
Letter
https://doi.org/10.1038/s41586-019-1424-8

Towards artificial general intelligence with hybrid
Tianjic chip architecture
Jing Pei1,2,13, Lei Deng1,13, Sen Song3,4,13, Mingguo Zhao5,13, Youhui Zhang6,13, Shuang Wu1,2,13, Guanrui Wang1,2,13, Zhe Zou1,2,
Zhenzhi Wu7, Wei He1,2, Feng Chen5, Ning Deng8, Si Wu9, Yu Wang10, Yujie Wu1,2, Zheyu Yang1,2, Cheng Ma1,2, Guoqi Li1,2,
Wentao Han6, Huanglong Li1,2, Huaqiang Wu8, rong Zhao11, Yuan Xie12 & Luping Shi1,2*

There are two general approaches to developing artificial
general intelligence (AGI)1: computer-science-oriented and
neuroscience-oriented. Because of the fundamental differences
in their formulations and coding schemes, these two approaches
rely on distinct and incompatible platforms2–8, retarding the
development of AGI. A general platform that could support
the prevailing computer-science-based artificial neural networks
as well as neuroscience-inspired models and algorithms is highly
desirable. Here we present the Tianjic chip, which integrates the
two approaches to provide a hybrid, synergistic platform. The
Tianjic chip adopts a many-core architecture, reconfigurable
building blocks and a streamlined dataflow with hybrid coding
schemes, and can not only accommodate computer-science-based
machine-learning algorithms, but also easily implement brain-
inspired circuits and several coding schemes. Using just one
chip, we demonstrate the simultaneous processing of versatile
algorithms and models in an unmanned bicycle system, realizing
real-time object detection, tracking, voice control, obstacle
avoidance and balance control. Our study is expected to stimulate
AGI development by paving the way to more generalized hardware
platforms.

The neuroscience-oriented approach to AGI attempts to closely
mimic the cerebral cortex, being based on observations of a tight
interaction between memory and computing, rich spatiotemporal
dynamics, spike-based coding schemes and various learning rules9–12,
which are normally represented as spiking neural networks (SNNs).
By contrast, the computer-science-oriented approach mainly involves
explicit algorithms that are executed on computers13. Of these algo-
rithms, the prevailing non-spiking artificial neural networks (ANNs)—
inspired in part by the cortex in terms of spatial complexity14—have
made substantial progresses in dealing with specific tasks15,16, such as
image classification17, speech recognition18, language processing19 and
game playing20.

Although both approaches can solve subproblems in specialized
domains where data are abundant, it remains difficult to solve com-
plex dynamic problems with the uncertain or incomplete information
that is associated with many systems21. To further improve the intelli-
gence capability needed to achieve AGI, there is an increasing trend to
incorporate more biologically inspired models or algorithms into the
prevailing ANNs, resulting in a more explicit dialogue between the
two approaches22–29. Given current progress in machine learning and
neuroscience, an AGI system should have at least the following features:
first, support for vast and complex neural networks that can represent
rich spatial, temporal and spatiotemporal relationships; second, support
for hierarchical, multigranular and multidomain network topologies,

but without being limited to a specialized network structure; third,
support for a wide range of models, algorithms and coding schemes;
and fourth, support for the intertwined cooperation of multiple spe-
cialized neural networks that are designed for different tasks in parallel
processing. This requires a general platform to effectively support these
features in a unified architecture that can implement the prevailing
ANNs as well as neuroscience-inspired models and algorithms.

To support these features, we developed a cross-paradigm com-
puting chip that can accommodate computer-science-oriented and
neuroscience-oriented neural networks (Fig. 1). Designing a general
platform that is compatible with diverse neural models and algorithms
is a fundamental challenge, especially for distinct ANN and biologically
inspired (for example, SNN) primitives. Usually, ANNs and SNNs have
different modelling paradigms in terms of information representation,
computation philosophy and memory organization (Fig. 2a). Among
these differences, the biggest is that an ANN processes information
in precise multibit values, while an SNN uses binary spike trains. To
implement both models on one platform, the spikes need to be repre-
sented as digital sequences (1 or 0) so that they are compatible with
the ANN coding format of digital number. Several other key points
also need to be considered carefully. First, an SNN operates in spa-
tiotemporal domains, which requires the memorization of historical
membrane-potential and spike patterns within a certain duration,
while an ANN accumulates the weighted activations intermediately
and refreshes the information every cycle. Second, the computation
of an SNN includes membrane-potential integration, threshold cross-
ing and potential reset, which is driven by spike events. By contrast,
an ANN is related mainly to dense multiply-and-accumulate (MAC)
operations and activation transformations. Third, the processing of
spike patterns in SNNs requires a bit-programmable memory and
extra high-precision memories to store the membrane potential, firing
threshold and refractory period, whereas an ANN needs only byte-wise
memories for activation storage and transformation. The implemen-
tation comparisons between an ANN neuron and an SNN neuron are
illustrated in Fig. 2b. On the other hand, there are some similarities
between ANN and SNN neurons, which leaves room to fuse the model
implementations.

By compiling various neural network models in both domains,
we were able to carry out a detailed comparison to align the model
dataflow, with one-to-one correspondence, to relevant building
blocks—namely axon, synapse, dendrite, soma and router (Extended
Data Table 1). On the basis of this unified abstraction, we built a
cross-paradigm neuron scheme (Fig. 2c). Overall, we designed the
synapse and dendrite to be shared, while the axon and soma can be
reconfigured independently.

1Department of Precision Instruments, Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center, Tsinghua University, Beijing, China. 2Beijing
Innovation Center for Future Chip, Tsinghua University, Beijing, China. 3Laboratory of Brain and Intelligence, Department of Biomedical Engineering, CBICR, Tsinghua University, Beijing, China.
4IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China. 5Department of Automation, CBICR, Tsinghua University, Beijing, China. 6Department of Computer Science
and Technology, CBICR, Tsinghua University, Beijing, China. 7Lynxi Technologies, Beijing, China. 8Institute of Microelectronics, CBICR, Tsinghua University, Beijing, China. 9State Key Laboratory
of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China. 10Department of Electronic Engineering, CBICR, Tsinghua University, Beijing, China. 11Engineering Product
Development Pillar, Singapore University of Technology and Design, Singapore, Singapore. 12Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa
Barbara, CA, USA. 13These authors contributed equally: Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang. *e-mail: lpshi@tsinghua.edu.cn

1 0 6 | N A t U r e | V O L 5 7 2 | 1 A U G U S t 2 0 1 9

https://doi.org/10.1038/s41586-019-1424-8
mailto:lpshi@tsinghua.edu.cn

Letter reSeArCH

In the axon block, we deployed a small buffer memory to memo-
rize the historic spike patterns in the SNN mode. This buffer memory
supports a reconfigurable spike-collection duration and bit-wise access
through shift operations. In ANN mode, the same memory can be
reorganized as ping-pong chunks for buffering input and output data;
this decouples the computation and data transfer for parallel process-
ing. Here, the synaptic weights and neuronal parameters are pinned
into on-chip memories, which enables localized high-throughput
computation by minimizing data movement between the processing
unit and the memory. In the dendrite block, the membrane-potential
integration in SNN mode and MACs in ANN mode share the same
calculators, reunifying high-level abstraction of SNNs and ANNs dur-
ing processing. Specifically, in ANN mode the MAC units are used to
perform multiplication and accumulation; in SNN mode, a bypassing
mechanism is provided to skip the multiplication in order to allow
energy reduction under a temporal window of length one. The soma
can be reconfigured to be either a spike generator with potential stor-
age, threshold comparison, deterministic or probabilistic fire, and
potential reset in SNN mode; or a simple activation function block
in ANN mode. The leaky function of membrane potential can reduce
the potential value through fixed or adaptive leakage. The activation
function in ANN mode relies on a reconfigurable look-up table (LUT)
that provides arbitrary function.

By combining the axon, synapse, dendrite and soma blocks, we
designed a unified functional core (FCore) (Fig. 2d; for more details,
see Extended Data Fig. 1). To achieve deep fusion, nearly the whole of
the FCore is reconfigurable for high utilization in different modes. The
dendrite and soma were divided into multiple groups during operation.
The computation within each group is parallelized (with 16 MACs per
dendrite for each clock cycle), while the intergroup execution is seri-
alized. The FCore is able to cover the linear integration and nonlinear
transformation operations used by most ANNs and SNNs. In addition,
to transfer information among neurons, we built a router to receive and
send messages. Because the messages can be encoded in either ANN
or SNN format depending on the configuration, we designed a uni-
fied format for the routing packet and a shared routing infrastructure
to transfer both message types. The routing packet usually contains
control, address and data segments, where the data segment can be
either multibit activation values in ANN mode, or nothing in SNN
mode, since the routing packet itself acts as a spike event. Depending
on need, a pre-soma can package the output into either an SNN or an
ANN packet according to the soma configuration, and the post-axon
parses the routing packet into either SNN or ANN format according
to its axon configuration.

