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Accurate and scalable graph neural network force field and
molecular dynamics with direct force architecture
Cheol Woo Park1,2, Mordechai Kornbluth 1, Jonathan Vandermause 3, Chris Wolverton 2, Boris Kozinsky 1,3✉ and
Jonathan P. Mailoa 1✉

Recently, machine learning (ML) has been used to address the computational cost that has been limiting ab initio molecular
dynamics (AIMD). Here, we present GNNFF, a graph neural network framework to directly predict atomic forces from automatically
extracted features of the local atomic environment that are translationally-invariant, but rotationally-covariant to the coordinate of
the atoms. We demonstrate that GNNFF not only achieves high performance in terms of force prediction accuracy and
computational speed on various materials systems, but also accurately predicts the forces of a large MD system after being trained
on forces obtained from a smaller system. Finally, we use our framework to perform an MD simulation of Li7P3S11, a superionic
conductor, and show that resulting Li diffusion coefficient is within 14% of that obtained directly from AIMD. The high performance
exhibited by GNNFF can be easily generalized to study atomistic level dynamics of other material systems.
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INTRODUCTION
In the past few decades, molecular dynamics (MD) has been
extensively used to study and understand a wide range of
chemical/physical phenomena at the atomistic level. The move-
ment of the atoms in an MD simulation is dictated by the atomic
forces obtained as gradients of the potential energy surface (PES)
of the system. A common way of obtaining the PES is to explicitly
calculate the electronic structure of the simulated system through
ab initio approaches; density functional theory (DFT) is one of the
methods in this category balancing speed and accuracy1–3. While
ab initio MD (AIMD) provides highly accurate dynamics for many
different atomic systems, the high computational cost of
calculating the electronic structure derived forces places a hard
limit on the system size (number of atoms) and duration
(timesteps) of the simulation.
An alternative to AIMD is classical MD where the PES of an

atomic system is constructed using interatomic potentials that
define the interactions between atoms under specific bonding
environments. Because it bypasses the need to calculate the
electronic structure of the simulated system, classical MD has a
significantly higher computational speed than AIMD and can be
used to simulate larger systems for longer durations. Over the
years, many different interatomic potentials have been developed
to describe different bonding environments4–16 such as the
Buckingham potential17 that describes ionic systems or the
embedded-atom method4 that describes metallic systems. How-
ever, each potential is generally constrained to the one or several
bond types that it was designed for, making these potentials
unsuitable for simulating systems that have diverse and dynamic
bonding environments often occurring in many important
applications such as batteries and fuel cells18–20. While interatomic
potentials like the reactive force field (ReaxFF)13 are actively being
developed to simulate such complicated bonding environments,
these methods, in their current states, are still limited by
accuracy21,22.

To address the limitations of both classical and ab initio MD,
there has been an increasing interest in using machine learning
(ML) to generate ab initio quality MD with the computational
efficiency comparable to that of classical MD23–31. The majority of
the current state-of-the-art ML models use a set of features, often
referred to as “atomic fingerprints,” to represent the local
environments of atoms that constitute the system of inter-
est23,32–38. These features are generally rotationally- and transla-
tionally-invariant, i.e., they remain constant under arbitrary
rotational or translational transformations of the coordinate space.
The atomic fingerprints are used to predict the PES of the system
prior to taking its spatial derivative to obtain the atomic forces.
The fingerprints are derived from manually designed functions
that take as input the position of the center atom for which the
fingerprint is being computed and the positions of neighboring
atoms that are within a certain proximity of the center atom23,33.
Although the computational efficiencies of these ML models are

better than ab initio methods, the cost of using these models in
practice is still significantly high due to the computational bottle-
necks that come from (1) deriving the atomic fingerprints needed
for PES predictions and (2) calculating the derivatives of the PES to
obtain forces33,39. More recently developed models address one or
the other of these computational bottlenecks, but not both. In one
approach, models bypass the need to design and compute the
atomic fingerprints by utilizing deeper neural network architectures,
similar to convolution or graph neural networks40,41, to automatically
extract structural information of a material system28–31,38,42–45. For
example, SchNet28,30 uses a series of continuous-filter convolutional
layers to extract features from an arbitrary molecular geometry that
can then be used to predict the PES of the molecule. While these
models have shown excellent accuracies of atomic forces in single
molecule systems, these models still rely on taking the derivatives of
the PES to predict the atomic forces. In a different approach, the
Direct Covariant Forces (DCF) model39 proposes an ML framework
that predicts atomic forces directly using atomic fingerprints without
having to take the derivatives of the PES. However, because the
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model relies on human-engineered atomic fingerprints, its predic-
tion accuracy is limited.
In this study, we present a graph neural network force field

