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Reproducibility Challenge
• Rounding (truncation) error makes floating-point addition non-associative

• Finding: Sum becomes a random walk across the space of possible rounding 
error

Exact (current work)

Double precision

Standard deviation of sum with 
random summation orders

Distribution of sum with random 
summation orders

Double precision

𝑎 + 𝑏 + 𝑐 ≠ 𝑎 + 𝑏 + 𝑐 !



High-Precision (HP) Method
• Propose an extension of the order-invariant, higher-precision 

intermediate-sum method by Hallberg & Adcroft Par. Comput. 40, 140 (’14)

• The proposed variation represents a real number r using a set of N 64-
bit unsigned integers, ai (i = 0, N-1)

• k is the number of 64-bit unsigned integers assigned to represent the 
fractional portion of r (0 ≤ k ≤ N), whereas N-k integers represent the 
whole-number component

• Negative number is represented by two’s complement in integer 
representation, using only 1 bit
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If you are the first to find the problem, the simplest solution suffices 
to prove the concept



Performance Projection
• HP sum is faster than Hallberg sum for higher precision & 

larger numbers of summands

Speedup(HP/Hallberg) > 1 

Speedup(HP/Hallberg) < 1 

Higher Precision

More
Massive
Sum

P. E. Small et al., Proc. IEEE IPDPS, p. 152 (’16)
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Hierarchy of Atomistic Simulation Methods
Molecular Dynamics (MD)

First principles-based reactive force-fields
• Reactive bond order {BOij}
 ® Bond breakage & formation
• Charge equilibration (QEq) {qi}
 ® Charge transfer
Tersoff, Brenner, Sinnott et al.; Streitz & Mintmire et al.; 
van Duin & Goddard (ReaxFF) 

Nonadiabatic quantum 
MD (NAQMD)

Adaptive
EMD

Reactive MD (RMD)

Train



Scalable Simulation Algorithm Suite

QMD (quantum molecular 
dynamics): DC-DFT

RMD (reactive molecular 
dynamics): F-ReaxFF

MD (molecular dynamics): 
MRMD

• 4.9 trillion-atom space-time multiresolution MD (MRMD) of SiO2
• 67.6 billion-atom fast reactive force-field (F-ReaxFF) RMD of RDX 
• 39.8 trillion grid points (50.3 million-atom) DC-DFT QMD of SiC

parallel efficiency 0.984 on 786,432 Blue Gene/Q cores



Exascale Computing Challenge
1. Scalability beyond million-way parallelism
 
Divide-conquer-recombine (DCR) algorithmic framework 
Metascalable (“design once, scale on future architectures”)

Divide-and-conquer Recombine

ACM/IEEE SC13

Range-limited n-tuple
computations

J. Chem. Phys. 140, 18A529 (’14) 
IEEE/ACM SC14 

IEEE Computer 48(11), 33 (’15)  

2. Reproducibility of real-number summation for multimillion summands & 
beyond in the global sum; double-precision arithmetic began to produce 
different results on different high-end architectures



Reproducibility Challenge
• Rounding (truncation) error makes floating-point addition non-associative

• Sum becomes a random walk across the space of possible rounding error

Exact (current work)

Double precision

Standard deviation of sum with 
random summation orders

Distribution of sum with random 
summation orders

Double precision



Related Works

• General-purpose arbitrary precision arithmetic
 [GNU-MPL ’12]
 ® Extensive computation & memory usage

• Error-compensation methods
 > Error-free transformation for tracking residuals
   [Priest, ’91, Higham ’93, Rump ’09, Demmel ’13]
   ® Complex implementation
 > Summation reordering for minimizing error
   [Hel ’01]
   ® Prohibitive at large scales

• Hardware solutions
 [Gustafson ’15]
 ® Not available yet

• Higher-precision intermediate sums
 [He ’01, Hallberg ’14]
 ® Simple implementation, low overhead



Contributions

• Propose an extension of the order-invariant, higher-
precision intermediate-sum method by Hallberg & Adcroft 
[Par. Comput. 40, 140 (’14)]: 

 (1) Improves performance* for large (> 106) number of
   summands
 (2) Eliminates the aliasing problem of the original method 

• The new method outperforms the previous state-of-the-art 
for large problems involving million+ summands on broad 
systems (MPI, OpenMP, CUDA/GPU, Xeon Phi)  

*Performance is defined as the computational speed 



Hallberg Order-Invariant Sum

• Integer representation with higher accuracy: Represent a 
real number r using a set of N 64-bit signed integers, ai (i = 0, 
N-1); M (< 63) is a positive integer

R. Hallberg & A. Adcroft, Par. Comput. 40, 140 (’14)

• Order-invariant parallel sum: Two real numbers are added 
by summing N pairs of corresponding integers concurrently

• Carry out (potential sequential dependence): When any of 
the integer additions exceeds 2M, carry out must be added to 
the next integer in the set

• Carry-overhead reduction: Carry operations are avoided up 
to P = 263–M–1 summands to expose high parallelism
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Drawback of Hallberg Sum

• Overhead: Not all integer bits serve to provide 
real-number precision; 63-M bits per integer are 
dedicated to book-keeping 

• Aliasing: Multiple integer representations could 
represent the same real number

• Normalization & sum overheads to convert the 
integer representation back to real



High-Precision (HP) Method

• The proposed variation of Hallberg method represents a 
real number r using a set of N 64-bit unsigned integers, ai (i 
= 0, N-1)