Because of the fully independent configurability for axon (input) and
soma (output), along with the shared dendrite (computation), FCore
provides great flexibility for building homogenous or heterogeneous
networks by appropriately wiring many cores. If we configure all of
the units in the same mode, a homogeneous paradigm of an SNN
or an ANN network primitive can be achieved that supports many
single-paradigm models, including SNNs and ANNs (for example, mul-
tilayer perceptrons (MLPs), convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and rate-based biologically
inspired neural networks). Furthermore, the FCore allows the con-
struction of a heterogeneous network for exploring hybrid modelling.
By independently configuring the axon and soma in different modes,
we can easily realize a hybrid network primitive with ‘ANN-input
and SNN-output’ or ‘SNN-input and ANN-output’ (Fig. 2e). In other
words, the FCore can act as an ANN/SNN converter (see Methods
for details). This cross-paradigm scheme opens up the possibility of
designing innovative hybrid models, providing an efficient platform
for cross-modelling exploration.

To support the parallel processing of large networks or multiple net-
works concurrently, our Tianjic chip adopts a many-core architecture
with scattered localized memory for timely and seamless communica-
tion. The FCores on this chip are arranged in a two-dimensional (2D)
mesh manner, as shown in Fig. 2e, f. A reconfigurable routing table
in the router of each FCore allows arbitrary connection topology. By
configuring the routing table, we can connect a neuron to any other
neuron inside or outside an FCore or even outside the chip, which helps
to build multigranular network topologies (for example, feedforward
or recurrent). Furthermore, besides the normal point-to-point (P2P)
routing, Tianjic also encompasses several special strategies to increase
its fan-in capability (the number of inputs a neuron can handle)
and fan-out capability (the number of outputs a neuron can drive).
For a typical neuromorphic core, the numbers of fan-ins and fan-outs
are normally limited by the memory and interface, which restrains the
model scale. In Tianjic, the fan-ins and fan-outs of each FCore can be
extended easily by designing interneuron lateral cooperation, interF-
Core hierarchical accumulation, intraFCore/interFCore neuron copy,
or interFCore multicast routing (see Methods for details). Together
with 2D mesh pile-up at chip level, Tianjic exhibits strong scalability to
ultralarge neural networks, while still maintaining seamless communi-
cation among deeply intertwined neural networks during concurrent
processing.

The layout and a physical view of the Tianjic chip and the test-
ing boards are shown in Fig. 3a and Extended Data Fig. 2. The chip
consists of 156 FCores, containing approximately 40,000 neurons and

Cross-paradigm
computing platform

Main
considerations

High-dimensional
spatiotemporal

dynamics

Recon�gurable
hierarchical

topology

Rich coding
schemes

Parallel
network

processing

Neuroscience

Hybrid
architecture

with compatible
coding

Computer science

01 00 1 0000
011 1100 00
11100 001 1

Fig. 1 | The hybrid approach to the development of AGI. The hybrid
approach combines the advantages of neuroscience-oriented and
computer-science-oriented approaches (shown on the left), aiming

to develop a cross-paradigm computing platform with several broad
features identified from human brains and prevailing machine-learning
algorithms.

1 A U G U S t 2 0 1 9 | V O L 5 7 2 | N A t U r e | 1 0 7

LetterreSeArCH

10 million synapses. Fabricated using 28-nm processing technology,
Tianjic occupies a die area of 3.8 × 3.8 mm2 (Extended Data Table 2).
The chip area occupied by each individual block, including axon, den-
drite, soma, router, controller and other chip overheads, is shown in
Fig. 3b. Because of resource reuse, an area only slightly larger than that
of a single paradigm (roughly 3%) was used to fuse the SNN and ANN
modes. The power breakdown of FCore is given in Fig. 3c. During
operation, the dendrite module (here including the involved axon and
synapse blocks when performing dendritic integration) consumes
the most power (63%). With its distributed on-chip memory and
decentralized many-core architecture, Tianjic provides an internal
memory bandwidth of more than 610 gigabytes (GB) per second, and

yields an effective peak performance of 1.28 tera operations per second
(TOPS) per watt in ANN mode when running at 300 MHz. In SNN
mode, synaptic operations are usually used to bench the chips, and
Tianjic achieves an effective peak performance of about 650 giga syn-
aptic operations per second (GSOPS) per watt. Details can be found in
Extended Data Table 2.

Tianjic is able to support diverse neural network models, including
neuroscience-inspired networks (for example, SNNs and rate-based
biologically inspired neural networks) and computer-science-oriented
networks (for example, MLP, CNNs and RNNs). Figure 3d shows
the results of testing different network models on the Tianjic chip
versus a general processing unit (GPU; see Methods for model details).

Homogeneous/
heterogeneous

scalability

Multicast

Point-t
o-point

Arbitrary connection

FCores

Chips

Recurrent

Axon and synapse Dendrite

Integration

Activation

Weight

Spikes

Decay
t

Weight

1

1 1
1
1

1

1
0

0 0 00

MACs

Activation function

Activation

Spike
Potential
memory

Activation
function

Para.
memory

Leaky /
reset

Potential
memory

Para.
memory

Leaky /
reset

V(t)

V(t)

V(t–1)

V(t–1)b

b

Vth

Vth

32

–53

73

27
–19

–28

Soma

Axon from pre-neuron

1 0 1 0 1 1 0 1 Synapse

Axon from pre-neuron

Axon: independently
recon�gurable

Dendrite shared

Integration

Soma independently recon�gurable

Shared routing
infrastructure

Uni�ed routing packet

Shared path

ANN path

SNN path

LUT data

Reuse

Soma para

Spike /

activation
Activation

Input buffer

Ping-pong buffer

Reuse

1 1 0 1
0 1 0 0

Temporal window

Spikes

ANN

Reuse

SNN

Axon Dendrite

Router
N

S

EW Switch

SNN path

ANN path

SomaPotential memory

Synapse mem.
Input buffer

32 –53

Dendrite

Dendrite

Soma

Soma

SynapseANN

SNN

Activation
function

Neural
dynamics

Output axon to
post-neuron

Output axon to
post-neuron

1 1 1 0 1 1

1 1 0 1

11 01

Control/address Data

a b

c

d e f

RLUT

Multicast

Point-t
o-point

Recurrent

FCores

Chi

Decay

Tw
Weight memory

x0

w
0 x

0

w 2
 x 2

w1 x1

w
0

w 2

w1

t

f(+b)
f(+b)

Fig. 2 | Design of the Tianjic chip. a, Computational model of an ANN or
biologically inspired (for example, SNN) neuron. w0, w1, w2 are synaptic
weights; x0, x1, x2 are input activations; Σ is the dendritic integration;
f is the activation function; and b is the bias. b, Implementation diagrams
for an ANN or SNN neuron. V(t) is the neuronal membrane potential
at time step t, and Vth is the firing threshold. Numbers in blue boxes are
examples of input activation/spike and weight values. The faded purple
multiplier in the SNN path indicates that the dendrite can possibly bypass
the multiplication (for example, in the case that the time window length
equals one). c, Diagram of a hybrid circuit, showing a cross-paradigm
neuron with fused ANN and SNN components. Para. memory, parameter

memory. d, Diagram of a unified functional core (FCore). Each FCore
includes axon, synapse, dendrite, soma and router building blocks.
Synapse mem., synapse memory. e, Flexible modelling configuration
and connection topology of FCores. The coding schemes can be freely
transformed between ANN and SNN modes, enabling heterogeneous
neural networks. The scheme also allows flexible connections for
the implementation of arbitrary network topology. f, Illustration of
the hierarchy of 2D mesh architecture at the core and chip levels,
demonstrating the ability to scale up the technique. RLUT, routing look-up
table.

