considering just these GEMMs,

the number of FLOPs per iteration is (more details in the Appendix):

𝐹 = 96𝐵𝑠𝑙ℎ2
(
1 +

𝑠

6ℎ
+

𝑉

16𝑙ℎ

)
. (3)

This is a lower bound for the true FLOP count but should be close

to the actual value. We count a FLOP as a floating-point operation

regardless of precision. We also note that equation (3) assumes

activation recomputation and takes into account the floating-point

operations associated with the extra forward pass.

Table 1 shows the model configurations along with the achieved

FLOP/s (both per GPU and aggregate over all GPUs). We see super-

linear scaling to 3072 A100 GPUs (384 DGX A100 nodes), since

GPU utilization improves as the models get larger (larger matrix

multiplications) without significant increase in the communication

time relative to computation time. Note that throughput is measured

for end-to-end training, i.e., includes all operations including data

loading, optimizer steps, communication, and logging. We achieve

52% of peak device throughput for the largest model, and 44% of

peak device throughput for the smallest model.

Training Time Estimates. Given these throughputs, we can

also estimate the total amount of time needed for end-to-end train-

ing on 𝑇 tokens. Training requires 𝐼 = 𝑇 /(𝐵 · 𝑠) iterations. Using
the value of 𝐹 from equation (3) and empirical end-to-end through-

puts from Table 1 (denoted by 𝑋), we can estimate total training

time.We note that for the configurations in Table 1, we have 6ℎ � 𝑠 ,
16𝑙ℎ � (𝑉 + 𝑠), and 12𝑙ℎ � 𝑉 . Combining these observations with

equations (2) and (3), we arrive at

End-to-end training time ≈
8𝑇𝑃

𝑛𝑋
. (4)

Let us consider the GPT-3 model with 𝑃 =175 billion parameters as

an example. This model was trained on 𝑇 = 300 billion tokens. On

Figure 10: Throughput per GPU of PTD-P and ZeRO-3 for two differ-

ent GPT models (the 175B GPT-3 model is shown with dotted lines,

and the 530B model is shown with solid lines). Global batch sizes

are fixed and ZeRO-3 is used without any model parallelism.

𝑛 = 1024 A100 GPUs using batch size 1536, we achieve 𝑋 = 140 ter-

aFLOP/s per GPU. As a result, the time required to train this model

is 34 days. For the 1 trillion parameter model, we assume that 450

billion tokens are needed for end-to-end training. With 3072 A100

GPUs, we can achieve a per-GPU throughput of 163 teraFLOP/s,

and end-to-end training time of 84 days. We believe these training

times (using a reasonable number of GPUs) are practical.

5.2 Comparison to ZeRO-3

We compare PTD-P to ZeRO-3 [36, 37] in Table 2 and Figure 10 for

the standard GPT-3 model architecture, as well as the 530-billion-

parameter model from Table 1. The results provide a point of com-

parison to a method that does not use model parallelism. We in-

tegrated ZeRO into our codebase using the DeepSpeed Python

library [3]. We keep the global batch size the same as we increase

the number of GPUs. With fewer GPUs and a microbatch size of 4,

PTD-P results in 6% and 24% higher throughput for the 175- and

530-billion-parameter models respectively. As we increase the num-

ber of GPUs, PTD-P scales more gracefully than ZeRO-3 in isolation

(see Figure 10). For example, by doubling the number of GPUs (keep-

ing the batch size the same), PTD-P outperforms ZeRO-3 by 70%

for both models due to less cross-node communication. We note

that we have only considered ZeRO-3 without tensor parallelism.

ZeRO-3 can be combined with model parallelism to potentially

improve its scaling behavior.

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM SC ’21, November 14–19, 2021, St. Louis, MO, USA

Table 2: Comparison of PTD Parallelism to ZeRO-3 (without model paralllelism). The 530-billion-parameter GPT model did not fit on 560

GPUs when using amicrobatch size of 4 with ZeRO-3, so we increased the number of GPUs used to 640 and global batch size to 2560 to provide

a throughput estimate (relevant row marked in table with a *).

Figure 11: Throughput per GPU of pipeline parallelism using two

different batch sizes in aweak-scaling experiment setup (model size

increases with the pipeline-parallel size).

5.3 Pipeline Parallelism

We now evaluate the weak-scaling performance of pipeline paral-

lelism in isolation, and also compare the performance of the non-

interleaved schedule to the interleaved schedule.

