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ABSTRACT
N-body methods simulate the evolution of systems of particles (or
bodies). They are critical for scientific research in fields as diverse
as molecular dynamics, astrophysics, and material science. Most
load balancing techniques for N-body methods use particle count
to approximate computational work. This approximation is inac-
curate, especially for systems with high density variation, because
work in an N-body simulation is proportional to the particle density,
not the particle count. In this paper, we demonstrate that existing
techniques do not perform well at scale when particle density is
highly non-uniform, and we propose a load balance technique that
efficiently assigns load in terms of interactions instead of particles.
We use adaptive sampling to create an even work distribution more
amenable to partitioning, and to reduce partitioning overhead. We
implement and evaluate our approach on a Barnes-Hut algorithm
and a large-scale dislocation dynamics application, ParaDiS. Our
method achieves up to 26% improvement in overall performance
of Barnes-Hut and 18% in ParaDiS.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; G.2.2 [Discrete Mathematics]: Graph The-
ory—Hypergraphs; I.6.8 [Simulation and Modeling]: Types of
Simulation—Parallel
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1. INTRODUCTION
N-body methods simulate the dynamic evolution of a system of

particles (bodies) under the influence of physical forces. These
algorithms are critical to many scientific fields, including astro-
physics, computational biology, chemistry, and material science [17,
27, 28, 34]. In an N-body simulation, each particle may exert a
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force on any other. The simulation progresses by repeatedly com-
puting force interactions between pairs of particles, then updating
the particles to reflect the force’s effect. These forces typically
comprise the bulk of the simulation’s execution time. If all forces
are considered, a naïve N-body algorithm runs in O(n2

) time with
respect to the number of particles. Modern algorithms such as
Barnes-Hut [5] and the fast multipole method [31] use more sophis-
ticated algorithms to reduce the number of interactions that need to
be computed, resulting in O(n log n) or O(n) runtime, but even
with these algorithms, the interaction computation dominates the
runtime. Large N-body simulations may involve billions of parti-
cles, and they need to be run on parallel computers.

Load balance is a major performance problem for N-body meth-
ods at scale. For the best parallel performance, computational work
must be evenly decomposed over all processing elements of the
machine. Currently, many N-body simulations use a geometric do-
main decomposition to assign groups of particles to processes, and
each process computes the interactions involving the particles it is
assigned. However, the work in N-body simulations is proportional
to the number of interactions each process computes, i.e., the local
density of particles in the simulated domain. Particle decompo-
sitions can therefore distribute work unevenly when there is high
particle density variation. This type of load imbalance is partic-
ularly expensive at scale, because hundreds of thousands of idle
processors may wait on a single overloaded processor.

We show that particle-based decompositions are prohibitively
imprecise at scale, particularly when interaction density is highly
non-uniform, and we present a load balancing method that explic-
itly balances the real work: interactions. Current approaches do
not balance interactions explicitly because of memory and perfor-
mance concerns: interactions greatly outnumber particles. Our ap-
proach makes balancing interactions affordable by using adaptive
sampling to select uniformly sized groups of interactions, which we
call work units. We then apply a hypergraph partitioner to the work
units and to assign them to processes. The overhead of this ap-
proach is low because the coarse granularity of the work units and
their uniform size make the hypergraph partitioner run efficiently.

We apply our load balancing technique to a Barnes-Hut bench-
mark and a large scale dislocation dynamics application, ParaDiS.
This paper makes the following contributions:

1. An algorithm for load balancing interactions in N-body sim-
ulations, using work unit selection and hypergraph partition-
ing to assign interactions to processes explicitly;

2. An adaptive sampling approach to select work units with uni-
form sizes for good load balance, and coarse granularity for
good partitioning performance;
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Figure 1: Particles Shown as Circles (n); Short-Range and Long-
Range Interactions Shown as Black and Blue Edges
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Figure 2: Geometric Domain Decomposition

3. Demonstration of significantly improved load balance, low
overhead, and overall performance improvements of up to
26% on Barnes-Hut and 18% on ParaDiS.

To our knowledge, we present the first approach to load bal-
ancing interactions explicitly with low overhead. Section 2 sum-
marizes traditional load balance methods for N-body applications.
Section 3 describes our algorithm for load balancing interactions,
which uses an adaptive sampling approach for selecting work units
and hypergraph partitioning for assignment to processes, as de-
tailed in Sections 3.1 and 3.2. Section 4 outlines our implemen-
tation and its application to Barnes-Hut and ParaDiS. We evaluate
the performance of our approach in Section 5.

2. LIMITATIONS OF EXISTING N-BODY
LOAD BALANCING TECHNIQUES

N-Body methods simulate the evolution of systems of particles
(bodies) by computing force interactions on groups of particles.
For forces like gravity and electromagnetism, interactions involve
pairs of particles, but in other systems they may involve larger
groups. Once the force is evaluated, particle positions are updated
and the cycle repeats. Figure 1 shows a system of particles (circles)
and the interactions between them (edges). In nearly all N-body
simulations, force computation is the bulk of the work. Modern
algorithms such as Barnes-Hut [5] and fast multipole [31] compute
weak long-range forces (blue edges) less frequently than stronger
near-range forces (black edges). These algorithms use a cutoff ra-
dius to determine whether an interaction is near- or long-range; the
cutoff radius is determined based on the particular physics simu-
lated. This optimization reduces the number of interactions com-
puted. Still, the force computation dominates the running time.

