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ABSTRACT
Billion atom molecular dynamics (MD) using quantum-accurate
machine-learning Spectral Neighbor Analysis Potential (SNAP) ob-
served long-sought high pressure BC8 phase of carbon at extreme
pressure (12 Mbar) and temperature (5,000 K). 24-hour, 4650 node
production simulation on OLCF Summit demonstrated an unprece-
dented scaling and unmatched real-world performance of SNAP
MD while sampling 1 nanosecond of physical time. Efficient im-
plementation of SNAP force kernel in LAMMPS using the Kokkos
CUDA backend on NVIDIA GPUs combined with excellent strong
scaling (better than 97% parallel efficiency) enabled a peak comput-
ing rate of 50.0 PFLOPs (24.9% of theoretical peak) for a 20 billion
atom MD simulation on the full Summit machine (27,900 GPUs).
The peak MD performance of 6.21 Matom-steps/node-s is 22.9 times
greater than a previous record for quantum-accurate MD. Near per-
fect weak scaling of SNAP MD highlights its excellent potential
to advance the frontier of quantum-accurate MD to trillion atom
simulations on upcoming exascale platforms.
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1 JUSTIFICATION FOR ACM GORDON BELL
PRIZE

Peak 50.0 PFLOPS rate in quantum-accurate 20 billion atommolecu-
lar dynamics simulation, 6.21Matom-steps/node-sMD performance
- 22.9x improvement over previous record for quantum-accurate
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MD. Sustained real-world simulation of 1 billion carbon atoms for
1 nanosecond of physical time on 4,650 nodes of Summit during 24
hours of wall clock time.

2 PERFORMANCE ATTRIBUTES
Performance Attribute Our Submission
Category of achievement Time to solution, scalability
Type of method used SNAP/Kokkos via LAMMPS MD
Results reported on basis of Whole application including I/O
Precision reported Double precision
System scale Measured on full system
Measurement mechanism Timers, FLOP count

3 OVERVIEW OF THE PROBLEM: CLASSICAL
SIMULATIONS OF MATERIALS AT
EXTREME CONDITIONS WITH QUANTUM
ACCURACY

Recent exciting discoveries of thousands of exoplanets beyond our
solar system has advanced the research on planetary materials at
extreme pressures and temperatures to the forefront of physical
sciences [1, 2]. A fundamental requirement for understanding the
composition and the structure of exoplanetary interiors is an ac-
curate knowledge of crystal structure, high pressure-temperature
(PT) equations of state (EOS) and melting behavior of key geologi-
cal materials. The advent of powerful laser [3] and pulsed-power
[4] compressions, and in-situ X-ray free electron laser diffraction
experiments [5] have made it possible to recreate and probe the
high-PT environment of exoplanetary cores in the laboratory. How-
ever, a lack of theoretical and simulation guidance of experimental
efforts, including comprehensive atomic-scale understanding of the
complex physics of a material’s response to extreme PT conditions,
substantially limits the science return from these sophisticated but
very expensive experiments. Such meaningful predictions require
billion-atom MD simulations at experimental nanosecond and mi-
crometer time and length scales.

Corrected Version of Record. V.1.1. Published December 14, 2021.

https://doi.org/10.1145/3458817.3487400


Traditionally, quantum molecular dynamics (QMD) using den-
sity functional theory (DFT) is used to simulate matter at extreme
PT conditions [6, 7]. Due to substantial computational costs, such
simulations are limited to samples up to a thousand atoms and up
to tens of picoseconds of simulation time, thus acquiring mostly
equilibrium properties of the materials (e.g. EOS and static phase
diagrams). These equilibrium models have been found to fail in the
regimes where non-equilibrium time-dependent physics becomes
important [8].

In principle, the intrinsic time and length scale limitations of
QMD can be overcome by classical MD simulations which employ
empirical interatomic potentials [9]. However, their intrinsic in-
ability to cover a wide range of pressures and temperatures with
sufficient accuracy is a serious roadblock towards high fidelity
predictive simulations of planetary materials aimed at theoretical
guidance of experiments.

Very recently, new exciting opportunities in atomistic simula-
tions have emerged with the advent of machine-learning inter-
atomic potentials (ML-IAPs) [10–13], which aim to provide a clas-
sical description of underlying interatomic interactions with DFT
accuracy. Although several applications of ML-IAPs in materials
modeling have already emerged [14–17], their exceptional potential
in describing diverse and complex atomic environments occurring
in materials subjected to extreme PT conditions has yet to be real-
ized.

Our team has recently made a significant advance towards solv-
ing this extremely challenging but fundamentally important prob-
lem: predictive atomic-scale simulations of materials at extreme PT
conditions at experimental time and length scales. In particular, we
designed a quantum-accurate Spectral Neighbor Analysis Potential
(SNAP) ML-IAP for carbon [18], which describes its properties at
extreme conditions spanning pressures from 0 to 50 Mbars and
temperatures up to 20,000-K, including the phase diagram, melting
curves of diamond, BC8 and simple cubic phases of carbon, with
accuracy systematically within 5% of very rigorous QMD results.
Although such impressive results come with substantial compu-
tational cost, SNAP’s linear scaling with number of atoms and
its efficient implementation within the LAMMPS MD simulation
package [19] allows us to run massively parallel billion atom simu-
lations on leadership class DOE Summit, DOE Perlmutter, and NSF
Frontera systems.

The current plan of work was specifically designed with the over-
arching goal of highlighting important algorithmic innovations in
implementing SNAP MD on heterogeneous multi-core processors
and many-core GPU accelerators in production simulations of car-
bon at extreme conditions. Carbon, existing in the form of graphite
and diamond at ambient conditions, is expected to transform to
a new crystalline form, so-called BC8 structure, at the extreme
pressures of tens of millions of atmospheres (Mbars) and temper-
atures of tens of thousands of kelvins in the interiors of recently
discovered carbon-rich exoplanets [20]. Multiple attempts to exper-
imentally discover the new form of carbon at extreme conditions
in laboratory have been so far unsuccessful [21–23].

This scientific challenge is a perfect candidate for demonstrating
the transformative impact of quantum-accurate MD simulations
at experimental time and length scales. Such accurate simulations
involving billion of atoms, that have never been attempted before,

became possible due to a recent breakthrough of our team in a very
efficient implementation of SNAP on HPC platforms, utilizing GPU
accelerators as well as an exclusive access to OLCF’s Summit - one
of the most powerful HPC systems in the world [24]. By efficiently
utilizing all its 4650 nodes (27,900 GPUs), in this grand simulation
we were able to uncover novel pathways towards synthesis of the
elusive BC8 phase of carbon, while demonstrating unprecedented
scaling and unmatched real-world performance of SNAP MD.