(GNNFF) framework that bypasses both computational bottle-
necks by predicting atomic forces directly using automatically
extracted structural features that are translationally-invariant, but
rotationally-covariant to the coordinate space of the atomic
positions. We first demonstrate the accuracy and speed of GNNFF
in calculating the atomic forces of various material systems against
state-of-the-art models and benchmarks developed for each of
those systems. For the first benchmark system of organic
molecules found in the ISO17 database28,29,46, we compare GNNFF
against the SchNet architecture. GNNFF outperformed SchNet by
16% in force prediction accuracy and by a factor of 1.6× in
prediction speed. For the second benchmark system consisting of
two multi-element solid-state systems (amorphous Li4P2O7 and
Al2O3 in contact with high-concentration HF gas at the surface), a
class of materials often neglected in ML tests, we benchmarked
GNNFF against the DCF architecture39. Depending on the
element-type and the system, GNNFF outperformed DCF by up
to 30% on force prediction accuracy (up to 6.2× higher accuracy
for rare chemical reaction events particularly difficult for DCF) and
4.5× on prediction speed.
We then further characterize the practical aspects of GNNFF’s

performance which are based on (1) scalability and (2) the
physical/chemical accuracy of the GNNFF generated trajectories.
Scalability measures how accurately the ML model can predict the
forces of a system after being trained on forces obtained from a
smaller system. For this assessment, we generated two separate
AIMD trajectories of Li7−xP3S11, a superionic conducting material.
One uses a 1 × 2 × 1 supercell (Small) and the other a 1 × 2 ×
2 supercell (Large), each with a single Li-ion vacancy compensated
by a background charge. When trained solely on the forces taken
from the “Small” supercell, we show that GNNFF is able to predict
the forces of the “Large” system as accurately as it can predict the
forces of the “Small” system where the differences in accuracies in

predicting the forces were within 3%. To illustrate the physical/
chemical accuracy of the GNNFF generated trajectories, we
measured the Li-ion diffusion coefficient from an ML-driven
simulation of Li7−xP3S11 performed under the same conditions as
the AIMD “Small” simulation using the previously trained GNNFF.
The diffusivity measured from GNNFF-generated trajectory was
within 14% relative to that measured directly from the AIMD
‘Small’ trajectory. The versatility and excellent performance
exhibited by GNNFF strongly suggest that it can be used to
effectively accelerate many studies of atomistic level dynamics
through MD.

RESULTS
The Graph Neural Network Force Field (GNNFF) model
The general architecture of GNNFF is illustrated in Fig. 1, and is
inspired by previous work on crystal graph convolutional neural
networks31,45. First, the atomic structure of each MD snapshot is
represented as a directed graph G ¼ V; E; Uð Þ, with node vi 2 V
representing the constituent atom i, directed edge eij 2 E
representing the influence atom i has on neighboring atom j, and
u!ij 2 U representing the unit vector pointing from atom i to atom j.
Here, we emphasize that the edges are directed where eij ≠ eji
implying that the influence that atom i has on atom j is not the same
as the influence that atom j has on atom i. Each node is connected
to its N closest neighbors where N is a predefined number. The
graph representation is used as input for GNNFF which is composed
of the embedding, the message-passing, and the force vector
calculation stages.
In the embedding stage, node νi and edge eij are embedded

with latent vectors to represent the hidden physical/chemical
states of the atom and bond respectively, where we define
embedding to be the mapping of a discrete object to a vector of
real numbers. Initial node embedding h0i is the output of a neural
network where the input is a one-hot (categorical) vector

Fig. 1 Illustration of the GNNFF architecture. Each atomic configuration is represented as a directed graph that is then used as the input for
GNNFF. Atom i is represented as node νi and the influence atom i has on atom j is represented by a directed edge eij. The direction of this
influence is represented by unit vector u!ij . Nodes and edges are embedded with latent vectors in the embedding stage. Initially, the node
and edge embeddings respectively contain the atom type and interatomic distance information. The embeddings are then iteratively
updated during the message passing stage. The final updated edge embeddings are used for predicting the interatomic force magnitudes.
The force on the center atom j is calculated by summing the force contributions of neighboring atoms i 2 N j that are calculated by
multiplying the force magnitude and the respective unit vector. The predicted forces are finally used for updating the atomic positions in MD.
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representing the element-type of atom i. The purpose of using
one-hot vector representations is purely to differentiate one
element-type from another. For example, in a system that consists
only of water, hydrogen and oxygen can be respectively
represented as one-hot vectors [1, 0] and [0, 1]. The initial edge
embedding h0i;jð Þ is given by expanding the distance between
atoms i and j in a Gaussian basis, a process we refer to as Gaussian
filtering. Mathematically this can be expressed as:

fa : One� Hot Type atom ið Þð Þ ! h0i (1)