The largest N-body simulations comprise billions of particles
and require a parallel computer in order to run. Implementing an ef-
ficient parallel N-body algorithm is difficult because the algorithm
must evenly distribute work to all processes; this task of dividing
work is called domain decomposition. Since N-body systems are
dynamic, the interactions that each process evaluates change over
time, and we must load balance frequently. Finally, in addition to
evenly dividing work, parallel N-body load balancers must effec-
tively manage locality. To compute a force interaction, the simu-
lation needs information on all particles involved. If the particles
are owned by different processes, then each process must gather
information on remote particles. Local copies of remote particles
are called ghosts. Ghost communication is expensive, so load bal-
ancers must allocate particles to minimize such communication.

Plimpton [23] classifies N-Body load balancing algorithms into
three categories: particle decomposition, force decomposition, and
spatial decomposition. The remainder of this section discusses
these methods and their limitations in terms of the above criteria.

Particle Decomposition. In a system of N particles running on
P processes, particle decomposition (also called row-wise decom-
position) assigns N/P particles to each process. Each particle and

its associated interactions comprise a single row in the force matrix.
Each interaction is computed by the process that owns the particles
involved. If particles in an interaction are owned by different pro-
cesses, a tiebreaker determines which process should compute the
interaction. Unless extra care is taken to preserve particle locality,
particle decomposition does not minimize ghost communication.
Work is balanced by moving the particles from process to process.
However, with a cutoff radius, the number of interactions per parti-
cle varies with the local density of the system. Interactions are the
bulk of computation, so particle decompositions become increas-
ingly imbalanced the more density varies.

Force Decomposition. Rather than assigning rows of the force
matrix as in particle decomposition, force decomposition assigns
blocks of the force matrix. Because particle ordering in the matrix
has no geometric correspondence, force decomposition methods do
not minimize ghost communication. This method works well for a
naive N-body algorithm that does not use a cutoff radius, because
the force matrix is densely populated. However, it does not work
well when there is a cutoff radius because each matrix block may
contain very different numbers of interactions. To balance work
efficiently, blocks of the force matrix must be uniformly dense.

Spatial Decomposition. Most modern N-body simulations use
spatial decomposition, in which the simulated physical domain is
divided geometrically into subdomains, which are then assigned to
processes. Examples include orthogonal recursive bisection [7, 34],
octrees [26, 35], fractiling [4], and space-filling curves [10]. Or-
thogonal recursive bisection divides space recursively into cuboids
until each contains approximately N/P particles. Octree meth-
ods similarly divide three-dimensional subspaces into octants until
octants contain a similar number of particles. Other spatial decom-
position methods include Voronoi cell decomposition [28], where
each process is assigned a centroid and owns the particles nearest
its centroid (Figure 2(a)), and prismatic schemes [8], a variation
on recursive bisection allowing subspaces to be divided more than
twice (Figure 2(b)). Spatial decomposition methods preserve local-
ity of particles and therefore reduce ghost communication.

In all of these methods, each process owns the computation asso-
ciated with the particles in its subdomains and the work is balanced
by adjusting the subdomain boundaries. Particles are moved among
subdomains as part of balancing. Some methods use the number
of particles per subdomain as an approximation of the workload,
while others [36] weight each particle by the number of interac-
tions in which it participates. Our method can split the work on one
particle between multiple processes. Many of these methods (e.g.,
octrees and recursive bisection) impose limits on how the space can
be subdivided. Together, these approximations lead to less accurate
load balancing, which limits application speedup.

Limitations. No existing method balances N-body interactions
directly with high precision. Particle and spatial decomposition
attempt to assign similar numbers of interactions to processes by
assigning particles, introducing a high degree of approximation.
The force decomposition does balance forces directly, but it as-
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sumes a dense force matrix, but many simulation force matrices
are sparse. Spatial and particle decompositions reduce bookkeep-
ing costs; tracking spatial boundaries or even individual particles
is still no worse than O(n) in the number of particles; tracking in-
dividual interactions would quickly become intractable. Even the
force decomposition assigns blocks rather than individual interac-
tions, thus reducing bookkeeping overhead. Our new method that
allows fine-grained interaction balancing also avoids the memory
and performance overheads of tracking individual interactions.

3. AN INTERACTION-BASED BALANCER
The load balancer must be precise to achieve the evenly balanced

load required for performance at scal. In particular, to address the
limitations discussed in Section 2, the load balancer must:

1. Balance interactions directly with fine granularity;
2. Preserve locality to reduce ghost communication;
3. Run fast and not incur excessive bookkeeping overhead.

In this section, we present a load balancing algorithm that satisfies
all three criteria. It consists of the following steps:

1. Select work units with sampling. Sample interactions; use
samples to divide interactions into subsets, or work units.

2. Construct model. Use work units, proximity information.
3. Partition model. Assign work units to p processes by parti-

tioning the work units into p groups.
Optimal partitioning is NP-hard [18] with many heuristic par-

titioning algorithms. However, while existing partitioning algo-
rithms are sufficient for off-line use, our challenge is to use them in
a dynamic, on-line load balancer. Even with an efficient heuristic
algorithm, the number of interactions on each process is O((

N
P
)

2
).