4 CURRENT STATE OF THE ART
With a suitable expression for forces, taken from derivatives of an
interatomic potential (IAP) energy function, the classical equations
of motion can be numerically integrated with a finite time step
𝛿𝑡 ≈ 1 · 10−15 s to simulate the equilibrium and non-equilibrium
dynamics of any biological/chemical/material system. Convention-
ally, empirical IAP derived from simplified descriptions of cova-
lent/metallic/ionic bonding were used to obtain the atomic forces
due to interactions with nearby atoms. Machine-learning potentials
(ML-IAP) are driven by the need for accuracy approaching that of
quantum electronic structure methods, while retaining the compu-
tational cost, linear scaling, and parallel efficiency of the empirical
potentials. In a relatively short amount of time since their incep-
tion [25, 26] ML-IAP have been demonstrated to achieve accuracy
comparable to that of electronic structure methods such as density
functional theory (DFT).

In general, ML-IAP are constructed from three unique, but not
completely separable parts; a descriptor set, regression technique,
and model form. The descriptors (synonymous with features) en-
code the bonding environment around each atom (see Fig. 1) and
play a critical role in both the absolute accuracy (w.r.t. DFT) and
computational cost of the model. The most successful ML poten-
tials developed to date can be divided into two classes according to
the choice of model form, which are either kernel-based or neural
network (NN) models. Examples of the latter include the Behler-
Parrinello NNP [25], ANI [27, 28], HIP-NN [29] and DeepMD [30],
each of which are subtly different based on the choices of descrip-
tors and neural network architecture. The present work on SNAP
falls into the class of kernel-based ML-IAP which also includes GAP
[26], ChIMES [31] and MTP [32], where differences are predomi-
nately defined by the choice of descriptors. Kernel-based methods
compute a similarity metric between each feature vector from MD
and the database of ground-truth training structures. The most
widely used similarity kernel is the squared exponential kernel
used in Gaussian Process Regression models such as GAP [26]. It
can be shown that SNAP, MTP, ChIMES and other linear models are
equivalent to GAP when the squared exponential kernel is replaced
with a dot product kernel [33].

Recent theoretical work by Drautz [34] has shown that SNAP,
MTP, and several other successful descriptors are part of the Atomic
Cluster Expansion (ACE) family of descriptors each with a particu-
lar choice of radial basis [35]. A recent comparison of the leading
ML-IAP methodologies (including both NN and kernel-based meth-
ods) by an independent group showed that SNAP, GAP, and MTP
(i.e. all kernel-based methods) provided the best balance between
computational cost and accuracy [12].
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Figure 1: Schematic representation of ML descriptors encod-
ing the local environment of an atom. All atoms within the
radial cutoff (dashed line, 𝑹) are used to generate the descrip-
tors, represented as fingerprints here. The atomic energy is
expressed as a linear or nonlinear function of the descrip-
tors, with parameters that are adjusted during training to
minimize error w.r.t. DFT data.

The Spectral Neighborhood Analysis Potential (SNAP) approach
pioneered by our team uses bispectrum components of the local
neighbor density projected onto a basis of hyperspherical harmon-
ics in four dimensions as descriptors, pictorially captured in Fig. 1.
We use the quadratic form of SNAP for carbon, in which the atomic
energy 𝐸𝑖

𝑆𝑁𝐴𝑃
for an atom 𝑖 is expressed as a sum of the bispectrum

components B𝑖 for that atom (see Section 5) and quadratic products
of these descriptors, weighted by regression coefficients

𝐸𝑖𝑆𝑁𝐴𝑃 (r𝑁 ) = 𝜷 · B𝑖 + 1
2
B𝑖 · 𝜶 · B𝑖 (1)

where the symmetric matrix 𝜶 and the vector 𝜷 are constant linear
coefficients whose values are trained to reproduce energies and
forces obtained from DFT training structures. Similarly, the forces
on each atom 𝑘 are expressed in terms of the derivative of atomic
energies with respect to the position of atom 𝑘 , where 𝑁 is the total
number of atoms in the structure

F𝑘𝑆𝑁𝐴𝑃 = − ∇𝑘
𝑁∑
𝑖=1

𝐸𝑖𝑆𝑁𝐴𝑃 = −
𝑁∑
𝑖=1

(
𝜷 + B𝑖 · 𝜶

)
· 𝜕B

𝑖

𝜕r𝑘
(2)

Training of the SNAP ML-IAP for carbon was performed itera-
tively utilizing the DAKOTA optimization package [36], wherein
SNAP prediction errors were minimized with respect to DFT data.
The 𝜶 and 𝜷 coefficients were determined by weighted linear re-
gression minimizing the SNAP predicted energies and atomic forces
relative to a database of DFT calculations. This resulted in a robust
IAP over an astounding pressure and temperature range (0-50Mbars
and 300-20,000 K), far exceeding the capability of any empirical
IAP.

The computational bottleneck in any MD simulation is the evalu-
ation of the forces. In the case of SNAP (Eq. 2), this cost is dominated
by the evaluation of the bispectrum components B𝑖 for each atom,
as well as the associated derivatives w.r.t. the positions of neighbor
atoms 𝜕B𝑖/𝜕r𝑘 . In comparison to empirical IAP, nearly all ML-IAP
are more computationally expensive given the complexity in the
descriptor definitions, thus total atom counts and simulation times
are sacrificed for the improved accuracy.

In previous work, we have demonstrated that kernel-based meth-
ods such as SNAP can uniquely take advantage of accelerator de-
vices by exposingmultiple levels of parallelism in the computational
kernel that evaluates the gradients of descriptors needed for the
MD force calculation. Trott et al. developed an early CUDA imple-
mentation of SNAP that achieved good computational efficiency on
the NVIDIA K20x GPU. That work also demonstrated the excellent
scalability of machine-learning potentials, allowing an MD simula-
tion to run on the full Titan machine (18,688 GPUs) with only 13
atoms/GPU [37].

For comparison with other state of the art ML-IAP, in addition
to the FLOP rate, a universal normalized metric for MD simulation
throughput must be used. Namely, the performance of an MD simu-
lation consisting of 𝑁𝑎𝑡𝑜𝑚𝑠 simulated using 𝑁𝑛𝑜𝑑𝑒𝑠 and completing
𝑁𝑠𝑡𝑒𝑝𝑠 within 𝑇𝑠𝑖𝑚 seconds is

𝑁𝑎𝑡𝑜𝑚𝑠

106
𝑁𝑠𝑡𝑒𝑝𝑠

𝑁𝑛𝑜𝑑𝑒𝑠 ×𝑇𝑠𝑖𝑚
(3)

and is reported in units of Matom-steps/node-s herein. Having both
of these metrics, one for computational intensity and the other
for simulation performance, is important when comparing MD
simulations across various system sizes, hardware types, varied
number of nodes, simulation time and disparate IAPs used.

