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ABSTRACT
Breadth First Search (BFS) is a building block for graph
algorithms and has recently been used for large scale anal-
ysis of information in a variety of applications including so-
cial networks, graph databases and web searching. Due to
its importance, a number of di↵erent parallel programming
models and architectures have been exploited to optimize
the BFS. However, due to the irregular memory access pat-
terns and the unstructured nature of the large graphs, its
e�cient parallelization is a challenge. The Xeon Phi is a
massively parallel architecture available as an o↵-the-shelf
accelerator, which includes a powerful 512 bit vector unit
with optimized scatter and gather functions. Given its po-
tential benefits, work related to graph traversing on this
architecture is an active area of research.

We present a set of experiments in which we explore ar-
chitectural features of the Xeon Phi and how best to exploit
them in a top-down BFS algorithm but the techniques can
be applied to the current state-of-the-art hybrid, top-down
plus bottom-up, algorithms.

We focus on the exploitation of the vector unit by devel-
oping an improved highly vectorized OpenMP parallel al-
gorithm, using vector intrinsics, and understanding the use
of data alignment and prefetching. In addition, we inves-
tigate the impact of hyperthreading and thread a�nity on
performance, a topic that appears under researched in the
literature. As a result, we achieve what we believe is the
fastest published top-down BFS algorithm on the version of
Xeon Phi used in our experiments. The vectorized BFS top-
down source code presented in this paper can be available
on request as free-to-use software.
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Today, scientific experiments in many domains, and large
organizations can generate huge amounts of data, e.g. social
networks, health-care records and bio-informatics applica-
tions [8]. Graphs seem to be a good match for important
and large dataset analysis as they can abstract real world
networks. To process large graphs, di↵erent techniques have
been applied, including parallel programming. The main
challenge in the parallelization of graph processing is that
large graphs are often unstructured and highly irregular and
this limits their scalability and performance when executing
on o↵-the-shelf systems [18].

The Breadth First Search (BFS) is a building block of
graph algorithms. Despite its simplicity, its parallelization
has been a real challenge but it remains a good candidate
for acceleration. To date, di↵erent accelerators have been
targeted to improve the performance of this algorithm such
as GPGPUs [11] and FPGAs [28]. The Intel Xeon Phi, also
known as MIC (Intel’s Many Integrated Core Architecture),
is a massively parallel o↵-the-shelf system consisting of up
to 60 cores with 4-way simultaneous multi-threading (SMT)
for a maximum of 240 logical cores [21]. As well as this
thread-level parallelism, each core has a 512 bit vector unit
allowing data-level parallelism to be extracted by using Sin-
gle Instruction Multiple Data (SIMD) programming. We
believe that by exploiting both of these forms of parallelism,
the Xeon Phi is an interesting platform for exploring parallel
implementations of graph algorithms.

The goal of this study is to demonstrate through experi-
ments and analysis the impact of using the Xeon Phi archi-
tecture to accelerate BFS in a single Xeon Phi device, as a
step towards the multi-device solutions that will be needed
to tackle very large graph-based datasets. As a starting
point, we took the description of the top-down BFS algo-
rithm in [9] which is summarised in Section 3. Although this
o↵ers a good starting point on the Xeon Phi, there are still
some architectural features that need to be well understood
in order to be exploited. The contribution of this paper is
twofold; first, we present the results of a series of exper-
iments demonstrating the benefit of successfully exploiting
architectural features of the Xeon Phi focusing on the vector
unit (programmed via vector intrinsics), with data align-
ment and prefetching. In addition, we present the results
of investigations into the impact of hyperthreading (Intel’s
term for SMT) and thread a�nity when the Phi is under-
populated with threads.

The structure of the paper is as follows. The Xeon Phi
architecture is presented in Section 2. We present the pro-
cedure of vectorizing the BFS algorithm on the Xeon Phi,
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Figure 1: The Intel R� Xeon Phi Microarchitecture.

starting with the serial BFS algorithm in Section 3.1, fol-
lowed by an initial parallel version in Section 3.2, which
we call non-simd version. Next, we discuss the simd ver-
sion that exploits the vector unit on the Xeon Phi in Sec-
tion 4. We then present performance comparisons between
the non-simd and simd versions and explore the impact of
parallelism at two levels of granularity (OpenMP threading
and the vector unit), achieving better results for the native
BFS top-down algorithm on the Xeon Phi than those previ-
ously presented in [10] and [24]. In Section 4 we explore the
impact of data prefetching and discuss the e↵ect of thread
a�nity mapping, leading us to key optimizations, and moti-
vating future work on the possibility of using helper threads
to improve performance. The experimental setup and anal-
ysis of our results are shown in Sections 5 and 6. Related
work is briefly discussed in Section 7 and conclusions and
future work are discussed in Section 8.

2. THE XEON PHI ARCHITECTURE
The Intel R� Xeon Phi TM coprocessor used in this work is

composed of 60, 4 way-SMT Pentium-based cores [21] and a
main memory of 8 GB. Each core contains a powerful 512-
bits vector processing unit and a cache memory divided into
L1 (32KB) and L2 (512KB) kept fully coherent by a global-
distributed tag directory (TD), coordinated by the cache co-
herency MESI protocol. Cores are interconnected through a
high-speed bi-directional ring bus [21] as it is shown in Fig-
ure 1. Maximum memory bandwidth is quoted as 320GB/s.

