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Towards artificial general intelligence with hybrid 
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Zhenzhi Wu7, Wei He1,2, Feng Chen5, Ning Deng8, Si Wu9, Yu Wang10, Yujie Wu1,2, Zheyu Yang1,2, Cheng Ma1,2, Guoqi Li1,2,  
Wentao Han6, Huanglong Li1,2, Huaqiang Wu8, rong Zhao11, Yuan Xie12 & Luping Shi1,2*

There are two general approaches to developing artificial 
general intelligence (AGI)1: computer-science-oriented and 
neuroscience-oriented. Because of the fundamental differences 
in their formulations and coding schemes, these two approaches 
rely on distinct and incompatible platforms2–8, retarding the 
development of AGI. A general platform that could support  
the prevailing computer-science-based artificial neural networks 
as well as neuroscience-inspired models and algorithms is highly 
desirable. Here we present the Tianjic chip, which integrates the 
two approaches to provide a hybrid, synergistic platform. The 
Tianjic chip adopts a many-core architecture, reconfigurable 
building blocks and a streamlined dataflow with hybrid coding 
schemes, and can not only accommodate computer-science-based 
machine-learning algorithms, but also easily implement brain-
inspired circuits and several coding schemes. Using just one 
chip, we demonstrate the simultaneous processing of versatile 
algorithms and models in an unmanned bicycle system, realizing 
real-time object detection, tracking, voice control, obstacle 
avoidance and balance control. Our study is expected to stimulate 
AGI development by paving the way to more generalized hardware 
platforms.

The neuroscience-oriented approach to AGI attempts to closely 
mimic the cerebral cortex, being based on observations of a tight 
interaction between memory and computing, rich spatiotemporal 
dynamics, spike-based coding schemes and various learning rules9–12, 
which are normally represented as spiking neural networks (SNNs). 
By contrast, the computer-science-oriented approach mainly involves 
explicit algorithms that are executed on computers13. Of these algo-
rithms, the prevailing non-spiking artificial neural networks (ANNs)—
inspired in part by the cortex in terms of spatial complexity14—have 
made substantial progresses in dealing with specific tasks15,16, such as 
image classification17, speech recognition18, language processing19 and 
game playing20.

Although both approaches can solve subproblems in specialized 
domains where data are abundant, it remains difficult to solve com-
plex dynamic problems with the uncertain or incomplete information 
that is associated with many systems21. To further improve the intelli-
gence capability needed to achieve AGI, there is an increasing trend to 
incorporate more biologically inspired models or algorithms into the 
prevailing ANNs, resulting in a more explicit dialogue between the 
two approaches22–29. Given current progress in machine learning and 
neuroscience, an AGI system should have at least the following features: 
first, support for vast and complex neural networks that can represent 
rich spatial, temporal and spatiotemporal relationships; second, support 
for hierarchical, multigranular and multidomain network topologies, 

but without being limited to a specialized network structure; third, 
support for a wide range of models, algorithms and coding schemes; 
and fourth, support for the intertwined cooperation of multiple spe-
cialized neural networks that are designed for different tasks in parallel 
processing. This requires a general platform to effectively support these 
features in a unified architecture that can implement the prevailing 
ANNs as well as neuroscience-inspired models and algorithms.

To support these features, we developed a cross-paradigm com-
puting chip that can accommodate computer-science-oriented and 
neuroscience-oriented neural networks (Fig. 1). Designing a general 
platform that is compatible with diverse neural models and algorithms 
is a fundamental challenge, especially for distinct ANN and biologically 
inspired (for example, SNN) primitives. Usually, ANNs and SNNs have 
different modelling paradigms in terms of information representation, 
computation philosophy and memory organization (Fig. 2a). Among 
these differences, the biggest is that an ANN processes information 
in precise multibit values, while an SNN uses binary spike trains. To 
implement both models on one platform, the spikes need to be repre-
sented as digital sequences (1 or 0) so that they are compatible with 
the ANN coding format of digital number. Several other key points 
also need to be considered carefully. First, an SNN operates in spa-
tiotemporal domains, which requires the memorization of historical 
membrane-potential and spike patterns within a certain duration, 
while an ANN accumulates the weighted activations intermediately 
and refreshes the information every cycle. Second, the computation 
of an SNN includes membrane-potential integration, threshold cross-
ing and potential reset, which is driven by spike events. By contrast, 
an ANN is related mainly to dense multiply-and-accumulate (MAC) 
operations and activation transformations. Third, the processing of 
spike patterns in SNNs requires a bit-programmable memory and 
extra high-precision memories to store the membrane potential, firing 
threshold and refractory period, whereas an ANN needs only byte-wise 
memories for activation storage and transformation. The implemen-
tation comparisons between an ANN neuron and an SNN neuron are 
illustrated in Fig. 2b. On the other hand, there are some similarities 
between ANN and SNN neurons, which leaves room to fuse the model 
implementations.