Recently DeepMD [38], a NN based ML-IAP, reported 8.1 · 10−10
s/atom-step for 100 timesteps with ∼127 million Cu atoms on 4560
Summit nodes. The equivalent MD performance as defined in Eq. 3
is 0.271 Matom-steps/node-s, which currently stands as the best
computational performance of any NNML-IAP at this scale [39]. By
comparison, our SNAP MD simulations reported in this paper have
achieved an MD performance of 6.21 Matom-steps/node-s while
simulating ∼20 billion carbon atoms on the full Summit machine
(4650 nodes),which is 22.9x higher than the MD performance
of DeepMD. The next section details the algorithmic improve-
ments that provided this performance gain.

5 INNOVATIONS REALIZED
Here we present the algorithmic and architecture specific optimiza-
tions that were made to SNAP in order to improve the throughput
on newer generation CPUs and GPUs. The SNAP energy and forces
are expressed as a basis expansion in bispectrum components (Eq. 1,
2) up to an upper limit in the angular momentum quantum number
𝐽 , defined below. Exploitation of a symmetry relation in the bis-
pectrum components reduced the computational complexity from
O(𝐽 7) to O(𝐽 5), giving an order of magnitude speedup on CPUs
[13]. This version of SNAP was ported to run on GPUs in LAMMPS
and is the version that we took as our starting point [40].

As shown in the equations below, SNAP consists of many irregu-
larly structured, deeply nested loops with small, varying loop sizes,
increasing the challenges of optimization compared to regularly
structured linear algebra kernels (e.g. GEMM).

The evaluation of the SNAP potential and derived forces follows
the following pattern:

• ComputeUi: Evaluate the local neighbor density of an atom
𝑖 in terms of a four-dimensional hyperspherical harmonic
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basis,

U𝑗 =
∑

𝑟𝑖𝑘<𝑅

𝑓𝑐 (𝑟𝑖𝑘 )u𝑗 (𝑎, 𝑏), (4)

where u𝑗 areWigner U-matrices, each rank 2 𝑗+1, and 𝑎, 𝑏 are
the Cayley-Klein parameters, mappings of r𝑖𝑘 to the 3-sphere,
and the index 𝑗 takes half-integer values {0, 12 , 1,

3
2 , . . .}. The

u𝑗 are efficiently calculated by a recursion relation

u𝑗 = F (u𝑗− 1
2
), (5)

where F is a linear operator mapping two adjacent elements
of u𝑗−1/2 to each element of u𝑗 . 𝑓𝑐 (𝑟𝑖𝑘 ) is a smooth cutoff
function.

• ComputeBi and ComputeZi: The U𝑗 are not basis invariant
and thus not useful as descriptors. We form real, scalar, basis-
invariant triple-products [26]:

𝐵 𝑗1 𝑗2 𝑗 = U𝑗1 ⊗
𝑗
𝑗1 𝑗2

U𝑗2 : U
∗
𝑗 (6)

= Z𝑗
𝑗1 𝑗2

: U∗
𝑗 . (7)

The symbol ⊗ 𝑗
𝑗1 𝑗2

indicates a Clebsch-Gordan product of ma-
trices, an O( 𝑗4) operation. The : corresponds to an element-
wise scalar product of two matrices of equal rank, an O( 𝑗2)
operation. The vector of descriptors B𝑖 for atom 𝑖 introduced
in Eq. 1 is a flattened list of elements 𝐵 𝑗1 𝑗2 𝑗 restricted to
0 ≤ 2 𝑗2 ≤ 2 𝑗1 ≤ 2 𝑗 ≤ 2𝐽 , so that the number of unique bis-
pectrum components scales as O(𝐽 3). In the current work,
2𝐽 is set to 8, yielding a descriptor vector B𝑖 of length 55.

• ComputeDuidrj and ComputeDeidrj: Compute derivatives
of the descriptors,

𝜕𝐵 𝑗1 𝑗2 𝑗

𝜕r𝑘
= Z𝑗

𝑗1 𝑗2
:
𝜕U∗

𝑗

𝜕r𝑘
+ Z𝑗1

𝑗 𝑗2
:
𝜕U∗

𝑗1

𝜕r𝑘
+ Z𝑗2

𝑗 𝑗1
:
𝜕U∗

𝑗2

𝜕r𝑘
, (8)

and accumulate into the force via Eq. 2.
This section describes the implementation and optimizations of

the quadratic SNAP ML-IAP given above that uses the Kokkos
performance-portability library [41]. Kokkos provides a frame-
work for decomposing work into discrete, independent pieces that
are written in C++ and then mapped onto backend languages
(such as CUDA) and dispatched in parallel, hiding the architecture-
specific details of executing work. Kokkos provides constructs to
exploit hierarchical parallelism. The most relevant here are multi-
dimensional, tiled launches, which conceptually map onto cache
blocking on the CPU and multi-dimensional thread and block in-
dices on the GPU. Of special note, Kokkos provides an abstraction of
“scratchpad memory”, which conceptually maps onto small memory
segments on the CPU which stay resident in cache, and maps onto
shared memory on the GPU.

The first set of optimizations below describe the systematic ex-
traction of hierarchies of parallelism in the SNAP ML-IAP. These
are complimented by optimizations to memory layouts enabled by
the Kokkos performance portable framework “view” abstraction for
multi-dimensional data structures. The latter set of optimizations
describe where the ideals of performance portability break down,
and we diverge the implementations for the CPU and GPU. This is
necessary because GPUs, compared to CPUs, require a far higher

arithmetic intensity, or ratio of FLOPS to memory transactions, to
take full advantage of hardware accelerators.

The implementation of the SNAP potential described here is
publicly available1 with the LAMMPS molecular dynamics package
[19, 42] . The work we describe below was been performed over
the past ∼3 years, starting with the baseline GPU implementation
[40] in LAMMPS.

5.1 Kernel Fission and Reduction of
Computational Complexity

Despite taking advantage of the Kokkos features of hierarchical
parallelism and scratchpad memory, the initial implementation
of the SNAP potential had lackluster performance on GPUs. The
original implementation mirrored the baseline CPU version by
using one large, fused kernel, which caused high register usage,
throttling occupancy.

Our first change was kernel fission, splitting the large kernel
into multiple small kernels. This reduced register pressure across
separate kernels, but greatly increased memory usage since inter-
mediate quantities for all pairs of atom-neighbors needed to be
explicitly stored between kernel launches.

These memory overheads became prohibitive and motivated
several important optimizations. First, it motivated index flattening
in both U𝑗 and Z𝑗

𝑗1 𝑗2
, replacing jagged arrays with compressed

indices. This innovation reduced the memory for U𝑗 by a factor of
1/3 and considerably more for Z𝑗

𝑗1 𝑗2
.