5.3.1 Weak Scaling. We evaluate the scaling of the default non-

interleaved pipeline-parallel schedule using a weak scaling setup,

a GPT model with 128 attention heads and a hidden size of 20480,

and a microbatch size of 1. As we increase the number of pipeline

stages, we also increase the size of the model by proportionally

increasing the number of layers in the model, e.g., with a pipeline-

parallel size of 1, we use a model with 3 transformer layers and 15

billion parameters, and with a pipeline-parallel size of 8, we use a

model with 24 transformer layers and 121 billion parameters. We

use a tensor-parallel size of 8 for all configurations, and vary the

total number of A100 GPUs used from 8 to 64. Figure 11 shows

throughput per GPU for two different batch sizes to illustrate the

impact of the pipeline bubble, which behaves as
𝑝−1
𝑚 (§2.2.1). As

expected, the higher batch size scales better since the pipeline

bubble is amortized over more microbatches.

5.3.2 Interleaved versus Non-Interleaved Schedule. Figure 12 shows

the per-GPU-throughput for interleaved and non-interleaved sched-

ules on the GPT-3 [11] model with 175 billion parameters (96

layers, 96 attention heads, hidden size of 12288). The interleaved

Figure 12: Throughput per GPU of interleaved and non-interleaved

schedules for a GPT model (175 billion parameters) on 96 GPUs.

schedule with the scatter/gather communication optimization has

higher computational performance than the non-interleaved (de-

fault) schedule. This gap closes as the batch size increases due to

two reasons: (a) as the batch size increases, the bubble size in the

default schedule decreases, and (b) the amount of point-to-point

communication within the pipeline is proportional to the batch size,

and consequently the non-interleaved schedule catches up as the

amount of communication increases (the interleaved schedule fea-

tures more communication per sample). Without the scatter/gather

optimization, the default schedule performs better than the inter-

leaved schedule at larger batch sizes (not shown).

5.4 Comparison of Parallel Configurations

In this sub-section, we show the various tradeoffs associated with

combining different parallelization dimensions. In particular, we

show the performance for parallel configurations using the same

number of GPUs for a given model and multiple batch sizes.

5.4.1 Tensor versus Pipeline Parallelism. We evaluate the impact of

pipeline and tensor model parallelism on performance for a given

model and batch size. The empirical results in Figure 13 show the

importance of using both tensor and pipeline model parallelism in

conjunction to train a 161-billion-parameter GPT model (32 trans-

former layers to support pipeline-parallel size of 32, 128 attention

heads, hidden size of 20480) with low communication overhead and

high compute resource utilization. We observe that tensor model

SC ’21, November 14–19, 2021, St. Louis, MO, USA

Figure 13: Throughput per GPU of various parallel configurations

that combine pipeline and tensor model parallelism using a GPT

model with 162.2 billion parameters and 64 A100 GPUs.

Figure 14: Throughput per GPU of various parallel configurations

that combine data and pipeline model parallelism using a GPT

model with 5.9 billion parameters, three different batch sizes, mi-

crobatch size of 1, and 64 A100 GPUs.

Figure 15: Throughput per GPU of various parallel configurations

that combine data and tensor model parallelism using a GPTmodel

with 5.9 billion parameters, three different batch sizes, microbatch

size of 1, and 64 A100 GPUs.

Figure 16: Throughput per GPU of a (𝑡, 𝑝) = (8, 8) parallel configura-
tion for different microbatch sizes on a GPT model with 91 billion

parameters, for two different batch sizes using 64 A100 GPUs.

parallelism is best within a node (DGXA100 server) due to its expen-

sive all-reduce communication. Pipeline model parallelism, on the

other hand, uses much cheaper point-to-point communication that

can be performed across nodes without bottlenecking the entire

computation. However, with pipeline parallelism, significant time

can be spent in the pipeline bubble: the total number of pipeline

stages should thus be limited so that the number of microbatches

in the pipeline is a reasonable multiple of the number of pipeline

stages. Consequently, we see peak performance when the tensor-

parallel size is equal to the number of GPUs in a single node (8 with

DGX A100 nodes). This result indicates that neither tensor model

parallelism (used by Megatron [40]) nor pipeline model parallelism

(used by PipeDream [30] and others) in isolation can match the

performance of using both techniques in conjunction.