By compiling various neural network models in both domains, 
we were able to carry out a detailed comparison to align the model  
dataflow, with one-to-one correspondence, to relevant building 
blocks—namely axon, synapse, dendrite, soma and router (Extended 
Data Table 1). On the basis of this unified abstraction, we built a 
cross-paradigm neuron scheme (Fig. 2c). Overall, we designed the 
synapse and dendrite to be shared, while the axon and soma can be 
reconfigured independently.
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In the axon block, we deployed a small buffer memory to memo-
rize the historic spike patterns in the SNN mode. This buffer memory  
supports a reconfigurable spike-collection duration and bit-wise access 
through shift operations. In ANN mode, the same memory can be 
reorganized as ping-pong chunks for buffering input and output data; 
this decouples the computation and data transfer for parallel process-
ing. Here, the synaptic weights and neuronal parameters are pinned 
into on-chip memories, which enables localized high-throughput 
computation by minimizing data movement between the processing 
unit and the memory. In the dendrite block, the membrane-potential 
integration in SNN mode and MACs in ANN mode share the same 
calculators, reunifying high-level abstraction of SNNs and ANNs dur-
ing processing. Specifically, in ANN mode the MAC units are used to 
perform multiplication and accumulation; in SNN mode, a bypassing 
mechanism is provided to skip the multiplication in order to allow 
energy reduction under a temporal window of length one. The soma 
can be reconfigured to be either a spike generator with potential stor-
age, threshold comparison, deterministic or probabilistic fire, and 
potential reset in SNN mode; or a simple activation function block 
in ANN mode. The leaky function of membrane potential can reduce 
the potential value through fixed or adaptive leakage. The activation 
function in ANN mode relies on a reconfigurable look-up table (LUT) 
that provides arbitrary function.

By combining the axon, synapse, dendrite and soma blocks, we 
designed a unified functional core (FCore) (Fig. 2d; for more details, 
see Extended Data Fig. 1). To achieve deep fusion, nearly the whole of 
the FCore is reconfigurable for high utilization in different modes. The 
dendrite and soma were divided into multiple groups during operation. 
The computation within each group is parallelized (with 16 MACs per 
dendrite for each clock cycle), while the intergroup execution is seri-
alized. The FCore is able to cover the linear integration and nonlinear 
transformation operations used by most ANNs and SNNs. In addition, 
to transfer information among neurons, we built a router to receive and 
send messages. Because the messages can be encoded in either ANN 
or SNN format depending on the configuration, we designed a uni-
fied format for the routing packet and a shared routing infrastructure 
to transfer both message types. The routing packet usually contains 
control, address and data segments, where the data segment can be 
either multibit activation values in ANN mode, or nothing in SNN 
mode, since the routing packet itself acts as a spike event. Depending 
on need, a pre-soma can package the output into either an SNN or an 
ANN packet according to the soma configuration, and the post-axon 
parses the routing packet into either SNN or ANN format according 
to its axon configuration.

Because of the fully independent configurability for axon (input) and 
soma (output), along with the shared dendrite (computation), FCore 
provides great flexibility for building homogenous or heterogeneous 
networks by appropriately wiring many cores. If we configure all of 
the units in the same mode, a homogeneous paradigm of an SNN 
or an ANN network primitive can be achieved that supports many  
single-paradigm models, including SNNs and ANNs (for example, mul-
tilayer perceptrons (MLPs), convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), and rate-based biologically 
inspired neural networks). Furthermore, the FCore allows the con-
struction of a heterogeneous network for exploring hybrid modelling. 
By independently configuring the axon and soma in different modes, 
we can easily realize a hybrid network primitive with ‘ANN-input 
and SNN-output’ or ‘SNN-input and ANN-output’ (Fig. 2e). In other 
words, the FCore can act as an ANN/SNN converter (see Methods 
for details). This cross-paradigm scheme opens up the possibility of 
designing innovative hybrid models, providing an efficient platform 
for cross-modelling exploration.

To support the parallel processing of large networks or multiple net-
works concurrently, our Tianjic chip adopts a many-core architecture 
with scattered localized memory for timely and seamless communica-
tion. The FCores on this chip are arranged in a two-dimensional (2D) 
mesh manner, as shown in Fig. 2e, f. A reconfigurable routing table 
in the router of each FCore allows arbitrary connection topology. By 
configuring the routing table, we can connect a neuron to any other 
neuron inside or outside an FCore or even outside the chip, which helps 
to build multigranular network topologies (for example, feedforward 
or recurrent). Furthermore, besides the normal point-to-point (P2P) 
routing, Tianjic also encompasses several special strategies to increase 
its fan-in capability (the number of inputs a neuron can handle)  
and fan-out capability (the number of outputs a neuron can drive). 
For a typical neuromorphic core, the numbers of fan-ins and fan-outs 
are normally limited by the memory and interface, which restrains the 
model scale. In Tianjic, the fan-ins and fan-outs of each FCore can be 
extended easily by designing interneuron lateral cooperation, interF-
Core hierarchical accumulation, intraFCore/interFCore neuron copy, 
or interFCore multicast routing (see Methods for details). Together 
with 2D mesh pile-up at chip level, Tianjic exhibits strong scalability to 
ultralarge neural networks, while still maintaining seamless communi-
cation among deeply intertwined neural networks during concurrent 
processing.

