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We show how graph theory can be combined with quantum theory to calculate the elec-
tronic structure of large complex systems. The graph formalism is general and applicable
to a broad range of electronic structure methods and materials, including challenging sys-
tems such as biomolecules. The methodology combines well-controlled accuracy, low compu-
tational cost, and natural low-communication parallelism. This combination addresses substan-
tial shortcomings of linear scaling electronic structure theory, in particular with respect to
quantum-based molecular dynamics simulations. C 2016 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4952650]

I. INTRODUCTION

The importance of electronic structure theory in materials
science, chemistry, and molecular biology relies on the
development of theoretical methods that provide su�cient
accuracy at a reasonable computational cost. Currently, the
field is dominated by Kohn-Sham density functional theory,1–4

which often combines good theoretical fidelity with a modest
computational workload that is constrained mainly by the
diagonalization of the Kohn-Sham Hamiltonian—an operation
that scales cubically with the system size. However, for
systems beyond a few hundred atoms, the diagonalization be-
comes prohibitively expensive. This bottleneck was removed
with the development of linear scaling electronic structure
theory,5,6 which allows calculations of systems with millions
of atoms.7,8 Unfortunately, the immense promise of linear
scaling electronic structure theory has never been fully realized
because of some significant shortcomings, in particular, (a)
the accuracy is reduced to a level that is often di�cult, if not
impossible, to control; (b) the computational pre-factor is high
and the linear scaling benefit occurs only for very large systems
that in practice often are beyond acceptable time limits or
available computer resources; and (c) the parallel performance
is generally challenged by a significant overhead and the wall-
clock time remains high even with massive parallelism. In
quantum-based molecular dynamics simulations,9 all these
problems coalesce and we are constrained either to small
system sizes or short simulation times.

In this paper we propose to overcome these shortcomings
by introducing a formalism based on graph theory10,11

that allows practical and easily parallelizable electronic
structure calculations of large complex systems with well-

a)amn@lanl.gov

controlled accuracy. The graph-based electronic structure
theory combines the natural parallelism of a divide and
conquer approach12–17 with the automatically adaptive and
tunable accuracy of a thresholded sparse matrix algebra,18–31

which can be combined with fast, low pre-factor, recursive
Fermi operator expansion methods32–41 and can be applied
to modern formulations of Born-Oppenheimer molecular
dynamics.42–50

The article is outlined as follows: first we introduce the
graph-based formalism for general sparse matrix polynomials
expanded over separate subgraphs, thereafter we apply the
methodology to the Fermi-operator expansion in electronic
structure theory with demonstrations for a protein-like
structure of polyalanine solvated in water, before analyzing
applications in molecular dynamics simulations. At the end
we give our conclusions.

II. GRAPH-BASED ELECTRONIC
STRUCTURE THEORY

A. Expansions of thresholded sparse
matrix polynomials

Our graph-based electronic structure theory relies on the
equivalence between the calculation of thresholded sparse
matrix polynomials and a graph partitioning approach. Let
P(X) be a Mth-order polynomial of a N ⇥ N symmetric
square matrix X that is given as a linear combination of some
basis polynomials T (n)(X),

P(X) =
MX

n=0

cnT (n)(X). (1)

We define an approximation P⌧(X) of P(X) using a globally
thresholded sparse matrix algebra, where matrix elements

0021-9606/2016/144(23)/234101/8 144, 234101-1 © Author(s) 2016.
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with a magnitude below a numerical threshold ⌧ in all terms,
T (n)(X), are ignored. The pattern of the remaining matrix
entries, which at any point of the expansion have been (or
are expected to be) greater than ⌧, can be described by a
data dependency graph S⌧ that represents all possible data
dependencies between the matrix elements in the polynomial
expansion. Formally, we define the graph S⌧ with a vertex for
each row of X and an edge (i, j) between vertices i and j if