5.4.2 Pipeline versus Data Parallelism. We evaluate the impact of

data and pipeline model parallelism on performance for a GPT

model with 5.9 billion parameters (32 transformer layers, 32 at-

tention heads, hidden size of 3840) in Figure 14. We use a smaller

model than before since we want to show performance for models

that fit when the model-parallel size is only 2. For simplicity, we

keep the microbatch size equal to 1 in these experiments. We see

that for each batch size, the throughput decreases as the pipeline-

parallel size increases, matching our analytical model from §3.3.

Pipeline model parallelism should be used primarily to support the

training of large models that do not fit on a single worker, and data

parallelism should be used to scale up training.

5.4.3 Tensor versus Data Parallelism. We also evaluate the impact

of data and tensor model parallelism on performance for the same

GPT model with 5.9 billion parameters in Figure 15 (smaller model

used for same reason as above). As before, we keep the microbatch

size equal to 1 initially. With larger batch sizes and a microbatch

size of 1, data-parallel communication is infrequent; the all-to-all

communication required in tensor model parallelism needs to be

performed for every microbatch in a batch. This all-to-all communi-

cation with tensor model parallelism dominates end-to-end training

time, especially when communication needs to be performed across

multi-GPU nodes. Additionally, as the tensor-model-parallel size

increases, we perform smaller matrix multiplications on every GPU,

decreasing utilization on each GPU.

We should note that although data parallelism can lead to effi-

cient scaling, we cannot use data parallelism in isolation for very

large models with a limited training batch size because of a) insuffi-

cient memory capacity, and b) scaling limitations of data parallelism

(e.g., GPT-3 was trained to convergence with a batch size of 1536.

Data parallelism thus supports parallelization to only 1536 GPUs;

however, roughly 10, 000 GPUs were used to train this model in a

reasonable amount of time).

5.5 Microbatch Size

We evaluate the impact of the microbatch size on the performance

of parallel configurations that combine pipeline and tensor model

parallelism in Figure 16 for a model with 91 billion parameters

((𝑡, 𝑝) = (8, 8)). We see that the best microbatch size is 2 for this

model; the optimal microbatch size is different for other models (not

shown in Figure) and model-dependent. For a given batch size, in-

creasing the microbatch size decreases the number of microbatches

in the pipeline (𝑚), leading to a larger pipeline bubble; however,

increasing the microbatch size can also improve GPU utilization

by increasing the arithmetic intensity of executed kernels. These

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM SC ’21, November 14–19, 2021, St. Louis, MO, USA

Figure 17: Throughput (in sequences per second) with and without

activation recomputation for a GPT model with 145 billion param-

eters using 128 A100 GPUs ((𝑡, 𝑝) = (8, 16)).

Figure 18: Throughput per GPUwith andwithout the scatter/gather

optimization for a GPT model with 175 billion parameters using 96

A100 GPUs and the interleaved schedule.

two factors are at odds with each other, which makes the choice

of optimal microbatch size challenging. Our analytical model from

§3.3 reasonably approximates true performance, and can be used

as a proxy to determine how to pick this hyperparameter value for

various training configurations and models.

5.6 Activation Recomputation

Figure 17 shows throughput with and without activation recompu-

tation for a GPT model with 145 billion parameters (80 transformer

layers, 96 attention heads, hidden size of 12288) using 128 A100

GPUs, (𝑡, 𝑝) = (8, 16), and a range of batch sizes. For small batch

sizes, activation recomputation leads to up to 33% lower throughput

(in sequences per second) due to the extra forward pass that needs

to be executed during the backward pass. However, activation re-

computation is needed to support larger batch sizes. Throughput at

large batch sizes with activation recomputation is up to 2× higher

than the best throughput achieved without activation recomputa-

tion (for a smaller batch size) due to a smaller pipeline bubble.

5.7 Scatter-Gather Optimization

Figure 18 shows per-GPU-throughput with and without (unop-

timized) the scatter/gather communication optimization for the

GPT-3 model with 175 billion parameters. We see an improvement

of up to 11% in throughput for communication-intensive sched-

ules (large batch size with interleaving) by reducing the amount of

communication over cross-node links.

5.8 Fused Operators

We also evaluate the performance impact of operator fusion de-

scribed in §4.2. For theGPT-3model (175 billion parameters), through-

put increased by 19% with fusion (113 teraFLOP/s per GPU to 135

teraFLOP/s per GPU). For the larger GPT model with 530 billion

parameters (model configuration in Figure 1), throughput increased

by 11% (133 teraFLOP/s per GPU to 148 teraFLOP/s per GPU).