More importantly, this motivated the development of the adjoint
refactorization, which combines Eqs. 1 and 8 to define a new quantity
Y,

Y𝑗 =
∑
𝑗1 𝑗2

(𝜷 + B · 𝜶 ) 𝑗
𝑗1 𝑗2

Z𝑗
𝑗1 𝑗2

. (9)

This adjoint refactorization simplifies the final force evaluation
to

F𝑘𝑆𝑁𝐴𝑃 = −
𝑁∑
𝑖=1

𝐽∑
𝑗=0

Y𝑗 :
𝜕U∗

𝑗

𝜕r𝑘
. (10)

Y can be identified as the adjoint of dB with respect to dU. This
reduces the computational complexity from O(𝐽 5) to O(𝐽 3)
by removing a factor of O(𝐽 2) computation from the evalua-
tion of Eq. 8 compared to Eq. 10. This reformulation also enables
a factor of 3 reduction of flops due to a 𝑗 ↔ 𝑗1 ↔ 𝑗2 symmetry
in Z𝑗

𝑗1 𝑗2
. As part of the development of this method, we optimized

away a factor of O(𝑁𝑛𝑒𝑖𝑔ℎ) storage in Z. The calculation of Y was
implemented in a new kernel ComputeYi.

5.2 Extraction of Parallelism and Data Layout
Optimizations

The acts of kernel fission and implementing the adjoint refactoriza-
tion simplified identifying the parallelism available in each kernel.
All four kernels noted below have trivial atom parallelism. Of fur-
ther note:
1Production simulations in this work used the version of SNAP in [42], while scaling
simulations were rerun using a slightly modified version of [42] optimized for large
atom counts per GPU. These new optimizations have been recently released publicly
in LAMMPS [43].
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• ComputeUi: Eq. 4 offers additional neighbor parallelism if
the sum over neighbors is performed atomically.

• ComputeYi: Eq. 9 offers additional quantum number paral-
lelism if the sum over 𝑗1, 𝑗2 is performed atomically.

• ComputeDuidrj: Trivial neighbor parallelism across inde-
pendent 𝜕U𝑗

𝜕𝑟𝑘
.

• ComputeDeidrj: Additional neighbor parallelism if force ac-
cumulations are performed atomically, exploiting Newton’s
Laws.

Each source of parallelism obeys linearity, meaning we are free
to reorder the per-atom, per-neighbor, and per-quantum-number
parallelism as appropriate to maximize performance. In the evalua-
tion of U𝑗 , for example, we can choose to evaluate the contribution
from all atoms one neighbor at a time, or compute the contribution
from all neighbors one atom at a time. The hierarchical parallelism
abstractions in Kokkos makes it easy to rearrange the order of
parallelism. It also simplifies changing data layouts to promote
good memory access on the CPU and GPU: Array-of-Structures on
the CPU to promote spatial/temporal cache locality, Structure-of-
Arrays on the GPU to promote memory alignment and coalescing.

The trivial parallelism over atom number across all kernels
enables a perfect SIMD implementation. To exploit this we use
an Array-of-Structures-of-Arrays (AoSoA) data layout, where the
inner-most array dimension is a generic “vector_length” which
can take a different interpretation on different architectures. On
Intel CPUs, a vector length of 8 corresponds to one AVX512 SIMD
register on which vector intrinsics can be performed. On NVIDIA
GPUs, the number of threads within a warp, 32, ensures warp con-
vergence as well as perfect memory alignment and coalescing for
memory I/O, both necessary for the optimal use of GPU hardware.

One key benefit of the AoSoA data layout is ideal cache reuse
across architectures because the data for each vectorized set of
atoms is contiguous in memory, ensuring full cache pages are
utilized. The AoSoA data layout naturally extends to hierarchi-
cal “chunking” of work, where the SNAP force evaluation can be
grouped in batches of atoms large enough to saturate the GPU but
small enough to avoid large memory allocations.

We note there are a few additional short bandwidth-bound ker-
nels for data initialization and staging purposes.

In its current state, the SNAP calculation is performant on the
GPU. It is not yet optimal on the CPU due to difficulties with au-
tovectorization; we are considering the use of the Kokkos SIMD
type or the Cabana library [44] as a point of future work.

5.3 Increasing Arithmetic Intensity in
Recursive Polynomial Evaluations

Our next significant performance improvement came from opti-
mizing the calculation of the Wigner U-matrices and derivatives
thereof. The core observation can be summarized in one sentence:
evaluating recursive polynomials is an inherently compute intensive
process. For the Wigner U-matrices themselves, there are only two
inputs: the complex Cayley-Klein parameters 𝑎 and 𝑏. All subse-
quent outputs are recursive linear combinations thereof.

The original implementation of ComputeUi, the kernel respon-
sible for evaluating Eq. 4, took a breadth-first approach to the re-
cursive evaluation of each u𝑗 . Each iteration computed half of u𝑗

from u𝑗− 1
2
and applied the symmetry properties of the Wigner

U-matrices to compute the other half. After all u𝑗 were computed,
a second pass through all u𝑗 performed the rescaling by the cutoff
function and atomic accumulation into U𝑗 . Each step of this process
was staged through global memory.

With this access pattern, we cannot expect L1 cache reuse to
circumvent the memory costs due to the quadratic scaling of the
number of elements in u𝑗 with 𝑗 . Minimizing bandwidth overheads
required four separate optimizations:

(1) Re-write the recursive polynomial evaluation as a hybrid
depth/breadth evaluation, depth first in rows of u𝑗 . This re-
duces intermediate state overheads by a factor of 𝑗 , promot-
ing cache reuse.

(2) Inline the atomic accumulation into U𝑗 with the recursive
polynomial calculation, eliminating a later reload.

(3) Explicitly cache intermediate values in shared memory.
(4) Remove all global memory staging by introducing a redun-

dant work model, re-computing some rows of u𝑗 ′< 𝑗 in the
process of computing rows of u𝑗 .

The changes described above translate well to the derivative of
the Wigner U-matrix in the routine ComputeDuidrj, albeit with
subtle changes. We split the evaluation of the 𝑥 , 𝑦, and 𝑧 kernels
into three separate kernels to avoid a prohibitive increase in shared
memory overheads relative to ComputeUi. In addition, we fused
the accumulation of the force, Eq. 10, into the recursive polynomial
evaluation, eliminating the kernel ComputeDeidrj. The read of Y
can be partially hidden behind the heavy computational intensity
of the recursive polynomial calculation. This new, fused kernel
is renamed to ComputeFusedDeidrj. These changes realize the
compute-bound nature of recursive polynomial evaluation.

Last, we precompute the Cayley-Klein parameters once in a new
kernel to offset unnecessary redundant work in ComputeUi and
each of three invocations of ComputeFusedDeidrj.