The vector process unit (VPU) is composed of vector reg-
isters and 16-bit mask registers. Each vector register can
process either 16 (32-bit) operations or 8 (64-bit) operations
at a time. A vector mask consists of 16 bits that control the
update of the vector elements. Only those elements whose
bits are set to 1 are updated into the vector register, the ones
with 0 value in the mask remaining unchanged. The Xeon
Phi contains both hardware (HWP) and software (SWP)
prefetching, which in some cases can help to reduce memory
latency.

The Xeon Phi can be programmed to support vectoriza-
tion at two levels: automatic and manual. In automatic
vectorization the compiler identifies and optimizes all parts
of the code that can be vectorized without the intervention
of the programmer. However, there are some obstacles that
can limit the vector unit utilization, such as non-contiguous
memory accesses or data dependencies [12] . In such cases,
manual vectorization can be used allowing the user to force

the compiler to vectorize certain parts in the code. Manual
vectorization can be set by using SIMD pragma directives
supported in the compiler. The compiler also supports a
wide range of intrinsics which allow a programmer low-level
control of the vector unit.

3. BREADTH FIRST SEARCH
The Breadth First Search (BFS) algorithm is one of the

building blocks for graph analysis algorithms including be-
tweenness centrality, shortest path and connected compo-
nents [4]. Given a graph G and a starting vertex s, the BFS
systematically explores all the edges E of G to trace all the
vertices V that can be reached from s [7], where |V | is the
number of vertices and |E| is the number of edges. The
output is a BFS spanning tree (bfs tree of all the vertices
encountered from s.

The simplest sequential BFS algorithm consists in having
a queue that contains a list of vertices waiting to be pro-
cessed. Enqueue and dequeue operations on the queue can
be implemented in constant time ⇥(1) [16]. Thus, the run-
ning time of this serial BFS algorithm is O(V +E). Despite
the queue being simple and e�cient, during parallelization,
it has some drawbacks. The queue can be a bottleneck since
it implies a vertex processing order because the dequeue op-
eration typically takes out the vertex that has been added
first. To address this problem vertices can be partitioned
into layers. A layer consists of a set of all vertices with the
same distance1 from the source vertex. Processing vertices
by layers avoids the order restriction imposed by the queue,
allowing vertices to be explored in any order as long as they
are in the same layer. However, each layer has to be pro-
cessed in sequence; that is all vertices with distance k, (layer
Lk) are processed before those in layer Lk+1.

Traversing the graph from the vertices in the top layer
down to their children in the bottom layer is a conventional
approach known as top-down whereas traversing from the
vertices in the bottom layer to find their parent in the top
layer is known as bottom-up approach. The bottom-up con-
cept was introduced by [3] in a hybrid approach that explores
the graph in both directions, first traversing the graph with
the top-down and then swaping to the bottom-up approach
in the middle layers to finally swap back to the top-down.
Despite the fact that the hybrid algorithm has shown bet-
ter results than the top-down approach, we focus our work
in this paper on the conventional top-down BFS to demon-
strate how vectorization techniques can be applied to e↵ec-
tively utilize Xeon Phi’s vector unit. The same techniques
can be applied to the bottom-up phase, which can lead to
speed up the hybrid BFS algorithm. Figure 2 shows an
example of the top-down BFS algorithm. The exploration
starts from vertex 1 and reaches all the vertices in the three
layers illustrated by a, b and c in Figure 2. Dotted lines
represent edges linked with already explored vertices.

3.1 The Serial Top Down BFS algorithm
The implementation of the serial top-down BFS algorithm

uses two lists to process vertices by layers. The first list is
the input list and it contains all the vertices to be processed
in the layer. The second list is the output list which, after
processing the layer will be swapped with the input list for

1Distance is the number of edges in the shortest path be-
tween two vertices.

2



/D\HU��

/D\HU��

/D\HU��

�

�

�

�

�

�

��� �

�D�

�E�

�

�

�

�

�

�

�

�

�

�

�

��� �

�F�

�

VWDUWLQJ�
YHUWH[

Figure 2: An example of the Top-Down Breadth First span-
ning tree.

the next layer. The result of the algorithm is a BFS spanning
tree represented by a sequence of the predecessors (P) of the
traversed vertices. When a vertex has been processed it is
marked as visited, otherwise, it remains non-visited. Each
vertex has an associated set of adjacent vertices, known as
neighbor list. Only the non-visited vertices in the list are
put into the output list to be processed in the next layer.

Algorithm 1 shows the pseudocode of the serial top-down
BFS algorithm. The pseudocode uses four data structures:
input list (in), output list (out), visited array (visited), and
P, predecessor list; all data structures are initialized at the
beginning. The visited array is used to mark vertices as
visited during the exploration process. Initially all the ver-
tices are set as non-visited. The predecessor array is used to
store the output BFS spanning tree and is initialized with
big number values, denoted by the symbol 1 in line 2. In
practice, 1 can be an integer bigger than the number of
vertices. The exploration starts when the input list in has
at least one element (line 7). Thus, the starting vertex s is
placed in the input list, visited array and in the predecessor
array set as its own parent (lines 4-6).