Repeatedly partitioning a system this large at runtime is too slow.
The crux of our approach is to reduce the number of work units

under consideration by several orders of magnitude using sampling.
Further, we exploit two key aspects of any partitioner, namely that
the partitioner has a higher likelihood of finding an optimal solu-
tion [18] and will therefore run faster if: 1) work unit sizes are
small compared to process load, and 2) the sizes are relatively uni-
form in size. We have developed adaptive techniques to split large
sample groups and to narrow distribution of work unit sizes. We
have also experimented with different sample granularities to find
a sufficiently fine granularity without excessive overhead.

To our knowledge, our load balancing algorithm is the first on-
line algorithm that directly partitions interactions instead of parti-
cles. Our technique is also the first algorithm to sample interactions
in a large-scale N-body problem. We discuss our adaptive sampling
techniques in detail in Section 3.1, and we present our techniques
for model construction and partitioning in Section 3.2.

3.1 Selecting Work Units
As discussed, using a hypergraph partitioner on the full set of

interactions in an N-body simulation is infeasible. Thus, we have
developed an adaptive sampling strategy that works in two ways.
First, sampling coarsens the data set by several orders of magni-
tude, which allows us to solve a much smaller partitioning prob-
lem. Second, our sampling strategy is adaptive: it samples denser
regions of the problem space more finely so that work units are
relatively uniform in size, avoiding many of the pitfalls of the de-
compositions discussed in Section 2. Our strategy ensures that the
partitioning is both fast and accurate.

Algorithm 1 outlines the steps of our approach. Our algorithm
takes as input the set of particles P , a set of interactions I , and an
adaptive sampling threshold s. Our algorithm’s output is a set of
work units. A work unit is a sampled interaction and an associated

Algorithm 1 Adaptive Interaction Sampling
Input. P  particles, I  interactions, s adaptive sampling threshold
1: countavg = |I|/|P |
2: for all pj 2 P do
3: ip

j

= set of interactions of pj
4: nSubsetsj = max(1, s⇥ |ip

j

|/countavg)
5: take nSubsetsj samples from ip

j

6: if nSubsetsj > 1 then
7: build k-d tree from samples taken
8: for all interactions of pj do
9: select the subset wjk to which interaction belongs

10: |wjk|++
11: end for
12: wj

avg

= |ip
j

|/nSubsetsj
13: for all subsetjk 2 subsetsj do
14: if wjk > s⇥ wj

avg

then
15: adaptively sample within subsetjk , calculate weights
16: end if
17: end for
18: end if
19: end for
Output. W  work units with desired size and⇠uniform size distribution

neighborhood. Each work unit represents all samples in a partic-
ular neighborhood, and it consists of the sampled interaction, an
associated centroid, and a number of non-sampled interactions.

On line 2, Algorithm 1 starts by iterating over all particles. For
each particle, on lines 4 and 5, the algorithm samples at least one in-
teraction. If a particle is involved in more than the average number
of interactions, then we take more samples. The adaptive sampling
threshold, s, determines the number of additional samples to take,
and the caller can use s to adjust the aggressiveness of sampling in
dense regions of the domain. The number of interactions sampled
from particle pj is stored in nSubsetsj .

Once we have a sampled interaction, we assign it a coordinate
in space based on the centroid of the particles that it involves. For
a pairwise force, like gravity, the centroid is the midpoint between
two particles. For more complex forces, it is the center of mass of
the polygon defined by the member particles (Figure 3(a)). To de-
fine neighborhoods for work units, each sampled interaction’s cen-
troid is used as the center of a Voronoi cell that defines the neigh-
borhood. A centroid’s Voronoi cell is the set of points closest to
that centroid. Figure 3(b) shows a set of points and their enclosing
Voronoi cells. Any interactions in a sampled interaction’s Voronoi
cell are considered part of its work unit.

Our adaptive sampling technique ensures that each Voronoi cell
contains approximately the same number of interactions. If a cell
contains too many interactions, e.g., the cell in Figure 3(c), then
we increase the number of samples in its neighborhood, effectively
splitting it into subcells. Thus, our work units have nearly uniform
granularity and are easy to partition. However, the splitting is po-
tentially expensive. With one sample per particle, we can easily
track which interactions belong to a particular work unit by asso-
ciating the interactions with their owning particle. With multiple
samples for a particle, we need another ownership mechanism. For
particles with multiple samples, we use a k-d tree [14] to determine
which interactions are closest to each sample.

Right-Tailed Distribution. Using a k-d tree ensures that each
work unit has high locality and the accuracy of our sampling scheme.
However, constructing it is expensive. We must therefore be care-
ful to set the adaptive sampling threshold to a value that balances
granularity with range query cost.