The improvements described in this subsection reduce the over-
all kernel runtime for recursive polynomial evaluation by a factor
of 12.3x relative to [45] on a V100 GPU, even as it increases dis-
crete FLOPS by 1.73x due to the redundant work in the hybrid
depth/breadth approach. In its optimized form, ComputeUi and
ComputeFusedDeidrj sustain 1.63 and 2.47 TFLOPS/sec, respec-
tively, on a V100. This is a direct consequence of our novel approach
which eliminates all global memory staging.

We note that we cannot directly compare the costs of individual
kernels due to the combination of kernel fusion and fission.

5.4 Kernel Optimizations for the Adjoint
Representation in Quadratic SNAP

The last speedups came from kernel optimizations within the cal-
culation of the adjoint matrix Y. In the case of linear SNAP, we can
bypass the intermediate storage of Z by direct atomic addition into
Y via Eq. 9. In the case of quadratic SNAP, we need to precompute
𝐵 𝑗1 𝑗2 𝑗 before accumulating Y. This necessitates computing each
value of Z independent of the ComputeYi kernel.

We note that we can store the pre-computed values of Z for reuse
in the subsequent calculation of Y, saving the O(𝐽 2) overheads of
computing each component of Z twice. This is implemented in
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Figure 2: Time progression of performance for succes-
sive optimizations of the SNAP Kokkos implementation in
LAMMPS running an MD benchmark on a single NVIDIA
V100GPU. The current implementation is nowover 30 times
faster than the baseline Kokkos implementation in 2018.

a new kernel ComputeYiFromZlist, which has a 5.2x faster run-
time than the original ComputeYi in [45]. The ComputeZi kernel is
already highly optimized, sustaining 1.89 TFLOPS/sec on a V100.

5.5 Performance Summary
The overall effect of the optimizations described in this section [42]
(and those described in Footnote 1) was a 35.4x increase in per-
formance compared to the original Kokkos implementation
[40] on a single V100 GPU for a carbon benchmark, measured on
Summit using CUDA 11.2.0. A benchmark for the SNAP tungsten
model [46] had similar performance improvements over time as
shown in Fig. 2.

The analysis of single GPU performance limiters is complicated
by the diverse algorithmic motifs within the SNAP calculation.
The most expensive kernel, the recursive evaluation of 𝜕U𝑗/𝜕𝑟𝑘 ,
is compute limited. The next-most expensive kernel, calculating
components of Z𝑗

𝑗1 𝑗2
, is bound by L1 bandwidth (as opposed to

L2 or global memory) due to optimal cache reuse patterns. The
calculation of U𝑗 is bound by double-precision atomic performance,
nonetheless it is optimal because the alternative is the original, far
less performant approach of global memory staging.

6 HOW PERFORMANCEWAS MEASURED
6.1 Science application used to measure

performance in our production simulations
We have carefully designed our production simulations to demon-
strate the real-world performance of our quantum-accurate SNAP
MD simulations in ground-breaking production runs with the aim
of delivering important scientific results. Our goal was to perform a
production simulation that runs on the entire Summit HPC system
(4,650 nodes) continuously for 24 hours (with possible restarts if
simulation is aborted due to hardware failures) using the largest

possible system ensuring maximum resource utilization, while mea-
suring in-situ computational performance of the simulation.

Our science goal is to observe the phase transformation of amor-
phous carbon (a-C) to the high pressure BC8 phase of carbon at
12 Mbar and temperatures between 5,000-5,500 K. We are part
of a joint simulation-experiment discovery science collaborative
team, which aims to synthesize the elusive BC8 carbon phase using
powerful lasers at National Ignition Facility (NIF) at Lawrence Liver-
more National Laboratory. We performed preliminary simulations
using small samples containing 0.3 million atoms to narrow the
pressure-temperature (P-T) range where this transformation occurs.
Therefore, the major objective for the production run was to push
the time and length scales of our simulations to nanoseconds and
hundreds of nanometers, the scales characteristic of ultrafast laser
compression experiments. By confirming a-C→BC8 transforma-
tion, our simulation results help minimize a probability of failure
in these very expensive (∼ $ million per shot) NIF experiments.

Our project was planned in two stages. In the first preparation
stage we determined themaximum possible system size (that attains
the maximum computational efficiency) during a production run of
a a-C sample compressed to 12 Mbar and heated to ∼5,000 K, while
still giving 1 ns/day of simulation throughput. In addition to prepar-
ing for full-scale production runs at stage 2, this study allowed us
to uncover the true scaling potential of innovative implementation
of SNAP MD on GPU platforms.

The scaling simulations were performed for a-C at 12 Mbars
and 5,000 K, using a constant number of particles (N), volume (V)
and temperature (T) (NVT ensemble) with the Langevin thermo-
stat to control temperature. The a-C sample was computationally
“synthesized” by rapid quenching liquid carbon at 6,000 K to 300
K in 100 ps, followed by a series of annealing cycles (heating to
2,000 K and cooling to 300 K). The quality of our computational
synthesis of a-C sample is judged by reproducing experimentally
observed fraction of sp3-coordinated C atoms in tetrahedral a-C -
86.4% at zero pressure. Once the a-C sample is prepared at ambient
conditions, it is compressed to a target pressure (12 Mbars) and sev-
eral annealing cycles are repeated to allow the atomic structure to
adjust to that of high-pressure a-C phase. To generate the samples
of varying sizes, the original 0.3 million atom sample is replicated
in each Cartesian direction and additional NVT MD simulations
were run at the initial temperature (∼5,000 K) for 20 ps to break the
artificial periodicity due to cell replication.

An MD timestep size of 0.5 fs was chosen to ensure conservation
of energy, as verified in a separate NVE test run that approximately
matched the same pressure and temperature of the production run.
The number of steps for the scaling studies performed is 100, which
is sufficient to get a consistent measure of average MD performance.
The measured performance for both weak and strong scaling tests
does not include infrequent I/O such as writing binary checkpoint
files and per-atom quantities to “dump” text files. However, this
cost is accurately measured during our production run during stage
2 of the project.

Once the scaling studies were finished and the optimal size of
the sample to achieve maximum performance on all 4,650 nodes
was determined, we proceeded with the second stage – produc-
tion simulations of the a-C→BC8 transition at the exact same PT
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Table 1: Properties of supercomputers utilized [24]

Top500 FP64 PFLOPS
Machine Rank Nodes GPU Accel. Peak LINPACK
Summit 2 4,672 Y 200.8 148.6
Perlmutter 5 1,536 Y 89.8 64.6
Selene 6 560 Y 79.2 63.5
Frontera 10 8,008 N 38.7 23.5

conditions as in the previous scaling studies. We designed our simu-
lation workflow to maximize the science return from this expensive,
∼111,600 node-hour simulation by sampling a-C→BC8 transitions
at various temperatures to gain an insight into kinetics of the phase
transition at large scale (Fig. 7). If transition happened at a particu-
lar temperature, the simulation continued until the entire sample
was converted to BC8 as judged by monitoring changes in poten-
tial energy per atom. Then the temperature was set to another
value, the initial sample was read in from restart file and a new
NVT simulation was performed at the new temperature. Within
our production runs, consisting of roughly 24 hours (cumulative),
we managed to sample three temperatures, 5,000, 5,300 and 5,500 K
(Fig. 7).