G : d i; jð Þ ! h0i; jð Þ (2)

where fa denotes the neural network that maps the one-hot
encoding of the element-type of atom i to h0i , G denotes the
Gaussian filtering operation, and d(i,j) denotes the distance
between atoms i and j.
The message-passing stage of GNNFF consists of multiple layers

where in each layer, “local messages” are passed between
neighboring nodes and edges. We define the local message
passing that occurs between the nodes and edges as follows:

Edge to node : f lv : hli; h
l
i;jð Þ j 2 N ij

n o
! hlþ1

i (3)

Node to edge : f le : hlþ1
i ; hlþ1

j ; hl i; jð Þ
n o

! hlþ1
i; jð Þ (4)

hli and hl i;jð Þ are the embeddings of node νi and edge eij in the
message-passing layer l, respectively. Initial conditions for hli and
hl i;jð Þ are given by h0i and h0i;jð Þ which were determined in the
embedding stage. N i denotes the set of indices of neighboring
nodes connected to node νi. Message functions f lv and f le are node-
and edge- specific neural networks that update hli and hl i;jð Þ to hlþ1

i

and hlþ1
i; jð Þ respectively. These functions are defined such that after

each update (message-passing), embedding hli better represents
the local atomic environment of atom i and embedding hl i;jð Þ
better represents the interatomic interactions between atoms i
and j. The designs for these functions are flexible and can be
altered to emphasize the different interatomic interactions that
occur within MD simulations. In the current implementation of
GNNFF, we defined the functions to be the following:

f lv : h
lþ1
i ¼ tanhh

hli þ
P

j2N i
σ c1lijW

l
1 þ bl1

� �
� tanh c1lijW

l
2 þ bl2

� �i (5)

f le : h
lþ1
i; jð Þ ¼ tanh

hl i; jð Þ þ σ c2lijW
l
3 þ bl3

� �
� tanh c2lijW

l
4 þ bl4

� �

þP
k2N j

σ c3lijkW
l
5 þ bl5

� �
� tanh c3lijkW

l
6 þ bl6

� �

2
64

3
75

(6)

where σ denotes a sigmoid function that is applied element-wise
to each entry of the vector and � denotes an element-wise
multiplication operator. Wl and bl represent the weights and
biases of the neural network hidden layers that compose the
message-passing layer l. c1lij represents how the interatomic
dynamic between atoms i and j impacts the local environment of
atom i and is defined as c1lij ¼ hl

i � hl
i; jð Þ, where � denotes a

concatenation operator. c2lij and c3lijk respectively represent the 2-
body correlation between atoms i and j and 3-body correlation
between atoms i, j, and k, where c2lij ¼ hl

i � hl
j and

c3lijk ¼ hl
i � hl

j � hl
k � hl

i; jð Þ � hl
k; jð Þ. We note that the 2-body and

3-body correlation terms use different operators. These operators
were chosen based on trial-and-error where we found that using
the � operator for the 2-body correlation term and ⊕ operator for
the 3-body correlation term yielded the best ML performance on

the validation set. The many-body correlations beyond the 2-body
and 3-body contributions are implicitly captured by repeatedly
passing messages between the nodes and edges. However, this
can also result in the loss of information as the message travels
further away from its point of origin. To minimize this loss, Eq. (5)
and (6). use an activation function g to normalize information after
each message-passing iteration and an activation function σ to act
as a gate that allows only the most relevant information to pass
through47.
The use of latent vectors that are iteratively updated instead of

human-engineered atomic fingerprints to represent the chemical/
physical state of the local atomic environment in itself is not a new
practice28,30,31,45. However, GNNFF is different from existing
models in how it uses the updated edge embeddings to calculate
force vectors that are rotationally-covariant to the coordinate
space in the final stage. For a GNNFF with L message-passing
layers, the final updated state of edge eij, represented by
embedding hLi; jð Þ, is used to calculate nij, a scalar quantity that
denotes the magnitude of the force contribution that atom i is
exerting on atom j. The force contribution of atom i onto j is given
by nij u

!
ij and the total force prediction on atom j is simply the

vector sum of the force contributions of all neighboring atoms.
Mathematically the individual force contribution and the total
force prediction can respectively be written as:

ff : h
L
i; jð Þ ! nij (7)