{T (n)(X)}i, j � ⌧ for any n  M. (2)
For a matrix A, we denote by bAcS⌧ the thresholded version
of A, where

�
bAcS⌧

 
i, j
=

8><>:
Ai, j if (i, j) is an edge of S⌧
0 otherwise

. (3)

The thresholded polynomial P⌧(X) of P(X) with respect to S⌧
is given by

P⌧(X) =
MX

n=0

cnT
(n)
S⌧ (X), (4)

where the thresholded T (n)
S⌧ (X) can be calculated from a linear

recurrence

T (n)
S⌧ (X) = ↵nbXT (n�1)

S⌧ (X)cS⌧ +
n�1X

m=0

↵mT (m)
S⌧ (X), (5)

with T (0)
S⌧ (X) = I. A key observation of this paper is that the

calculation of P⌧(X) in Eqs. (4) and (5) is equivalent to
a partitioned subgraph expansion on S⌧. This approach is
illustrated in Fig. 1. For any vertex i of S⌧, let si⌧ be the
subgraph of S⌧ induced by the core (meaning belonging to a
single subgraph) vertex i and all halo (shared) vertices that
are directly connected to i in S⌧. Then the ith matrix column
of P⌧(X) is given by the thresholded expansion determined by
si⌧ only, i.e.,

FIG. 1. The data dependency graph S⌧ and the subgraphs (si⌧ or sk⌧ ), one for
each core vertex (i or k) including all directly connected halo vertices in S⌧.
The full matrix polynomial P⌧(X ) is given by an assembly from P(x[si⌧]) of
the separate dense subgraph contractions x[si⌧].

{P⌧(X)}:, i =
�
P(x[si⌧])

 
:, j . (6)

Here j is the column (or row) of the polynomial for the
subgraph si⌧ containing all edges from the core vertex i that
corresponds to column i of the complete matrix polynomial on
the left-hand side. x[si⌧] is the small dense principal submatrix
that contains only the entries of X corresponding to si⌧. The full
matrix P⌧(X) can then be assembled, column by column, from
the set of smaller dense matrix polynomials P(x[si⌧]) for each
vertex i. The calculation of a numerically thresholded matrix
polynomial P⌧(X) thus can be replaced by a sequence of
fully independent small dense matrix polynomial expansions
determined by a graph partitioning.

Equation (6) represents an exact relation between a
globally thresholded sparse matrix algebra and a graph
partitioning approach, which is valid for a general matrix
polynomial P(X), including all terms to any order. An
explicit code example illustrating the equivalence is given
in the supplementary material76 and a more rigorous graph-
theoretical proof will be published elsewhere.61 Several
observations can be made about this equivalence: (i) P⌧(X) is
not symmetric and with the order of the matrix product for
the threshold in Eq. (5) we collect P⌧(X) column by column
in Eq. (6) as illustrated by the directed graph at the bottom
of Fig. 1; (ii) the accuracy of the matrix polynomial increases
(decreases) as the threshold ⌧ is reduced (increased) and the
number of edges of S⌧ increases (decreases); (iii) we may thus
include additional edges inS⌧ without loss of accuracy; (iv) the
polynomial P⌧(X) is zero at all entries outside of S⌧; (v) apart
from spurious cancellations, the non-zero pattern of P⌧(X) is
therefore the same as S⌧ and we can expect a numerically
thresholded exact matrix polynomial, bP(X)c⌧, to have a
non-zero structure similar to S⌧; (vi) the graph partitioning
can be generalized such that each vertex corresponds to a
combined set of vertices, i.e., a community, without loss
of accuracy; (vii) we may reduce the computational cost
by identifying such communities using highly e�cient o↵-
the-shelf graph partitioning schemes that can be tailored
for optimal platform-dependent performance; (viii) the exact
relation given by Eqs. (4)–(6) holds for any structure of S⌧
and is not limited to the threshold in Eq. (2); (ix) the particular
sequence of matrix operations in the calculation of P⌧(X) is of
importance because of the thresholding in Eq. (5), whereas the
order (or grouping) of the matrix multiplications is arbitrary
for the contracted matrix polynomials P(x[si⌧]) in Eq. (6);
and (x) the computational cost of each polynomial expansion
is dominated by separate sequences of dense matrix-matrix
multiplication that can be performed independently and in
parallel.