6.2 HPC Systems and Environment
The majority of our scaling and production runs were performed
on Summit, the leadership-class HPC system at Oak Ridge National
Laboratory. Summit consists of 4,672 nodes featuring dual-socket
IBM Power9 CPUs and 6 NVIDIA V100-16GB GPUs connected to-
gether using dual-rail Mellanox EDR 100G InfiniBand, non-blocking
Fat Tree interconnect topology.

In order to compare GPU and CPU performance, we also ran scal-
ing tests on the TACC Frontera leadership class HPC (CPU-only)
system at University of Texas. Frontera consists of 8,008 nodes fea-
turing dual-socket 28-core Intel Xeon Platinum 8280 (Cascade Lake)
CPUs connected by Mellanox Infiniband HDR-100 interconnect.

Finally we ran scaling tests on Selene and the latest addition to
the Top500 list, the Perlmutter machine. Selene consists of 560 nodes
featuring dual-socket AMD EPYC 7742 CPUs and 8 NVIDIA A100-
80GB GPUs connected by octorail Mellanox HDR 200GB Infiniband
interconnect. Perlmutter is comprised of 1536 nodes where each
node has 4 NVIDIA A100-40GB GPUs and a single AMD EPYC 7763
(Milan) CPUs. The nodes are connected by HPE Cray Slingshot
network switches and network interface cards (NICs).

Further details on each machine are given in Table 1.
The LAMMPS code including the SNAP ML-IAP was compiled

on Summit with CUDA 11.2.0, GNU 7.4.0, and IBM Spectrum MPI
10.3.1.2-20200121. The Kokkos library with the CUDA backend was
used for GPU acceleration. All runs were performed using one
MPI rank per GPU. LAMMPS at Frontera was compiled with Intel
19.1.1 and Intel MPI 19.0.9. The original (non-Kokkos) version of
SNAP was used on Frontera. LAMMPS on Selene was compiled
with CUDA 11.2.1, GNU 9.3.0, and OpenMPI 4.1, consistently using
the Kokkos library with the CUDA backend, with one MPI rank
per GPU. LAMMPS on Perlmutter was compiled with CUDA 11.0,
GNU 9.3.0 and Cray MPICH.

Table 2: FLOP count for different kernels.

Kernel FLOP/atom-step
SNAP force 1.731 × 106
Verlet time integrator 40
Langevin thermostat 19
Total 1.731 × 106

On Summit we used CUDA-aware MPI, but explicitly turned off
the GPU-direct driver-level communication mode using the “-gpu
-disable_gdr” flags for IBM Spectrum MPI. We found turning off
GPU-direct gave better performance for 1 billion atoms on the full
machine than the default settings (not shown here). On Selene we
also used CUDA-aware MPI, and on Perlmutter we used CUDA-
aware MPI that is available with the latest Cray MPICH.

6.3 Measurement metrics
In our performance measurements we used two major metrics - (1)
the total number of floating point operations per second (FLOPS)
and (2) normalized MD throughput, referred to as “MD perfor-
mance”. Although the first metric is self-explanatory, the second is
not. In this work, MD performance is measured in millions of atom
steps per node per second (Matom-steps/node-s), which is an ideal
normalized performance metric for comparing the performance of
large-scale MD simulations on HPC platforms, even between dif-
ferent IAP types, atom and node counts. Eq. 3 details how this MD
specific performance metric is calculated. FLOPS were measured
using the NVIDIA CUDA nvprof tool. All the scaling and produc-
tion simulations were performed using double precision floating
point arithmetic.

The number of floating point operations in the SNAP force cal-
culation depends on the number of atoms as well as the number
of neighbors, which in turn depends on the density of the sample.
The average number of neighbors for the initial configuration of
the small amorphous sample (used for benchmarking) was 27.1.
For the carbon model we fixed the other parameters that affect
the FLOP count, such as the radial cutoff distance of 2.7 Angstrom,
55 bispectrum coefficients, and the use of quadratic as opposed to
linear SNAP.

The number of double precision floating point operations for a
46,656 atom amorphous carbon sample run for 100 timesteps was
measured on a single GPU. At the beginning and end of the 100
timestep run, energy and pressure were computed and thermody-
namic output was written to the log file. The flops_dp metric in
nvprof captures non-atomic double precision floating point adds
and multiplies. Double precision atomic additions as motivated in
Section 5 were counted by hand and verified using the NVIDIA
Nsight Compute tool’s instruction counters. The SNAP force com-
putation, the Verlet time integrator, and the Langevin thermostat
kernels were profiled and the results are shown in Table 2. Other
kernels such as packing/unpacking MPI communication buffers
and the occasional building of the neighbor list contribute negligi-
ble FLOPS. The total average number of floating point operations
(including atomic-adds) for this sample was found to be 1.731× 106
per atom-step.
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7 PERFORMANCE RESULTS
The small amorphous sample profiled previously was replicated
in three dimensions to give ∼20 billion (19,683M) atoms. Due to
this periodic repetition we expect the number of floating point
operations measured previously to scale with the number of atoms
for this larger benchmark. We then ran the 20 billion atom sim-
ulation on 27,900 GPUs for 100 timesteps, and the timers in the
LAMMPS log file reported an average performance of 6.21 Matom-
steps/node-s, or equivalently 1.47 timesteps per second. We note
that the LAMMPS timers only measure the MD timestep loop, so
time setting up the run and MPI initialization/finalization are not
included. Combining this performance with the previously
measured FLOP count gives 50.0 PFLOPS (double precision)
on the full Summitmachine, or 24.9% of the theoretical peak
computing rate. Our SNAP implementation has no regular linear
algebra kernels yet achieves one-third of the measured LINPACK
performance on Summit, highlighting the extent of our optimiza-
tions for GPUs.

The DeepMD NN-based ML-IAP [30] recently reported a double
precision time-to-solution of 8.1 × 10−10 s/step/atom for ∼127 mil-
lion copper atoms on 4560 Summit nodes [39], which is equivalently
an MD performance of 0.271 Matom-steps/node-s. For 20 billion
carbon atoms on 4650 Summit nodes, our MD performance of
6.21Matom-steps/node-s is 22.9x higher than what DeepMD
reported, meaning our SNAP ML-IAP is significantly more
efficient than DeepMD while still achieving ab initio accu-
racy.