F
!

j ¼
X

i2N j
nij u

!
ij (8)

where the function ff is a neural network in the final stage that
maps hLi;jð Þto nij and F

!
j is the force prediction on atom j. Because

F
!

j is a linear function of u!ij 2 U , which is inherently
translationally-invariant and rotationally-covariant to the input
coordinates of the atoms, the GNNFF-predicted forces are
translationally-invariant and rotationally-covariant to the input

atomic coordinates environment R
!

t

n o
of the MD snapshots as

well. Also, since we only consider the force contributions of a fixed
number of neighboring atoms, the computational cost of using
GNNFF to predict new forces scales linearly with the size of the
system. The weights and biases in fa, f lv , f

l
e, and ff are shared across

all the atoms.

Comparing GNNFF performance to other models
In this section, we characterize the performance of GNNFF in
predicting atomic forces through two different illustrations. First,
we evaluate GNNFF performance in predicting the forces of simple
organic molecules in reference to SchNet which provides one of
the best published benchmarks available for predicting forces of
single-molecule MD28,30. Subsequently, GNNFF is evaluated on
complex solid-state systems in reference to DCF, which has been
trained and tested for predicting forces of complicated multi-
element solid-state systems39.
To compare the GNNFF performance in predicting the forces of

organic molecules to that of SchNet, GNNFF was trained and
tested in the same way SchNet was evaluated in ref. 28. The
organic molecule force data used for evaluation were taken from
the ISO17 database28,29,46, a collection of MD trajectories
simulated for 129 organic isomers, all with the composition of
C7O2H10, but with distinct structures. The trajectory for each
isomer consists of 5000 snapshots, resulting in a total of 645,000
unique snapshots. The snapshots are divided into three non-
overlapping sets: one training set and two test sets. The training
set consists of 80% of the snapshots randomly selected from the
MD trajectories of 80% of the 129 isomers. The first test set,
referred to as the ‘test within’ set, consists of the remaining 20% of
the snapshots obtained from the same molecules used in the
training set. The second and more challenging test set consists of
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all the snapshots taken from the other 20% of the 129 molecules
that are not included in the training set and is referred to as the
“test other” set. The purpose of the first test set is to evaluate an
ML model’s ability to interpolate the forces of unknown
geometries for known molecules, i.e., molecules that are present
in the training data, while the second test set evaluates the ability
of GNNFF to generalize to unknown molecules, i.e., molecules that
were never encountered in training. Predictive accuracies are
evaluated based on the mean absolute error (MAE) of the
Cartesian force components. The test results are summarized in
Table 1. For “test within”, MAE of GNNFF was 0.036 eV Å−1 which is
16% lower than that of SchNet (0.043 eV Å−1) indicating that
GNNFF is better at capturing chemical/structural features of a
molecular conformation necessary for interpolating the forces of
unknown conformations for known molecules, i.e., molecules that
are included in the training set. For “test other”, GNNFF MAE of
0.088 eV Å−1 was 7% lower compared to that of SchNet (0.095 eV
Å−1) implying that GNNFF extracted chemical/structural features
are more generalized and therefore, better suited for inferring the
forces of new unknown molecules that the ML model never
encountered in training.
We also evaluated the computational efficiency of SchNet and

GNNFF in predicting atomic forces of the “test within” and “test
other” data sets. Evaluations were performed on a workstation
equipped with an Nvidia GTX 1080 GPU and an Intel i7-8700K 6-
core 3.70 GHz CPU processor. The efficiency of SchNet was
evaluated using the SchNetPack code that is available through
github.com/atomistic-machine-learning/schnetpack. The average
time for SchNet to evaluate the forces of the MD snapshots in the
“test within” and ‘test other’ sets was 10.5 × 10−4 s per atom per
snapshot. For GNNFF, the evaluation time was 6.1 × 10−4 s per
atom per snapshot, indicating that GNNFF is ~1.6× faster. While
various factors can be attributed to this speed up such as code
optimization or the size of the neural networks, these results
suggest that GNNFF is faster than SchNet in its out-of-the-box
state and demonstrate that GNNFF can be effectively used for
accelerating the chemical exploration of organic molecules with
performance on par with current state-of-the-art models.
Here, we benchmark the GNNFF performance to that of DCF in

predicting the atomic forces of the AIMD trajectories of two
different solid-state systems. The first system is Li4P2O7 at a
temperature T= 3000 K, well beyond its melting temperature.
Temperature was regulated with a Nosé-Hoover thermostat and
MD was performed with a timestep of 2 fs for 50 ps yielding a total
of ~25,000 snapshots. This simulation represents part of the rapid
annealing process that turns crystalline Li4P2O7 into an amorphous
state. Using this system, we evaluate GNNFF’s ability to learn and
recognize the subtle differences between the different phases of
the oxide that are present in the simulation. The second system
involves Al2O3 in contact with HF molecules at T= 1000 K where
chemical reactions occur between the HF acids and the Al atoms.
Temperature was regulated with a Nosé thermostat and a
timestep of 0.5 fs was used with a total duration of ~7 ps yielding
~13,000 snapshots. This system is used for evaluating GNNFF’s
performance in capturing dynamics that drive chemical reactions.

