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How do proteins fold so quickly? Some denatured proteins fold to
their native structures in only microseconds, on average, implying
that there is a folding “mechanism,” i.e., a particular set of events by
which the protein short-circuits a broader conformational search.
Predicting protein structures using atomically detailed physical mod-
els is currently challenging. The most definitive proof of a putative
folding mechanism would be whether it speeds up protein structure
prediction in physical models. In the zipping and assembly (ZA)
mechanism, local structuring happens first at independent sites along
the chain, then those structures either grow (zip) or coalescence
(assemble) with other structures. Here, we apply the ZA search
mechanism to protein native structure prediction by using the
AMBER96 force field with a generalized Born/surface area implicit
solvent model and sampling by replica exchange molecular dynamics.
Starting from open denatured conformations, our algorithm, called
the ZA method, converges to an average of 2.2 Å from the Protein
Data Bank native structures of eight of nine proteins that we tested,
which ranged from 25 to 73 aa in length. In addition, experimental !
values, where available on these proteins, are consistent with the
predicted routes. We conclude that ZA is a viable model for how
proteins physically fold. The present work also shows that physics-
based force fields are quite good and that physics-based protein
structure prediction may be practical, at least for some small proteins.

protein structure prediction " replica-exchange molecular dynamics

There are two protein folding problems: one is physical and one
computational. The physical problem is a puzzle about how

proteins fold so quickly. In test-tube refolding experiments, protein
molecules begin in a disordered denatured state (a broad ensemble
of microscopic conformations) and then fold when native condi-
tions are restored. On the one hand, folding must be stochastic: a
protein’s native structure is reached via many different microscopic
trajectories from the broad ensemble of different starting dena-
tured conformations. On the other hand, folding happens quickly,
sometimes averaging only microseconds to reach the ordered native
conformation (1). How does the process of searching and sorting
through the protein’s large conformational space of disordered
states happen so rapidly? And how is the same native state reached
from so many different starting conformations? This puzzle has
been called ‘‘Levinthal’s Paradox’’ (2). Even the simplest disorder-
to-order transitions, like the crystallization of sodium chloride, take
days. It follows that the conformational search, although stochastic,
cannot be random.

The second folding problem is computational: predicting a
protein’s native structure from its amino acid sequence. Success in
this area could lead to advances in computer-based drug discovery.
Predicting protein structures has become increasingly successful
(3–7). Most current protein structure prediction methods make
some use of database-derived conformational preferences. How-
ever, for the following reasons, it would be desirable to achieve
high-resolution protein structure prediction in models that are
purely physics-based, i.e., those that do not rely on information
contained in protein structure databases. First, it would put our
understanding of protein structures and driving forces on a deeper
and more physical foundation. For example, such methods could
elucidate the physical routes of protein folding. Second, it would
allow the prediction of non-native states, too, those that are of

interest for protein folding kinetics and stability, or for the induced-
fit binding of ligands, or other conformational changes.

A longstanding viewpoint has been that solving the physics
problem of how proteins physically fold up can help to solve the
computational problem of protein structure prediction. Some pro-
teins require as little as microseconds to fold into their native
structures, yet supercomputers cannot fold them, even in times
requiring tens of years, so what insights are missing from our
computer prediction methods? If we had sufficient insight about
how proteins fold, could we use them to speed up protein structure
prediction algorithms?

Historically, mechanistic insights into folding processes have
come from experimental studies of folding kinetics on model
proteins. It has been suggested that folding is hierarchical, that
secondary structures form earlier than tertiary structures, and/or
that secondary structures nucleate tertiary contacts (8–14). Some
of these features have been observed in computer unfolding
simulations (15).

However, experimentally derived folding routes are not sufficient
to provide the kind of folding principle that is needed to inform
conformational search algorithms. A folding route is a description
of a sequence of events, typically the formation of secondary
structures, that has been observed for one protein under one set of
conditions. In contrast, a folding principle would involve a quan-
titative model that starts from any microscopic chain conformation,
for any sequence, and predict fast routes to the native state. The
latter requires vastly more information, and therefore is not deriv-
able from the former.