1 0 8 | N A t U r e | V O L 5 7 2 | 1 A U G U S t 2 0 1 9

Letter reSeArCH

By forming a parallel on-chip memory hierarchy and organizing the
dataflow in a streaming fashion, the Tianjic chip can provide improved
throughput (1.6 to 102 times) and power efficiency (12 to 104 times)
over the GPU. A detailed mapping of these networks onto the chip is
illustrated in Extended Data Fig. 3.

Moreover, Tianjic enables the concurrent deployment of multiple
expert networks within one chip, including most types of SNNs and
ANNs. With the help of flexibly reconfigurable coding schemes, it sup-
ports heterogeneous neural networks with a deep fusion of the two par-
adigms. For example, Tianjic can easily deploy a large-scale SNN with
numerous dendritic branches. Conventionally, the number of allowed
synaptic inputs is identical for each FCore (for example, fewer than
256 inputs), which normally limits the model accuracy if only binary
spike signals are used for interFCore communication, owing to the
severe loss of precision during dendritic integration that faces oversized
neuronal fan-ins. By configuring some of the FCores in ANN mode to
accumulate membrane potentials in higher precision (acting as a relay
for dendritic trees) rather than just communicating via spikes in SNN
mode, Tianjic enables the implementation of large-scale SNNs with a
high accuracy that stems from the direct transfer of intermediate mem-
brane potentials. As shown in Fig. 3e, the hybrid neural network with
dendritic relays shows an improvement in accuracy of 11.5% over that
of an SNN-only configuration, without needing to increase the num-
ber of neurons. The extra overheads caused by this hybrid paradigm
are negligible because Tianjic can naturally implement heterogeneous

conversion within the FCore. More comprehensive analysis can be
found in the Methods.

The use of Tianjic also enables the exploration of more biologically
plausible cognitive models. For instance, Tianjic can implement the
continuous attractor neural network (CANN)30, the synfire chain31
and dendritic multicompartment models32 (Fig. 3f). We also developed
a software tool that converts the multimodal and hybrid networks to
meet the hardware constraints of the Tianjic chip automatically. In gen-
eral, Tianjic adopts a non-von Neumann paradigm with hybrid com-
patibility, many-core architecture, localized memory and streamlined
dataflow, which is able to support cross-paradigm modelling, maximize
parallelism, and improve power efficiency.

To demonstrate the utility of building a brain-like cross-paradigm
system, we designed an unmanned bicycle experiment by deploying
multiple specialized networks in parallel within one Tianjic chip.
Equipped with versatile algorithms and models, the bicycle was able
to perform real-time object detection, tracking, voice-command
recognition, riding over a speed bump, obstacle avoidance, bal-
ance control and decision making (Fig. 4a). Realizing these func-
tions involved three major challenges: first, detecting and smoothly
tracking a moving human in an outdoor natural environment, rid-
ing over a speed bump, and automatically avoiding obstacles when
necessary; second, generating real-time motor control signals in
response to balance control, voice commands and visual perception
to keep the bicycle moving in the correct direction; and third, realizing

6%

33%

9%14%

9%

2%

27%

Axon Synapse
Dendrite Soma
Router FCore control
Others

a

c d

e

Dendritic computation

Input 1

Input 2 Input 3

Input 4

CANN Syn�re chain

gg gg

s s s s

f

Core
layout

Chip
layout

Tianjic
chip

b Chip area

SNN

SNN

SNN/ANN

ANN/SNN

ANN

10.5

10.2
10.0

+3%

Hybrid SNN ANN

A
re

a
of

 F
C

or
es

 (m
m

2)

8

9

10

11

7%

25%

63%

3% 2%

Leakage

Power

Idle Dendrite Soma Router
SNNs MLP CNNs

(folded)
CNNs

(unfolded)
LSTM

Throughput (FPS) Ef�ciency (GOPS W–1)

22

10,637

35

723

1.6

12

1.85

467

101
53

100

101

102

103

104

Ti
an

jic
/G

P
U

Number of
FCores

Number of
phases

Accuracy Power (W)

152 152

15 15

84.98%

96.48%

0.397 0.406

SNN
Hybrid

Fig. 3 | Summary of chip evaluation
and modelling. a, Integrated layout
and packaging of the Tianjic chip.
b, Left, percentage of the chip area that
is occupied by different features (axons,
dendrites, routers and so on). Right,
owing to the high level of resource
sharing and reconfigurability, only a
small area increase (roughly 3%) is
needed to fuse the two paradigms.
c, Power breakdown for FCore.
d, Evaluation of FCore performance
in various single-paradigm models,
including SNNs, MLPs, CNNs (under
folded or unfolded mapping) and long
short-term memory networks (LSTMs).
GOPS, giga operations per second; FPS,
frames per second. e, Left, example of
the implementation of a large-scale
SNN with ANN dendritic relay. Right,
with the help of ANN relays to transfer
intermediate membrane potentials with
high precision, a hybrid device was able
to achieve higher recognition accuracy
than an SNN alone, with negligible
hardware overheads. f, The Tianjic
chip can also support more biologically
plausible neural network models
(for example, CANN; a temporal-
coding-based synchronous firing
(synfire) neural chain; and dendritic
multicompartment models). g, graded;
s, synfire.

1 A U G U S t 2 0 1 9 | V O L 5 7 2 | N A t U r e | 1 0 9

LetterreSeArCH

multimodal information integration and prompt decision-making.
To accomplish this task, we developed several neural networks, includ-
ing a CNN for image processing and object detection, a CANN for
human target tracking, an SNN for voice-command recognition, and
an MLP for attitude balance and direction control (Fig. 4b). Here, the
CANN utilizes the membrane-potential normalization mechanism

implemented via nonlinear dendritic operations. To integrate these
networks and achieve high-level decision-making, we developed
an SNN-based neural state machine (NSM). The NSM receives the
inputs from other networks (CNN, SNN), and outputs enabling
signals (CNN, CANN) and action signals (for example, forced turn,
obstacle avoidance) to downstream FCores for bicycle motor control.

Voice

Tracking angle

init coordinates

Person

No obstacle

Not ready

No person

Start

Obstacle

Turnready

Ta
rg

et
 r

ot
at

io
n

an
gl

e,

3

H
or

iz
on

ta
l p

os
iti

on

N
eu

ro
n

in
d

ex

Time step
Time (s) Time (s)

Im
ita

tio
n

er
ro

r

0

5

–5–30–0.5

–0.25

0

0.25

0.5

–20

–10

0

0 20 40 60 800 10 20 30 40 50 100

10

20

30

Error
3Speed_up

Microphone

Voice
recognition

(SNN)

Target and
obstacle
detection

(CNN)

is_voice
Neural state machine

S1

S0

S2

S4

S3
is_target

is_obstacle

C_en

A_en

V_en

Command NSM input signal

NSM output signal
NSM state transition

Non-spike data
Spike data
Sensor output

Voice-
command
execution

Motor
controller

Motor

IMU

Balance
control
(MLP)

Obstacle
avoidance Σ

T_en

is_ready
Target

tracking
(CANN)

Camera

Left

Straight

a

b

c d e

S-curve
tracking

Obstacle
bypass

Low-speed
turning

High-speed
turning

Tracking

Audio

Balance

Visual

Tianjic chip

IMU sensor Audio sensor

Overview Steering motor

Visual sensor

Driving motor Speed sensor Battery

Tracking

Object
detection

Fig. 4 | Demonstration of multimodal integration on a Tianjic chip
for an unmanned bicycle. a, Left and centre, illustration of the tasks
conducted in the bicycle experiment, including real-time object detection,
tracking, voice perception, riding over a speed bump, automatic obstacle
avoidance and balance of attitude. Right, the bicycle was equipped with a
camera, gyroscope, speedometer, motors and a Tianjic chip. IMU, inertial
measurement unit. b, Diagram of the multiple neural networks used in the
unmanned bicycle experiment. The states inside the NSM diagram were
defined as: voice command execution (S0), human detection (S1), human
tracking (S2), a start of obstacle avoidance (S3), and a wait of avoidance

completion (S4). An init coordinate is an initialization coordinate. C_en,
A_en, V_en and T_en denote enabling signals for CNN, CANN, voice control
and turning control, respectively. c, SNN voice-command-recognition test.
The neuron producing the most spikes indicates the resulting classification.
d, Tracking test. The y axis shows the relative horizontal position of the
human in the frame. The bicycle automatically avoided an obstacle, then
followed an instructor who ran in an S-curve route. e, Balance control and
turning by an MLP network, which was trained by imitating the outputs
of several well tuned controllers using the proportional-integral-derivative
algorithm at different speeds (low to high).