The Li4P2O7 and Al2O3-HF systems consist of 208 and 228 atoms
respectively, both significantly larger than the isomers of ISO17.
Detailed explanations on the generation of these simulations can
be found in ref. 39. GNNFF was trained and tested separately for
each MD trajectory where the snapshots were shuffled and
divided into 80 and 20% of the total data to form the training set
and test set. For the Li4P2O7 system, the training data consisted of
~20,000 snapshots and the testing data consisted of ~5000 snap-
shots. For the Al2O3-HF system, there were ~11,000 training and
~3000 testing snapshots. Similar to the DCF evaluation criteria39,
the GNNFF performance was quantified separately for each
element-type e by the ratio of the vector mean absolute error

(vMAE) between the GNNFF-predicted forces ( F
!

GNNFF;e) and DFT-

calculated forces ( F
!

DFT;e), to the mean absolute value (MAV) of the
DFT-calculated forces. Specifically, prediction accuracy is given by

vMAEe
MAVe

¼
h F
!

DFT;e � F
!

GNNFF;e

���
���i

h F
!

DFT;e

���
���i

(9)

a metric that is comparable across temperatures and elements
where the brackets indicate an averaging operation. The
numerator averages the absolute differences between the DFT-
calculated and GNNFF-predicted forces for element-type e while
the denominator averages the magnitude of the DFT-calculated
forces of e. Lower vMAEe

MAVe
indicates higher predictive accuracy. We

note that this is different from the MAE of the Cartesian force
components used previously to compare GNNFF and SchNet.
As shown in Fig. 2, the correlations between the ML-predicted

and DFT-calculated forces are clearly evident for all elements in
both systems, implying the high general performance of GNNFF in
predicting forces. The predictive accuracy of GNNFF for each
element is summarized in Table 2 and compared to that of DCF.
The improvement of GNNFF over DCF measured in vMAE/MAV %
values ranges from 8% for the lighter elements such as H, O, and F
to 30% for the heavier elements such as P and Al.
The time for GNNFF to evaluate the test sets for the Li4P2O7 and

Al2O3-HF systems were both 1.8 × 10−3 s per atom per snapshot
on a single core of a high-performance cluster mounted with
2.10 GHz Intel Xeon Gold 6230 processor. Using the same
hardware setup, DCF took 7.8 × 10−3 and 8.8 × 10−3 s per atom
per snapshot to evaluate the Li4P2O7 and Al2O3-HF test sets
respectively, showing that GNNFF is on average 4.5× faster than

Table 1. Comparison of GNNFF and SchNet Cartesian force
components predictive accuracy of the ISO17 database.

Test set F
!

DFT

���
���

D E
(eV Å−1) MAE (eV Å−1)

SchNet28 GNNFF

Test within 1.698 0.043 0.036

Test other 1.664 0.095 0.088

The mean absolute value of all atomic forces, F
!

DFT

���
���

D E
, for each test set is

shown for reference.

Fig. 2 Performance of GNNFF in predicting forces of solid-state
systems. GNNFF-predicted vs DFT-calculated force correlation plots
of elements from the Li4P2O7 and Al2O3-HF MD systems. Fi,α (α∈ {x,y,
z}) represents the Cartesian force component of atom i.
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DCF in predicting forces. These results again demonstrate GNNFF’s
competitive edge against existing state-of-the-art models.
Using the Al2O3-HF system, we further investigated the GNNFF’s

performance in predicting the atomic forces involved in rare
events as was done in ref. 39. The trajectory contains chemical
reactions where a HF molecule associates and dissociates from an
Al atom at the surface of Al2O3 as shown in Fig. 3(a). The
snapshots that correspond to the events in which the HF
molecules react with the Al atoms, or simply the “reaction
snapshots”, occur on average once every 8 time steps and are
extracted from the trajectory according to a Hidden Markov Model
(HMM) as explained in the Methods section.