Fortunately, an obvious way to set s exists for nearly all N-body
systems, In the natural sciences, the density of samples of objects
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Figure 3: Defining Interaction Subsets

Algorithm 2 Hypergraph Construction
Input. P (set of particles), SI (set of sampled interactions)
Output. H = (V,EH

) (graph of particles and interactions)
1: for pj 2 P do
2: H .insert(ei) to represent the particle
3: for i 2 subsetsj do
4: H .insert(vij )
5: add edges from vij to all ei, hyperedges needed to compute vij
6: end for
7: end for

in physical and natural processes (such as particles in a dynamical
system) obey a power law distribution [13]. This phenomenon is
known as Taylor’s Law in ecology and the fluctuation scaling law
in physics. For our purposes, it implies that random sampling leads
to work units with sizes that can be fit to a gamma distribution:

P(x) = 1

⇥

k

1

�(k)
xk�1e�

x

⇥ (1)

where k is a shape parameter, ⇥ is a scale parameter, and �(k) is
the gamma function evaluated at k. While the parameters vary, all
examples that we have considered exhibit a long right tail as shown
in Figure 3(d), which implies that relatively few samples have a
larger than average number of interactions. Thus, we can achieve
an even distribution of work unit weights by splitting relatively few
work units into smaller pieces. The (red) shaded area under the
tail of the gamma distribution in Figure 3(d) depicts the number of
work units that are larger than 2µ, or 2⇥ the mean. Thus a domain
scientist can easily pick a good value for s for a particular problem:
s should generally be chosen to “chop off” all or part of the tail off
the gamma distribution. In Section 5, we show empirically that our
method produces work units with relatively uniform sizes, and we
demonstrate the positive impact on the resulting load balance.

3.2 Assigning Work Units to Processes
Section 3.1 described how we select uniformly sized work units

for load balancing; next, we construct a model from these work
units to represent both parallel computation and communication.
A hypergraph is a well suited model for this problem because hy-
pergraphs have been used extensively to represent the behavior of
parallel applications [16]. Further, we can use well established hy-
pergraph partitioning algorithms to guide load balancing.

Hypergraphs are a generalization of graphs. Where a graph con-
tains vertices, and pairs of vertices are connected by edges, in a
hypergraph, each hyperedge may connect one or more of vertices.
Thus, if we represent interactions with vertices, particles are a nat-
ural fit for hyperedges, because a particle may be involved in many
interactions. Hyperedges also accurately represent ghost commu-
nication in N-body simulations, because if two interactions in the

Algorithm 3 Sampling-based Interaction Load Balancer
n number of particles, p number of processes,
m number of interactions, s adaptive sampling threshold

Step Cost

1: Build list of interactions per particle incurred
2: Adaptively sample interactions (Alg. 1) O(sn

p
+

m
p
log(s))

3: Construct hypergraph (Alg. 2) O(sn
p
)

4: Partition hypergraph O(sn
p
log(sn

p
))

5: Redistribute particles, samples, setup ghosts incurred
6: Build list of interactions per particle incurred
7: Interaction! particle! subset! process O(

m
p
log(s))

same partition share a hyperedge that represents a remote particle,
a single ghost node will need to be fetched. Partitioning a hyper-
graph tries to minimize the number of hyperedges cut by partition
boundaries, and thus minimizes interprocess communication.

Formally, given a weighted hypergraph H = (V,EH
) where V

is a set of vertices and EH is a set of hyperedges, hypergraph parti-
tioning divides V into k sets based on the following two objectives:

1. Equal partitions: Vertices are assigned to processes so that
the total vertex weight on each process is approximately equal.

2. Minimized hyperedge cut: Minimize the number of shared
particles cut by the partitions.

In our hypergraph, the vertices are the work units selected in
Section 3.1 (to represent interactions), and hyperedges represent
particles (storage units). Algorithm 2 shows our procedure. We
first add all particles as hyperedges to the sampled interaction hy-
pergraph H to ensure the graph is connected (line 2). We add the
work units from Section 3.1 as vertices (line 4) that will be par-
titioned into equal partitions. We add edges between the vertices
(work units) and the needed hyperedges (particles) to preserve the
spatial proximity information in the graph (line 5). We use a hyper-
graph partitioner to partition the resulting hypergraph.

3.3 Interaction-Based Load Balancer Using
Sampling and Hypergraph Partitioning

Algorithm 3 shows all steps of our approach together with phases
of a host N-body application. To quantify the asymptotic overhead
of our algorithm, we list the computational complexity of each
phase. Again, since we have chosen to use a hypergraph as our
model, the complexities reflect those of hypergraph partitioning.
For all complexities, p is the number of processes, n is the number
of particles, m is the number of interactions, and s is our sampling
threshold. The complexities of some phases are listed as incurred.
These are phases that an N-body application would perform regard-
less of whether it uses our load balancing approach, so we do not
count the runtime of these phases as overhead.
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Figure 4: Octree in Barnes-
Hut Benchmark

Figure 5: Dislocation Nodes
and Arms in ParaDiS
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Figure 6: Imbalance over Time in ParaDiS with Built-in
Recursive Bisection Load Balancer

Our load balancer starts by building interaction lists for each par-
ticle. The application would need this step (or at least a loop, if
not a list) to compute interactions, so the cost is not part of over-
head. The list of interactions is then passed to Algorithm 1, which
samples interactions and constructs work units. We then construct
a model, in this case a hypergraph, from the work units in Algo-
rithm 2. We pass this model to partitioning. Assuming a power law
distribution as mentioned in Section 3.1, the number of work units
added to the hypergraph is O(n). The work units in the tail of the
hypergraph do not increase this upper bound. Because the graph is
constructed in a distributed manner across all processes, the cost is
O(sn

p
). This cost can vary based on the load balance of the input

graph, but for this analysis, we assume that the input is not highly
imbalanced initially, which is true for all but the first invocation,
assuming our algorithm is run frequently.