1 1 0 | N A t U r e | V O L 5 7 2 | 1 A U G U S t 2 0 1 9

Letter reSeArCH

Five discrete states were trained for the experiment (see Methods and
Extended Data Table 3).

Before the road test, the CNN, CANN, SNN and MLP networks
were pretrained and programmed onto the Tianjic chip. Because of
its decentralized architecture and arbitrary routing topology, Tianjic
allowed all of the neural network models to operate in parallel and
realized seamless communication across the models, enabling the bicy-
cle to accomplish these tasks smoothly (see Supplementary Video).
Figure 4c visualizes the output spike signals in response to different
voice commands; Fig. 4d presents the tracking performance during
obstacle avoidance and the S-curve path; and Fig. 4e illustrates the
learning of attitude and steering control at different speeds on the basis
of physical measurements. This demonstration provides an excellent
experimental platform with which to study the key issues in the itera-
tive evolution of AGI. For example, problems of high spatiotemporal
complexity can be generated by randomly introducing new variables
into the environment in real time, such as different road conditions,
noises, weather factors, multiple languages, more people and so on.
By exploring solutions that allow adaptation to these environmental
changes, issues critical to AGI—such as generalization, robustness and
autonomous learning—can be examined.

In summary, we have developed the Tianjic chip, which supports
both computer-science-based, machine-learning algorithms and neu-
roscience-based, biologically inspired models simultaneously. Various
neural networks and hybrid coding schemes can be freely integrated,
allowing for seamless communication among multiple networks,
including SNNs and ANNs. Our research has examined a novel
neuromorphic architecture that offers flexibility by integrating
cross-paradigm models and algorithms onto a single platform; we hope
that our findings will accelerate the development of AGI, with many
possible real-world applications.

Online content
Any methods, additional references, Nature Research reporting summaries,
source data, extended data, supplementary information, acknowledgements, peer
review information; details of author contributions and competing interests; and
statements of data and code availability are available at https://doi.org/10.1038/
s41586-019-1424-8.

Received: 20 May 2018; Accepted: 7 May 2019;
Published online 31 July 2019.

 1. Goertzel, B. Artificial general intelligence: concept, state of the art, and future
prospects. J. Artif. Gen. Intell. 5, 1–48 (2014).

 2. Benjamin, B. V. et al. Neurogrid: a mixed-analog-digital multichip system for
large-scale neural simulations. Proc. IEEE 102, 699–716 (2014).

 3. Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345, 668–673 (2014).

 4. Furber, S. B. et al. The SpiNNaker project. Proc. IEEE 102, 652–665 (2014).
 5. Schemmel, J. et al. A wafer-scale neuromorphic hardware system for

large-scale neural modeling. In Proc. 2010 IEEE Int. Symposium on Circuits and
Systems 1947–1950 (IEEE, 2010).

 6. Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip
learning. IEEE Micro 38, 82–99 (2018).

 7. Chen, Y.-H. et al. Eyeriss: an energy-efficient reconfigurable accelerator for
deep convolutional neural networks. IEEE J. Solid-State Circuits 52, 127–138
(2017).

 8. Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing
unit. In 2017 ACM/IEEE 44th Annual Int. Symposium on Computer Architecture
1–12 (IEEE, 2017).

 9. Markram, H. The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006).
 10. Izhikevich, E. M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 14,

1569–1572 (2003).
 11. Eliasmith, C. et al. A large-scale model of the functioning brain. Science 338,

1202–1205 (2012).
 12. Song, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through

spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926
(2000).

 13. Gusfield, D. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology (Cambridge Univ. Press, 1997).

 14. Qiu, G. Modelling the visual cortex using artificial neural networks for visual
image reconstruction. In Fourth Int. Conference on Artificial Neural Networks
127–132 (Institution of Engineering and Technology, 1995).

 15. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
 16. Russell, S. J. & Norvig, P. Artificial Intelligence: A Modern Approach (Pearson

Education, 2016).
 17. He, K. et al. Deep residual learning for image recognition. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).
 18. Hinton, G. et al. Deep neural networks for acoustic modeling in speech

recognition. IEEE Signal Process. Mag. 29, 82–97 (2012).
 19. Young, T. et al. Recent trends in deep learning based natural language

processing. IEEE Comput. Intell. Mag. 13, 55–75 (2018).
 20. Silver, D. et al. Mastering the game of Go with deep neural networks and tree

search. Nature 529, 484–489 (2016).
 21. Lake, B. M. et al. Building machines that learn and think like people. Behav. Brain

Sci. 40, e253 (2017).
 22. Hassabis, D. et al. Neuroscience-inspired artificial intelligence. Neuron 95,

245–258 (2017).
 23. Marblestone, A. H., Wayne, G. & Kording, K. P. Toward an integration of deep

learning and neuroscience. Front. Comput. Neurosci. 10, 94 (2016).
 24. Lillicrap, T. P. et al. Random synaptic feedback weights support error

backpropagation for deep learning. Nat. Commun. 7, 13276 (2016).
 25. Roelfsema, P. R. & Holtmaat, A. Control of synaptic plasticity in deep cortical

networks. Nat. Rev. Neurosci. 19, 166–180 (2018).
 26. Ullman, S. Using neuroscience to develop artificial intelligence. Science 363,

692–693 (2019).
 27. Xu, K. et al. Show, attend and tell: neural image caption generation with visual

attention. In Int. Conference on Machine Learning (eds Bach, F. & Blei, D.)
2048–2057 (International Machine Learning Society, 2015).

 28. Zhang, B., Shi, L. & Song, S. in Brain-Inspired Robotics: The Intersection of
Robotics and Neuroscience (eds Sanders, S. & Oberst, J.) 4–9 (Science/AAAS,
2016).

 29. Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. Adv.
Neural Inf. Processing Syst. 30, 3856–3866 (2017).

 30. Mi, Y. et al. Spike frequency adaptation implements anticipative tracking in
continuous attractor neural networks. Adv. Neural Inf. Processing Syst. 27,
505–513 (2014).

 31. Herrmann, M., Hertz, J. & Prügel-Bennett, A. Analysis of synfire chains. Network
6, 403–414 (1995).

 32. London, M. & Häusser, M. Dendritic computation. Annu. Rev. Neurosci. 28,
503–532 (2005).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

1 A U G U S t 2 0 1 9 | V O L 5 7 2 | N A t U r e | 1 1 1

https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-019-1424-8

LetterreSeArCH

Methods
Description of the unified model. Tianjic is a specialized platform that sup-
ports most of today’s neural network models across neuroscience and computer-
science domains, which normally use distinct ways to represent information. We
have re-examined most widely used neural network models in the neuroscience
domain (for example, SNN, rate-based bio-inspired neural networks and so on)
and computer-science domain (for example, MLP, CNN and RNN), and we have
proposed a unified description to align the model implementations to axon, syn-
apse, dendrite, soma and router compartments. We identified the similarities and
differences between ANN and SNN neurons, and arranged the operations and
transformations into these compartments according to their respective functions
(see Extended Data Table 1). By aligning the dataflow, Tianjic can flexibly imple-
ment various models in a single or hybrid paradigm.
Design philosophy. Tianjic adopts a many-core architecture with massive paral-
lelism. Each FCore includes several blocks: axon, dendrite (with synapse), soma
and router. Three key designs that enable us to achieve the hybrid paradigm are:
Independently reconfigurable axon and soma. The axon and soma can be configured
into different modes independently. The axon receives and organizes SNN inputs
or ANN inputs according to its mode configuration. Similarly, the soma generates
SNN outputs or ANN outputs according to its mode configuration. When the axon
and soma are configured into the same operating mode (either ANN or SNN),
the FCore acts in pure ANN or SNN mode, respectively, which we call a single-
paradigm FCore. When the axon and soma are configured into different operating
modes, the FCore processes ANN inputs and fires SNN outputs, or processes SNN
inputs and generates ANN outputs; we call this a hybrid FCore.
Shared dendritic integration. The dendritic integrations for processing SNN
inputs and ANN inputs share the same calculators (multipliers and accumula-
tors), although they have different processing operations and style. At each time
phase, the dendrite performs intense MACs when processing ANN inputs. When
processing SNN inputs, the dendrite also performs MACs when the length of the
integration-time window is greater than one; if this time window is less than one,
the dendrite performs only addition operations and bypasses multipliers; if no
spike is received, the dendrite skips all operations.
Unified routing infrastructure. The interconnections of FCores share the same
routing infrastructure to transfer routing packets in a unified format. The pre-soma
can package the output into either an SNN or an ANN packet according to the
soma configuration, and the post-axon parses the routing packet into either SNN
or ANN format on the basis of its axon configuration.
Hybrid configuration. At the network level, besides constructing conventional
single-paradigm ANNs or SNNs, Tianjic offers hybrid modelling at two levels
of granularity. At the coarse-grain level, we can configure some FCores in ANN
mode and other FCores in SNN mode to perform ANNs and SNNs individually.
In this way, we can realize both ANNs and SNNs on the same hardware platform,
operating concurrently without the need to build a heterogeneous system using
various chips. This also simplifies the design of off-chip communication interfaces
on the circuit board, because Tianjic uses a unified packet format and routing
infrastructure. At the fine-grain level, we can configure FCores working in hybrid
mode (axon in ANN and soma in SNN, or vice versa) to build a network with
hybrid signal coding.