Protein folding experiments have yet to definitively prove or
disprove any particular folding mechanism because such experi-
ments ‘‘see’’ only highly averaged ensemble structures, rather than
microscopic trajectories. Hence, at the present time, the most
definitive strategy for proving or disproving any putative folding
mechanism is rooted in the statement of the folding problem itself:
can a computer be taught to fold a protein rapidly by using a purely
physics-based model?

To succeed at physics-based protein structure prediction, there
have been two questions: (i) are the force fields good enough? and
(ii) is the conformational sampling sufficient? There are well known
problems with commonly used molecular mechanics force fields.
AMBER94 is known to overstabilize helices, whereas AMBER96
favors extended structures (16, 34). OPLS/AA and GROMOS96
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have difficulty discriminating between the polyproline type II and
!-strand basins in the Ramachandran maps of small peptides (17,
18). Yoda et al. (19) conducted multicanonical simulations of
several small peptides (the "-helical C-peptide of ribonuclease A
and the C-terminal !-hairpin of protein G) by using six common
force fields (AMBER94, AMBER96, AMBER99, CHARMM22,
OPLS/AA/L, and GROM0S96) and concluded that all of these
force fields have different propensities to form secondary structures
because of the differences in backbone torsional energies. In
addition, the popular implicit solvation models have been shown to
overstabilize ion pairs (20, 21) or too strongly favor the burial of
polar amino acids (22).

However, there are some successes, indicating that the physical
force fields are good. In an early milestone paper, Duan and
Kollman (23) performed a microsecond molecular dynamics sim-
ulation of the 36-residue villin headpiece in explicit solvent starting
from an unfolded conformation, reaching a collapsed state 4.5 Å
rmsd from the NMR structure. Vila et al. (24), starting from a
random configuration, folded the 46-residue protein A to within
3.5 Å using Monte Carlo dynamics with an implicit solvation model.

Some groups have recently achieved higher accuracies. The IBM
Blue Gene group of Pitera and Swope (25) folded the 20-residue
Trp-cage peptide in implicit solvent to within ! 1 Å by using 92 ns
of replica-exchange molecular dynamics (REMD). With
Folding@Home, a distributed grid computing system, Pande
and coworkers (26–28) folded villin to a rsmd of 3 Å in a
computational time of !300 #s, or !1,000 central processing unit
(CPU) years. Villin is the largest protein that has been accurately
folded to date by using a purely physics-based model, to our
knowledge. However, we note that the studies by Pande and
coworkers and Pitera and Swope were not protein structure pre-
dictions, but rather large-scale simulations exploring the nature of
folding thermodynamics and kinetics. Larger simulations have also
been conducted, but they involve unfolding from the experimental
structure; for example, the replica-exchange simulation of the
46-residue protein A in explicit water on HP ASCI Q, one of the
world’s largest supercomputers (29). To our knowledge, no !-sheet
protein beyond 20 residues has previously been successfully folded
(30). However, importantly, the studies cited here do show that
current state-of-the-art force fields are adequate for protein struc-
ture prediction, at least in the few small proteins tested so far.

The implication is that the main bottleneck to physics-based
protein structure prediction is that conformational search methods
are too slow. It is believed that stochastic simulation methods,
Monte Carlo or molecular dynamics, for example, cannot reach
sufficiently long time scales on current computers. Therefore, a
putative folding principle would be found to be most useful and
predictive if it specifies folding routes that could substantially speed
up the computer-based prediction of native protein structures in
physics-based simulations.

We ask here whether high-resolution protein structure prediction
can be achieved in a physical model in more than one or two small
proteins. We use the the AMBER96 force field as implemented in
the AMBER 7 package (31), with the generalized Born (GB)/
surface area (SA) implicit solvent model of Tsui and Case (32) and
sampling (REMD) (33). Although there are well known flaws in
various force fields, we found AMBER96 to be better balanced for
various secondary structures than other force field/solvation models
we tested with the solution model used here. In addition, of key
importance here, we use a mechanism-based search strategy we call
zipping and assembly (ZA), which, we believe, is the strategy that
proteins use to fold. ZA samples only a very small fraction of the
conformational space that traditional methods would otherwise
sample; it is this mechanism-based searching that allows us to
efficiently sample the relevant parts of conformational space.