B. Graph-based Fermi-operator expansion

A main point of this paper is that the equivalence between
the calculation of the thresholded sparse matrix polynomial
and the graph partitioned expansion in Eq. (6) provides a
natural framework for a graph-based formulation of linear
scaling electronic structure theory. In Kohn-Sham density
functional theory, the matrix polynomial in Eq. (1) is replaced
by the Fermi-operator expansion3,51,52 where
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P(H) = D =
f
e�(H�µ) + 1

g�1 ⇡
MX

n=0

cnT (n)(H). (7)

Here D is the density matrix, H the Hamiltonian, µ the
chemical potential, and � the inverse temperature. The matrix
functions, T (n)(X), are typically Chebyshev polynomials
constructed by a recurrence equation as in Eq. (5). With a
local basis set, H and P(H) have sparse matrix representations
above some numerical threshold for su�ciently large non-
metallic systems.5,6 The graph-based construction of sparse
matrix polynomials in Eq. (6) can then be applied to the
calculation of the density matrix with the data dependency
graph S⌧ estimated from an approximate prior density matrix
that is available in an iterative self-consistent field (SCF)
optimization or from previous time steps in a molecular
dynamics simulation. The computation can be accelerated
with a recursive Fermi-operator expansion.32–37,39–41 In the
zero temperature limit the Fermi function equals the Heaviside
step function ✓ and a recursive expansion is then given
by D = ✓(µI � H) = limn!1 fn( fn�1(. . . f0(H) . . .)), which
reaches a high expansion order much more rapidly compared
to the serial form in Eq. (1). With fn(X) being 2nd-order
polynomials35 we reach an expansion order of over a billion in
only 30 iterations. The ability to use a fast recursive expansion
is motivated from (ix) above, and since any recursive
expansion also can be written in the general form of Eq. (1).
Once the density matrix D is known, the expectation value of
any operator A is given by hAi = Tr[DA]. Generalizations to
quantum perturbation theory are straightforward.53,54

The Fermi-operator expansion in Eq. (7) is based on an
orthogonal representation of H and P(H). A generalization
for a non-orthogonal expansion, D0 = P0(H 0), where the
prime indicates a non-orthogonal basis set representation,
is in principle straightforward. If Z is the inverse factor
of the basis-set overlap matrix S such that ZTSZ = I, then
D0 = ZP(ZTH Z)ZT . In our numerical test and analysis below,
only orthogonal formulations are considered.

III. NUMERICAL TESTS AND ANALYSIS

A. Macromolecular test system

Figure 2 shows the error per atom in the density matrix of
the band energy, Eband = Tr[DH], calculated with the graph-
based formulation above for a 19 945-atom macromolecular
system of polyalanine solvated in water, Fig. 3 (see
Appendix B). The calculations were performed using self-
consistent charge density functional tight-binding theory55–57

as implemented in the electronic structure program LATTE58

in combination with the recursive second-order spectral
projection (SP2) zero-temperature Fermi-operator expansion
scheme.35 The data dependency graphs, S⌧, were estimated
by thresholding an “exact” density matrix with varying
thresholds, ⌧. Di↵erent numbers of subgraph communities
(512, 1024, or 2048) were chosen and optimized with the
METIS heuristic multilevel graph partitioning package59 for
the di↵erent data dependency graphs (one for each threshold)
using the multilevel recursive bisection method. The errors
were determined in comparison to the “exact” density matrix,