Note that, to achieve a particular target application, the working modes of axon
and soma are fixed after the initial configuration, without any mode switching
during the consequent execution process. No extra switching circuits and over-
heads are required for signal conversion in the hybrid mode, because it is naturally
performed on the critical data path of FCore.
Architecture design. A schematic view of the FCore architecture is shown in
Extended Data Fig. 1. The cross-paradigm computing of Tianjic is realized through
shared dendrites, independently reconfigurable axons and somas, and a unified
interconnection infrastructure.

In the dendrite block, the processing neurons are divided into multiple groups
(for example, 16 groups). The groups run in series and the neurons within the
group are executed in parallel during operation. In the dendrite module, there
are 16 8-bit multipliers and 16 24-bit accumulators to support the vector-matrix
multiplication (VMM) operations, which are shared by ANN and SNN modes.
In ANN mode, the dendrite module reads one input from the axon module and
16 8-bit weights from the synapse memory simultaneously at each clock cycle, then
concurrently executes 16 MACs for 16 neurons that share the same axon data. Each
neuron completely performs 256 multiplications with 8-bit precision, and the same
amount of accumulations with 24-bit precision. In SNN mode, when the temporal
window length (Tw) for controlling the duration of historical spike integration is
larger than one, the multipliers and accumulators are used in the same way as in
ANN mode; otherwise, the axon module outputs only 1-bit spikes and the dendrite
module skips the multipliers.

The axon and the soma modules are essential for the hybrid operation. They
can be flexibly and independently reconfigured between ANN and SNN modes as

discussed. In ANN mode, the axon memory is divided into two chunks, working as
ping-pong buffers. In SNN mode, the two buffers are merged as a complete chunk
to store spike patterns within a historical temporal window with tunable duration.
Extra memories are used to buffer the latest spikes in a ping-pong manner. In
addition, a timing-factor calculator is implemented for the time decay.

In ANN mode, the data in soma flow in a ‘bias, activation function, output
transmission’ fashion. The 25-bit biased activation values are truncated by a recon-
figurable 10-bit sliding window. Then a reconfigurable LUT with 10-bit entries
and 8-bit outputs is applied in each FCore for arbitrary activation function. In
SNN mode, the dataflow changes to ‘potential leakage, spike generation, output
transmission’. The 25-bit membrane potential (with fixed or adaptive leakage) is
truncated and then compared with a 24-bit threshold to determine whether a spike
is fired or not. If a spike is fired, multiple modes of membrane potential reset are
supported. All memories are shared between the two modes for storing inputs/out-
puts or parameters such as synaptic weights, biases, LUTs, leakages and thresholds.

The soma outputs are packaged into routing packets. For interFCore transmis-
sion, ANN and SNN modes share the same routing packet format, consisting of
control, address and data segments. The control segment determines whether the
input is an inhibitory signal in the SNN mode. The address segment contains the
destination FCore and memory-cell addresses. The data segment conveys either
8-bit activation in the ANN mode or nothing in the SNN mode (the packet itself
represents a spike event33). Once received, the post-axon parses the packet as ANN
or SNN signal according to the axon configuration. The control and address seg-
ments of neurons are stored in a reconfigurable 1-kilobyte (KB) routing LUT of
each router with five communication channels: local, eastern, western, southern
and northern.

Tianjic adopts a 2D-mesh many-core architecture to construct large networks
hierarchically (core-chip-board-system). Besides the normal P2P routing scheme3,
an adjacent multicast (AMC) routing scheme is designed to expand the fan-outs.
When an FCore is configured into the AMC routing mode, the received packets
are delivered to the next FCore according to the configured multicast direction
and distance. In this way, multiple FCores can receive duplications through routing
relays.

Tianjic also flexibly supports more special operations. (1) Nonlinear integra-
tion: in addition to the MACs between the dynamic input vector and static weight
matrix, the dendrite module can also perform operations between dynamic input
vectors. (2) Somatic cooperation: adjacent somas can be merged into a stronger
soma that accumulates all integrations of every soma, thus expanding fan-ins with-
out using additional FCores. (3) Ternary synapse: Tianjic supports the ternary
neural networks34 by reducing the bit width of each synapse to two, and then the
number of synapses increases accordingly. (4) Connection extensions for scaling
up networks, including, first, fan-in extension through the abovementioned intraF-
Core soma cooperation or extra interFCore hierarchical integration; and second,
fan-out extension through neuron copy or multicast routing scheme.
Chip specification. The Tianjic chip was fabricated using 28-nm high performance
low power (HLP) technology. The layout, physical picture, and testing boards are
shown in Extended Data Fig. 2. One Tianjic chip consists of 156 FCores and the
weight-sharing technique3,35 was leveraged. The number of weight indexes (M)
and fan-ins/fan-outs (N) are set as 32 and 256, respectively, leading to a total num-
ber of roughly 22 KB static random-access memory (SRAM) in each FCore. The
configuration and performance of the Tianjic chip are summarized in Extended
Data Table 2 and compared with existing neural network platforms. At a clock
frequency of 300 MHz and supplied voltage of 0.85 V, the Tianjic chip typically
consumes 6.1 mW and 5.5 mW per FCore in ANN mode and SNN mode (Tw = 1),
respectively. Tianjic requires 5,050 clock periods (a clock period being 16.8 µs
at 300 MHz) to complete a round of computations and communications, which
reflects the minimum phase latency.
Network deployment. Tianjic provides great flexibility in network deployment.
Specifically, most spiking and non-spiking neural networks can be constructed
from the same basic topological layers, including fully connected, convolutional,
pooling and recurrent layers. During network deployment, the weights are parti-
tioned and pinned into the synapse memories of FCores, which remain unchanged
and do not need reloads given fixed working modes and static network topolo-
gies after initialization. To balance processing throughput and resource overhead,
Tianjic supports two mapping schemes: unfolded mapping and folded mapping
(Extended Data Fig. 3).

The unfolded mapping scheme converts all topologies into fully connected
structures without resource reuse. The FCores performing VMM operations
share the inputs through the multicast routing strategy, and other FCores for accu-
mulating the partial sums (called reduce operations) are additionally required.
For CANN, the differential dynamics are converted to difference equations, sim-
ilar to the iterative format of LSTM. Besides matrix operations, vector operations
(for example, generating spike rates in CANN or updating cell/hidden states in
LSTM) can be realized by the nonlinear dendritic integration. On the other hand,