While the sparsity of data makes it especially difficult to train an
ML model to correctly predict the atomic forces of reacting
snapshots, it is nonetheless important to quantify an ML model’s
performance in this regard as these rare occurrences are generally
the phenomena we would be interested in studying with ML-
driven MD. For our assessment, we trained another GNNFF model
from scratch using only the nonreacting snapshots and tested it
using the reacting snapshots (reaction test set). There were ~1600
reacting snapshots leaving ~12,400 snapshots for training.
We compared the force prediction accuracy of GNNFF on the

reaction test set to our previous evaluation where snapshots of
the Al2O3-HF were randomly shuffled prior to being divided into
training and testing data (standard testing set) as reported in
Table 2. Figure 3b shows that the vMAE/MAV % values for each
element-type measured on the reaction and standard test set
differ by 5% or less. According to the HMM that is used for
extracting the reaction snapshots, oxygen is occasionally recog-
nized as part of the alumina surface and HF reaction when the HF
acid interacts with a unit of Al-O rather than the individual Al
atom. However, the reaction snapshots corresponding to these
reaction events involving oxygen comprise less than ~0.1% of the
total trajectory, making force predictions of oxygen in the reaction
test set a challenge39. In Fig. 3c, the correlation between the
GNNFF-predicted and DFT-calculated forces of the reaction test
set is as clear as that of the standard test set. The GNNFF vMAE/
MAV % value for oxygen in the reaction test set was 17%. The
corresponding value reported for DCF is 6.2× higher at 105%. We
hypothesize that this significant improvement happens because
GNNFF is a fully rotationally-covariant force prediction algorithm
that does not require hand-crafted descriptors, while DCF is only
trained to be rotationally-covariant using data augmentation and
relies on manually designed descriptors.

Table 2. Comparing the accuracies of GNNFF and DCF in predicting
the atomic forces of solid-state systems, Li4P2O7 and Al2O3-HF.

System Atom vMAE/MAV (%)

DCF GNNFF

Li4P2O7 Li 37 13

O 25 10

P 40 10

Al2O3-HF Al 33 14

F 22 14

H 22 14

O 35 15

Accuracy is measured separately for each element in terms of vMAE/MAV,
where lower values indicate higher accuracies. For both systems, GNNFF
accuracy for each element is higher than that of DCF.

O

(a)

(b) (c)

Form Bond

Break Bond

Al2O3-HF surface reaction

Al
O

F
H

Fig. 3 Predicting the forces on atoms involved in surface reaction between Al2O3 and HF. a Illustration of the Al2O3-HF surface reaction b
Comparison of force predictive accuracies between standard and reaction test sets for all elements present in system. c GNNFF-predicted vs
DFT-calculated force correlation plots of oxygen for both standard and reaction test sets.
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Assessing the practical effectiveness of GNNFF
Here we assess the practical effectiveness of GNNFF and begin by
stating what the GNNFF cannot be used for. Because the forces of
GNNFF are not derived from the PES of the system, they are not
energy conserving. This is easily checked by performing an NVE
simulation using GNNFF predicted forces, for which more details
can be found in Supplementary Note 2. This implies that GNNFF
cannot be used to run micro-canonical simulations or to measure
properties that are related to energy of the system such as
formation energy or transition barriers.
GNNFF, however, can still be used to run MD simulations in an

NVT setting where a thermostat is used to regulate the
temperature. Within an NVT setting, the expected effectiveness
of GNNFF in practice can be further tested based on two
additional criteria. The first criterion is scalability: how does the
GNNFF perform when we use it to predict the forces of an MD
system that is larger than the system used for generating the
training data? Ab initio methods are limited by computational cost
in simulating large materials systems with a lot of atoms. This can
be problematic when studying physical phenomena such as
nucleation, dislocation, and grain boundary formations which
require sufficiently large MD systems in order to be observed.
Having an ML model that can consistently provide accurate force
predictions regardless of the MD system size would greatly
expand our capability to explore diverse physical phenomena at
the atomic level. The second criterion is how physically/chemically
accurate the GNNFF generated simulations are in reference to
AIMD48,49. For example, if we are interested in studying the ionic
conducting properties of a material using ML, it is important that
the ionic conductivity measured from the ML simulated trajectory
to be close to that measured from AIMD.
Our system of choice to test GNNFF for these criteria is Li7P3S11,

a superionic conducting material. Recent study has shown that the
conductivity of Li7P3S11 at 300 K predicted by AIMD is 57 mS cm−1

which is about 5× greater than the experimentally measured 11.6
mS cm−119. The lower experimentally measured conductivity is
speculated to be due to grain boundaries which deter ion
transport. Using AIMD to accurately determine the effect that
grain boundaries (GB) have on ion transport is problematic, as it
would require significantly larger systems than bulk (GB free)
simulations. While a detailed investigation of ion dynamics in
grain boundaries using ML is beyond the scope of this study,
Li7P3S11 is a good example where having an ML model that
satisfies the aforementioned scaling and accuracy criteria could
greatly help in studying its physical/chemical properties.
Data used for this assessment was obtained from two separate