FIG. 2. The error in the calculated density matrix (DM) for polyalanine (2593
atoms) in water with a total of 19 945 atoms (in Fig. 3) as measured by the
Frobenius norm (normalized per atom) for partitions with 512, 1024, and
2048 separate communities based on graphs, S⌧, from varying numerical
thresholds ⌧. The connected symbols (lower part) show the error in band
energy, Eband=Tr[HD], in units of eV per atom.

which was calculated using regular sparse matrix algebra with
a tight threshold of 10�12. The error is fairly insensitive to
the number of graph partitions and is instead controlled by
the value of the threshold that is used to estimate the data
dependency graphs. In contrast, the computational cost varies
significantly with the size of the graph partitions. The cost in
the limit of only one large community, containing the whole
system, or in the opposite limit, with one partition for each
orbital, scales as O(N3) or O(Nm3), respectively, where m
is the average number of edges per vertex in S⌧ and N ⇥ N
is the size of H . A straightforward graph partitioning may
thus lead to a significant overhead compared to a Fermi-
operator expansion using thresholded sparse matrix algebra,5
which scales as O(Nm2). However, with an optimized graph
partitioning the total cost can be reduced to scale as O(Nm2)
(see Appendix A). A similar optimization can be performed
for divide and conquer methods, but may not be applicable to

FIG. 3. Polyalanine (2593 atoms) solvated in water with a total of 19 945
atoms.
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inhomogeneous systems.17 Figure 4 shows the timing (12 s, red
dashed line) for a thresholded sparse matrix algebra (SpM Alg)
Fermi-operator expansion with Intel’s MKL sparse matrix
library30 running in parallel on a dual eight-core CPU. With the
graph-based approach (filled circles) using the METIS graph
partitioning (Graph Part.) program for varying numbers of
communities, it is possible to significantly reduce the run time
on the same platform (23 s) compared to, for example, a single
atom-based decomposition. The graph-based formalism also
has the additional advantage of an almost trivial and highly
scalable parallelism as is demonstrated by the run times on 1,
16, or 32 graphics processing units (GPUs) on separate nodes
(open symbols).60 The parallel performance is close to ideal,
reaching a performance of about 25 µs/atom and a subsecond
wall-clock time (0.5 s) on the 32 node GPU platform.

As is demonstrated here, the o↵-the-shelf graph partition-
ing scheme works very well and drastically reduces the over-
head compared to a straightforward implementation. However,
by adjusting the graph partitioning to the particular require-
ments of the electronic structure calculation as well as the
computational platform, further optimizations are possible.61

B. Molecular dynamics simulation

Linear scaling divide and conquer methods12–17 rely
on an estimated finite range of direct electron interaction,
which can be motivated by the localized character of the
Wannier functions.62–64 This allows a system to be partitioned
into smaller overlapping regions that are solved separately
(apart from long-range electrostatic interactions), within pre-
determined local interaction zones, and then reassembled.
Divide and conquer schemes are naturally parallel and in spirit
similar to our graph-based approach. However, their numerical
accuracy can be di�cult to control without careful prior testing
and convergence analysis.6,65,66 An automatic, adjustable error
control is particularly challenging in molecular dynamics
simulations of inhomogeneous materials, where reacting

FIG. 4. The time to calculate the density matrix using the SP2 expansion
(with threshold ⌧ = 10�5) partitioned over di↵erent sets of subgraphs for the
solvated polyalanine system (19 945 atoms). The time to calculate the graph
partitioning (about 0.4 s in a serial single node calculation with METIS) is
not included in the run time. In a molecular dynamics simulation the com-
putational overhead from the graph partitioning can be reduced significantly
since, in practice, only in-frequent partial updates are needed.

or floppy molecules and atoms can move across pre-
determined local interaction zones and where transitions
between localized and itinerant electronic states may occur.
Molecular dynamics simulations of inhomogeneous molecular
systems with significant changes in the electronic overlap
are therefore of particular interest when we evaluate our
framework. Furthermore, the precision can be gauged very
sensitively by the accuracy and long-term stability of the total
energy, which is a↵ected by the accuracy in the calculation
of the potential energy surface in each time step and by the
accumulated and integrated error in the forces.