The layout and a physical view of the Tianjic chip and the test-
ing boards are shown in Fig. 3a and Extended Data Fig. 2. The chip  
consists of 156 FCores, containing approximately 40,000 neurons and 
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Fig. 1 | The hybrid approach to the development of AGI. The hybrid 
approach combines the advantages of neuroscience-oriented and 
computer-science-oriented approaches (shown on the left), aiming 

to develop a cross-paradigm computing platform with several broad 
features identified from human brains and prevailing machine-learning 
algorithms.
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10 million synapses. Fabricated using 28-nm processing technology, 
Tianjic occupies a die area of 3.8 × 3.8 mm2 (Extended Data Table 2). 
The chip area occupied by each individual block, including axon, den-
drite, soma, router, controller and other chip overheads, is shown in 
Fig. 3b. Because of resource reuse, an area only slightly larger than that 
of a single paradigm (roughly 3%) was used to fuse the SNN and ANN 
modes. The power breakdown of FCore is given in Fig. 3c. During 
operation, the dendrite module (here including the involved axon and 
synapse blocks when performing dendritic integration) consumes  
the most power (63%). With its distributed on-chip memory and 
decentralized many-core architecture, Tianjic provides an internal 
memory bandwidth of more than 610 gigabytes (GB) per second, and 

yields an effective peak performance of 1.28 tera operations per second 
(TOPS) per watt in ANN mode when running at 300 MHz. In SNN 
mode, synaptic operations are usually used to bench the chips, and 
Tianjic achieves an effective peak performance of about 650 giga syn-
aptic operations per second (GSOPS) per watt. Details can be found in 
Extended Data Table 2.

Tianjic is able to support diverse neural network models, including 
neuroscience-inspired networks (for example, SNNs and rate-based 
biologically inspired neural networks) and computer-science-oriented 
networks (for example, MLP, CNNs and RNNs). Figure 3d shows 
the results of testing different network models on the Tianjic chip  
versus a general processing unit (GPU; see Methods for model details). 
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weights; x0, x1, x2 are input activations; Σ is the dendritic integration;  
f is the activation function; and b is the bias. b, Implementation diagrams 
for an ANN or SNN neuron. V(t) is the neuronal membrane potential 
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the multiplication (for example, in the case that the time window length 
equals one). c, Diagram of a hybrid circuit, showing a cross-paradigm 
neuron with fused ANN and SNN components. Para. memory, parameter 

memory. d, Diagram of a unified functional core (FCore). Each FCore 
includes axon, synapse, dendrite, soma and router building blocks. 
Synapse mem., synapse memory. e, Flexible modelling configuration 
and connection topology of FCores. The coding schemes can be freely 
transformed between ANN and SNN modes, enabling heterogeneous 
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demonstrating the ability to scale up the technique. RLUT, routing look-up 
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By forming a parallel on-chip memory hierarchy and organizing the 
dataflow in a streaming fashion, the Tianjic chip can provide improved 
throughput (1.6 to 102 times) and power efficiency (12 to 104 times) 
over the GPU. A detailed mapping of these networks onto the chip is 
illustrated in Extended Data Fig. 3.

Moreover, Tianjic enables the concurrent deployment of multiple 
expert networks within one chip, including most types of SNNs and 
ANNs. With the help of flexibly reconfigurable coding schemes, it sup-
ports heterogeneous neural networks with a deep fusion of the two par-
adigms. For example, Tianjic can easily deploy a large-scale SNN with 
numerous dendritic branches. Conventionally, the number of allowed 
synaptic inputs is identical for each FCore (for example, fewer than 
256 inputs), which normally limits the model accuracy if only binary 
spike signals are used for interFCore communication, owing to the 
severe loss of precision during dendritic integration that faces oversized 
neuronal fan-ins. By configuring some of the FCores in ANN mode to 
accumulate membrane potentials in higher precision (acting as a relay 
for dendritic trees) rather than just communicating via spikes in SNN 
mode, Tianjic enables the implementation of large-scale SNNs with a 
high accuracy that stems from the direct transfer of intermediate mem-
brane potentials. As shown in Fig. 3e, the hybrid neural network with 
dendritic relays shows an improvement in accuracy of 11.5% over that 
of an SNN-only configuration, without needing to increase the num-
ber of neurons. The extra overheads caused by this hybrid paradigm  
are negligible because Tianjic can naturally implement heterogeneous 

conversion within the FCore. More comprehensive analysis can be 
found in the Methods.

The use of Tianjic also enables the exploration of more biologically 
plausible cognitive models. For instance, Tianjic can implement the 
continuous attractor neural network (CANN)30, the synfire chain31 
and dendritic multicompartment models32 (Fig. 3f). We also developed 
a software tool that converts the multimodal and hybrid networks to 
meet the hardware constraints of the Tianjic chip automatically. In gen-
eral, Tianjic adopts a non-von Neumann paradigm with hybrid com-
patibility, many-core architecture, localized memory and streamlined 
dataflow, which is able to support cross-paradigm modelling, maximize 
parallelism, and improve power efficiency.