In lines 7 to 17, every single vertex u in the input list
in is explored. This exploration consists of checking each
adjacent vertex v of u that has not been visited. If it is the
case, then they are put into the output list out, marked as
visited and the parent for the vertex v in the P array is set
to u. By checking the non-visited vertices first, some extra
work is avoided by not putting previously processed vertices
in the list [1]. In line 16, the input and the output lists are
swapped and the output list is cleared. The algorithm ends
when all vertices reachable from the input vertex have been
marked as visited in out. The output BFS spanning tree is
the predecessors list P, which contains a record of the order
that the vertices were explored.

Algorithm 1 Serial Top-Down BFS(G, s)

Initialize: in.init() out.init() vis.init()
1: for all vertex u 2 V (G)� s do

2: P [u] 1
3: end for

4: in.add(s)
5: vis.Set(s)
6: P [s] = s

7: while in 6= 0 do

8: for all u 2 in do

9: for all v 2 Adj[u] do
10: if vis.Test(v) = 0 then

11: vis.Set(v)
12: out.add(v)
13: P [v] = u

14: end if

15: end for

16: end for

17: swap(in, out)
out 0

18: end while

3.2 Parallel Top-Down BFS
In the serial top-down BFS algorithm, there are two levels

of parallelism that can be exploited. The first is a coarse-
grain level in the outer loop for processing the input list; the
second, finer-grain, is in the inner loop where the adjacency
list is explored. Algorithm 2 shows the Parallel BFS by
augmenting Algorithm 1 with parallel for loops. In practice,
we aim to parallelize the outer loop using threads and the
inner loop by exploiting the vector unit. The major changes
to parallelize the algorithm are in the initialization of the
lists, the visited and the predecessor array data structures,
and in the outer and inner loops, lines 8 and 9, where all the
vertices are explored in parallel.

Algorithm 2 Parallel Top-Down BFS(G, s)

Initialize: in.init() out.init() vis.init()
1: for all parallel vertex u 2 V (G)� s do

2: P [u] =1
3: end for

4: in.add(s)
5: vis.Set(s)
6: P [s] = s

7: while in 6= 0 do

8: for all parallel u 2 in do

9: for all parallel v 2 Adj[u] do
10: if vis.Test(v) = 0 then

11: vis.Set(v)
12: out.add(v)
13: P [v] = u

14: end if

15: end for

16: end for

17: swap(in, out)
out 0

18: end while

However, this parallel version presents a race condition
between multiple threads. This condition happens in the
exploration of the adjacency list when a vertex v is tested
to verify if it has been visited previously. Multiple threads
might test the same vertex at the same time. Figure 3 illus-
trates this race condition. Here, threads A and B are trying
to update vertex 5, which is a child of both vertex 2 and 3.
While this could end up in redundant work when the status
of the vertex and the queue are updated, the major impact
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is in the predecessor list, where the parent of vertex 5 can
be set to either 2 or 3. However, this is called a benign
race condition since the correctness of the algorithm is not
a↵ected. It means that di↵erent correct BFS spanning trees
can be generated. It is possible to avoid this race condition
by using an atomic operation such as sync fetch and or.
However, we will see in the following section that another
more critical race condition comes up when we introduce
bitmap arrays as data structure.

Figure 3: Example of data benign race condition.

3.3 Parallel Top-Down BFS without bit race
conditions

In addition to the benign race condition described in Sec-
tion 3.2, introducing bitmap arrays as data structures leads
into a bit race condition that is solved by adding a restora-
tion process to the parallel top-down BFS algorithm.

3.3.1 Data structures

Our parallel BFS implementation is based on the im-
plementation, bfs_replicated_csc, given in the Graph500
source code [27]. The graph is e�ciently represented by
a Compressed Sparse Row (CSR) matrix format, which is
composed by two integer arrays: rows and colstarts. The
rows array contains the adjacency list of every vertex and
the colstarts stores the start and the end indexes of every
vertex pointing to the rows array. An example of this data
structure is illustrated in Figure 4. The use of the CSR is
when the adjacency list is explored, line 9 in Algorithm 3
abstracts this step.

On the other hand, the data structures used for the input
list, the output list and the visited arrays are bitmap arrays
and an integer array for the predecessor array. A bitmap
is a mapping from a set of items to bits with values either
zero or one. By having vertices represented by a bitmap,
the working set size can be reduced significantly [1]. For ex-
ample, an array that holds 1,048,576 vertices represented by
integers would require 4MB. By using bitmaps this memory
storage can be reduced significantly to 131,072 bytes. Fig-
ure 5 illustrates the mapping between an array of integers
to bits. The upper array is an array of integers, where every
vertex corresponds to each index in the array. Values can
be set to either zero or one and the length of the array is
the total number of vertices. In this example, vertex 28 and
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Figure 4: Compressed Sparse Row representation.
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Figure 5: Example of an array of integers (32 bits) repre-
sented by a bitmap array.
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Figure 6: Example of the visited bitmap array race condi-
tion.

30 are set to one. The array at the bottom is the bitmap
array and its length is the total number of vertices divided
by the length, in bits, of an integer (32 bits). Every integer
in the bitmap array represents the status (0, 1) of 32 ver-
tices. Thus, the same vertices 28 and 30 are set to one but
they are both located in the first integer of the array as it is
illustrated.