The data dependency graph S⌧(t) can be estimated
from the numerically thresholded density matrix in the
previous molecular dynamics time step, bD(t � �t)c⌧, and
new Hamiltonian matrix elements, H(t), as the atoms move,
for example, from

S⌧(t) b(bD(t � �t)c⌧ + H(t))2c✏. (8)

In our molecular dynamics simulation below, we use the
symbolic representation of S⌧(t) in Eq. (8), which is given
from the non-zero pattern of the thresholded density matrix
(with ⌧ = 10�4) combined with the non-zero pattern of
H(t), and instead of the matrix square we use paths of
length two, corresponding to the symbolic operation (✏ = 0).
This approach that adapts S⌧(t) to each new molecular
dynamics time step by including additional redundant edges
works surprisingly well (see Appendix C), though with the
estimate above, S⌧(t) cannot increase by more than paths of
length two between two molecular dynamics steps. However,
generalizations including longer paths are straightforward and
the similar estimates can also be applied in the iterative SCF
optimization.

Figure 5 shows the fluctuations of the total energy during
a microcanonical molecular dynamics simulation of liquid
water that was performed using LATTE58 and the extended
Lagrangian formulation of Born-Oppenheimer molecular
dynamics.50,67–70 The density matrix was calculated from
a partitioning over separate subgraphs of S⌧(t), with one
water molecule per core. For the Fermi-operator expansion
(at zero temperature) we used the recursive SP2 algorithm.35

In each time step the complete SP2 sequence (the same for
each subgraph expansion) for the correct total occupation is
pre-determined from the HOMO-LUMO gap that is estimated
from the previous time step as in Ref. 41. In this way each full
expansion can be performed independently, without exchange
of information during or between each matrix multiplication
as otherwise would be required.8,28 Communication is reduced
to a minimum and no additional adjustments of the electronic
occupation, as in divide and conquer calculations,14 is
required. The inset of Fig. 5 shows the number of water
molecules of a single subgraph (core + halo) along the
trajectory of an individual molecule, which oscillates as S⌧(t)
adaptively follows the fluctuations in the electronic overlap.
Despite the large oscillations, including between 1 and 25
molecules, the total energy is both accurate and stable. The
“exact” calculation with fully converged density matrices (�4
SCFs per step) using dense matrix algebra based on full
O(N3) diagonalization, is virtually indistinguishable for the
first 0.5 ps (or 1000 time steps).
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FIG. 5. The total energy fluctuations in a microcanonical Born-Oppenheimer
molecular dynamics (BOMD) simulation of liquid water (100 molecules,
T ⇠ 300 K, �t = 0.5 fs), using graph partitioning and one density matrix (DM)
construction per step vs. SCF optimized BOMD with diagonalization (Diag.).
The inset shows the number of water molecules associated with the subgraph
of an individual molecule. Energy drift is less than ⇠0.2 µeV/atom per ps.

Linear scaling molecular dynamics simulations using
divide and conquer or radial truncation approaches often show
systematic energy drifts71–73 that are significantly higher than
regular O(N3) methods9,42,43 and multiple orders of magnitude
larger than the graph-based molecular dynamics simulation
in Fig. 5. Such problems may occur because of di�culties
controlling the error in the force evaluations6,74 as atoms
move across the local zone boundaries and as the electronic