5.9 Inter-Node Communication Bandwidth

Our strong results are a byproduct of using an optimized software

and hardware stack together. In particular, we take advantage of the

high-bandwidth communication links between GPUs on the same

server and across servers. On the trillion-parameter model with

3072 GPUs, we observed that the effective bisection bandwidth of

point-to-point communication among pipeline stages is 892 GB/s,

while the effective bisection bandwidth of all-reduce operations

among data-parallel replicas is 12.9 TB/s. A less-optimized parti-

tioning of operators across devices would lead to more inter-node

communication, hampering scaling performance.

5.10 Checkpoint Loading and Saving

An important practical consideration for the training of large mod-

els is loading and saving model checkpoints, which are especially

large for the models considered in this paper. For example, the

trillion-parameter model has a checkpoint of size 13.8 terabytes.

The initial load of checkpoints for the trillion-parameter model by

all 384 nodes (3072 GPUs) reaches a peak read bandwidth of 1TB/s,

the maximum read throughput possible from the parallel filesystem.

Checkpoint saves reach 40% of peak write bandwidth (273 GB/s).

6 RELATEDWORK

In this section, we discuss other techniques to train models at scale.

Parallelism for Large Models. Pipeline model parallelism is a com-

mon technique used to train large models. Pipeline parallelism

comes in a few flavors: the mode discussed in this paper uses flushes

to ensure strict optimizer semantics. TeraPipe [26] exposes fine-

grained pipeline parallelism across tokens in a single training se-

quence for auto-regressive models like GPT. PipeTransformer [19]

elastically adjusts the degree of pipelining and data parallelism

by freezing layers with “stable” weights, and instead dedicates re-

sources to train the remaining “active” layers. HetPipe [31] uses a

combination of pipeline and data parallelism on a set of heteroge-

neous accelerators. Pipeline parallelism can also be implemented

with relaxed semantics: PipeDream-2BW [30] maintains two weight

versions and guarantees 1-stale weight updates without expen-

sive flushes, while PipeMare [45] and Kosson et al. [23] use asyn-

choronous pipeline parallelism. These techniques have improved

throughput compared to the techniques with pipeline flushes con-

sidered in this paper, but potentially at the cost of convergence rate

or final accuracy. Moreover, pipeline parallelism in isolation can

still only scale to a number of devices equal to the number of layers

in the model, which is limiting for certain model architectures.

PipeDream [29] combined pipeline parallelism and data paral-

lelism in a principled way to reduce cross-device communication.

DeepSpeed [2] combined pipeline parallelism with tensor and data

parallelism to train models with up to a trillion parameters, but

with lower throughput than what was shown in this paper (52%

vs. 36% of peak) for a few reasons: operator fusion to keep most of

the operator graph compute-bound, a more-efficient pipeline paral-

lelism schedule to minimize the pipeline bubble size, fast hardware

SC ’21, November 14–19, 2021, St. Louis, MO, USA

(A100 vs. V100 GPUs and high-bandwidth links between GPUs

on the same and different servers), and scaling to more GPUs. We

want to emphasize that this higher throughput makes estimated

training times much more practical (about 3 months); an aggregate

throughput of 37.6 petaFLOP/s would take about 40 months to train

an equivalently-sized model. We can scale to larger models as well,

but would need more GPUs to keep training time practical.

Mesh-TensorFlow [39] proposes a language for easily specifying

parallelization strategies that combine data and model parallelism.

Switch Transformers [15] used Mesh-Tensorflow to train a sparsely

activated expert-based model with 1.6 trillion parameters, with

improved pre-training speed over the T5-11B model [35].

Sharded Data Parallelism. As part of performance optimizations

for MLPerf 0.6 [28], sharded data parallelism [24, 44], where opti-

mizer state is sharded over data-parallel workers, was introduced.