Hypergraph partitioning is O(|V |log(|V |)), in the size of the in-
put graph, and for our graph, |V | = sn

p
, which gives O(sn

p
log(sn

p
))

for phase 4. Thus, the complexity is in terms of n and our algorithm
partition n objects instead of m = p(n

p
)

2 interactions.
After partitioning, we rely on the application to distribute work

according to the outcome of partitioning. These costs are incurred.
Last, during the force computation, we must add logic to check
each interaction computation against our computed assignment, which
is O(

m
p
log(s)). The extra log(s) factor reflects the range lookup

required for the small number of particles with split interactions.

4. APPLICATIONS & IMPLEMENTATION
Our load balancer implementation requires support libraries for

partitioning and for geometric range queries. Several hypergraph
partitioning libraries are freely available [11, 24]. In this work, we
use the hypergraph partitioner from Zoltan [12]. We use the k-d
tree implementation from the CGAL [2] Computational Geometry
Library for the nearest neighbor computation.

4.1 Barnes-Hut
The first application to which we have applied our framework is

an implementation of the classic Barnes-Hut algorithm. We created
a distributed version of Barnes-Hut [5] based on a shared memory
implementation from the Lonestar suite in Galois [9, 22]. The code
is written in C++ and uses MPI for communication. Its force cal-
culation phase uses an octree to compute approximately the force
that the n particles in the system exert on each other (e.g., through
gravity). The n leaves of the octree are the individual particles,
while the internal nodes summarize information about the particles
contained in the subtree (i.e., combined mass and center of grav-
ity). This octree effectively partitions the volume hierarchically
around the n particles into successively smaller cells. While a pre-

cise computation would have to consider O(n2
) interactions, the

Barnes-Hut algorithm uses the summary information contained at
each level of the hierarchy to approximate interactions for far away
particles. Particles that interact with other particles in nearby cells
are computed directly, but for interactions with cells that are suffi-
ciently far away, one force computation with the cell is sufficient.

This algorithm has O(n log(n)) complexity. For example, con-
sider the two-dimensional hierarchical subdivision of space in Fig-
ure 4. The algorithm checks the distance to the red cell’s center of
gravity (red circle). Because the distance is not large (red arrow),
interactions with all bodies in the red cell are computed (black ar-
rows). Because the blue cell’s center (blue circle) is far enough
away, only the interaction with the center is computed (blue arrow,
a single computation), instead of for each body (dashed arrows).

We run our load balance algorithm at the end of each timestep.
We generate our hypergraph by extracting the particle interactions
from the octree data structure. Once partitioned, we redistribute
the particles and assign interactions. As a baseline comparison for
our results, we use a decomposition that allows assignment of any
particle (along with its interactions) to any process, which is more
flexible than many implementations of spatial decomposition. To
preserve locality, we ordered the atoms by a space filling curve as
done by Winkel, et al. [36], Warren and Salmon [35], and used
with modifications by Sundar, et al. [29]. The related work shows
speedup for ’homogeneous’ and ’non-homogeneous’ particle dis-
tributions; the drop in scalability for ’non-homogeneous’ particle
distributions reveals that this load balancing scheme is insufficient
for this case, which our work targets. Unfortunately, the prior work
does not explicitly quantify the load imbalance.

4.2 ParaDiS
ParaDiS (Figure 5) is the second application that we use in our

experiments [3, 8]. This large-scale dislocation dynamics simula-
tion, which is written in C/C++ with MPI for interprocess commu-
nication, is used to study the fundamental mechanisms of plasticity.
It computes short-range forces directly and uses multipole expan-
sion [15, 31] to compute long-range forces. ParaDiS simulations
grow in size as they progress, necessitating periodic rebalancing.

Currently, ParaDiS uses a spatial domain decomposition and has
several methods for adjusting the decomposition at runtime. Recur-
sive sectioning or recursive bisection can be used to decompose the
domain into spatial prisms, and one prism is assigned to each pro-
cess. The 3-dimensional recursive sectioning decomposition first
segments the domain in the X direction, then in the Y direction
within X slabs, and finally in the Z direction within XY slabs, as
demonstrated in Figure 2(b). The recursive bisection algorithm bi-
sects the space in the X, Y and/or Z dimensions into octants, quar-

117



A

B

C

E

D

F

(a) Particles (blue spheres) and Arms
(red lines)

A

B

C

E

D

F

(b) Interactions (red squares) be-
tween Arms (red edges)

A

B

C

E

D

F

(c) Hypergraph: Vertices (red), Hy-
peredges (blue circles + adj. edges)

Figure 7: ParaDiS Computation as a Hypergraph

10

3
10

3.2
10

3.4

10

0

10

1

2,660

Work Unit Size

N
um

be
ro

fW
or

k
U

ni
ts

(a) Random Sampling

0 1,000 2,000
0

100

200

300

2,190

Work Unit Size

N
um

be
ro

fW
or

k
U

ni
ts

(b) Per-Particle Sampling

0 1,000 2,000
0

100

200

300

1,380

Work Unit Size

N
um

be
ro

fW
or

k
U

ni
ts

(c) Adaptive Sampling

Figure 8: Effect of Sample Size and Technique on Work Unit Size Variability in Barnes-Hut

ters or halves (depending on the number of domains specified per
dimension) such that the computational cost of each sub-partition
is roughly the same; the decomposition is then recursively applied
to each of the sub-partitions.