Letter reSeArCH

a folded mapping scheme is supported to reduce the resource overhead of non-
spiking convolutions with massive data reuse and independency of historical infor-
mation. It requires two types of FCores: buffer FCores and computation FCores.
The weights are shared in convolutions along the row dimension of feature maps,
which reside in the synapse memory for reuse. The inputs are accordingly arranged
row by row using buffer FCores before each convolution operation performed in
the consequent computation FCores. In this way, the convolutions are pipelined
by generating one output row at each phase, and such row-wise streaming can
tolerate CNNs with excess rows.
System support. Inspired by the hierarchy of computer systems, Tianjic’s software
tool chain contains similar levels to the host computer to facilitate applications,
such as a unified abstraction for programming and an automatic compiler for
mapping. The software supports applications in both SNN and ANN modes. For
SNNs, it supports two training methods: indirect and direct training. The indirect
training uses popular deep-learning frameworks to train an ANN model using back
propagation, and then converts it into its SNN counterpart36. The direct training
uses the emerging spatiotemporal back-propagation algorithm37 to directly train
the SNN model. For the non-spiking ANNs, besides the common workflow that
modifies and maps existing networks manually, our compiler can also automat-
ically transform a pretrained model into an equivalent network that meets the
Tianjic hardware constraints, thus decoupling the applications from the target
hardware.
Single-paradigm evaluation. Here we detail the benchmarks used to eval-
uate single-paradigm neural networks in Fig. 3d. For SNN, we used a fully
connected network with the NMNIST dataset38. The dimensions of input data
are (34 × 34) × 2 = 2,312 for both ON-type and OFF-type spikes, and the net-
work structure was 2,312-800-10. For MLP, we used the fully connected layers of
AlexNet (9,216-4,096-1,000)39 and VGG16 (25,088-4,096-1,000)40 on the ImageNet
dataset41. For CNN, we used the networks of LeNet-variant34 on the MNIST data-
set42, VGG843 on the CIFAR10 dataset44, and AlexNet/VGG16/ResNet1817 on
the ImageNet dataset. For LSTM, we used two customized networks with one
hidden layer of 1,024 cells on the WikiText-2 dataset45 and two hidden layers of
512 cells for each on the Tiny-Shakespeare dataset46. The average performance
across multiple networks under the same structure category was reported. Direct
training with a spike-rate coding scheme was used to train the spiking model,
and quantized training47 with 8-bit weights and activations was used to train the
non-spiking models.

For small-scale networks, including the ANN/SNN hybrid example in Fig. 3e
(with a structure of input-20C3-AP2-20C2-AP2-10C2-10) and all models in the
bicycle experiment, we directly measured the accuracy, latency and power on the
testing board. We ran large networks that exceed present resources, such as those in
Fig. 3d, in a cycle-accurate simulator whose accuracy and latency can correspond
one-to-one with the hardware. The power estimation in these cases was extrapo-
lated on the basis of measured results from a single chip, including both leakage
and active power. In the simulation, we relaxed two fabrication cost constraints: we
removed the weight-sharing technique for a full degree of synapses, and ignored
the interchip communication overhead because it is easy to integrate more FCores
into one single chip to accommodate larger networks3. The programming frame-
works for the Titan-Xp GPU results were Pytorch48 (SNN, MLP, CNN) and Torch
(LSTM). For LSTM, we used the benchmarks of DeepBench49 to measure the run-
ning performance. The batch size was set to one as suggested50 for inference tasks.
Implementation of a hybrid network. We rigorously compared the performance
between single-paradigm (ANN-only or SNN-only) and fine-grained cross-
paradigm (ANN/SNN hybrid) implementations using the same network structure as
in Fig. 3e. The benchmark dataset was MNIST. As well as using the afore-mentioned
training methods for ANN-only and SNN-only models, we used a hybrid model
adapted from a pretrained SNN model. For the SNN-only and hybrid modes,
the original pixel values were converted to spike events through Bernoulli
sampling. In the hybrid-mode network, the hybrid layer used ‘SNN-input and
ANN-output’ FCores to integrate SNN spikes and generate ANN signals (high-
precision intermediate membrane potentials), and then used ‘ANN-input and
SNN-output’ FCores to accumulate these ANN signals and fire SNN spikes again.
In this example, the ANN-only, SNN-only and hybrid models all used the unfolded
mapping scheme, and for simplicity only the last convolution layer was configured
into hybrid mode.

Extended Data Figs. 4, 5 present comprehensive comparisons among differ-
ent configuration modes and detailed routing profiling. The extra hardware cost
introduced by the hybrid model beyond the SNN-only model was negligible, and
the costs of both the hybrid model and the SNN-only model were much lower
than that of the computation-intensive ANN-only model. Moreover, because it
avoided the loss of precision during communication that is induced by binary
spikes when the number of inputs exceeds the fan-in limitation of neurons, the
hybrid model inherited the accuracy advantage of the ANN-only model. In this
example, the hybrid paradigm provides an efficient way to combine the advantages

of both SNN-only and ANN-only models, leading to an overall high performance.
In short, the hybrid paradigm of Tianjic can be used to construct various ANN and
SNN combinations according to the requirements of practical applications, such as
low power consumption, high speed, high accuracy or overall high performance.
Unmanned bicycle demonstration. The detailed network topologies are listed
in Extended Data Table 3. The model sizes were trimmed and optimized for the
demonstration of system functionality on a single Tianjic chip. Data preprocessing
was performed on an ARM processor, and all of the models were trained with
quantization before they were implemented on Tianjic. The mapping results of
these networks and the measured power consumption are presented in Extended
Data Fig. 6.

Each frame from a web camera was rescaled to a 70 × 70 greyscale image as
CNN inputs, and clipped before being injected into CANN as inputs according to
the initial bounding boxes produced by the CNN model. For CANN, we applied
a modified model that reduces remote connections outside the scope of the
Gaussian bump. We converted the audio signals obtained from the microphone
into 51-dimension features with different frequencies using the Mel-frequency
cepstral coefficient (MFCC)51 method. We then applied the Gaussian population
coding strategy52 to encode each frequency feature into ten spiking units. We
adopted the fully connected structure based on leaky integrate-and-fire (LIF)53
neurons to construct the SNN model trained by the direct method as above. The
seven output neurons represented six instruction commands and a noise case.
For attitude and motion control, we selected five signals produced by the inertial
measurement unit (IMU). The signals during the last sixth of the time steps were
concatenated to form a 30-dimension vector as the input of MLP. We trained the
MLP network to imitate the outputs of several proportional-integral-derivative
controllers under different speeds (low to high). The output target rotation angle
was sent to the motor controller to tune the steering for balance keeping. In addi-
tion, the voltage coefficient was sent directly to another motor (back wheel) con-
troller to adjust the speed.

Inspired by prior work54, we designed an SNN-based finite neural state machine
(NSM; Extended Data Fig. 7) to integrate the outputs of the above diverse neural
networks. The FCores between the decision-making module (that is, NSM) and
action module (that is, MLP) worked in a hybrid mode (SNN-input and ANN-
output), which contained trajectory patterns in the soma LUT to convert action
signals (spikes) into target inclination angle sequences (real values). In this way,
the NSM could guide the bicycle to achieve forced turn (voice command) or obsta-
cle avoidance. The weights of the NSM model were trained following the offline
spike-timing-dependent plasticity (STDP)-like rule12.

Data availability
The datasets that we used for benchmarks are publicly available, as described
in the text and the relevant references38,41,42,44–46. The training methods are
provided in the relevant references36,37,47,54. The experimental setups for simu-
lations and measurements are detailed in the text. Other data that support the
findings of this study are available from the corresponding author on reasonable
request.

Code availability
The codes used for the software tool chain and the bicycle demonstration are
available from the corresponding author on reasonable request.

 33. Imam, N. & Manohar, R. Address-event communication using token-ring mutual

exclusion. In 2011 17th IEEE Int. Symposium on Asynchronous Circuits and
Systems 99–108 (IEEE, 2011).

 34. Deng, L. et al. GXNOR-Net: training deep neural networks with ternary weights
and activations without full-precision memory under a unified discretization
framework. Neural Netw. 100, 49–58 (2018).

 35. Han, S. et al. EIE: efficient inference engine on compressed deep neural
network. In 2016 ACM/IEEE 43rd Annual Int. Symposium on Computer
Architecture 243–254 (IEEE, 2016).

 36. Diehl, P. U. et al. Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing. In 2015 Int. Joint Conference on Neural
Networks 1–8 (IEEE, 2015).

 37. Wu, Y. et al. Spatio-temporal backpropagation for training high-performance
spiking neural networks. Front. Neurosci. 12, 331 (2018).

 38. Orchard, G. et al. Converting static image datasets to spiking neuromorphic
datasets using saccades. Front. Neurosci. 9, 437 (2015).

 39. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105
(2012).

 40. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale
image recognition. In Int. Conference on Learning Representations; preprint at
https://arxiv.org/pdf/1409.1556.pdf (2015).

 41. Deng, J. et al. ImageNet: a large-scale hierarchical image database. In 2009
IEEE Conference on Computer Vision and Pattern Recognition 248–255
(IEEE, 2009).

https://arxiv.org/pdf/1409.1556.pdf

LetterreSeArCH

 42. LeCun, Y. et al. Gradient-based learning applied to document recognition.
Proc. IEEE 86, 2278–2324 (1998).

 43. Courbariaux, M., Bengio, Y. & David, J.-P. BinaryConnect: training deep neural
networks with binary weights during propagations. Adv. Neural Inf. Processing
Syst. 28, 3123–3131 (2015).