This method has two advantages: (a) it does not introduce extra

communication over vanilla data parallelism, and (b) it divides the

optimizer’s computation and memory cost across the data-parallel

partitions. ZeRO [36, 37] extends this idea: weight parameters and

gradients are sharded across data-parallel workers as well, and

workers fetch relevant state from their “owning” workers before

performing computations. This adds additional communication,

which can be partially hidden by carefully overlapping computa-

tion and communication. However, this can become harder if tensor

parallelism is not used or the batch size is not large enough to hide

the extra communication overhead (Figure 10). ZeRO-Infinity [37]

uses NVMe to efficiently swap parameters, enabling the training of

very large models on a small number of GPUs. We note that using

a small number of GPUs for training a very large model results in

unrealistic training times (e.g., thousands of years to converge).

Automatic Partitioning. FlexFlow [22], PipeDream [29], DAP-

PLE [14], and Tarnawski et al. [41] all auto-partition model training

graphs over multiple devices with the help of cost models. However,

each of these do not consider all the parallelism dimensions con-

sidered in this paper: pipeline and tensor model parallelism, data

parallelism, microbatch size, and the effect of memory-savings op-

timizations like activation recomputation on the training of models

larger than the memory capacity of an accelerator. These added

dimensions increase the search space that needs to be explored.

Gholami et al. [16] show how communication costs for combina-

tions of data and model parallelism can be modeled.

HPC for Model Training. Goyal et al. [17] and You et al. [47] both

demonstrate the use of High Performance Computing techniques

to train highly-accurate ImageNet models in minutes. However, the

image classification models considered fit comfortably on a single

accelerator, rendering model parallelism unnecessary, support very

large batch sizes (> 32k) that allow scaling data parallelism to large

worker counts with infrequent communication, and are composed

of compact convolutional layers that are inherently amenable to

data-parallel communication.

7 DISCUSSION AND CONCLUSION

In this paper, we have shown how PTD-P (inter-node pipeline par-

allelism, intra-node tensor parallelism, and data parallelism) can be

composed to achieve high aggregate throughput (502 petaFLOP/s)

while training large models with a trillion parameters. This facil-

itates end-to-end training in reasonable times (estimated time of

around 3 months for a trillion-parameter model). We discussed the

various tradeoffs associated with each of these types of parallelism,

and how the interactions between them need to be considered

carefully when combined.

Even though the implementation and evaluation in this paper

is GPU-centric, many of these ideas translate to other types of

accelerators as well. Concretely, the following are ideas that are

accelerator-agnostic: a) the idea of smartly partitioning the model

training graph to minimize the amount of communication while

still keeping devices active, b) minimizing the number of memory-

bound kernels with operator fusion and careful data layout, c) other

domain-specific optimizations (e.g., scatter-gather optimization).

ACKNOWLEDGEMENTS

We thank the anonymous reviewers, Seonmyeong Bak, Keshav San-

thanam, Trevor Gale, Dimitrios Vytiniotis, and Siddharth Karam-

cheti for their help and feedback that improved this work. This

research was supported in part by NSF Graduate Research Fellow-

ship grant DGE-1656518 and NSF CAREER grant CNS-1651570. Any

opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors alone.

APPENDIX: FLOATING-POINT OPERATIONS

In this section, we describe howwe calculate the number of floating-

point operations (FLOPs) in a model. We consider a language model

with 𝑙 transformer layers, hidden size ℎ, sequence length 𝑠 , vocabu-
lary size 𝑉 , and training batch size 𝐵.

A𝐴𝑚×𝑘 ×𝑋𝑘×𝑛 matrix multiplication requires 2𝑚×𝑘 ×𝑛 FLOPs

(factor of 2 needed to account for multiplies and adds).

A transformer layer consists of an attention block followed by

a 2-layer feed-forward network. For the attention block, the main

FLOP contributors are the key, query, and value transformation

(6𝐵𝑠ℎ2 operations), attention matrix computation (2𝐵𝑠2ℎ opera-

tions), attention over values (2𝐵𝑠2ℎ operations), and post-attention

linear projection (2𝐵𝑠ℎ2 operations). The feed-forward network

increases the hidden size to 4ℎ and then reduces it back to ℎ; this
requires 16𝐵𝑠ℎ2 FLOPs. Summing these together, each transformer

layer results in 24𝐵𝑠ℎ2 + 4𝐵𝑠2ℎ FLOPs for the forward pass. The

backward pass requires double the number of FLOPs since we

need to calculate the gradients with respect to both input and

weight tensors. In addition, we are using activation recomputation,

which requires an additional forward pass before the backward

pass. As a result, the total number of FLOPs per transformer layer

is 4 ×
(
24𝐵𝑠ℎ2 + 4𝐵𝑠2ℎ

)
= 96𝐵𝑠ℎ2

(
1 +

𝑠

6ℎ

)
.