ParaDiS uses empirical measurements as an input to its load
balancing algorithm. It estimates load by timing the computation
that the developers consider most important for load balance. The
load balancing algorithm adjusts work per process by shifting the
boundaries of the sections. The size of neighboring domains con-
strains the magnitude of a shift since the algorithm does not move
a boundary past the end of a neighboring section.

Figure 6 shows the effectiveness of the recursive bisection load
balancer. This fully distributed approach improves load balance
over time. However, beyond some point, it cannot improve load
balance further due to its approximate assignment of interactions.
We use the lowest load imbalance values achievable by the built-in
balancer as the baseline for our comparisons in Section 5.3.

Figure 7 demonstrates how we describe the ParaDiS computa-
tion as a hypergraph of dislocation nodes (particles) and interac-
tions, where a dislocation node is a degree of freedom in the prob-
lem. Dislocation nodes are the units of data stored in application
data structures, and arms or segments are the connecting edges, as
shown in Figure 7(a). ParaDiS imposes a regular grid of cells to
discretize the space, which is used to determine proximity and di-
vide the interactions into short and long range. A segment interacts
with all other segments in its own cell and the cells surrounding it,
27 cells in total (assuming periodic boundaries). A segment inter-
action is a unit of work in ParaDiS, as illustrated by red squares
in Figure 7(b). Each interaction involves three or four dislocation
nodes (particles), unlike many n-body applications which define
interactions between pairs of particles. Figure 7(c) demonstrates

the hypergraph that we use for ParaDiS. The dislocation nodes and
segment interactions are the same as in Figure 7(b) (shown as blue
spheres and red squares). The dislocation nodes become the hyper-
edges, connected to all interactions that they support.

5. PERFORMANCE EVALUATION
For our experiments, we use a Linux cluster with nodes consist-

ing of two Hex-core Intel Xeon EP X5660 processors running at
2.8 GHz, with twelve cores per node and 22,272 cores total. All
nodes are connected by QDR Infiniband. We use GCC 4.4.7 and
MVAPICH v0.99 on top of CHAOS [1], an HPC variant of RedHat
Enterprise Linux (RHEL), running at Linux kernel version 2.6.32.

5.1 Distribution of Work Unit Sizes and Im-
pact on Performance

This section examines the distribution of work unit sizes under
the sampling strategies described in Section 3.1, and how more uni-
form distribution leads to more evenly distributed load. These ex-
periments use a Barnes-Hut problem with 32K particles, which we
strong scale from 8 to 2,048 processes. We chose this problem since
it is the largest problem that can fit into memory for 8 processes.
We chose strong scaling since reproducing density variations for
weak scaling is difficult. Strong scaling allows us to use the same
problem at all scales so data points are comparable.

Figure 8 shows the effect of sample size and sampling strategy on
the variability of work unit size in Barnes-Hut. As discussed in Sec-
tion 3.1, sampling a simulated domain with high density variability
results in a power law distribution of work units, as Figure 8(a)
shows (note that the horizontal axis is log-scale). The maximum
work unit size (2,660) is indicated at the top of the figure. We can
partially mitigate the density properties by proportionally sampling
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Figure 9: Impact of Sampling Strategy on Resulting Imbalance and Cost of Load Balancing Algorithm

0.11% 0.60% 1.21%
0

20

40

60

Sample Rate

Ti
m

e
(s

ec
)

128
256
512

1,024
2,048
4,096

(a) Partitioner Time

LB Number of Processes
128 256 512 1,024 2,048

0.1% 101.64 51.26 26.29 13.21 7.95
0.2% 92.78 47.27 24.62 13.14 7.49
0.4% 86.13 43.62 22.67 12.06 6.88
0.8% 79.08 39.60 20.36 10.78 6.28
1.6% 80.08 40.31 20.86 11.01 6.62
Original 107.04 54.01 27.55 14.38 8.02

(b) Total Computation Time (sec)
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Figure 10: Impact of Sampling Rate on Performance of Graph Partitioner and Barnes-Hut Application

interactions per-particle (Figure 8(b)). By running Algorithm 1
without any adaptation, we achieve a maximum work unit size of
2,190. We achieve a tighter, nearly normal distribution of the in-
teractions that each work unit represents by using the full adaptive
sampling approach from Algorithm 1, as Figure 8(c) shows. Here,
the maximum work unit size is 1,380.

Figure 9 demonstrates the impact of the sample size and strat-
egy. Figure 9(a) compares how the two approaches to sampling
impact the ability of the load balancer to assign equal partitions to
processes, where imbalance is:

imbalance =

maximum load - average load
average load

Because adaptive sampling makes the distribution of sample weights
more uniform, it results in better partition quality (lower imbal-
ance), as Figure 9(a) shows. Roughly, adaptive sampling can achieve
the same partitioning quality as doubling the sample size, and keeps
the number of resulting work units roughly the same as its non-
adaptive version. Since the number of work units directly impacts
the cost of our load balancing method, using a sampling approach
that more uniformly distributes work unit sizes is of increasing im-
portance as process count increases.