• k is the number of 64-bit unsigned integers assigned to 
represent the fractional portion of r (0 ≤ k ≤ N), whereas N-
k integers represent the whole-number component

• Negative number is represented by two’s complement in 
integer representation, using only 1 bit
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HP Algorithm (1): Conversion

dtmp = fabs(r)*264*(N-k-1);
isneg = (r < 0.0);
for (i=0; i<N-1; i++) {
    itmp = (uint64_t)dtmp;
    dtmp = (dtmp – (double)itmp)*264;
    a[i] = (isneg) ? ~itmp + (dtmp<=0.0) : itmp;
}
a[N-1] = (isneg) ? ~(uint64_t)dtmp + 1 : (uint64_t)dtmp;

• Simple procedure: A single pass converts a double-precision 
number r to HP integers ai & translates them to two’s 
complement  

• Inverse of this algorithm converts HP number back to 
double-precision



HP Algorithm (2): Addition

a[N-1] = a[N-1]+b[N-1];
co = (a[N-1]<b[N-1]);
for (i=N-2; i>=1; i--) {
    a[i] = a[i]+b[i]+co;
    co = (a[i]==b[i]) ? co : (a[i]<b[i]);
}
a[0] = a[0]+b[0]+co;

• Addition of two HP numbers, a ¬ a + b 

• Overflow of the sum is detected by comparing the signs of 
the summands with that of the sum



HP Sum: Example

Algorithm 1

(Algorithm 1)-1

Algorithm 2



Representation Power
• Maximum range & smallest representable HP number 

• Equivalency with Hallberg representation power



HP Method: Properties

• Invariance of sum with respect to both summation 
order & architecture is guaranteed with 
appropriate setting of N & k to provide sufficient 
accuracy

• Overflow & underflow can be readily detected at 
runtime at double-precision (DP)-to-HP 
conversion, HP-sum & HP-to-DP conversion steps    

• Atomicity of addition (which is essential for 
multithreading) is guaranteed using only the 
widely available compare-&-swap (CAS) 
synchronization primitive 



Performance
• Computing time of real-number sum using the current (HP) 

& Hallberg methods as a function of # of summands

• HP sum is faster than Hallberg sum over million summands

Intel Xeon X5650 2.67 GHz



Performance Analysis
• Speedup of HP sum over Hallberg sum as a function of the 

number of summands

b: Precision bit count

263-M µ #summands



Performance Projection
• HP sum is faster than Hallberg sum for larger numbers of 

summands & higher precision 

Speedup(HP/Hallberg) > 1 

Speedup(HP/Hallberg) < 1 

Higher Precision

More
Massive
Sum



Parallel Efficiency with OpenMP
• Runtime & strong-scaling parallel efficiency of HP, 

Hallberg & (order-sensitive) double-precision sums as a 
function of the number of OpenMP threads on Xeon  

• Higher parallel efficiency of HP & Hallberg sums over 
double-precision sum

32 million summands



Parallel Efficiency with MPI
• Runtime & strong-scaling parallel efficiency of HP, 

Hallberg & (order-sensitive) double-precision sums as a 
function of the number of MPI processes on Xeon  

32 million summands

• Higher parallel efficiency of HP & Hallberg sums over 
double-precision sum



Parallel Efficiency on GPGPU
• Runtime & strong-scaling parallel efficiency of HP, 

Hallberg & (order-sensitive) double-precision sums as a 
function of the number of CUDA threads on general-
purpose graphics processing unit (GPGPU)

32 million summands

• Faster speed of HP sum (7 reads & 6 writes on global 
memory) over Hallberg sum (11 reads & 10 writes)



Parallel Efficiency on Xeon Phi
• Runtime & strong-scaling parallel efficiency of HP, 

Hallberg & (order-sensitive) double-precision sums as a 
function of the number of threads on Intel Xeon Phi co-
processor

32 million summands

• Faster speed of HP sum over Hallberg sum



Large Production Simulations

• Up-to 6,400-atom divide-conquer-
recombine nonadiabatic QMD 
simulation reaches experimental 
time scales from first principles for 
photoexcitation dynamics

Quasi-holeQuasi-electron

• 16,661-atom quantum molecular 
dynamics (QMD) simulation on 
786,432 IBM Blue Gene/Q cores 
suggests a rapid H2-production 
technology that is industrially 
scalable
21,140 time steps (129,208 self-
consistent-field iterations); 
Nano Lett. 14, 4090 (’14) 

• 112 million-atom reactive molecular dynamics (RMD) simulation on 786,432 
IBM Blue Gene/Q cores reveals  a simple synthetic pathway to fractal 
graphene
Sci. Rep. 6, 24109 (’16)

Appl. Phys. Lett. 102, 173301 (’13); 
Sci. Rep. 5, 19599 (’16)



Percolation Transition

Movie made by J. Insley (Argonne)



Billion-Atom Molecular Dynamics

• Hypervelocity impact on AlN 

• Shock-induced nanobubble collapse in 
water near silica surface (67 million 
core-hours of computing on 163,840 
Blue Gene/P cores)

A. Shekhar et al., Phys. Rev. Lett. 111, 184503 (’13)

P. S. Branicio et al.,
Phys. Rev. Lett. 96, 065502 (’06)

100 nm



Conclusion

Research supported by
DOE Grant DE-SC0014607

1. An order-invariant real-number summation 
method has been proposed for reproducible 
parallel computing

2. The proposed method achieves higher computing 
speed than the previous state-of-the-art for 
million+ summands on various parallel systems 
(MPI, OpenMP, CUDA, Xeon Phi)

Thank You