To demonstrate the utility of building a brain-like cross-paradigm 
system, we designed an unmanned bicycle experiment by deploying 
multiple specialized networks in parallel within one Tianjic chip. 
Equipped with versatile algorithms and models, the bicycle was able 
to perform real-time object detection, tracking, voice-command  
recognition, riding over a speed bump, obstacle avoidance, bal-
ance control and decision making (Fig. 4a). Realizing these func-
tions involved three major challenges: first, detecting and smoothly  
tracking a moving human in an outdoor natural environment, rid-
ing over a speed bump, and automatically avoiding obstacles when 
necessary; second, generating real-time motor control signals in 
response to balance control, voice commands and visual perception 
to keep the bicycle moving in the correct direction; and third, realizing 
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multimodal information integration and prompt decision-making.  
To accomplish this task, we developed several neural networks, includ-
ing a CNN for image processing and object detection, a CANN for 
human target tracking, an SNN for voice-command recognition, and 
an MLP for attitude balance and direction control (Fig. 4b). Here, the 
CANN utilizes the membrane-potential normalization mechanism 

implemented via nonlinear dendritic operations. To integrate these 
networks and achieve high-level decision-making, we developed 
an SNN-based neural state machine (NSM). The NSM receives the 
inputs from other networks (CNN, SNN), and outputs enabling  
signals (CNN, CANN) and action signals (for example, forced turn, 
obstacle avoidance) to downstream FCores for bicycle motor control. 
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Five discrete states were trained for the experiment (see Methods and 
Extended Data Table 3).

Before the road test, the CNN, CANN, SNN and MLP networks 
were pretrained and programmed onto the Tianjic chip. Because of 
its decentralized architecture and arbitrary routing topology, Tianjic 
allowed all of the neural network models to operate in parallel and 
realized seamless communication across the models, enabling the bicy-
cle to accomplish these tasks smoothly (see Supplementary Video). 
Figure 4c visualizes the output spike signals in response to different 
voice commands; Fig. 4d presents the tracking performance during 
obstacle avoidance and the S-curve path; and Fig. 4e illustrates the 
learning of attitude and steering control at different speeds on the basis 
of physical measurements. This demonstration provides an excellent 
experimental platform with which to study the key issues in the itera-
tive evolution of AGI. For example, problems of high spatiotemporal 
complexity can be generated by randomly introducing new variables 
into the environment in real time, such as different road conditions, 
noises, weather factors, multiple languages, more people and so on. 
By exploring solutions that allow adaptation to these environmental 
changes, issues critical to AGI—such as generalization, robustness and 
autonomous learning—can be examined.

In summary, we have developed the Tianjic chip, which supports 
both computer-science-based, machine-learning algorithms and neu-
roscience-based, biologically inspired models simultaneously. Various 
neural networks and hybrid coding schemes can be freely integrated, 
allowing for seamless communication among multiple networks, 
including SNNs and ANNs. Our research has examined a novel  
neuromorphic architecture that offers flexibility by integrating 
cross-paradigm models and algorithms onto a single platform; we hope 
that our findings will accelerate the development of AGI, with many 
possible real-world applications.
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Methods
Description of the unified model. Tianjic is a specialized platform that sup-
ports most of today’s neural network models across neuroscience and computer- 
science domains, which normally use distinct ways to represent information. We 
have re-examined most widely used neural network models in the neuroscience 
domain (for example, SNN, rate-based bio-inspired neural networks and so on) 
and computer-science domain (for example, MLP, CNN and RNN), and we have 
proposed a unified description to align the model implementations to axon, syn-
apse, dendrite, soma and router compartments. We identified the similarities and 
differences between ANN and SNN neurons, and arranged the operations and 
transformations into these compartments according to their respective functions 
(see Extended Data Table 1). By aligning the dataflow, Tianjic can flexibly imple-
ment various models in a single or hybrid paradigm.
Design philosophy. Tianjic adopts a many-core architecture with massive paral-
lelism. Each FCore includes several blocks: axon, dendrite (with synapse), soma 
and router. Three key designs that enable us to achieve the hybrid paradigm are:
Independently reconfigurable axon and soma. The axon and soma can be configured 
into different modes independently. The axon receives and organizes SNN inputs 
or ANN inputs according to its mode configuration. Similarly, the soma generates 
SNN outputs or ANN outputs according to its mode configuration. When the axon 
and soma are configured into the same operating mode (either ANN or SNN), 
the FCore acts in pure ANN or SNN mode, respectively, which we call a single- 
paradigm FCore. When the axon and soma are configured into different operating 
modes, the FCore processes ANN inputs and fires SNN outputs, or processes SNN 
inputs and generates ANN outputs; we call this a hybrid FCore.
Shared dendritic integration. The dendritic integrations for processing SNN 
inputs and ANN inputs share the same calculators (multipliers and accumula-
tors), although they have different processing operations and style. At each time 
phase, the dendrite performs intense MACs when processing ANN inputs. When 
processing SNN inputs, the dendrite also performs MACs when the length of the 
integration-time window is greater than one; if this time window is less than one, 
the dendrite performs only addition operations and bypasses multipliers; if no 
spike is received, the dendrite skips all operations.
Unified routing infrastructure. The interconnections of FCores share the same  
routing infrastructure to transfer routing packets in a unified format. The pre-soma 
can package the output into either an SNN or an ANN packet according to the 
soma configuration, and the post-axon parses the routing packet into either SNN 
or ANN format on the basis of its axon configuration.
Hybrid configuration. At the network level, besides constructing conventional 
single-paradigm ANNs or SNNs, Tianjic offers hybrid modelling at two levels 
of granularity. At the coarse-grain level, we can configure some FCores in ANN 
mode and other FCores in SNN mode to perform ANNs and SNNs individually. 
In this way, we can realize both ANNs and SNNs on the same hardware platform, 
operating concurrently without the need to build a heterogeneous system using 
various chips. This also simplifies the design of off-chip communication interfaces 
on the circuit board, because Tianjic uses a unified packet format and routing 
infrastructure. At the fine-grain level, we can configure FCores working in hybrid 
mode (axon in ANN and soma in SNN, or vice versa) to build a network with 
hybrid signal coding.