We also evaluate the quality of the load balance achieved by our
load balancing approach, measured by the percent imbalance. We
compare the different sampling rates and the traditional particle-
based approach. Figure 9(b) shows that, while imbalance of the ap-
plication using a particle-based method grows quickly as the num-
ber of processes increases, our direct interaction assignment scheme
is able to achieve much lower levels of imbalance. Because our
method is sampling based, quality is, to a large extent, a function

of the number of samples, or the work units assigned to processes.
When the number of work units is too small, quality partitioning is
difficult to achieve. However, even modest sample sizes of under
1% of all interactions allows for quality partitions. Samples above
1% show diminishing returns on partition quality.

The imbalance increases with the number of processes in this
strongly scaled example since we have fewer individual work units
to assign to each process. Thus the job of the partitioner is more
difficult. One of the strengths of our method is that we can choose
the number of work units that we select, which allows us to trade
off between cost and accuracy.

Figure 9(c) shows the aggregate overhead of our load balancer.
As mentioned earlier, sample count directly impacts the cost of our
load balancer because it determines the cost of partitioning, sam-
pling and nearest-neighbor assignment. The figure clearly demon-
strates the linear relationship between the sample size and the cost
of our balancer. The same size bars within a sample size group
would indicate consistent aggregate compute time across all pro-
cesses, i.e., perfect scaling. While the sampling and nearest-neighbor
assignment scale well, the overhead numbers show some degrada-
tion in scalability due to the limited scalability of the partitioner.
The latter is a well known problem, but can be remedied. Since
our method is sampling based and the resulting graph of work units
is small, we could gather this graph on a smaller number of pro-
cesses for partitioning, and then scatter the results. This optimiza-
tion would allow us to pick the optimal scale for the partitioner
independent of the scale at which the application is run, and thus
reduce overall runtime. We leave this optimization for future work.

Sampling enables us to use the graph partitioning when partition-
ing the entire graph would be prohibitively expensive. Figure 10(a)
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Figure 11: Effect of Sample Size and Technique on Work Unit Size Variability in ParaDiS
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Figure 12: Effect of Sampling Technique on Load Balance and Application Performance

shows the hypergraph partitioner time (Zoltan) for different sam-
ple rates using our ParaDiS data set. The complete graph for this
data set has 1M particles and 547M interactions. It takes seconds
to partition the graph with just 0.11% of the interactions sampled;
partitioning the complete graph would be extremely expensive.

Overall, our sampling approach is an effective way to reduce the
size of the graph to be partitioned while preserving the quality of
the resulting partitions. The savings in partitioner time make the
approach of explicitly load balancing the interactions affordable.
As mentioned in Algorithm 3.3, we have effectively reduced the
complexity of balancing interactions to that of balancing particles.

5.2 Impact on Barnes-Hut Performance
We show the impact of our load balancer on performance of

the Barnes-Hut benchmark in Figure 10. The total times for our
32K particle simulation with different sampling rates are listed in
Figure 10(b); Figure 10(c) illustrates these total times relative to
the original load balancer. With 0.1% sample, our method shows
marginal performance improvement over the original load balancer;
poor performance is due to undersampling and the partitioner’s in-
ability to form equal partitions from the work units provided. With
more sampling, our method outperforms the original method; in
this example, the point of diminishing returns is apparent for the
sampling ratio of 1.6%. Although our method gains more from
its accuracy at scale, two reasons inhibit its performance when the
sampling ratio is held constant while increasing the process count.
First, the partitioner has fewer work units to divide between a larger

LB Number of Processes
128 256 512 1,024 2,048 4,096

0.11% 6118.71 3061.16 1529.36 774.96 405.14 228.51
0.12% 6086.44 3059.56 1527.47 788.39 408.94 231.51
0.17% 6089.01 3056.97 1536.31 780.96 405.07 220.05
0.60% 6126.13 3064.07 1560.99 792.21 413.34 231.80
Original 6482.01 3271.84 1647.85 834.33 445.09 269.57

Figure 13: Total Computation Time of ParaDiS (sec)

number of partitions, resulting in slight increase in load imbalance.
In a more realistic scenario, one would chose the sampling ratio rel-
ative to both the problem size and the number of partitions needed,
thus not observing this performance degradation. Second, the par-
titioner scales poorly when partitioning the same small graph on
more processes (as discussed previously), necessitating the decou-
pling of the partitioner scale from the problem scale.

Our interaction-based balancer with sufficient sampling performs
well and clearly outperforms the particle-based load balancer. Over-
all, we observe 23-26% improvement for the optimal sampling rate.

5.3 Impact on ParaDiS Performance
We evaluate the impact of our load balancer on the performance

of ParaDiS. We use a highly dynamic crystal simulation input set
for ParaDiS, with 1M degrees of freedom at the beginning of the

120



simulation growing to 1.1M degrees of freedom by the end of the
run. We strongly scaled this simulation up to 4,096 processes.

Figure 11 shows the effect of the sample size and strategy on
work unit size variability. Per-particle sampling results in a distri-
bution with a long right tail, as demonstrated in Figure 11(a). The
maximum work unit represents 5,615 interactions, and the sample
size is 0.11% of the interactions in the problem. As shown in Fig-
ure 11(b), with an only 0.01% increase in sample size (for a total
sample rate of 0.12%), we decrease the maximum work unit size to
2,807. With an additional 0.05% increase in sample size (for a total
sample rate of 0.17%), we decrease the maximum work unit size to
1,885, as Figure 11(c) shows.