Amaximum of 4,662 nodes can be requested per job in the “batch”
queue on Summit. We chose to run on 4,650 nodes (27,900 GPUs)
for two reasons. The first is that 27,900 MPI ranks factor into a 3D
grid of nearly equal values: 30×30×31, minimizing the surface-to-
volume ratio of the communication halo exchange regions for our
cubic simulation box. The second is that this provides a small buffer
of extra nodes in case one or more nodes go down or are running
at sub-optimal performance.

Tominimize variation andmaximize performance in both scaling
and production runs, we ran a small LAMMPS test job on every
GPU independently. The average runtime was calculated, and any
GPUs that were significantly slower than the average were recorded.
While running our scaling and production runs, several (∼15) GPUs
outside this criterion were detected and the corresponding nodes
were reported to the system administrators. To mitigate the effect of
these unhealthy nodes on the performance of our full system runs,
we reserved 4,660 nodes (10 nodes more than we use in production
4,650 node runs) and used the LAMMPS test job to generate a list
of slow nodes on-the-fly. These nodes were then automatically
excluded at runtime when the MPI driver “jsrun” was executed in
the submission script.

A strong scaling study was performed on the amorphous carbon
sample running for 100 MD timesteps, as shown in Fig. 3. We
used several sample sizes: 1, 10, and 100 million, and 1, 4 and 20
billion atom a-C samples while varying number of nodes from the
minimum possible to all 4,650 nodes, the former being the minimum
number of nodes a particular sample size can fit into, e.g. 64 nodes
for 1 billion atom a-C sample and 972 nodes for 20 billion atom a-C
sample.
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Figure 3: Strong scaling: (a) time to solution in seconds per
step and (b) MD performance for amorphous carbon sam-
ples with 1,259,712; 10,077,696; 102,503,232; 1,024,192,512;
4,251,528,000 and 19,683,000,000 atoms. Total loop time was
measured for 100 MD steps. Perfect scaling is shown in (a)
as dashed lines. Perfect scaling in (b) would be a horizontal
line (not shown).

Fig. 3 shows excellent strong scaling behavior up to the full ma-
chine for samples with billions of atoms. For example, the 20 billion
atom simulation has 97% parallel efficiency when comparing the
performance of 4,650 nodes to 972 nodes. The 1 billion atom simula-
tion has 82% parallel efficiency when comparing 4,650 nodes to 64
nodes. The 10 million atom simulation has 41% parallel efficiency
when comparing 512 nodes to 1 node.

Fig. 4 shows a breakdown of the timings as reported by the
LAMMPS log file for different sample sizes on the full machine. The
relative percentage of communication grows as the computational
load decreases, hence increasing the atom count per GPU increases
the efficiency at full scale.

Fig. 5 shows weak scaling behavior using 373,248 atoms/node
(62k atoms/GPU), scaling from 1 to 4096 nodes and run for 100 MD
timesteps. There is a small drop in performance going from 8 to 64
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Figure 4: A breakdown of the time spent for different atom
counts on the full machine as measured by the timers in
LAMMPS. “SNAP” indicates time spent in the force computa-
tion, “MPI Comm” indicates time spent in communication,
and “Other” indicates time spent in I/O, the Langevin ther-
mostat, Verlet time integration, and other services.
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Figure 5: Weak scaling for amorphous carbon samples mea-
sured as MD performance vs node count. Sample sizes range
from 373,248 atoms to 1,528,823,808 atoms and correspond
to 373,248 atoms/node. Ideal scaling comparing to 1 and 64
nodes is indicated by dashed and dotted horizontal lines, re-
spectively.

nodes which is to be expected: Summit nodes are grouped in racks
of 18 and there is an associated inter-rack communications penalty
when crossing this threshold. Beyond this threshold excellent weak
scaling behavior resumes, giving 90% parallel efficiency on 4096
nodes compared to 1 node. This experiment affirmed that 373,248
atoms/node at full machine scale would provide a simulation rate
of 1 ns per day.

Fig. 6 compares the performance of the amorphous carbon bench-
mark on 4 out of the top 10 fastest HPC machines (as of June 2021),
strong scaling the 1 billion atom amorphous benchmark. Perfor-
mance on Summit is approximately 52 times faster per node than on
Frontera. Performance on Selene is about 1.9x faster than Summit
per node. For example, with a 20 billion atom run on 512 nodes of
Selene, we achieved 12.72 Matom-steps/node-s, which corresponds
to 11.14 PFLOPS or 14% of peak for the full machine. A similar
20 billion atom run on 1024 nodes of Perlmutter achieved
a 6.42 Matom-steps/node-s, corresponding to 11.24 PFLOPS
on just two-thirds of the machine.
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Figure 6: Comparison of performance between TACC Fron-
tera, OLCF’s Summit, NERSC’s Perlmutter, and NVIDIA’s
Selene supercomputers for an a-C sample containing
1,024,192,512 atoms.
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Figure 7: Sustained performance for realistic production
science runs of a-C→BC8 transformation. Simulation con-
sisted of 1,024,192,512 atoms on 4650 nodes. Loop time was
measured every 1000 MD steps. Large dips in performance
showfile I/O (e.g. writing binary checkpoint files). The small
rise in average performance in each simulation is associated
with the emergence of the ordered BC8 phase.

We note that the FP64 peak FLOPS on Selene and Perlmutter
includes the usage of FP64 tensor cores on the NVIDIA A100, which
cannot be utilized with SNAP because the evaluation does not map
onto matrix multiplication. It is not surprising that Selene has twice
the Matom-steps/node-s of Perlmutter because it has two times the
number of NVIDIA A100 GPUs. We also see a rough performance
parity between one Summit node and one Perlmutter node despite
Perlmutter having two fewer GPUs, owing to the generational
improvements between the two machines.

Fig. 7 shows the performance of our science production run,
investigating the a-C→BC8 phase transition at different tempera-
tures. Color represents restarts at different temperatures. Significant
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I/O was performed periodically during the runs, corresponding to
dips in the performance in Fig. 7. Atom coordinates, velocities,
and potential energy were written to text files (∼70 GB) every 40k
timesteps (20k during equilibration) for subsequent analysis. Binary
checkpoint files (∼85 GB) were also written at the same frequency.
In order to greatly improve file I/O performance, each MPI rank
wrote to its own separate file in parallel on the file system. Thermo-
dynamic output and timing was written to the log file every 1000
steps. An increase in performance can also be seen as the disordered
amorphous phase transitions to the ordered BC8 phase in different
parts of the production run.

Another periodic performance overhead is rebuilding the neigh-
bor list. The neighbor list used an extra “skin” distance of 2.0
Angstroms. Atom coordinates were checked every 10 timesteps and
the list was rebuilt only if one or more atoms had moved past half
of the skin distance.

The part of the 1 billion atom production represented by the
orange curve in Fig. 7 had an average sustained performance (in-
cluding I/O) of 5.24 Matom-steps/node-s for over 6 hours, which
corresponds to a 1.03 ns/day simulation rate. Other parts of the
science run shown by different colors in Fig. 7 had similar perfor-
mance.