Note that, to achieve a particular target application, the working modes of axon 
and soma are fixed after the initial configuration, without any mode switching 
during the consequent execution process. No extra switching circuits and over-
heads are required for signal conversion in the hybrid mode, because it is naturally 
performed on the critical data path of FCore.
Architecture design. A schematic view of the FCore architecture is shown in 
Extended Data Fig. 1. The cross-paradigm computing of Tianjic is realized through 
shared dendrites, independently reconfigurable axons and somas, and a unified 
interconnection infrastructure.

In the dendrite block, the processing neurons are divided into multiple groups 
(for example, 16 groups). The groups run in series and the neurons within the 
group are executed in parallel during operation. In the dendrite module, there 
are 16 8-bit multipliers and 16 24-bit accumulators to support the vector-matrix 
multiplication (VMM) operations, which are shared by ANN and SNN modes.  
In ANN mode, the dendrite module reads one input from the axon module and  
16 8-bit weights from the synapse memory simultaneously at each clock cycle, then 
concurrently executes 16 MACs for 16 neurons that share the same axon data. Each 
neuron completely performs 256 multiplications with 8-bit precision, and the same 
amount of accumulations with 24-bit precision. In SNN mode, when the temporal 
window length (Tw) for controlling the duration of historical spike integration is 
larger than one, the multipliers and accumulators are used in the same way as in 
ANN mode; otherwise, the axon module outputs only 1-bit spikes and the dendrite 
module skips the multipliers.

The axon and the soma modules are essential for the hybrid operation. They 
can be flexibly and independently reconfigured between ANN and SNN modes as 

discussed. In ANN mode, the axon memory is divided into two chunks, working as 
ping-pong buffers. In SNN mode, the two buffers are merged as a complete chunk 
to store spike patterns within a historical temporal window with tunable duration. 
Extra memories are used to buffer the latest spikes in a ping-pong manner. In 
addition, a timing-factor calculator is implemented for the time decay.

In ANN mode, the data in soma flow in a ‘bias, activation function, output 
transmission’ fashion. The 25-bit biased activation values are truncated by a recon-
figurable 10-bit sliding window. Then a reconfigurable LUT with 10-bit entries 
and 8-bit outputs is applied in each FCore for arbitrary activation function. In 
SNN mode, the dataflow changes to ‘potential leakage, spike generation, output 
transmission’. The 25-bit membrane potential (with fixed or adaptive leakage) is 
truncated and then compared with a 24-bit threshold to determine whether a spike 
is fired or not. If a spike is fired, multiple modes of membrane potential reset are 
supported. All memories are shared between the two modes for storing inputs/out-
puts or parameters such as synaptic weights, biases, LUTs, leakages and thresholds.

The soma outputs are packaged into routing packets. For interFCore transmis-
sion, ANN and SNN modes share the same routing packet format, consisting of 
control, address and data segments. The control segment determines whether the 
input is an inhibitory signal in the SNN mode. The address segment contains the 
destination FCore and memory-cell addresses. The data segment conveys either 
8-bit activation in the ANN mode or nothing in the SNN mode (the packet itself 
represents a spike event33). Once received, the post-axon parses the packet as ANN 
or SNN signal according to the axon configuration. The control and address seg-
ments of neurons are stored in a reconfigurable 1-kilobyte (KB) routing LUT of 
each router with five communication channels: local, eastern, western, southern 
and northern.

Tianjic adopts a 2D-mesh many-core architecture to construct large networks 
hierarchically (core-chip-board-system). Besides the normal P2P routing scheme3, 
an adjacent multicast (AMC) routing scheme is designed to expand the fan-outs. 
When an FCore is configured into the AMC routing mode, the received packets 
are delivered to the next FCore according to the configured multicast direction 
and distance. In this way, multiple FCores can receive duplications through routing 
relays.