3.3.2 Restoration process

A race condition is raised by the bitmap update operations
when di↵erent threads try to update multiple bit values in
the same word. An example of this is shown in Figure 6,
where vertices 5 and 9 are updated by di↵erent threads but
their location in the bit array is in the same word (32 bits
integer). The bitmap race condition happens, in the ad-
jacency list exploration, while setting the output and the
visited bitmaps in lines 9 to 12 of the Algorithm 2. Thus, to
overcome this problem a restoration process is applied as in
[10] to both bitmap arrays afterwards, the visited and the
output. That way, the restoration process helps to keep the
output and the visited bitmaps consistent for processing the
next layer.

The restoration consists of finding all the corrupted words
in the output bitmap array that were updated, if a bit race
condition happened the output array should have at least
one bit set. Since the predecessor list is an array of integers,
it does not present the bit race condition and is used to
fix the corrupted output array. To do so, first we identify
which vertices were updated in the predecessor list by setting
a negative number, which is a subtraction of the number of
nodes from the vertex’s parent. Second, we iterate through
the non zero words (32-bits integer) in the output bitmap
array. In those words are the vertices that are corrupted
and need to be fixed. We step through each of the 32 bits
in the word to look for the corresponding vertices, in lines
20 and 21 of Algorithm 3, that have been set to a negative
number in the predecessor list. These vertices are restored
by setting their corresponding bit in the output bitmap and
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adding back the number of nodes in the predecessor list.
Finally, the visited bitmap array is updated consistently.

Although the restoration process implies extra work, it
solves the bit race condition without having to use atomic
operations while keeping correctness and even more impor-
tant allow us to use it in the vectorization process described
in Section 4. Algorithm 3 shows the complete pseudocode of
the BFS algorithm containing the restoration process to cope
with the bitmap race condition, lines 15 to 30. However, the
benign race condition described in 3.2 still remains since we
avoid making use of atomic operations for further vector-
ization. Bitmap operations used by the visited, input and
output arrays are: InitBitmap(), SetBit(n), GetBit(n),
TestBit(n) and bit2vertex(n), where n is the bit position.

Algorithm 3 Parallel BFS without bit race conditions.

Initialize: in.InitBitmap() out.InitBitmap() vis.InitBitmap()
1: for all parallel vertex u 2 V (G)� s do

2: P [u] =1
3: end for

4: in.SetBit(s)
5: vis.SetBit(s)
6: P [s] = s

7: while in 6= 0 do

8: for all parallel u 2 in do

9: for all parallel v 2 Adj[u] do
10: if v /2 (vis.TestBit(v) OR out.TestBit(v)) then

11: out.SetBit(v)
12: P [v] = u� nodes

13: end if

14: end for

15: //Restoration process
16: for all parallel w 2 out do

17: // w is a word in out bitmap
18: if w 6= 0 then

19: // iterate through every bit in w
20: for all b 2 w do

21: vertex = bit2vertex(b)
22: if P [vertex] < 0 then

23: out.SetBit(vertex)
24: vis.SetBit(vertex)
25: P [vertex] = P [vertex] + nodes

26: end if

27: end for

28: end if

29: end for

30: end for

31: swap(in, out)
out 0

32: end while

4. BFS VECTORIZATION
Our vectorized BFS algorithm is based on the parallel

BFS algorithm without using atomic operations presented
in Algorithm 3. Basically, it avoids atomic operations by
using an extra step to restore possible missing values in the
output queue due to a data race condition and the lack of
atomic operations at bit level. This atomicity freedom allows
to vectorize the algorithm straight away because atomic bit
operations are not part of the instruction set architecture
(ISA) in the Intel compiler[20].

There are two potential parts to be vectorized in the al-
gorithm: the adjacency list exploration and the restoration
process. In the adjacency list exploration, each element in
the list is explored sequentially. By using the vector unit, in-
stead of exploring one element at a time, it could be possible

for one thread, to explore 16 (32-bits integers) vertices si-
multaneously. The vectorization of the adjacency list explo-
ration involves three main SIMD steps. Firstly, a sequence
of vertices in the adjacency list are loaded into the vector
unit, which can hold 16 (32-bits) vertices. Secondly, all the
loaded vertices are filtered by using the visited array and
the output queue bitmaps to find the ones that have not
been visited yet either in previous layers (visited array) or
in the current layer (output queue). Finally, the result is
set back to the predecessor array P and the output queue
out. Figure 8 shows an example of the vectorization of the
adjacency list exploration in a vector register of 512 bits
wide. The specific values in the visited and output queue
bitmap arrays are loaded into the vector unit by using the
SIMD gather instructions. The scatter and the gather op-
erations are two instructions that the Xeon Phi use to deal
with non-contiguous memory loads to the vector register and
data stores back to memory. Both operations receive, as ar-
gument, a list of indexes to be scattered/gathered in the
array. Figure 7 illustrates both instructions to update the
visited array. Since the visited array is a bitmap array an
index transformation is necessary to load the bit word (32
bits) specific to a vertex. Then, the vector unit can do bit
shifting operations to get the bit value of the vertex.