According to the ZA mechanism, upon the initiation of folding
conditions, an unfolded chain first explores locally favorable struc-
tures at multiple independent points within the chain. These local

structures are conformational basins of low free energy, typically
stabilized by one or two hydrophobic contacts and often containing
small "-helical or !-turn structures. While only transiently stable on
their own, such local structures can then recruit neighboring amino
acids in the chain sequence to form additional contacts, growing
individual local structures (zipping) or combining them by coales-
cence (assembly); in either case, the protein chain becomes increas-
ingly ordered. This mechanism is supported by studies of lattice-
model proteins showing that this type of nonexhaustive greedy
searching can find globally optimal states for a large fraction of
sequences and by studies of master-equation models showing
consistency with "-value experiments (35, 36).

In the ZA method (ZAM), the chain is first chopped into 8- to
12-residue fragments with overlapping residues. Each segment
subjected to 5 ns per replica of REMD (33) starting from a fully
extended conformation. To sample the fragment conformations
adequately, our REMD temperatures span from 270 to 690 K (37).
We analyze the results by using weighted histogram analysis (38,
39). Most fragments sample a broad ensemble of structures, but
some fragments form stable hydrophobic contacts with well formed
turns or helical shapes, as determined from the potential of mean
force (PMF) for each possible pair of hydrophobic residues in the
segment. For the fragments with stable hydrophobic contacts, we
then loosely enforce those contacts with added restraints, then grow
the fragment by adding more residues in extended form. New
REMD simulations are then performed on those larger fragments.
A new PMF analysis is performed to see whether new hydrophobic
contacts are formed. Such growth attempts are continued to
identify additional stable contacts until no further such contacts can
be found. Then the algorithm switches to fragment assembly, a
process that brings together two or more pieces to attempt further
structure formation (see Methods for details).

Results and Discussion
Control Simulations Starting from Experimental Structures. Before
we attempt to predict a native structure, we must first verify that the
force field is an adequate model, i.e., that computer simulations do
not drift away from the known experimental native structure under
native conditions under extensive conformational sampling. The
force field was tested on the proteins listed in Table 1. We
conducted a number of simulations initiated from the experimental
native structures, running REMD (33) for 10 ns per replica (details
described in Methods). Although stability over the finite duration of
such simulations does not prove that there is no more stable region
of phase space, it is a minimal requirement that the force field must
pass. To prove that a force field is not adequate, it would suffice to
show that a protein that is known to be stable from experiments
would unfold under the force field under native conditions.

Table 1. Convergence properties (C" rmsds)

Protein name Length, Å

rmsd, Å

Experiment Simulation

Protein A (1BDD) fragment (residues
11–56)

46 1.9 1.5

Albumin-binding domain protein
(1PRB) fragment (residues 10–53)

44 2.4 2.2

"3D (2A3D) 73 2.85 2.9
Protein G (2GB1) 56 1.6 1.7
Ubiquitin (1UBQ) fragment (residues

1–35)
35 2.0 1.2

YJQ8 (Pin) WW domain (1E0N)
fragment (residues 7–31)

25 2.0 1.0

FPB28 WW domain (1E0L) fragment
(residues 6–31)

26 2.2 2.5

"-spectrin SH3 (1SHG) fragment
(residues 6–62)

57 2.3 1.3

src-SH3(1SRL) (fragment residues 9–64) 56 6.0 3.8
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The main results are as follows. Seven of the nine proteins
considered here did not drift #3 Å C" rmsd away from the
experimental starting structures over the course of the simulation,
suggesting that this force field is adequate for these proteins. In the
case of "3D, the molecule deviated from the Protein Data Bank
(PDB) structure by up to 4 Å rmsd, but the mobility was mainly in
the loop regions; the rmsd over the helical regions, excluding these
loops, remained within 2.6 Å.

Comparison with the Experimental PDB Structures. We performed
two kinds of tests. First, Fig. 1 (ZA vs. PDB) compares the
structures predicted by ZAM with the corresponding experimental
native structures from the PDB. ZAM produces an ensemble of
structures. We use the centroid of the dominant cluster as repre-
sentative. The comparison of ZA vs. PDB is a combined test of both
the force field and the search method. Second, a more direct test
of the search method alone is to compare ZA with the force field’s
best (FFB) structure (ZA vs. FFB). The FFB structure is a
representative conformation taken from the most populous cluster
that was reached by REMD simulations that were started from the
experimental structure.