AIMD trajectories of Li7-xP3S11. These trajectories differ in system
size, where one uses a 1 × 2 × 1 supercell (“Small”) and the other
uses a 1 × 2 × 2 supercell (“Large”). Both systems contain a single
Li+ vacancy to accelerate ion diffusion resulting in 83 atoms (x=
0.25) in the “Small” system and 167 atoms (x= 0.125) in the
“Large” system. Simulations were performed at 520 K using a
Nosé-Hoover thermostat. The “Small” and “Large” trajectories
respectively consist of ~25,000 and ~7500 snapshots. More details
of how these simulations were generated can be found in the
“Methods” section.
To illustrate the scalability of GNNFF, we first trained it on

~20,000 snapshots randomly selected from the “Small” trajectory.
We then compared GNNFF accuracy in predicting the forces of all
~7500 snapshots provided by the ‘Large’ trajectory and the
~5000 snapshots in the “Small” trajectory that were not included
in the training data. Accuracy was again measured separately for
each element-type in vMAE/MAV.
As shown in Fig. 4b, the differences in vMAE/MAV % values for

the “Small” and “Large” systems were within 3% for all elements,
demonstrating the consistency of the GNNFF force prediction
accuracy on the “Large” trajectory even after being trained on the

“Small” trajectory forces. In Fig. 4c, the GNNFF-predicted vs DFT-
calculated force correlation plots of the element S for the “Large”
and “Small” test sets are overlaid together. While the force
correlation of the “Large” test set is as good as that of the “Small”
test set, some of the ML-predicted values significantly deviate
from the DFT-calculated values as indicated by the blue arrows.
Although these deviations were only observed for the force
predictions of S, they could cause concern as they might lead to
unphysical atomic configurations when using GNNFF to perform
MD.
To address this concern, we performed an NVT MD simulation

for the “Large” system size, but using atomic forces (and hence,
evolution of the trajectory) calculated by the GNNFF trained on
the ‘Small’ trajectory forces. We then compared atomic config-
urations of the GNNFF-simulated trajectory to the ab initio
generated “Large” trajectory. For a fair comparison, GNNFF-
generated simulation was performed under the same conditions
as its ab initio counterpart in terms of temperature, thermostat,
timestep, simulation duration, and initial structure. Throughout
the ML-driven simulation, no breaking of the P–S bonds was
observed. The radial distribution functions (RDFs) and angular
distribution functions (ADFs) of the GNNFF and AIMD trajectories
are highly consistent with one another as shown respectively in
Fig. 4d, e. This demonstrates that the average atomic configura-
tions generated by GNNFF MD are physically reasonable despite
the deviations in the force predictions observed in Fig. 4c.
To evaluate the physical/chemical accuracy of GNNFF generated

trajectories, we calculate the diffusivity of Li-ions in Li7−xP3S11 (x=
0.25) with an MD simulation using GNNFF-predicted forces and
compare it with that obtained directly from AIMD. The ab initio
value for the Li diffusivity was obtained from the AIMD “Small”
trajectory that was simulated for 50 ps. The temperature of the MD
simulation was regulated using a Nosé-Hoover thermostat with a
time constant tT= 27 fs. The effects of thermostat strength on Li
diffusivity are discussed in detail in Supplementary Note 3. For an
apples-to-apples comparison, we performed an MD simulation
equivalent of the “Small” trajectory using the previously trained
GNNFF to determine the ML predicted Li diffusivity. Again, no
breaking of the P-S bond was observed throughout the GNNFF-
driven simulation. In Fig. 5a, we compare the element-specific
probability distribution function (PDF) of the force magnitudes in
the GNNFF MD run and AIMD run. While there is an overall
tendency of GNNFF to underestimate the force magnitudes
compared to DFT, we generally see good agreement between the
GNNFF and AIMD PDFs for all element-types. In Fig. 5(b), we
compute and plot the mean square displacement (MSD) of Li-ions
as a function of time lag (Δr). The diffusivity of Li7−xP3S11 (x= 0.25)
at 520 K determined from the MSD slope was 1.7 × 10−5 cm2 s−1

for GNNFF which is in good agreement with the AIMD value of
1.5 × 10−5 cm2 s−1. This demonstrates that the accuracy of the
GNNFF-driven MD simulations is on par with that of the
simulations generated through ab initio methods. With methods
like GNNFF that are more scalable than AIMD, direct simulations of
ion transport across defects and grain boundaries are more
feasible and will be the subject of future work.