 44. Krizhevsky, A. & Hinton, G. Learning Multiple Layers of Features from Tiny Images.
MSc thesis, Univ. Toronto (2009).

 45. Merity, S. et al. Pointer sentinel mixture models. In Int. Conference on
Learning Representations; preprint at https://arxiv.org/abs/1609.07843
(2017).

 46. Krakovna, V. & Doshi-Velez, F. Increasing the interpretability of recurrent neural
networks using hidden Markov models. Preprint at https://arxiv.org/
abs/1606.05320 (2016).

 47. Wu, S. et al. Training and inference with integers in deep neural networks. In
Int. Conference on Learning Representations; preprint at https://arxiv.org/
abs/1802.04680 (2018).

 48. Paszke, A. et al. Automatic differentiation in Pytorch. In Proc. NIPS Autodiff
Workshop https://openreview.net/pdf?id=BJJsrmfCZ (2017).

 49. Narang, S. & Diamos, G. Baidu DeepBench. https://github.com/baidu-
research/DeepBench (2017).

 50. Fowers, J. et al. A configurable cloud-scale DNN processor for real-time AI. In
2018 ACM/IEEE 45th Annual Int. Symposium on Computer Architecture 1–14
(IEEE, 2018).

 51. Xu, M. et al. HMM-based audio keyword generation. In Advances in Multimedia
Information Processing – PCM 2004, Vol. 3333 (eds Aizawa, K. et al.) 566–574
(Springer, 2004).

 52. Mathis, A., Herz, A. V. & Stemmler, M. B. Resolution of nested neuronal
representations can be exponential in the number of neurons. Phys. Rev. Lett.
109, 018103 (2012).

 53. Gerstner, W. et al. Neuronal Dynamics: From Single Neurons to Networks and
Models of Cognition (Cambridge Univ. Press, 2014).

 54. Liang, D. & Indiveri, G. Robust state-dependent computation in neuromorphic
electronic systems. In IEEE Biomedical Circuits and Systems Conference 1–4
(IEEE, 2017).

 55. Akopyan, F. et al. TrueNorth: design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integrated
Circ. Syst. 34, 1537–1557 (2015).

 56. Han, S. et al. ESE: efficient speech recognition engine with sparse LSTM on
FPGA. In Proc. 2017 ACM/SIGDA Int. Symposium on Field-Programmable Gate
Arrays 75–84 (ACM, 2017).

Acknowledgements We thank B. Zhang, R. S. Williams, J. Zhu, J. Guan, X. Zhang,
W. Dou, F. Zeng and X. Hu for thoughtful discussions; L. Tian, Q. Zhao, M. Chen,
J. Feng, D. Wang, X. Lin, H. Cui, Y. Hu and Y. Yu contributing to experiments;
H. Xu for coordinating experiments; and MLink for design assistance. This work
was supported by projects of the National Natural Science Foundation of China
(NSFC; 61836004, 61327902 and 61475080); the Brain-Science Special
Program of Beijing (grant Z181100001518006); and the Suzhou-Tsinghua
innovation leading program (2016SZ0102).

Author contributions J.P., L.D., S.S., M.Z., Y.Z., Shuang Wu and G.W. were
in charge of, respectively, the principles of chip design, chip design, the
principles of neuron computing, the unmanned bicycle system, software,
implementation of Tianjic in the unmanned bicycle system, and chip testing.
J.P., L.D., G.W., Z.W. and Y.Z. carried out chip development. Shuang Wu, G.W.,
Z.Z., Z.Y. and Yujie Wu worked on the unmanned bicycle experiment. Y.Z. and
W. Han worked on software development. Yujie Wu, Shuang Wu and G.L.
developed the algorithm. J.P., L.D., S.S., Si Wu, C.M., F.C., W. He, R.Z. and L.S.
contributed to the analysis and interpretation of results. All of the authors
contributed to discussion of architecture design principles. L.D., W. He, R.Z.,
S.S., Z.W. and L.S. wrote the manuscript with input from all authors. L.S.
proposed the concept of hybrid architecture and supervised the whole project.

Competing interests The authors declare no competing interests.

Additional information
supplementary information is available for this paper at https://doi.org/
10.1038/s41586-019-1424-8.
Correspondence and requests for materials should be addressed to J.P.
Peer review information Nature thanks Meng-Fan (Marvin) Chang and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/
reprints.

https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1606.05320
https://arxiv.org/abs/1606.05320
https://arxiv.org/abs/1802.04680
https://arxiv.org/abs/1802.04680
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-019-1424-8
http://www.nature.com/reprints
http://www.nature.com/reprints

Letter reSeArCH

Lat_Acc

P_MEM0

N×24b

Potential Buffer Interface

V_MEM

Synapse weight M×N×8b

16
MACs

Dendrite
Controller

Input Buffer Interface Axon
Controller

In
Buf

Timing Factor
Calculator

M
U

X

Axon

P_MEM1 N×(3×24b)

P_MEM1 Interface

B_L

Out_Copy

Act_Fun

Spike_Gen
Leakage
Adaption

Pooling
M

U
X

Routing
Arbitrator

Switch O
ut_E

In_E

O
ut

_W
In

_W

Out_SIn_S

Out_NIn_N

In_LOut_L

RLUT

From Soma:
A/s

North North

W
es

t E
ast

South

To Router: Out_trigger

With Soma

With Dendrite

From Axon: X

With Dendrite

To Dendrite:

From Router:

From Router: Inhibit
RegInhibit

N×8b×2 N×8b×2

To Dendrite: Inhibit

A/S
MEM0

A/S
MEM1

Soma
Router

ANN

SNN

Synapse

×

+

×

+

×

+

Potential memory

Dendrite

P_MEM1

M
U

X

SNN_LIF

ANN_ActRLUT

Switch

FCore

To Axon: Package

Router

Soma

N×32b

N×8b

From P_MEM0
From V_MEM

X & Index

Index
MEM0

Index
MEM1

To Router: A/s

A/s & Index

With Axon

Synapse
Array

Interface

Synapse Array N×N Dendrite
From Axon:

Out_Trans

MAC

MAC

MAC

MAC

 Index

To V_MEM

Reuse

Ping-pong buffer

Temporal window

AxonInput Buffer

Soma
Controller

Extended Data Fig. 1 | Overview of the FCore architecture. We adopted
a fully digital design. The axon module acts as a data buffer to store the
inputs and the outputs. Synapses are designed to store on-chip weights and
are pinned close to the dendrite for better memory locality. The dendrite is
an integration engine that contains multipliers and accumulators.
The soma is a computation unit for neuronal transformations. IntraFCore
and interFCore communications are wired by a router, which supports
arbitrary topology. Act_Fun, activation function; A/s, activation

(ANN mode)/spike (SNN mode); B_L, bias/leakage; In BUF, input buffer;
Inhibit Reg, inhibition register; In(Out)_L/E/W/S/N, local/eastern/
western/southern/northern input(output); Lat_Acc, lateral accumulation;
MEM, memory; MUX, multiplexer; Out_Copy, output copy; Out_Trans,
output transmission; P_MEM, parameter memory; Spike_Gen, spike
generator; V_MEM, membrane potential memory; X & Index, axon output
and weight index. The numbers in or above memories indicate memory
size; ‘b’ represents bit(s).

LetterreSeArCH

Extended Data Fig. 2 | Fabrication of the Tianjic chip and testing boards. a, Chip layout and images of the Tianjic chip. b, Testing boards equipped
with a single Tianjic chip or a chip array (5 × 5 size).

Letter reSeArCH

...

...

...

......

...

N

VMM

Reduce

P2P
Multicast

To post-layers

From
pre-layers

FCore
P

Q

m2

n2

m
n
1

1 r
r

PM
×

QN

r2C1
×
C2

m2n2

r2C1
×
C2

r2C1
×
C2

...

m2 n2
m1

n1

FC layer Conv layer Pool layer

r2

×
1

r2

×
1

r2

×
1

...