In general, the differences between ZA and FFB structures
average only !1.6 Å rmsd, indicating that for those seven proteins,
the search method has converged to the native basin of the force
field (Table 1). For src-Src homology 3 (SH3), ZA fails to find any
structure better than 5 Å from the experimental structure (ZA vs.
PDB). In that case, the problem appears to be the GB/SA implicit
solvation model. Similar problems have been observed before of ion
pairs that are too stable in proteins having charged side chains (20).

Some Predicted Folding Routes. In our computational process, ZAM
generates one or more folding routes, depending on the protein. In
our simulations of protein A, helices 2 and 3 form first, then pack
together, followed by the addition of the C-terminal helix 1. This
result is consistent with the relative stabilities of the helices and
intermediates that were found by Garcia and Onuchic in their
explicit-solvent REMD simulations (29) and with experiments
(41, 42).

ZAM finds that the albumin binding domain folds by first
forming the C-terminal helix (helix 1), which then extends this helix.
Helices 2 and 3 form independently, then assemble onto helix 1. The
three helices of "3D form independently, and then assemble to
form the full helix bundle.

The C-terminal 16-residue fragment of protein G is known from
experiments to be stable by itself and has been studied by physics-
based computational modeling (27, 43, 44). However, the full
56-residue protein has previously been beyond the range of high-
accuracy predictions by molecular mechanics force fields. In our
simulations, the folding of protein G (described in detail in Meth-
ods) begins with hydrophobic contacts forming in the N- and
C-terminal !-turns, followed by hairpin formation. The C-terminal
hairpin recruits the hydrophobic residues of the helical region to its
core, causing the helix to form and pack against it. Finally, the
N-terminal hairpin and the helix-C-terminal hairpin folded units
assemble, completing the core.

We also studied the 35-residue N-terminal fragment of ubiquitin.
In its ZA folding route, the 10-residue inner hairpin (Val-5–Thr-14)
containing the !-turn is the first to form, followed by growth of the
hairpin to its full length of 17 residues. The "-helix forms indepen-
dently, then assembles onto the !-hairpin.

For both of the WW domains we studied (1E0N residues 7–31
and 1E0L residues 6–33), the two hairpins (!1–!2 and !2–!3) form
independently at first, but the only successful folding route not
ending up in a nonproductive trap involves adding the third strand
(!3) onto the !1–!2 hairpin.

The "-spectrin SH3 domain contains five antiparallel !-strands
packed to form two perpendicular !-sheets. Folding begins by
zipping the three-stranded !2–!3–!4 sheet, followed by the addition
of the seven-residue diverging turn (DT) and four more residues to
the end of the DT, before a favorable hydrophobic contact between
the RT loop and !4. Then the chain zips from the N terminus to
form hydrophobic contact Tyr-15–Met-25 within the RT loop. The
rest of the chain is zipped up in the last step, completing the
structure. Folding steps for three additional proteins ("3D, protein

Protein A

Ubiquitin fragment (res 1-35)

Protein G

FBP28 WW Domain (res 6-31)

α-spectrin SH3

α3D

YJQ8 WW Domain (res 7-31)

Albumin-binding domain protein

src-SH3

Fig. 1. Ribbon diagrams of the predicted protein structures using the ZAM (purple) vs. PDB structures (orange). The backbone C" rmsds with respect to PDB
structures are: protein A, 1.9 Å; albumin-binding domain protein, 2.4 Å; "3D, 2.85 Å (excluding the residues in the loops) or 4.6 Å; 1–35 residue fragment of
ubiquitin, 2.0 Å; protein G, 1.6 Å; FBP26 and YJQ8 WW domains, 2.2 Å and 2.0 Å; and "-spectrin SH3, 2.2 Å. Our method fails to find the src-SH3 structure. Shown
here is a conformation that is 6 Å from native. The problem in this case appears to be in the GB/SA implicit solvation model.
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A, and "-spectrin) can be found in supporting information (SI)
Fig. 4.