VFDWWHU������������������������������

JDWKHU������������������������������
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Figure 7: Gather and scatter operations, to load non-
contiguous visited array.

Once the specific values of the visited array and the out-
put queue are loaded into the vector unit, a filtering process
is applied. To find all the vertices that have not been ei-
ther visited previously (upper layers) or put into the output
queue recently (current layer), two logical operations (OR
and NOT) are used to create a vector mask. The OR op-
eration will find the union of the vertices that have already
been visited and the ones that have been put into the output
queue. By applying the NOT logical operation, we can find
all the vertices that have not been visited or set into the
output queue. Afterwards, the result is scattered into the
predecessor array and the output queue, only those indexes
that have one as bit value in the mask are updated.

On the other hand, the vectorization of the restoration
process adds an extra step to the parallel Algorithm 3 and
consists of repairing the output queue and the visited array
based on the P array, which remains consistent. To vectorize
it, there are some details to take into account. Firstly, there
is a di↵erence between the output queue and the P array
representation. While the output queue is a bitmap array,
P is an array of integers. Thus, during stepping through
each of the words (32 bits length) of the output queue, 32
vertices are expected to be processed, however the vector
unit can only process up to 16 elements at a time. To cope
with that, we split the word in two: the low part and the
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Figure 8: Example of vectorizing the adjacency list explo-
ration.

high part. Then, the restoration process is divided into two
sections, the first one repairs the vertices that are located in
the low part and the second section repairs vertices located
in the high part. Source code of the SIMD implementation
is presented at the end of Section 4.2.

4.1 Which layers are vectorized?
Large and sparse graphs often present the small-world

graphs properties of having small diameter and skewed de-
gree distribution [5]. We use RMAT, a synthetic graph gen-
erator, to create our input small-world large graphs. The
RMAT graph size is defined by two input values: the SCALE
and the edgefactor. The total of vertices in the graph is
calculated by 2SCALE and the number of edges generated
by 2SCALE ⇤ edgefactor, including self-loops and repeated
edges. Graph structure is crucial because it can help to im-
prove performance by exploiting the architecture resources
e�ciently, such as the vector unit on the Xeon Phi. Table 1
shows the number of input vertices, the number of edges and
the traversed vertices by the BFS top-down algorithm per
layer, for a graph of 1,048,576 million vertices (RMAT graph
with SCALE 20 and edgefactor 16), choosing the starting
vertex randomly. As it can be seen, the number of input ver-
tices per layer increase along with the number of layer until
the middle layer is reached and then they start to decrease.
The diameter of the graph is 7, which is reflected in having
7 traversed layers. On the other hand, the number of edges
per layer varies according to the edgefactor, which is used
to distribute the edges per vertex. Both graph characteris-
tics, diameter and vertex degree are key to decide what is
the best way to improve threads workload imbalance and to
increase the vector unit usage. Assuming that most of the
vertices are traversed in the first layers, we used the vector-
ized SIMD BFS top-down algorithm only for the first two
layers and the parallel top-down presented in Algorithm 2
for the rest of the layers.

4.2 Xeon Phi optimizations
To optimize the vectorization of the BFS top-down algo-

rithm, there are some crucial factors such as cache-oriented
memory address alignment, loop vectorization, masking and
prefetching [12].

Table 1: Traversed vertices per layer for a 1,048,575 million
vertices graph, SCALE 20 and edgefactor 16.

Layer Vertices Edges Traversed vertices

0 1 12 12
1 12 21,892 18,122
2 18,122 13,547,462 540,575
3 540,575 17,626,910 100,874
4 100,874 150,698 486
5 486 490 4
6 2 2 0

Intrinsic functions.

Despite the promise of automatic vectorization, this is
not straightforward for algorithms with irregular data access
patterns, such as the BFS. Some explicit manual code trans-
formations are needed to assist the compiler. An explicit
way to use the vector unit is through intrinsic functions,
these are a set of assembly functions that allow complete
control over the vector unit. We used specialized intrinsic
functions which are part of the Intel AVX-512 instruction
set.

Data alignment.

Data alignment specifications assist the compiler opera-
tion in the creation of objects on specific byte boundaries
[13]. The optimal data alignment for the Xeon Phi is on
64 byte boundaries. To align the rows array, we used the
intrinsic function mm malloc. This data alignment allows
the vector unit to have more e�cient access to the mem-
ory. However, due to the way the rows array is built, it
might lead to some less-than-full-vector loop vectorization
ine�ciencies, such as the peel and the remainder loops [25],
caused non-aligned boundary accesses.

Peel and remainder loops.

The peel loop is the sequence of contiguous elements for
which the start index in the array does not match with a
aligned boundary of the array. On the contrary, the remain-
der loop is the sequence of the last elements, the tail, that
do not fit on an aligned boundary. Both cases imply an ex-
tra processing step because they cannot be computed as a
complete 16 elements vector. There are di↵erent approaches
to cope with the implications of having less-than-full-vector
loops including padding, sequential processing of peel and
remainder loops, and the use of vector masks.

Prefetching.