Tianjic also flexibly supports more special operations. (1) Nonlinear integra-
tion: in addition to the MACs between the dynamic input vector and static weight 
matrix, the dendrite module can also perform operations between dynamic input 
vectors. (2) Somatic cooperation: adjacent somas can be merged into a stronger 
soma that accumulates all integrations of every soma, thus expanding fan-ins with-
out using additional FCores. (3) Ternary synapse: Tianjic supports the ternary 
neural networks34 by reducing the bit width of each synapse to two, and then the 
number of synapses increases accordingly. (4) Connection extensions for scaling 
up networks, including, first, fan-in extension through the abovementioned intraF-
Core soma cooperation or extra interFCore hierarchical integration; and second, 
fan-out extension through neuron copy or multicast routing scheme.
Chip specification. The Tianjic chip was fabricated using 28-nm high performance 
low power (HLP) technology. The layout, physical picture, and testing boards are 
shown in Extended Data Fig. 2. One Tianjic chip consists of 156 FCores and the 
weight-sharing technique3,35 was leveraged. The number of weight indexes (M) 
and fan-ins/fan-outs (N) are set as 32 and 256, respectively, leading to a total num-
ber of roughly 22 KB static random-access memory (SRAM) in each FCore. The 
configuration and performance of the Tianjic chip are summarized in Extended 
Data Table 2 and compared with existing neural network platforms. At a clock 
frequency of 300 MHz and supplied voltage of 0.85 V, the Tianjic chip typically 
consumes 6.1 mW and 5.5 mW per FCore in ANN mode and SNN mode (Tw = 1), 
respectively. Tianjic requires 5,050 clock periods (a clock period being 16.8 µs 
at 300 MHz) to complete a round of computations and communications, which 
reflects the minimum phase latency.
Network deployment. Tianjic provides great flexibility in network deployment. 
Specifically, most spiking and non-spiking neural networks can be constructed 
from the same basic topological layers, including fully connected, convolutional, 
pooling and recurrent layers. During network deployment, the weights are parti-
tioned and pinned into the synapse memories of FCores, which remain unchanged 
and do not need reloads given fixed working modes and static network topolo-
gies after initialization. To balance processing throughput and resource overhead, 
Tianjic supports two mapping schemes: unfolded mapping and folded mapping 
(Extended Data Fig. 3).

The unfolded mapping scheme converts all topologies into fully connected 
structures without resource reuse. The FCores performing VMM operations 
share the inputs through the multicast routing strategy, and other FCores for accu-
mulating the partial sums (called reduce operations) are additionally required.  
For CANN, the differential dynamics are converted to difference equations, sim-
ilar to the iterative format of LSTM. Besides matrix operations, vector operations  
(for example, generating spike rates in CANN or updating cell/hidden states in 
LSTM) can be realized by the nonlinear dendritic integration. On the other hand, 
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a folded mapping scheme is supported to reduce the resource overhead of non- 
spiking convolutions with massive data reuse and independency of historical infor-
mation. It requires two types of FCores: buffer FCores and computation FCores. 
The weights are shared in convolutions along the row dimension of feature maps, 
which reside in the synapse memory for reuse. The inputs are accordingly arranged 
row by row using buffer FCores before each convolution operation performed in 
the consequent computation FCores. In this way, the convolutions are pipelined 
by generating one output row at each phase, and such row-wise streaming can 
tolerate CNNs with excess rows.
System support. Inspired by the hierarchy of computer systems, Tianjic’s software 
tool chain contains similar levels to the host computer to facilitate applications, 
such as a unified abstraction for programming and an automatic compiler for 
mapping. The software supports applications in both SNN and ANN modes. For 
SNNs, it supports two training methods: indirect and direct training. The indirect 
training uses popular deep-learning frameworks to train an ANN model using back 
propagation, and then converts it into its SNN counterpart36. The direct training 
uses the emerging spatiotemporal back-propagation algorithm37 to directly train 
the SNN model. For the non-spiking ANNs, besides the common workflow that  
modifies and maps existing networks manually, our compiler can also automat-
ically transform a pretrained model into an equivalent network that meets the 
Tianjic hardware constraints, thus decoupling the applications from the target 
hardware.
Single-paradigm evaluation. Here we detail the benchmarks used to eval-
uate single-paradigm neural networks in Fig. 3d. For SNN, we used a fully  
connected network with the NMNIST dataset38. The dimensions of input data 
are (34 × 34) × 2 = 2,312 for both ON-type and OFF-type spikes, and the net-
work structure was 2,312-800-10. For MLP, we used the fully connected layers of 
AlexNet (9,216-4,096-1,000)39 and VGG16 (25,088-4,096-1,000)40 on the ImageNet 
dataset41. For CNN, we used the networks of LeNet-variant34 on the MNIST data-
set42, VGG843 on the CIFAR10 dataset44, and AlexNet/VGG16/ResNet1817 on 
the ImageNet dataset. For LSTM, we used two customized networks with one 
hidden layer of 1,024 cells on the WikiText-2 dataset45 and two hidden layers of 
512 cells for each on the Tiny-Shakespeare dataset46. The average performance 
across multiple networks under the same structure category was reported. Direct 
training with a spike-rate coding scheme was used to train the spiking model, 
and quantized training47 with 8-bit weights and activations was used to train the 
non-spiking models.