Kinetic Impact vs. Experimental ! Values. To determine whether our
ZAM folding routes are consistent with experiments, we computed
Thomas Weikl’s (45) kinetic impact quantity for each of the
secondary structural elements based on stability and order of
emergence of the units. According to his quantity, secondary
structures are assigned a high kinetic impact value if those struc-
tures form early in the folding process and lead to the formation of
other structural units, a low kinetic impact value if they form late,
and an intermediate value if they form at some stage of folding in
between. The relative stability of a structure is also taken into
account: when two structures form in parallel in a kinetic model, a
medium kinetic impact value is assigned to the one that is less stable.
Following Weikl, we do not attempt finer discrimination here than
high, medium, and low. To compare kinetic impacts with averaged
experimental " values, we use the following values for the kinetic
impact factor: high (0.6–0.8), medium (0.5–0.3), and low (0.2–0).
We compared the computed kinetic impact with average experi-
mental " values for their secondary structural elements (see Fig. 2).
We applied the method to protein A, the Pin (YJQ8) WW domain,
"-spectrin SH3, and protein G.

Based on these simple rules, the kinetic impact values that we
computed from our ZA simulations for "-spectrin SH3 are as
follows: the three-stranded !-sheet !2–!3–!4 rapidly forms first by
zipping, and, because !3 and !4 are more stable than !2, !3 and !4
are assigned a high kinetic impact value and !2 a moderate value.
The formation of !2–!3–!4 leads to the diverging turn and RT turns,
which have moderate experimental " values. The strands !1 and !5
form last in our simulations, so they have low kinetic impact values,
also consistent with experimental " values.

The kinetic impact values computed from the ZA folding routes
correlate well with average " values measured for the proteins
tested (see Fig. 2). The exceptions are that the !2 strands of protein
G and "-spectrin are estimated to have moderate kinetic impact,
whereas the experimental average " values are negative, although
negative values also imply kinetic importance in the folding pathway
(46). The good general correlation between kinetic impact factors
and experimental " values suggests that the ZAM routes in our
simulations are consistent with experiments. However, as noted
above, the experiments are, by their nature, much too highly
ensemble-averaged to prove or disprove that the ZAM routes are
physically correct.

Comparison with Other Protein Structure Prediction Methods. David
Baker and colleagues (7), using their Rosetta algorithm, have
recently achieved an important milestone in protein structure
prediction. Their predictions are ‘‘high resolution,’’ which we define
to mean: (i) a backbone rsmd from the experimental structure over
the entire protein (rather than just selected parts) of $3 Å, (ii)
achieving this level of experimental agreement routinely (i.e., for a
significant fraction of proteins tested), rather than rarely, and (iii)
consistent performance over different classes of folds. For 10 of 16
proteins $85 aa in length, Baker’s group (7) recently reported the
prediction of native structures to 3 Å or better, averaging 4.7 Å over
the entire set of 16. The 3-Å threshold is important because at this
level computer-based models of proteins may be as good as
experimental x-ray or NMR structures for initiating drug discovery
(47). The Rosetta high-resolution method requires !0.5 CPU years
to predict each protein structure. It appears to represent the state
of the art in protein structure prediction for modeling that incor-
porates database-derived insights and does not require a template
having high sequence identity.

For comparison, straightforward molecular dynamics simula-
tions combined with molecular mechanics force fields have folded
small proteins without using database-derived information. For
example, the Pande group (26–28) has used the distributed com-
puting platform Folding@Home to fold the 16-residue C-terminal
!-hairpin from protein G and the 36-residue villin headpiece to
within 3 Å backbone rsmd of the experimental NMR structures;
Pitera and Swope (25) have used REMD to fold the 20-residue
Trp-cage miniproteins; and the Simmerling group (30) has simu-
lated the folding of a designed three-stranded !-sheet by using
multiple independent trajectories. The aim of those studies using
explicit water was not rapid prediction of protein structures. We
have shown here that the ZAM algorithm predicts native structures
for eight of nine proteins tested, up to 74 aa in length, to an average
of 2.2 Å from their experimental structures, using just a physics-
based force field without database-derived preferences.