FIG. 6. The convergence of the density matrix error for a snapshot during a
molecular dynamics simulation of the water system in Fig. 5 (100 molecules,
T ⇠ 300 K, �t = 0.5 fs) as a function of the computational cost for various
numerical thresholds (⌧ = 10�1,10�2, . . .,10�6) in the symbolic estimate of
the data-dependency graph in Eq. (8) for the graph-based method, and for
di↵erent sizes of the cuto↵ radius, Rcut, in a divide and conquer approach.
To capture a hypothetical electronic overlap within the red dashed border in
the inset (associated with the data-dependency graph S⌧ for the large red
molecule at the center), the cuto↵ radius needs to be large, which leads to
a significant overhead for the divide and conquer approach. The e�ciency
would be similar only for a homogeneous system. The computational cost was
estimated from the sum of the number arithmetic operations (a.o.) required
to calculate the density matrices (⇠m3 a.o.) from all the separate subgraph
partitions or divide and conquer regions (given by m⇥m matrices)—one for
each water molecule.

overlap fluctuates, or because of incomplete SCF optimization
causing a broken time-reversal symmetry.42,75 The problem is
illustrated in Fig. 6, which shows a comparison between a
divide and conquer approach and our graph-based calculation
of the density matrix for a snapshot from a molecular
dynamics simulation of the water system in Fig. 5. Without
the adaptivity of the graph-based method, the divide and
conquer approach needs a large cuto↵ radius, Rcut, to reach
su�cient convergence in the calculation of the density matrix
for the water system, which leads to a significant overhead.
With the graph-based framework as demonstrated here in
combination with a modern formulation of Born-Oppenheimer
molecular dynamics,42–50 these problems can be avoided.

IV. CONCLUSIONS

In this article we have shown how graph theory can be
combined with quantum theory to calculate the electronic
structure of large complex systems with well-controlled
accuracy. The graph formalism is general and applicable to a
broad range of electronic structure methods and materials, for
which sparse matrix representations can be used, including
molecular dynamics simulations, overcoming significant gaps
in linear scaling electronic structure theory.
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APPENDIX A: O(Nm2) SCALING ESTIMATE
WITH AN OPTIMIZED GRAPH PARTITIONING
FOR THE FERMI-OPERATOR EXPANSION

Figure 7 shows the set of the vertices associated with one
part of the data dependency graph that forms each contracted
dense submatrix in the graph-based Fermi operator expansion.
The inner set of this subgraph belongs to the core part and
the outer set, called halo, contains the vertices not in the core,
but adjacent to at least one core vertex. Each vertex from the
core belongs to exactly one part whereas the halo will overlap
with other subgraphs. We assume a uniform data dependency
graph with m edges connected to each vertex. The total cost
(CGr) of the graph-based Fermi operator expansion of a full
Hamiltonian matrix of dimension N ⇥ N , i.e., with a data
dependency graph with a total of N vertices, as measured by
the number of arithmetic operations (one arithmetic operation
= 1 multiplication + 1 addition), can then be estimated by
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FIG. 7. Illustration of the geometry of a single graph partition. For simplicity,
each part is assumed to have the same parameters p, q, r , and k , where p is
the number of vertices in the core, q is the number of vertices in the halo, r
is the radius of the core, and r +k is the radius of the whole part.

CGr = M
N
p
(p + q)3, (A1)

where M is the number of matrix-matrix multiplications in
the Fermi operator expansion (typically between 20 and 40
multiplications are required). In dimension d (1, 2, or 3) the
relation between the total number of vertices p + q included
within the radius r + k, assuming a uniform distribution of
nodes, is given by

p � 1 + q = cd(r + k)d, (A2)

for some dimensional dependent constant cd, and for the inner
halo we have that

p � 1 = cdrd. (A3)

The 1 is subtracted assuming that a single vertex has no
extension alone with a radius r = 0. In the limit r ! 0 the
number of vertices q in the halo is equal to the number of
edges m of each vertex, i.e.,

m = cdkd. (A4)