The other main contributor to the FLOP count is the logit layer in

the language model head, which transforms features of dimension

ℎ to the vocabulary dimension 𝑉 . The required FLOPs for this

operation is 2𝐵𝑠ℎ𝑉 in the forward pass and 4𝐵𝑠ℎ𝑉 in the backward

pass, resulting in 6𝐵𝑠ℎ𝑉 FLOPs in total.

Thus, for a transformer model with 𝑙 transformer layers, the

total number of floating-point operations is:

96𝐵𝑠𝑙ℎ2
(
1 +

𝑠

6ℎ
+

𝑉

16𝑙ℎ

)
.

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM SC ’21, November 14–19, 2021, St. Louis, MO, USA

REFERENCES
[1] Applications of GPT-3. https://openai.com/blog/gpt-3-apps/.
[2] DeepSpeed: Extreme-Scale Model Training for Everyone. https:

//www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-
training-for-everyone/.

[3] DeepSpeed Repository. https://www.deepspeed.ai/.
[4] GitHub Copilot. https://copilot.github.com/.
[5] Microsoft Translates Spoken Text to Code. https://techcrunch.com/2021/05/25/

microsoft-uses-gpt-3-to-let-you-code-in-natural-language/.
[6] NVIDIA A100 Tensor Core GPU. https://www.nvidia.com/en-us/data-center/

a100/.
[7] NVIDIA Collective Communication Library (NCCL). https://developer.nvidia.

com/nccl.
[8] NVIDIA Selene Supercomputer. https://www.top500.org/system/179842/.
[9] NVLink and NVSwitch. https://www.nvidia.com/en-us/data-center/nvlink/.
[10] PyTorch JIT. https://pytorch.org/docs/stable/jit.html.
[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, and et al. Language

Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165, 2020.
[12] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training Deep Nets

with Sublinear Memory Cost. arXiv preprint arXiv:1604.06174, 2016.
[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805, 2018.

[14] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, SiyuWang, Zhen Zheng, Chuan
Wu, Guoping Long, Jun Yang, Lixue Xia, et al. DAPPLE: A Pipelined Data Parallel
Approach for Training Large Models. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 431–445,
2021.

[15] William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling
to Trillion Parameter Models with Simple and Efficient Sparsity. arXiv preprint
arXiv:2101.03961, 2021.

[16] Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. Integrated
Model, Batch, and Domain Parallelism in Training Neural Networks. In Proceed-
ings of the 30th on Symposium on Parallelism in Algorithms and Architectures,
pages 77–86, 2018.

[17] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint arXiv:1706.02677,
2017.

[18] Andreas Griewank and Andrea Walther. Revolve: An Implementation of Check-
pointing for the Reverse or Adjoint Mode of Computational Differentiation. ACM
Transactions on Mathematical Software (TOMS), 26(1):19–45, 2000.

[19] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. PipeTrans-
former: Automated Elastic Pipelining for Distributed Training of Transformers.
arXiv preprint arXiv:2102.03161, 2021.

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. GPipe:
Efficient Training of Giant Neural Networks using Pipeline Parallelism. In
Advances in Neural Information Processing Systems, pages 103–112, 2019.

[21] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph
Gonzalez, Kurt Keutzer, and Ion Stoica. Breaking the Memory Wall with Optimal
Tensor Rematerialization. In Proceedings of Machine Learning and Systems 2020,
pages 497–511. 2020.

[22] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond Data and Model Parallelism
for Deep Neural Networks. In Proceedings of the 2nd Conference on Machine
Learning and Systems (MLSys), 2018.

[23] Atli Kosson, Vitaliy Chiley, Abhinav Venigalla, Joel Hestness, and Urs Köster.
Pipelined Backpropagation at Scale: Training Large Models without Batches.
Proceedings of Machine Learning and Systems, 2021.

[24] Sameer Kumar, Victor Bitorff, Dehao Chen, Chiachen Chou, Blake Hechtman,
HyoukJoong Lee, Naveen Kumar, Peter Mattson, Shibo Wang, Tao Wang, et al.
Scale MLPerf-0.6 Models on Google TPU-v3 Pods. arXiv preprint arXiv:1909.09756,
2019.