Conclusions
Here, we have explored ZA, which is both a hypothesis about the
routes by which a protein folds and a mechanism-based conforma-
tional search method for predicting the native structures of proteins
from their amino acid sequences. We give the most extensive
evidence to date that physics-based force fields are adequate for
protein structure prediction. We show that physics-based methods
can achieve the same high resolution currently found otherwise only
in the best bioinformatics methods, at least for small proteins.
However, so far, we have tested only nine proteins, so we do not yet
know whether the method handles larger proteins. We have not
tested it in blind tests such as the CASP protein structure prediction
event, and we believe that limitations of the force field will be
problematic in some cases, as we found for the src-SH3 domain.

The ZA model can explain how physical protein folding can be
so efficient, despite the diversity of microscopic trajectories and
differences among protein structures. It hypothesizes that proteins
use a divide-and-conquer strategy: small local independent peptide
fragments of the chain establish conformational preferences, upon
which further structure then grows and assembles. The premise is
that the earliest time scales of folding are too short for the chain to
explore more nonlocal aspects of its conformational space, and thus
that early-stage folding is a greedy process of minimal conforma-
tional entropy loss per step. Those local structures that have
sufficient metastability on the fast time scales are then able to grow
and assemble increasing amounts of structure on longer time scales.

Because no experimental method is yet available that captures
sufficient microscopic detail to give the relative probabilities of the
different microscopic folding trajectories, the best evidence for a
folding mechanism is simply its utility: can the method predict
routes that speed up computer-based protein folding? The ZA
conformational sampling method is substantially faster than

Fig. 2. Experimental average " values (black bars) and estimated kinetic impact
values (gray bars) based on ZA folding routes for protein G, WW domain (Pin),
protein A, and "-spectrin SH3. The kinetic impact value ranges are high (0.6–0.8),
medium (0.3–0.5), and low (0–0.2).

11990 " www.pnas.org#cgi#doi#10.1073#pnas.0703700104 Ozkan et al.



straightforward Monte Carlo or molecular dynamics simulations.
Using ZA, protein G, which has 56 aa, folds computationally in
!360 CPU days, or !1 CPU year, on a single 2.8-Ghz Xeon Intel
machine.

Methods
Molecular Mechanics Model and Simulation Protocol. REMD (33)
was used to sample the conformation space during the growth and
assembly stages of the ZA algorithm. REMD periodically attempts
to exchange conformations between independent molecular dy-
namics simulations running in parallel at different temperatures,
based on a Metropolis-like criterion. This allows individual replicas
to heat up to overcome barriers and then cool back down to
temperatures of interest. It has two main advantages: (i) REMD
explores more conformational space than conventional molecular
dynamics techniques (48) and (ii) REMD samples from the ca-
nonical ensemble at each temperature, giving estimates of free
energies, not just energies.

Proteins and fragments were modeled with the AMBER96 force
field (31) with a GB implicit solvent model (32) and a SA penalty
term of 5 cal!mol%1!Å%2. All fragments were capped at the N and
C termini with acetyl and N-methylamine blocking groups, respec-
tively, to avoid undue influence from the zwitterionic termini. All
simulations were conducted by using a custom Perl script wrapper
around the sander program from the AMBER7 molecular dynam-
ics package. Replica temperatures were exponentially distributed
over the range 270 to 690 K, with the number of replicas chosen to
give average exchange acceptance probabilities of !50%. Ex-
changes were attempted every picosecond, between which energy-
conserving molecular dynamics was used with a 2-fs time step.
Velocities were randomized from a Maxwell-Boltzmann distribu-
tion after each exchange attempt to ensure sampling from the
canonical ensemble at the appropriate temperature.

The ZAM Algorithm. We illustrate ZAM by describing how it folds
protein G (shown in Fig. 3). According to the ZA model, on the
shortest time scales, the chain does not have time to explore more
than a few local degrees of freedom in any chain segment. Thus, in
the ZA strategy, small peptide fragments of the chain first search
for metastable structures, independently of other segments, i.e., in
the absence of the rest of the chain. The computer first determines
the locations within the protein chain at which structure might
preferentially begin to form.