Prefetching is a technique that helps hide memory latency.
The Xeon Phi has a heuristic to choose between hardware
or software prefetching. Due to the irregular data access
patterns that the BFS algorithm shows, software prefetching
is necessary. In addition, working with large graph sizes
might result in having large numbers of L2 cache misses,
and thus poor performance. Prefetch distance is a metric
that hints to the compiler the right number of cycles to load
data ahead of it use. Finding the right distance is crucial
to gain performance [19]. A recommended distance should
be one similar to memory latency [2]. Rather than calculate
a precise distance, and based on the work in [14], in the
adjacency list exploration we prefetch the rows array for the
vertices that will be processed in the next iteration. Also, we
use prefetching intrinsic functions for every data load/store
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to the vector unit by setting a hint that indicates which
memory will be prefetched to either L1 cache (_MM_HINT_T0)
or to L2 cache(_MM_HINT_T1).

The vectorization of the adjacency list exploration consists
of splitting the list into chunks of 16 (32 bit) elements. The
peel and the remainder loops are considered special cases
because vertices need to be filtered according to the pre-
calculated mask. Listing 1 shows the source code of the
vectorization of the adjacency list for a full-vector, using op-
timizations such as alignment, masks and prefetching. The
code consists of three main steps described previously in the
algorithm: loading the adjacency list, filtering non-visited
vertices and setting the values back to memory. However,
an intermediate operation is needed due to the discrepancy
between the indexes of the 16 input vertex list (32-bit inte-
gers) and the bitmap arrays (bits) in the step 2: filtering the
unvisited vertices in the visited array and the output queue.
This step is implemented by getting the word and the bit
o↵set of each element in the adjacency list. The words vec-
tor is used to gather all the words to be updated from the
visited array and the output queue. The bit o↵set vector
is used to create a mask to filter the specific bit values by
shifting it to the left. The words and the bit o↵sets are used
to generate a vector mask that allows to filter the visited
and the output queue bitmap arrays respectively.

/* 1.- Load adjacency list to the register */

__m512i vneig = _mm512_load_epi32(&rows[index * 16);

/* Getting word and bit offset */

__m512i vword = _mm512_div_epi32(vneig, _mm512_set1_epi32(
BITS_PER_WORD));

__m512i vbits = _mm512_rem_epi32(vneig, _mm512_set1_epi32(
BITS_PER_WORD));

/* Gathering words from visited bitmap array */

_mm512_prefetch_i32gather_ps(vword, explored->start, sizeof(
word_t), _MM_HINT_T0);

_mm512_prefetch_i32gather_ps(vword, queue->start, sizeof(word_t)
, _MM_HINT_T0);

__m512i vis_words = _mm512_i32gather_epi32(vword, explored->
start, sizeof(word_t));

__m512i out_words = _mm512_i32gather_epi32(vword, queue->start,
sizeof(word_t));

/* Shifting 1 to the left indexes position in the vneig array */

__m512i bits = _mm512_sllv_epi32(_mm512_set1_epi32(1), vbits);

__mask16 mask = _mm512_knot(_mm512_kor(_mm512_test_epi32_mask(
vis_words, bits), _mm512_test_epi32_mask(out_words, bits)))
;

/*3.- Scattering P (bfs_tree) and output queue */

_mm512_mask_prefetch_i32scatter_ps(bfs_tree, mask, vneig, sizeof
(word_t), _MM_HINT_T0);

_mm512_mask_i32scatter_epi32(bfs_tree, mask, vneig,
_mm512_set1_epi32(vertex - nodes), sizeof(word_t));

/* Setting the output queue */

//Adding to the output queue word the new bit values depending on

the filtered mask.

__m512i new_values = _mm512_mask_or_epi32(_mm512_set1_epi32(0),
mask, out_words, bits);

_mm512_mask_prefetch_i32scatter_ps(queue->start, mask, vword,
sizeof(word_t), _MM_HINT_T0);

_mm512_mask_i32scatter_epi32(queue->start, mask, vword,
new_values, sizeof(word_t));

Listing 1: Adjacency list exploration using SIMD intrinsic
functions.

Figure 9 shows di↵erent results for the BFS top-down na-
tive algorithm on the Xeon Phi. The experiments involved
three implementations, including the SIMD without opti-
mizations (SIMD - no opt), the combined (SIMD + parallel)
BFS algorithm plus alignment and masks optimizations and
the one with prefetching. As it can be seen performance was
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Figure 9: BFS experimental optimizations results for a
graph of SCALE 20 and edgefactor=16.

increased after applying prefetching. Future work will target
improving prefetching by finding a good prefetch distance.

Thread a�nity.

Thread a�nity is a feature in hyper-threading architec-
tures that enables the pinning of threads to specific logical
cores on the same physical core, enabling the user to a↵ect
the use of shared resources in a core (e.g. cache and memory
bandwidth). The Xeon Phi allows up to 4 hardware threads
per core and provides three strategies for controlling thread
a�nity: compact, scatter and balanced. Compact a�nity
assigns free threads as close as possible to the thread con-
texts in a core (i.e. to logical cores on the same physical
core); scatter distributes the threads as widely as possible
across the entire set of physical cores, using one logical core
per physical core for each thread placed up to the num-
ber of physical cores and then cycling through the physical
cores again. Finally, balanced is similar to scatter but places
threads with adjacent thread ids on the same core. Regard-
less of the a�nity strategy used, if the number of threads is
equal to the number of logical cores available, the a�nity is
equivalent to compact (i.e. four threads per physical core)
and resource sharing is at a maximum.