[25] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng
Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. PyTorch
Distributed: Experiences on Accelerating Data Parallel Training. arXiv preprint
arXiv:2006.15704, 2020.

[26] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn
Song, and Ion Stoica. TeraPipe: Token-Level Pipeline Parallelism for Training
Large-Scale Language Models. arXiv preprint arXiv:2102.07988, 2021.

[27] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. CoRR, abs/1907.11692, 2019.

[28] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micike-
vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,
et al. MLPerf Training Benchmark. arXiv preprint arXiv:1910.01500, 2019.

[29] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. PipeDream:
Generalized Pipeline Parallelism for DNN Training. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, pages 1–15, 2019.

[30] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia.
Memory-Efficient Pipeline-Parallel DNN Training. In International Conference on
Machine Learning, pages 7937–7947. PMLR, 2021.

[31] Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T Nguyen, Seungmin Lee,
Jaesik Choi, Sam H Noh, and Young-ri Choi. HetPipe: Enabling Large DNN Train-
ing on (Whimpy) Heterogeneous GPU Clusters through Integration of Pipelined
Model Parallelism and Data Parallelism. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 307–321, 2020.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems, volume 32,
2019.

[33] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
Language Understanding by Generative Pre-Training, 2018.

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language Models are Unsupervised Multitask Learners. OpenAI Blog,
1(8):9, 2019.

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683,
2019.

[36] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO:
Memory Optimization Towards Training A Trillion Parameter Models. arXiv
preprint arXiv:1910.02054, 2019.

[37] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep
Learning. arXiv preprint arXiv:2104.07857, 2021.

[38] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. ZeRO-Offload: De-
mocratizing Billion-Scale Model Training. arXiv preprint arXiv:2101.06840, 2021.

[39] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake Hechtman. Mesh-TensorFlow: Deep Learning
for Supercomputers. In Neural Information Processing Systems, 2018.

[40] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-LM: Training Multi-Billion Parameter Language
Models using GPU Model Parallelism. arXiv preprint arXiv:1909.08053, 2019.

[41] Jakub M Tarnawski, Amar Phanishayee, Nikhil Devanur, Divya Mahajan, and
Fanny Nina Paravecino. Efficient Algorithms for Device Placement of DNN
Graph Operators. In Advances in Neural Information Processing Systems, pages
15451–15463, 2020.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All You Need.
arXiv preprint arXiv:1706.03762, 2017.

[43] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee,
Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A New
Platform for Distributed Machine Learning on Big Data. IEEE Transactions on
Big Data, 1(2):49–67, 2015.

[44] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Hongjun Choi, Blake Hechtman,
and Shibo Wang. Automatic Cross-Replica Sharding of Weight Updates in Data-
Parallel Training. arXiv preprint arXiv:2004.13336, 2020.

[45] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher Aberger, and
Christopher De Sa. PipeMare: Asynchronous Pipeline Parallel DNN Training.
Proceedings of Machine Learning and Systems, 2021.

[46] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. CoRR, abs/1906.08237, 2019.

[47] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Ima-
geNet Training in Minutes. In Proceedings of the 47th International Conference on
Parallel Processing, pages 1–10, 2018.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran scaling experiments for various GPT models on

the NVIDIA Selene cluster with NVIDIA A100 GPUs. We

used the nvcr.io/nvidia/pytorch-20.12-py3 docker container

(https://docs.nvidia.com/deeplearning/frameworks/pytorch-

release-notes/rel_20-12.html#rel_20-12).

Our 1 trillion parameter model was run with the following pa-

rameters:

• Hidden size: 25600

• Number of layers: 128

• Number of attention heads: 160

• Tensor-model-parallel size: 8

• Pipeline-model-parallel size: 64

• Total number of GPUs: 3072

Our repository has instructions on how to run distributed cases.

To reproduce this experiment, the above command-line arguments

need to be used with ‘pretrain_gpt.py‘.

We have scripts to reproduce each figure in the evaluation in the

‘examples/sc21‘ sub-directory of the repository.

Author-Created or Modified Artifacts:

Persistent ID: 10.5281/zenodo.5181820
Artifact name: Code repository containing

implementation and replications scripts↩→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Nvidia A100 with 80 GB of memory

Operating systems and versions: Ubuntu 20.04

Compilers and versions: PyTorch 1.8.0a0+1606899

Libraries and versions: PyTorch 1.8.0a0+1606899, NCCL CUDA

11.1.1