Figure 12 details performance of the load balancer and the ap-
plication with different sampling strategies. Figure 12(a) demon-
strates the impact that the different sampling strategies have on load
imbalance, along with the lowest possible load balance achieved by
the built-in balancer. With an addition of more work units to parti-
tion and more uniform work unit size distribution, the hypergraph
partitioner achieves lower levels of load imbalance. As the number
of processes grows, the imbalance increases in this strong scaling
problem due to the partitioner having to divide the same number of
work units into more partitions. The partitioner needs more work
units to work with at scale; a higher sampling rate or a bigger prob-
lem with the same sampling rate would allow the partitioner to ac-
complish similar levels of imbalance at scale.

Figure 12(b) shows the cost break down for a sample rate of
0.17% relative to the performance using the existing load balancer.
The computation time required with our load balancer is lower, es-
pecially at larger process counts when the existing load balancer
performs significantly worse. The time spent in the hypergraph
partitioner increases as the process count increases because the par-
titioner does not scale optimally and must partition the same num-
ber of work units into more partitions, a more difficult problem to
solve. As already discussed, our future work will address this issue.

Figure 12(c) shows the runtime of the problem with different
sampling levels, relative to the runtime of the problem with the
built-in balancer. For all sampling levels, our method shows greater
improvement as the number of processes grows, due to larger im-
provement in load balance. Further improvement is possible over
the per-particle sampling (0.11% sample) because our adaptive sam-
pling improves the distribution of work unit sizes. Because the cost
of our algorithm is dependent on the sample size, a sample rate
of 0.17% only slightly outperforms one of 0.12%. Performance
degrades with the 0.60% sample due to the costs outweighing the
benefit of sampling more. Figure 13 lists the total runtimes.

We compare to the second, optimized load balance scheme that
the ParaDiS developers implemented. Overall, we achieve im-
provement in performance of 6-18% over this already highly op-
timized and dynamically load balanced production application.

6. RELATED WORK
Section 2 discussed related work on N-body applications. Re-

lated work also includes applications and frameworks that use geo-
metric and graph-based load balancing methods.

In theoretical work on load balancing hierarchical N-body appli-
cations, Teng partitions the communication graph [30] and proves
certain sub-types of communication graphs can be partitioned. Teng
builds a communication graph between the boxes in the hierarchy,
and adds edges between the leaf boxes and the actual particles. Not-
ing that edge density makes graph partitioning difficult, Teng then
combines some of the edges and shows that the in- and out-degree
of the communication graph is bounded by O(log n + µ), where
n is the number of boxes and µ is a measure of uniformity. Thus,

the graph becomes more dense as the problem or non-uniformity
grow. On the contrary, the density of our hypergraph is not tied
to the size of the input but rather the sampling rate, or the granu-
larity needed by the partitioner to create quality partitions. Teng’s
approach assigns weights to particles to meet the load balancing
criteria. However, graph partitioners perform poorly with the large
variation in weights. By design, our algorithm achieves relatively
uniform vertex weights, improving partition quality.

Other types of scientific applications employ geometric load bal-
ancers. SAMRAI [37] is a structured AMR application that orders
boxes by their spatial location by placing a Morton curve (or Z-
curve) [19] through the box centroids to increase the likelihood
that the neighboring patches will reside on the same processor after
load balancing. PLUM [20, 21] is a load balancing framework for
adaptive grid applications. It can use any partitioning algorithm and
assists in efficient processor assignment and remapping of the com-
putation. DRAMA [6] is a dynamic load balancing library for finite
element methods that includes geometric and graph partitioning al-
gorithms. Its repartitioning modules include iterative pairwise load
balancing, recursive coordinate bisection (RCB). Implicit treatment
of work units and inherent approximations make these approaches
fast but lead to higher imbalance at scale.

An alternative to geometric methods are partitioners that work
with mesh, graph, or hypergraph representation of computation,
i.e., ParMetis [24, 25], Jostle [32, 33], and Zoltan [11, 12]. Our
work determines an appropriate representation for the problem, and
leverages these powerful tools by providing them with inputs that
enable quality solutions to the problem.

7. CONCLUSIONS
Traditional parallel N-body load balance algorithms use approxi-

mate methods to assign computational work, or interactions to pro-
cesses. Those that do balance interactions directly, such as force de-
composition, do so with coarse granularity because the interaction
graph is large and costly to partition directly. We have developed
the first approach for explicitly balancing interactions in N-body
applications at runtime. Our approach uses sampling to reduce the
size of the interaction hypergraph by several orders of magnitude,
and aggressive adaptive sampling to even the size of sampled work
units. The combination of these two techniques enables extremely
efficient partitioning. Using these techniques in conjunction with
a hypergraph partitioner to minimize inter-process communication,
we have shown for two optimized parallel applications, Barnes-
Hut and the ParaDiS dislocation dynamics code, that our method
achieves 23-26% and 6-18% improvement in overall performance.
To our knowledge, our approach is the first to balance interactions
directly with such fine granularity.
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