Since the e↵ect of thread a�nity on performance is appli-
cation dependant (for example, sharing cached data between
thread may be beneficial but sharing memory bandwidth
may not, depending on the application), we ran some ex-
periments to determine which strategy works best for our
BFS algorithm. By experimenting we found that balanced
a�nity was generally better and it was used in the results
presented in Figure 9. However, we followed the method-
ology presented in [22] to demonstrate the e↵ect of a�nity
on the BFS algorithm, we ran a 48 thread version manually
controlling the a�nity to achieve one, two, three and four
threads per core (1T/core, 2T/core, 3T/core and 4T/core),
thus using 48 cores with one thread per core down to 12 cores
with four threads per core. The thread a�nity is controlled
through the environment variable KMP AFFINITY.
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5. EXPERIMENTAL SETUP

5.1 Hardware platform
We evaluate the non-SIMD version presented in Algo-

rithm 2 and the vectorized version, simd, of the BFS top-
down algorithm on the Intel Xeon Phi. We used OpenMP as
a thread parallel platform and Linux as execution platform 2.
We compiled our code with the Intel C++ compiler (version
14.0.0) with the optimization flag -02 and -fopenmp 3. We
used the intrinsic functions which give access to the AVX-
512 instructions set. We used Linux as platform.

5.2 Input graph
Our implementation uses di↵erent modules of the Graph500

benchmark [26], including the graph generator, the BFS
path validator, the experimental design and the ability to
run our parallel BFS implementation. Firstly, the graph
generator creates synthetic scalable large Kronecker graphs
[17] and is based on the R-MAT random graph model [5].
These graphs aim to naturally generate graphs with com-
mon real network properties in order to be able to analyse
them. The graph size is defined by the SCALE and the
edgefactor values. The total number of vertices in the graph
is calculated by 2SCALE and the number of edges gener-
ated by 2SCALE ⇤edgefactor * 2 (the factor of 2 reflects the
fact that the edges are bidirectional). The generator uses
four initiator parameters (A, B, C and D), which are the
probabilities which determine how edges are distributed in
the adjacency matrix representing the graph. We used the
standard set of parameters defined by Graph500 (A=0.57,
B=0.19, C=0.19 and D=0.05).

5.3 Implementation details
The input graph is e�ciently represented by a Compressed

Sparse Row (CSR) matrix format. The validation method,
which checks the correctness of the algorithm, consists of
five check results that do not intend to get a full check of
the generated output (the bfs spanning tree) but just pro-
vide a ‘soft’ check of the output. The experimental design
comprises 64 BFS executions each with a randomly chosen
di↵erent starting vertex. The time of each execution is mea-
sured in seconds. After the completion of the executions,
statistics, including time and Traversed Edges Per Second
(TEPS), are collected. TEPS is a Graph500 performance
metric used to compare other BFS implementations on dif-
ferent architectures. However, it became apparent that out
of the 64 BFS iterations, some of the starting points are
unconnected, resulting in zero TEPS values for those iter-
ations. This then results in having a harmonic mean, as
calculated by Graph500, higher than the maximum number
of TEPS. Some groups filter out such unconnected nodes in
their experiments. Our results show the harmonic mean of
the TEPS across the 64 executions without filtering in order
to compare fairly with other implementations such as [10]
and [3].

Result presentation: The experimental results reported
result from a sequence of sets of 64 executions (one for each
selected start vertex) in which we varying the following pa-
rameters: the number of threads and the graph SCALE fac-
tor (the edgefactor is fixed at 16). The number of threads
2The Linux operating system allows access to the OpenMP
library with flag -fopenmp.
3Higher optimisation levels did not improve performance

Table 2: Performance SIMD version by setting thread a�n-
ity for a graph size of SCALE=20 and edgefactor=16.

#Threads Thread A�nity Cores TEPS

48 1T/C 48 4.69E+08

2T/C 24 2.67E+08
3T/C 16 1.89E+08
4T/C 12 1.42E+08

were chosen as: 1, 2, 8, 16, 32, 40, 64, 100, 180, 200, 210,
228, 232 and 240 (the maximum number of one thread per
logical core). The SCALE were set to 18, 19 and 20.

6. RESULTS AND ANALYSIS

6.1 SIMD version versus non-SIMD version
In Section 4.2 we present results illustrating the SIMD op-

timizations. Figure 10 shows the experimental results for our
non-simd version and for the simd optimized version, which
are described in Algorithm 2, for three di↵erent graphs sizes,
SCALE (18, 19 and 20), and edgefactor 16. Both versions
present similar scalability but the simd version is around
200 MTEPS faster than the non-simd one. However, as the
number of threads increases the rate of increase in TEPS de-
creases. This is a result of hyprethreading and is discussed
in Section 6.2. Finally, the variation in performance between
200 and 236 threads is due to workload imbalance during the
exploration of the vertices in each layer since, as the num-
ber of threads increases, the chances of vertices processed
by a thread having an uneven number of adjacent vertices
increases. The results show that our maximum number of
TEPS is above 1 gigatep. This is higher than that pub-
lishedf in [10], which gives approximately 800 MTEPS, for
their native BFS algorithm for the same graph size - the
highest top-down performance figure on a similar Xeon Phi
that we have found in the literature.