For small-scale networks, including the ANN/SNN hybrid example in Fig. 3e 
(with a structure of input-20C3-AP2-20C2-AP2-10C2-10) and all models in the 
bicycle experiment, we directly measured the accuracy, latency and power on the 
testing board. We ran large networks that exceed present resources, such as those in 
Fig. 3d, in a cycle-accurate simulator whose accuracy and latency can correspond 
one-to-one with the hardware. The power estimation in these cases was extrapo-
lated on the basis of measured results from a single chip, including both leakage 
and active power. In the simulation, we relaxed two fabrication cost constraints: we 
removed the weight-sharing technique for a full degree of synapses, and ignored 
the interchip communication overhead because it is easy to integrate more FCores 
into one single chip to accommodate larger networks3. The programming frame-
works for the Titan-Xp GPU results were Pytorch48 (SNN, MLP, CNN) and Torch 
(LSTM). For LSTM, we used the benchmarks of DeepBench49 to measure the run-
ning performance. The batch size was set to one as suggested50 for inference tasks.
Implementation of a hybrid network. We rigorously compared the performance 
between single-paradigm (ANN-only or SNN-only) and fine-grained cross- 
paradigm (ANN/SNN hybrid) implementations using the same network structure as 
in Fig. 3e. The benchmark dataset was MNIST. As well as using the afore-mentioned  
training methods for ANN-only and SNN-only models, we used a hybrid model 
adapted from a pretrained SNN model. For the SNN-only and hybrid modes, 
the original pixel values were converted to spike events through Bernoulli 
sampling. In the hybrid-mode network, the hybrid layer used ‘SNN-input and 
ANN-output’ FCores to integrate SNN spikes and generate ANN signals (high- 
precision intermediate membrane potentials), and then used ‘ANN-input and 
SNN-output’ FCores to accumulate these ANN signals and fire SNN spikes again. 
In this example, the ANN-only, SNN-only and hybrid models all used the unfolded 
mapping scheme, and for simplicity only the last convolution layer was configured 
into hybrid mode.

Extended Data Figs. 4, 5 present comprehensive comparisons among differ-
ent configuration modes and detailed routing profiling. The extra hardware cost 
introduced by the hybrid model beyond the SNN-only model was negligible, and 
the costs of both the hybrid model and the SNN-only model were much lower 
than that of the computation-intensive ANN-only model. Moreover, because it 
avoided the loss of precision during communication that is induced by binary 
spikes when the number of inputs exceeds the fan-in limitation of neurons, the 
hybrid model inherited the accuracy advantage of the ANN-only model. In this 
example, the hybrid paradigm provides an efficient way to combine the advantages 

of both SNN-only and ANN-only models, leading to an overall high performance. 
In short, the hybrid paradigm of Tianjic can be used to construct various ANN and 
SNN combinations according to the requirements of practical applications, such as 
low power consumption, high speed, high accuracy or overall high performance.
Unmanned bicycle demonstration. The detailed network topologies are listed 
in Extended Data Table 3. The model sizes were trimmed and optimized for the 
demonstration of system functionality on a single Tianjic chip. Data preprocessing 
was performed on an ARM processor, and all of the models were trained with 
quantization before they were implemented on Tianjic. The mapping results of 
these networks and the measured power consumption are presented in Extended 
Data Fig. 6.

Each frame from a web camera was rescaled to a 70 × 70 greyscale image as 
CNN inputs, and clipped before being injected into CANN as inputs according to 
the initial bounding boxes produced by the CNN model. For CANN, we applied 
a modified model that reduces remote connections outside the scope of the 
Gaussian bump. We converted the audio signals obtained from the microphone 
into 51-dimension features with different frequencies using the Mel-frequency  
cepstral coefficient (MFCC)51 method. We then applied the Gaussian population 
coding strategy52 to encode each frequency feature into ten spiking units. We 
adopted the fully connected structure based on leaky integrate-and-fire (LIF)53 
neurons to construct the SNN model trained by the direct method as above. The 
seven output neurons represented six instruction commands and a noise case. 
For attitude and motion control, we selected five signals produced by the inertial 
measurement unit (IMU). The signals during the last sixth of the time steps were 
concatenated to form a 30-dimension vector as the input of MLP. We trained the 
MLP network to imitate the outputs of several proportional-integral-derivative  
controllers under different speeds (low to high). The output target rotation angle 
was sent to the motor controller to tune the steering for balance keeping. In addi-
tion, the voltage coefficient was sent directly to another motor (back wheel) con-
troller to adjust the speed.

Inspired by prior work54, we designed an SNN-based finite neural state machine 
(NSM; Extended Data Fig. 7) to integrate the outputs of the above diverse neural 
networks. The FCores between the decision-making module (that is, NSM) and 
action module (that is, MLP) worked in a hybrid mode (SNN-input and ANN-
output), which contained trajectory patterns in the soma LUT to convert action 
signals (spikes) into target inclination angle sequences (real values). In this way, 
the NSM could guide the bicycle to achieve forced turn (voice command) or obsta-
cle avoidance. The weights of the NSM model were trained following the offline 
spike-timing-dependent plasticity (STDP)-like rule12.

Data availability
The datasets that we used for benchmarks are publicly available, as described 
in the text and the relevant references38,41,42,44–46. The training methods are 
provided in the relevant references36,37,47,54. The experimental setups for simu-
lations and measurements are detailed in the text. Other data that support the 
findings of this study are available from the corresponding author on reasonable 
request.