As noted previously, the LAMMPS timers only measure inside
the MD timestep loop (including I/O). However, the total LAMMPS
setup time (including reading a checkpoint file) for the 1 billion
production run was less than 4 minutes, which is small compared
to the 6 hours of sustained performance mentioned previously. The
MPI initialization/finalization time on 4650 nodes is also small:
the entire time to initialize, run, and finalize the 1 billion amor-
phous benchmark for 100 timesteps is only ∼3 minutes. There-
fore, we consider the 5.24 Matom-steps/node-s as performance of
the “whole application including I/O”. The performance of the
1 billion atom production run is only 16% lower than that
of the 20 billion atom amorphous benchmark (6.21 Matom-
steps/node-s) which achieved 50.0 PFLOPS.Neglecting the cost
of I/O, the performance of the production run is expected to be
slightly higher than a similar amorphous benchmark since the pro-
duction run includes simulating the ordered BC8 crystal, which
runs faster than the amorphous phase as shown in Fig. 7.

A point of future work is the use of reduced precision within the
SNAP calculation. At this time the numerical and thermodynamic
stability of such an implementation over a long simulation time is
an open question outside of the scope of this work, though there
is a long-standing precedent for the viability of reduced precision
approaches in many, but not all, IAP calculations [47, 48]. We do
have a pure single precision implementation of the SNAP potential
(results not shown); the literature on other IAP suggests that a hy-
brid single/double or single/fixed precision implementation would
be necessary for simulation stability.

8 IMPLICATIONS/IMPACT
Our simulation project was specifically designed to showcase the
transformative science advance enabled by a combination of algo-
rithmic innovations in the implementation of quantum-accurate,
machine-learning SNAP molecular dynamics on GPUs and an ex-
clusive access for 24 hours to the entire Summit machine, the

Figure 8: 1 billion carbon atom MD simulation of the
a-C → BC8 phase transition (Top) Average potential energy
per atomversus time showing a global phase transition from
the higher energy a-C precursor to themore stable BC8 crys-
talline form. (Bottom) Visualizations of the partially and
fully transformed material, with atoms colored by poten-
tial energy. The darker regions are the lower energy BC8
phase. Note the thin lines of higher energy indicating loca-
tions where multiple BC8 nuclei have grown into one an-
other forming nascent grain boundaries.

second most powerful HPC system in the world. We have suc-
cessfully achieved our overarching objective – to demonstrate
record-breaking sustained performance (5.24 Matom-steps/node-
s) of SNAP MD during the 111,600 node-hour production run on
all 4,650 Summit nodes, while simulating a billion atom carbon
sample at experimentally relevant hundreds of nanometers and
nanosecond length and time scales.

Our production run “computationally synthesized" the long-
sought BC8 phase of carbon emerging from the amorphous carbon
(a-C) precursor at extreme conditions of density and temperature.
Our simulation uncovered the fundamental mechanism for the
a-C→BC8 phase transformation which involves nucleation and
growth of polycrystalline grains of BC8 phase in amorphous matrix,
see Fig. 8. The 0.2 nanosecond time scale over which the simulated
transition occurs is accessible to in-situ dynamic X-ray diffraction
imaging during ultra-fast laser-driven dynamic compression exper-
iments at the DOE/NNSA National Ignition Facility (NIF).

The broader science impact of our project is the demonstration
of the unprecedented power of extreme-scale quantum-accurate
MD simulations to predict novel physical phenomena and guide
experiments towards observing them, thus avoiding time consum-
ing trial and error experimentation. Our simulation team is part
of a joint computational-experimental collaboration that aims to
perform experiments at NIF and also Sandia National Laboratories’

10



0.4 0.6 0.8 1
Distance (µm)

0

2

4

St
re

ss
 (M

ba
r)

Longitudinal (σzz)
Shear (τxz)
Shear (τyz)

elastic frontinelastic front

22.3km/s
18.3km/s

Figure 9: SNAPMDsimulation of split elastic-inelastic shockwave propagating along <110> crystallographic direction in single
crystal diamond. The compression is driven by a pistonmovingwith constant velocity vp = 7.0km/s. The sample contains 1.756
billion atoms with cross-section 0.1 × 0.1 𝝁m2 and length 1 𝝁m. The elastic precursor propagates with the velocity 22.3 km/s.
The second inelastic wave, colored red in the top image, propagateswith the velocity 18.3 km/s, while displaying an unexpected
mechanism of stress relaxation in brittle diamond.

Z pulsed power facilities, both of which are planning future exper-
iments based on our predictive simulations. Another illustrative
example of the unprecedented insight provided by accurate MD sim-
ulations at this scale are the simulations of shock wave propagation
in a micron-thick diamond sample, which have uncovered a novel
atomic-scale mechanism of inelastic deformation rendered in Fig. 9.
Thus billion atom MD simulations are critical to make direct connec-
tion with experiment. By measuring the time-dependent velocity
of the sample’s rear surface due to the arrival of the compression
wave with very fine spatial (up to 0.1 nm) and time (less than 2 ps)
resolution in experiment, directly comparing with that obtained
in MD simulations complemented by atomically-resolved, frame-
by-frame images of non-equilibrium processes behind compressive
wave from MD (see, for example, Fig. 9), fundamental mechanisms
of phase transitions under dynamic loading will be uncovered.

The excellent HPC performance of the SNAP MD force ker-
nel in the LAMMPS molecular dynamics package enabled by the
Kokkos CUDA backend will be directly transferable to planned lead-
ership computing platforms. In the case of the Intel GPU Aurora
exascale machine planned for Argonne National Laboratory, the
DPC++/SYCL (OneAPI) and/or OpenMPTarget Kokkos backends
will allow us to port our code with minimal changes [49]. Similarly
in the case of the AMD GPU Frontier exascale machine planned
for Oak Ridge National Laboratory, the Kokkos HIP backend will
complement the CUDA backend that we used on Summit [50]. On
these machines, the code optimizations described here will allow
us to advance the frontiers of quantum-accurate MD simulations
towards simulating trillion atom samples. Moreover, these algo-
rithmic and performance improvements are extendable to future
emerging heterogeneous node architectures containing multi-core
processors and many-core accelerators.

The performance achievements demonstrated here are also not
limited to this particular application or material system. For exam-
ple, the same excellent SNAP performance has also been demon-
strated in many other computational materials science applications,

including simulations of plasma-material interactions [46, 51], and
radiation damage [52] on leadership platforms that make use of
NVIDIA GPUs (ORNL Summit, LLNL Sierra). Because the code we
have developed here has been merged into the public distribution of
LAMMPS, it is available to the growing number of independent re-
search groups that have adopted SNAP for developing and running
their own machine-learning potentials.
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