Because of limitations in our computer resources, we have done
this first step of parsing into peptides in two different ways. For a
few of the proteins (i.e., protein G, protein A, and "-spectrin SH3
domain), the process has been random, systematic, and not guided
by knowledge of the native structure. In those cases, the chain is
chopped into overlapping fragments 8–12 residues in length (e.g.,
residues 1–12, 5–16, 9–20, etc.). The fragments are chosen to be
eight residues in length unless it is necessary to extend the chain up
to 12 residues in length to include two hydrophobic residues. We
then determine whether each peptide finds a metastable structure,
by the method described in ref. 49. We believe that this strategy may
work in general, because 133 different peptides from six different
proteins are found to be structured by using our same force-field
approach (49). For other proteins, we accelerate the first stage by
simply choosing sites that we guessed would be nucleation points,
based on knowing the native structure. The ZA algorithm then
found routes to the folded states from those initiation sites. The
latter tests prove that there are routes to the native structure that
we would have found from the systematic random chopping process
described above, but it does not show whether there might have
been alternative routes, and it does not show what dead-ends or
kinetic traps or misfolded structures might have hindered the
search, if we had allowed a broader set of nucleation sites.

After discarding the first 2.5 ns per replica to equilibration, most
such peptide fragments are found to populate a broad ensemble of

structures. Some fragments, however, have strong conformational
preferences based on a coarse-grained $–% angles of backbone
representation called mesostrings (49). One can calculate mesos-
tring entropy by using the Boltzmann formula S & %k 'i pi ln pi,
where pi is the probability that the peptide is in the mesostring i. The
fragments having low mesostring entropy can be considered as early
folding nuclei to initiate the zipping (49).

Stable hydrophobic contacts within the fragments where the
zipping is initiated are located by computing the PMF as a function
of C" distance between each possible pair of hydrophobic residues
using weighted histogram analysis (38, 39). We identify all hydro-
phobic contacts that exhibit a substantially deep minimum in the
distance range 0 to 8 Å in their PMF plots (see SI Fig. 5 for details).
At this stage, evaluation of the PMF plots and the decision about
which hydrophobic contacts needs to be restrained are not yet
automated. The first tests show that automation can be done in two
ways: (i) we compute the probability of a contact (i.e., integrating
the PMF plots based on the contact distance &7 Å), hydrophobic
residue pairs with contact probabilities #50% are considered as the
contacts to be restrained; and (ii) we divide the PMF plot in two
regions, the contact-forming region of distance separation (the
region between 0 and 8 Å of distance separation) and contact
breaking region (the region between 10 and 14 Å of the distance
separation between two hydrophobic residues). We locate the
minima in these two regions and compute the difference in free
energy of these two minima. All contacts with contact free energies
more stable than 2.0 kcal/mol are considered stable and become
proposals for restraints.

To speed equilibration without affecting the final structure, we
have found that seeding the REMD simulations with configura-

1.

6.

5.

4.

3.

2.

7.

a

b

Fig. 3. ZA process for protein G. The chain is parsed into fragments of 8–12
residues. For each fragment, REMD simulation is performed for 5 ns per replica.
PMFs are computed to determine whether a fragment is structured or unstruc-
tured. For protein G, the PMFs reveal that the C-terminal hairpin and the N-
terminal ! hairpin each form favorable hydrophobic contacts independently. For
each segment that is structured, a spring is added to enforce that structure. Then
new residues are added to the fragment ends (‘‘growth’’) for another round of
REMD simulation. For protein G, this results in the complete formation of both
hairpins, with a helix packing onto the C-terminal ! hairpin (b). When growth is
no longer possible, as in protein G, the two folded units attempt to assemble,
which, in this case, successfully leads to the native structure (a).
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tions taken from the Baker I-sites library to be useful in accelerating
the convergence of computed PMFs if the fragments appear in the
library with #80% confidence (50). For protein G shown here, we
did not use this acceleration process.