6.2 Thread affinity
Table 2 shows the result of running with 48 threads but

varying the number of threads pinned per physical core man-
ually. These results show the detrimental e↵ects of over-
populating the cores for the BFS. The TEPS obtained with
one and two threads per core are significantly higher than
the TEPS with three and four threads per core. This re-
duction in the TEPS rate as the number of threads per core
increase is the key driver to the changes in slope observed in
Figure 10c occuring around 60, 120 and 180 cores when the
number of threads per core has to increase as more threads
are used. At these points, each thread’s exclusive access
to cache space decreases as does its share of memory band-
width.Despite these changes in slope, the performance of
the both the simd and non-simd BFS top-down algorithm
continues to scale. So, by using fully populated cores (59),
each one with the maximum number of threads, the num-
ber of TEPS for 236 logical threads is the fastest. Beyond
236 thread, threads are placed on the final core, which is
reserved for the operating system on the Phi, resulting in a
dramatic fall in performance.

In the future, it might be possible to exploit this behaviour
by under-populating cores with threads performing BFS and
to make use of so-called helper threads running on a core to
assist with, for example, prefetching to help hide memory
latency [15].
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(a) SCALE = 18 and edgefactor = 16.

0"

100"

200"

300"

400"

500"

600"

700"

800"

900"

0" 60" 120" 180" 240"M
ill
io
ns
'o
f'T

ra
ve
rs
ed

'E
dg
es
'p
er
'S
ec
on

d'

Number'of'Threads'

SIMD" non2SIMD"

(b) SCALE = 19 and edgefactor = 16.

(c) SCALE = 20 and edgefactor = 16.

Figure 10: BFS non-SIMD and SIMD experimental results
for SCALE values of 18, 19, 20 and edgefactor = 16. In
Figure (c) the dashed line represents the best MTEPS re-
ported in [10].

7. RELATED WORK
This section briefly presents related work targeting mainly

the top-down BFS on the Xeon Phi. The Intel MIC Xeon
Phi is a relative recent parallel architecture released in 2012.
An early work related with graph algorithms on the Xeon
Phi was reported [23]. However, they port a BFS parallel al-
gorithm without actually using the vector unit of the Xeon
Phi. Other, and most recent, work which is more related
with ours is [9] and [10]. In [9] they present the vectorization
of the top-down BFS algorithm, whereas in [10], a complete
hybrid (top-down and bottom-up) heterogeneous BFS algo-
rithm is presented. However, few details about their use of
vectorization are presented. [24] also explored the top-down
BFS on the Xeon Phi but with a traditional, queue-based, al-
gorithm that uses atomic updates. Despite their exploration
related with the use of the vector unit and prefetching, their
results are much lower than ours. We implemented our BFS
top-down algorithm using SIMD instructions by extending
their work, which lead us to obtain a faster vectorized imple-
mentation. Another approach to exploiting the Xeon Phi is
presented in a recently published system for heterogeneous
graph processing [6] allows the utilization of the Xeon Phi
in combination with a multi-core CPU through the use of a
simple programming interface. Although it is a good start
towards heterogeneous systems working on graphs, it is not
made clear in this paper how fast the resulting implemen-
tation is in comparison with previous BFS implementations
on the Xeon Phi.

8. CONCLUSIONS
In this paper, we revisited the vectorization and perfor-

mance issues of the top-down BFS algorithm on the Xeon
Phi. In particular, we studied the BFS top-down algorithm
without (bit-wise) race conditions to improve vectorization.
The contributions of the paper are, first, the development
of an improved OpenMP parallel, highly vectorized SIMD
version of the BFS using vector intrinsics and successfully
exploiting data alignment and prefetching. This new imple-
mentation achieves a higher number of TEPS than previous
published results for the same type of Xeon Phi. The sec-
ond contribution is an investigation into the impact of the
thread a�nity mapping and hyperthreading on performance
on an underpopulated system, a topic under researched in
the literature. This work suggests future possibilities to take
advantage of under-populating the cores and using the spare
capacity to improve latency hiding through the use of helper
threads, for example, to complement prefetching.

In the future, we plan to explore the benefit of our vector-
ization techniques beyond their use in native mode on the
Xeon Phi, including targeting o✏oad mode, GPGPUs and
in the context of SSE and AVX SIMD technologies on mul-
ticore CPU-based systems. In addition, we are working on
a version of the state-of-the-art hybrid BFS algorithm.

Acknowledgment
This research was conducted with support from the UK En-
gineering and Physical Sciences Research Council (EPSRC)
PAMELA EP/K008730/1, and AnyScale Apps EP/L000725/1.
M. Paredes is funded by a National Council for Science and
Technology of Mexico PhD Scholarship. Mikel Luján is sup-
ported by a Royal Society University Research Fellowship.

9



9. REFERENCES
[1] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader.

Scalable Graph Exploration on Multicore Processors.
In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11, 2010.

[2] A.-H. Badawy, A. Aggarwal, D. Yeung, and C.-W.
Tseng. The e�cacy of software prefetching and locality
optimizations on future memory systems, 2004.

[3] S. Beamer, K. Asanović, and D. Patterson.
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