DISCUSSION
GNNFF provides a versatile framework to directly predict atomic
forces from automatically extracted features of the local atomic
environment that are rotationally-covariant to the coordinate
space. This enables GNNFF to bypass both computing atomic
fingerprints and calculating the derivatives of the PES which are
often the computational bottlenecks of existing ML force field
models.
In this work, we demonstrated the competitive edge of GNNFF

in terms of accuracy and speed with respect to existing models
such as SchNet and DCF in predicting the forces of various
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systems ranging from simple organic molecules and complex
solid-state systems. We further showed that GNNFF has good
scalability and can accurately predict the forces of large systems
even after being trained on forces from a smaller system. Finally,

we validated the physical/chemical accuracy of GNNFF by
showing that the MD simulation of Li7-xP3S11 driven by GNNFF-
calculated forces can quantitatively capture the dynamics of Li-ion
diffusion. We envision that GNNFF will significantly accelerate

GNNFF

Large

Train

Predict

Small

Li
P
S

(a)

(b) (c)
S

(d) (e)

Li-Li

Li-S

Li-P

P-Li-P

S-Li-S

P-Li-S

Fig. 4 Evaluating GNNFF scalability on AIMD trajectories of Li7-xP3S11 with differing x values. a GNNFF is trained on “Small” trajectory (x=
0.25) forces and tested on “Large” trajectory (x= 0.125) forces b Comparison of GNNFF performance when evaluated on “Small” trajectory
forces not used for training vs “Large” trajectory forces. c GNNFF-predicted vs DFT-calculated force correlation plots of S for both “Small’ and
“Large” systems. Blue arrows indicate significant deviations of ML-predicted values from DFT-calculated values. Comparison of the d radial
distribution functions of different element pairs involving Li and e angular distribution functions of different element triplets involving Li from
GNNFF and AIMD generated “Large” trajectories. The second element is the central atom of the triplet.
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many different atomistic studies with its scalability, flexibility, and
excellent force prediction accuracy.

METHODS
Extracting reaction snapshots from Al2O3-HF MD trajectory
The reaction snapshots in the Al2O3-HF MD trajectory that correspond to
the HF acid reacting at the surface of Al2O3 were extracted using an
approach that combines molecular graph analysis and a HMM50,51. In this
approach, snapshots of an MD trajectory are represented as graphs where
each atom is connected to all neighboring atoms within a radial cutoff
distance that depends on the covalent radii of the atoms. Here, we note
that a connection between two atoms does not necessarily mean that
there exists a bond between them. A connection is classified as a bond
only after the connection consistently exists throughout a continuous time
span. The level of consistency for which the connection must exist to be
classified as a bond is determined by the HMM. This approach ensures that
we do not mistake a cluster of atoms to be of the same molecule
when they just happened to be close to each other due to thermal
vibration or molecular collision. More details of this approach can be found
in ref. 39.

Generating Li7-xP3S11 ab initio data
The AIMD simulations of Li7-xP3S11 were performed using the Vienna Ab
Initio Simulation Package2,3 with the project augmented wave method52

and Perdew–Burke–Ernzerhof generalized gradient approximation53. Two
separate MD simulations were performed for a 1 × 2 × 1 supercell (“Small”)
and a 1 × 2 × 2 supercell (“Large”), both with periodic boundary conditions,
at 520 K using a Nosé-Hoover thermostat. The initial structure for each run
was obtained by relaxing and statically optimizing the defect-free structure
prior to removing a Li+ ion. Γ-point meshes of 3 × 3 × 3 and 2 × 2 × 2 were

used respectively for the “Small” and “Large” simulations. The plane-wave
cutoffs for both systems were set to 450 eV. In both runs, the temperature
of the system was initialized at 100 K and then heated up to the target
temperature of 520 K at a constant rate by rescaling the velocity over a time
span of 4 ps. Each system was then equilibrated at the target temperature
for another 4 ps. After equilibrating, the “Small” trajectory was simulated for
~50 ps while the “Large” trajectory was simulated for ~14 ps, both using a
timestep of 2 fs. Data used for training and testing the GNNFF only includes
the trajectory generated after equilibration. In both trajectories, no breaking
of the P-S bond was observed throughout the simulation.
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