Code availability
The codes used for the software tool chain and the bicycle demonstration are 
available from the corresponding author on reasonable request.
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Extended Data Fig. 1 | Overview of the FCore architecture. We adopted 
a fully digital design. The axon module acts as a data buffer to store the 
inputs and the outputs. Synapses are designed to store on-chip weights and 
are pinned close to the dendrite for better memory locality. The dendrite is 
an integration engine that contains multipliers and accumulators.  
The soma is a computation unit for neuronal transformations. IntraFCore 
and interFCore communications are wired by a router, which supports 
arbitrary topology. Act_Fun, activation function; A/s, activation  
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Extended Data Fig. 2 | Fabrication of the Tianjic chip and testing boards. a, Chip layout and images of the Tianjic chip. b, Testing boards equipped 
with a single Tianjic chip or a chip array (5 × 5 size).
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Extended Data Fig. 3 | Throughput-aware unfolded mapping and 
resource-aware folded mapping. a, Unfolded mapping converts all 
topologies into a fully connected (FC) structure without reusing data. 
In CANN: Norm, normalization; r, firing rate; V, membrane potential. 
In LSTM: f/i/o, forget/input/output gate output; g, input activation; 
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folds the network along the row dimension of feature maps (FMs) for 
resource reuse. We note that the weights are still unfolded along the 
column dimension to maintain parallelism, and wide FMs can be split into 
multiple slices, which are allocated into different FCores for concurrent 
processing. r0/1/2, row 0/1/2.
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extended data table 1 | A unified description of neural network models

Neuroscience-oriented model Computer-science-oriented model

SNN Rate-based (e.g. CANN) MLP/CNN RNN (e.g. LSTM)

Axon , , , 1 , 
, , 

, ( 1), ( 1),
/ / / ( ), c( ), ( )

Synapse Weight matrix Weight matrix
Conv: Weight kernels

Pool: Bypass
FC: Weight matrix

Gates: Weight matrices
Cell/Hidden state:

Intermediate variables

Dendrite
+ ( )

= ( 1) +

( )

Parts of spike_rate:
Norm

Conv: 
( , )

Pool: Bypass
FC: 

Gates: / / /
+

( 1)
/ / /

Cell state: =

1 +

Hidden state: =

tanh

Soma

Leakage: ( )
=

+

Thresh_comp, V_update | 
(Spike_fire & V_reset)

Parts of spike_rate:
Norm

Conv: ( + )

Pool: Max/Average

FC: ( + )

Gates / / : sigmoid( +

( & ) )

Gate : tanh( + ( & ) )

Cell state: tanh

Op: B_L, Spike_Gen,
Out_Trans

Op: Act_Fun, Out_Trans
(Lat_Acc)

Op: B_L, Act_Fun,
Out_Trans

(Pooling, Out_copy)

Op: B_L, Act_Fun,
Out_Trans

Router Feedforward/Recurrent Recurrent (Feedforward) Feedforward (Recurrent) Recurrent (Feedforward)

mode
Spiking representation 

(SNN mode)
Non-spiking representation (ANN mode)

The vector/matrix operations and transformations are assigned into several compartments, including axon, synapse, dendrite, soma and router. Each compartment supports the functions shown; by 
combining these, various neuroscience-oriented and computer-science-oriented models can be realized. In SNN: s, spike; se, external spike; Spike_fire, spike firing; Thresh_comp, threshold 
comparison; τ, time constant; t, time step; V, membrane potential; Vr1, rest potential; V_reset, membrane potential reset; V_update, membrane potential update. In MLP/CNN: x/y, input/output 
activation; b, bias; �, convolution. For other abbreviations and variables, please refer to Extended Data Figs. 1, 3.
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extended data table 2 | Comparison of the tianjic chip with existing specialized platforms

Platform TrueNorth3,55 Loihi6 EIE35 Eyeriss7 ESE56 Tianjic

Model SNN SNN MLP CNN LSTM Hybrid

BitWidth 9W-1S 9W-1S 4W-4A 16W-16A 12W-16A 8W-8A/1S

Memory SRAM SRAM SRAM DRAM DRAM SRAM

Technology 28 nm 14 nm 45 nm 65 nm 22 nm 28 nm

Clock (MHz) Async Async 800 100-250 200 300

Area (mm2) 430 60 40.8 16 N. A. 14.44

Power (W) 0.063-0.3 N. A. 0.59 0.2-0.3 41 0.95

GOPS/W N. A. N. A. 174 246 6.9 1278

GSOPS/W 400 N. A. N. A. N. A. N. A. 649
Tianjic is a specialized platform that can simultaneously support most of today’s neural network models across both neuroscience and computer-science domains. For a single chip, the effective peak 
power efficiency could reach 1.28 TOPS W−1 (in ANN mode) and 649 GSOPS W−1 (in SNN mode with Tw values of less than 1). DRAM, dynamic random access memory. References cited are  
refs 3,6,7,35,55,56.
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extended data table 3 | Model topologies and input/output descriptions for networks applied in the bicycle demonstration

Network Topology Input Output

CNN

6C3-MP2-
12C3-MP2-
12C3-MP2-
FC192-10

70 70 grayscale images Confidences and coordinates of 
objects (human, obstacle)

CANN 20 24 
recurrent

Images clipped by the 
initial coordinates of the 
human from CNN

Coordinates of tracked human

SNN 510-256-7 510 converted voice
features from microphone

Classification results of 7
commands (one for noise)

MLP 30-256-32-1

Target and adjusted angle
( , ), angular velocity 
( ), velocity ( ), voltage 
coefficient ( )

Target rotation angle ( ) sent to 
the motor controller

NSM
16 neurons 

5 states 
7 transitions

Signals from CNN, SNN 
and hybrid-mode FCores

Enable signals to CNN and 
CANN, and action signals to 
hybrid-mode FCores
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