This means that r = c�1/d
d

(p � 1)1/d and k = c�1/d
d

m1/d and

CGr = M
N
p
�
cd(r + k)d

�3

= M
N
p

⇣
cd(c�1/d

d
(p � 1)1/d + c�1/d

d
m1/d)d

⌘3

= M
N
p

⇣
c1/d
d

(c�1/d
d

(p � 1)1/d + c�1/d
d

m1/d)
⌘3d

= M
N
p

�
(p � 1)1/d + m1/d�3d

. (A5)

We can now determine the optimal size of the core
partitioning from the minima of the arithmetic cost, i.e.,
when dCGr/dp = 0. This leads to the equation

(2p + 1)(p � 1)1/d�1 = m1/d, (A6)

from which we get

m =
(2p + 1)d
(p � 1)d�1 = (2p + 1)

 
2p + 1
p � 1

!d�1

= (2p + 1)
 
2 +

3
p � 1

!d�1

= (2p + 1)
 
2d�1 +

3(d � 1)2d�2

p � 1
+O

 
1

(p � 1)2

!!

= 2dp + 2d�1 + 3(d � 1)2d�1 p
p � 1

+O(p�1). (A7)

Hence, for m � 1, the cost is minimized for p
= 2�dm � (3d � 2)/2 +O(m�1), or, approximately, p ⇡ 2�dm.
Inserting this approximate value of p we find that

CGr ⇡ 2dM
N
m

 
1
2

m1/d + m1/d
!3d

= 2dM
N
m

 
3
2

m1/d
!3d

= 2dM Nm2
 

3
2

!3d

= M Nm2
 

27
4

!d
. (A8)

This optimized cost should be compared to the cost of
using sparse matrix-matrix multiplication (SpM) in the Fermi
operator expansion, which has the estimated cost in terms of
arithmetic operations

CSpM = M Nm2. (A9)

The ratio between these two costs is thus given by

CGr

CSpM
⇡

 
27
4

!d
. (A10)

The computational overhead of the graph-based expansion in
terms of the number of arithmetic operations with respect
to a Fermi operator expansion using sparse matrix-matrix
multiplications is thus a factor of about 7, 46, and 308
(d = 1,2,3). The overhead is system size independent and is
governed by the dimensionality of the data dependency graph
as given by Eqs. (A2) and (A3) and the figure. Our estimate
is based on a number of idealized assumptions but illustrates
that the general O(Nm2) scaling behavior of a thresholded
sparse matrix algebra is achievable also with the graph-
based approach. It also highlights an improved e�ciency for
quasi low-dimensional problems such as molecular liquids,
polymers, and protein structures. In addition, the ability to
reach close to peak performance using the dense matrix
algebra for the subgraph partitions, combined with an almost
trivial parallelism requiring only a minimal amount of data
transfer, provides a significant advantage and simplification
compared to a sparse matrix algebra techniques.

APPENDIX B: CONSTRUCTION OF POLYALANINE
IN WATER

The test system we used for the analysis is based on a
19 945 atoms system of polyalanine (2593 atoms) in liquid
water as illustrated in Fig. 3. We have chosen alanine because
it is possibly the simplest chiral amino acid which allows for
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the formation of stable secondary structures. In consequence,
with this simple peptide, we can build models which will
include linear, ↵-helix, and �-sheet polyalanine secondary
structures introducing extra complexity to the system which
is ultimately desired for testing the graph-based electronic
structure framework. The construction of the model is done
following four systematic steps: (1) Construction of a linear
helix chain; (2) application of an artificial compression along
the principal axis (z axis); (3) an NPT equilibration of 100 ps
in vacuum followed by solvation with water molecules; and
(4) a geometry optimization of the full system. In the first
two steps we used GROMACS version 5.0.4 with the OPLS
force field and in the last two steps we used the self-consistent
charge density functional based tight-binding code LATTE.
The density of the final globular structure is around 0.7 g/ml,
which is a reasonable value for globular proteins.