For protein G, two fragments from this initial stage, Tyr-45–
Phe-52 and Ile-6–Gly-15, contain stable hydrophobic contacts. To
explore whether these transient contacts are able to recruit addi-
tional contacts, we conduct a growth phase whereby the fragment
is extended to incorporate additional hydrophobic residues. More
simulation is conducted to compute a conditional PMF to deter-
mine whether additional contacts may be stable in the presence of
the first ones. The contact identified in the previous step is
restrained by using a potential applied to the distance between C!

atoms that is zero over the distance range [0,6.0) Å, harmonic with
a force constant of 0.5 kcal!mol%1!Å%2 over [6.0,6.5) Å and linear
thereafter with continuous slope at 6.5 Å. In a small fraction of
cases, such as " spectrin SH3, examination of all interresidue PMFs
indicated that a hydrogen bond may have a smaller variance than
a hydrophobic contact; in these cases, hydrogen bond distances are
restrained instead. At each growth step, four additional residues are
added in the extended configuration to each end of the fragment.
Another set of REMD simulations is performed on all fragments
that have been grown in this way, and a new set of conditional PMFs
is computed. Such growth attempts are then repeated to identify
additional stable contacts until no further such contacts can be
found, at which point the algorithm switches to fragment assembly,
described below.

In the case of protein G, the first fragment identified for growth
initially spans residues 45–52 and contains contact Tyr-45–Phe-52.
We then enforce this contact with a restraint as described above,
and four additional residues are added to each end, so that the new
fragment contains residues 41–56, the entire C-terminal !-hairpin.
Similarly, the other fragment that has metastable structure, which
includes the contact Ile-6–Gly-15, is subjected to the same treat-
ment. Iterating this procedure leads to a highly structured segment
(residues 28–56) containing a helix packing onto a strand and a
!-hairpin in the N-terminal segment (residues 1–20).

In some cases, for example, protein A and "-spectrin SH3, this
zipping procedure alone is sufficient to reach the native state. In
other cases, the fragments grow only to a point at which the addition
of new residues to the segment forms neither additional structure
nor favorable hydrophobic contacts. In those cases, the ZA algo-
rithm then attempts to assemble the existing structures. To assem-
ble, two nonoverlapping fragments are selected from the growth
stage, the intervening residues are incorporated, and an ensemble

is generated of different relative conformations of those pieces. A
new REMD simulation is then initiated from this ensemble of
configurations, and more simulations are conducted, retaining all of
the previously imposed restraints, until new contacts and additional
structure are formed, as determined by the PMF criterion.

Either of two different methods has been found satisfactory for
generating an ensemble of relative orientations of these fragments:
(i) the anisotropic network model (ANM) or (ii) uniformly sam-
pling the backbone torsion angles of the intervening chain before
a new round of REMD sampling. ANM begins with coordinates of
a structure, connects adjacent residues, based on a cut-off distance,
with a spring, and computes elastic models by using a Hessian
connectivity matrix (40). We diagonalize this matrix, decompose it
into its eigenvectors, and take the two slowest (i.e., most global)
eigenmodes. We add this (fluctuation) vector to the current atomic
coordinates of the chain, up to the inverse force constant with a
scaling factor of 10, to generate an ensemble of relative positions of
the two pieces. Or, one residue near the center of the intervening
chain in the assembly unit can be chosen randomly, from which we
generate nine conformers by letting the $ and % angles each take
on three values, %180 or (60°.

Protein G reaches a stage where growth terminates when the
fragments span residues 1–20 and 28–56, so the algorithm then
attempts to assemble these fragments by using an anisotropic
network model. To speed up assembly, we add additional spring
constraints either when PMFs of hydrophobic interactions indicate
a contact, as described above, or when the side-chain centroid
distance between a pair of hydrophobic residues is $10 Å and
closing to half of its initial distance in 600 ps. We then restart the
REMD simulation in the presence of these springs until conver-
gence. For protein G, PMFs for possible hydrophobic contacts
obtained by weighted histogram analysis indicate further pairing of
nonlocal hydrophobic contacts between Leu-5–Phe-30, Tyr-3–Ala-
26, Leu-5–Phe-52, Leu-5–Trp-43, Tyr-3–Phe-52, Leu-7–Val-54, and
Ala-20–Ala-26. At the end of the process, all restraints are removed
and an additional REMD simulation is conducted to ensure the
resulting structure is stable on its own, irrespective of the ZA folding
pathway.
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