APPENDIX C: ADAPTIVE ESTIMATE OF THE DATA
CONNECTIVITY GRAPH

The adaptivity of the estimate for the data connectivity
graph in Eq. (8) can be understood from the illustration in
Fig. 8 as two separate subsystems, Da(t � �t) and Db(t � �t),
move closer together and get connected through a Hamiltonian
overlap term, Hab(t). The estimated data dependency graph,
Sab(t), includes paths of length two, i.e., the “double jumps”
indicated by the dashed lines. The connectivity graph, Sab(t),
can then be partitioned into a subgraph from which we can
collect a new density matrix, D(t), which after a numerical
threshold, bD(r)c⌧, gives a new starting point for the next time
step. This process allows new connections to form and vanish
as the system evolves, which is illustrated by the hypothetical
electronic overlap of bD(r)c⌧ at the bottom of the figure, with
two new connections and one removed.

APPENDIX D: EXPERIMENT
AND ARCHITECTURE DETAILS

All the runs shown in Figs. 2 and 4 used the Moonlight
cluster at LANL (with each node comprised of 2 eight-core
Intel Xeon E5-2670 CPUs running at 2.6 GHz) and 2 Nvidia

FIG. 8. Illustration of the adaptive evolution of the data dependency graph,
Sab(t), between two time steps in a molecular dynamics simulation.

Tesla M2090 GPUs per node. Only 1 GPU per node was
used for the distributed runs shown in Fig. 3 in the main
paper. The software environment included the GNU 4.8.2 C
compiler with OpenMP, the MKL 11.2 matrix algebra library,
and OpenMPI 1.6.5 (for distributed runs). 16 OpenMP threads
were used in all cases. CUDA and the CuBLAS matrix algebra
library were used for the GPU SP2 implementation.

The experimental setup for Fig. 2 was as follows.
Initially, the sparse matrix recursive SP2 Fermi expansion
was run on the polyalanine in water system using threshold,
⌧ = 10�12. The resulting density matrix was thresholded with
⌧ = 10�3, 10�4, 10�5, 10�6, 10�7, and 10�8. Those thresholded
graphs were used to generate the METIS graph partitionings
for 512, 1024, and 2048 partitions using the multilevel
recursive bisection scheme (gpmetis-ptype = rb). Runs were
made for each partitioning (512, 1024, 2048) at each threshold
level (10�3 to 10�8). The resulting density matrix in each case
was compared to the density matrix from the SP2 run with
threshold, ⌧ = 10�12. The error in the new calculated density
matrices was measured by the Frobenius norm (normalized
per atom), as well as the error in band energy, Eband = Tr[HD],
per atom. These runs were made on a single node of the
Moonlight cluster.

The experimental setup for Fig. 4 was as follows. Initially,
SP2 Fermi-operator expansion was run on the polyalanine in
water system using threshold, ⌧ = 10�5 using sparse matrix
algebra. The resulting density matrix was used as an estimate
of the data dependency graph S⌧ for the generation of METIS
graph partitionings of size 64, 128, 256, 512, 1024, 2048,
and 4096. Graph-based SP2 runs were performed for each
partitioning with dense matrix algebra, i.e. with threshold,
⌧ = 0. The distributed graph-based runs took advantage of
hybrid parallelism combining the use of MPI, OpenMP, and
GPU parallelism on 1, 16, and 32 CPU-GPU nodes. The
SP2 algorithm using the threshold ⌧ = 10�5 and the MKL
compressed sparse row (CSR) format run on a single node of
the Moonlight cluster is shown for comparison.

The wall-clock time required to calculate the density
matrix using regular sparse matrix algebra with an optimized
shared memory parallelism running on a single CPU node
is reduced by a factor of 133 with the optimized graph
partitioning approach on the 32 node GPU platform. The
(strong-scaling) ability to reach subsecond wall-clock times
in the calculation of the density matrix is critical for many
molecular dynamics simulations that often require hundreds
of thousands of time steps.
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