Cm2n2

VMM
&

Reduce
Pool

CANN LSTM

FC

FC FC
V(t) r(t)

r(t-1)

re(t-1)

Feedback

V
update Norm

f(t)/i(t) h(t)

h(t-1)

x(t-1)

Feedback

o(t)/g(t)
Gates State

update

c(t)c(t-1)

a

FC

Intra-Core Feedback as Row Buffer

x2
x1
x0

x5
x4
x3

x8
x7
x6
p2 p1 p0

P2P routing

x0 x1 x2 x3 x4

x5 x6 x7 x8 x9

x10 x11 x12 x13 x14

x0 x1 x2

x5 x6 x7

x10 x11 x12

x2 x3 x4

x7 x8 x9

x12 x13 x14Slicing

Overlap Copy

x0 x1 x2 x2 x3 x4

S0 FCores S1 FCores

x10 x11 x12 x12 x13 x14

S0 FCores S1 FCores

y0 y1 y2 x3

y4 x5 x6 x7

2×2
C

onv/P
ool

y0 y1 y2 x3

x0 x1 x2

x5 x6 x7

x2 x3 x4

x7 x8 x9x5 x6 x7

x11

x7 x8 x9

x12 x13 x14x10 x12

y4 y5 y6 x7

Slice0

Slice1
Input:

Row Buffer:
Conv/Pool:

x_r0 x_r1 x_r2

x_r0 x_r1

y_r0 y_r1

p0 p1 p2 p3

Row-wise
Streaming Mapping

Timing

Row-wise Reuse Row-wise Reuse

Column-wise

Column-wise
Parallelism

x2
x1
x0

x5
x4
x3

x2
x1
x0

p2 p1 p0

Column-wise
Slicing for Large FMs

x5
x4
x3

x8
x7
x6

Row-by-row
dataflow

p2 p3 p2 p3

M
ul

tic
as

t r
ou

tin
g

to
co

m
pu

ta
tio

n
FC

or
es

Pn: n-th time phase

b

Extended Data Fig. 3 | Throughput-aware unfolded mapping and
resource-aware folded mapping. a, Unfolded mapping converts all
topologies into a fully connected (FC) structure without reusing data.
In CANN: Norm, normalization; r, firing rate; V, membrane potential.
In LSTM: f/i/o, forget/input/output gate output; g, input activation;
h/c, hidden/cell state; t, time step; x, external input. b, Folded mapping

folds the network along the row dimension of feature maps (FMs) for
resource reuse. We note that the weights are still unfolded along the
column dimension to maintain parallelism, and wide FMs can be split into
multiple slices, which are allocated into different FCores for concurrent
processing. r0/1/2, row 0/1/2.

LetterreSeArCH

0.2 0.8 10.4 0.6
Input spike rate

0

0.5

1.5

P
ow

er
 (W

)
0.5 0.6 0.7 0.8 0.9

Compute ratio per phase

0

0.5

1

1.5

2

2.5

P
ow

er
 (W

)

2 4 8 106
Time step

-3000

-2000

-1000

0

M
em

br
an

e
po

te
nt

ia
l

neuron 1
neuron 2
neuron 3
neuron 4
neuron 5
neuron 6
neuron 7
neuron 8
neuron 9
neuron 10
threshold

0.85V, 200MHz 0.95V, 300MHz 1.05V, 400MHz 1.15V, 450MHz

Extended Data Fig. 4 | Chip measurements in different modes. a, Power
consumption in ANN-only mode at different voltages and frequencies.
Here the ‘compute ratio’ is the duty ratio for computation, that is, the ratio
of computation time/(computation time + idle time). The phase on the
x- axis denotes the execution time phase of FCore. b, Power consumption

in SNN-only mode with different rates of input spikes. c, Membrane
potential of output neurons in SNN mode. Information was represented
in a rate-coding scheme by counting the number of spikes during a given
time period.

Letter reSeArCH

56

53

24

12
3 3 1

Layer1

Layer2

Layer3

Layer4

Layer5-1

Layer5-2

Layer6

31

94

156

20 60 100
1000

600

200

24 12 0

ANN
SNN
Hybrid

1 2 3 4 5 6
Layer

0

0.1

0.2

0.3

P
ow

er
 (W

)

 ANN
 SNN
 Hybrid

1 2 3 4 5-1 5-2 6
Layer

0

100

200

300

R
ec

ei
ve

d
pa

ck
et

s ANN SNN Hybrid

1 3 5 7 9 11 13 15
Phase

0

20

40

60
S

en
t p

ac
ke

ts
 SNN Hybrid

0
1

2000

10134 7 710

0
1

2000

10134 7 710

0
1

2000

10134 7 710
0

1000

2000

3000

1 4

Hybrid
1 4

SNN
1 4

ANN

 p
ac

ke
ts

(

Extended Data Fig. 5 | Performance comparison and routing profiling.
a, FCore placements in six layers (split into seven execution layers);
the numbers within the image denote the numbers of FCores used.
b, Comparison of the performance of different neural network modes.
Acc., accuracy. c, Power consumption for each layer. d, Average number

of received routing packets per FCore in each layer. e, Average number of
sent packets per FCore across time phases. f, Distribution of total transfer
packets for each FCore. The oval with the arrow emphasizes the difference
in packet amount between the SNN-only mode and the hybrid mode.

LetterreSeArCH

0.850.900.951.001.051.101.151.20
Voltage (V)

0

0.2

0.4

0.6

0.8

1.0

Po
w

er
 (W

)

ALL
Visual
Control
Audio
Base

Extended Data Fig. 6 | Overheads of the Tianjic chip during the
bicycle experiment. a, Placement of FCores in different network models.
Numbers refer to the number of FCores used. b, Measured power

consumption under different tasks and at different voltages. The Tianjic
chip typically worked at 0.9 V during the bicycle demonstration, and the
power consumption was about 400 mW.

Letter reSeArCH

Input signal

State
transfer
matrix

S0S1S2S3S4

T1
T2
T3
T4
T5

T2T3T4T5

T_en

T1
Transfer signal

Trigger
matrix

Output
matrix

S0
person

obstacle
S3

turn ready

Control signal

b

voice

T6T7

T6
T7

start

V_en

C_en

A_en

S0

S1 S2 S3

S4

person obstacle

no obstacle

not ready

turn readyvoice

no person

start

a

D D D D D D D

D D D D D

D

Fixed connection
Positive weight
Negative weight
Neuron
Trigger for training
Delay

Extended Data Fig. 7 | Neural state machine. a, State transition in
the bicycle task. b, NSM architecture. The NSM is composed of three
subgroups of neurons: state, transfer and output neurons. There are three

matrices that determine the connections between different neurons: the
trigger, state-transfer and output matrices.

LetterreSeArCH

extended data table 1 | A unified description of neural network models

Neuroscience-oriented model Computer-science-oriented model

SNN Rate-based (e.g. CANN) MLP/CNN RNN (e.g. LSTM)

Axon , , , 1 ,
, ,

, (1), (1),
/ / / (), c(), ()

Synapse Weight matrix Weight matrix
Conv: Weight kernels

Pool: Bypass
FC: Weight matrix

Gates: Weight matrices
Cell/Hidden state:

Intermediate variables

Dendrite
+ ()

= (1) +

()

Parts of spike_rate:
Norm

Conv:
(,)

Pool: Bypass
FC:

Gates: / / /
+

(1)
/ / /

Cell state: =

1 +

Hidden state: =

tanh

Soma

Leakage: ()
=

+

Thresh_comp, V_update |
(Spike_fire & V_reset)

Parts of spike_rate:
Norm

Conv: (+)

Pool: Max/Average

FC: (+)

Gates / / : sigmoid(+

(&))

Gate : tanh(+ (&))

Cell state: tanh

Op: B_L, Spike_Gen,
Out_Trans

Op: Act_Fun, Out_Trans
(Lat_Acc)

Op: B_L, Act_Fun,
Out_Trans

(Pooling, Out_copy)

Op: B_L, Act_Fun,
Out_Trans

Router Feedforward/Recurrent Recurrent (Feedforward) Feedforward (Recurrent) Recurrent (Feedforward)

mode
Spiking representation

(SNN mode)
Non-spiking representation (ANN mode)

The vector/matrix operations and transformations are assigned into several compartments, including axon, synapse, dendrite, soma and router. Each compartment supports the functions shown; by
combining these, various neuroscience-oriented and computer-science-oriented models can be realized. In SNN: s, spike; se, external spike; Spike_fire, spike firing; Thresh_comp, threshold
comparison; τ, time constant; t, time step; V, membrane potential; Vr1, rest potential; V_reset, membrane potential reset; V_update, membrane potential update. In MLP/CNN: x/y, input/output
activation; b, bias; �, convolution. For other abbreviations and variables, please refer to Extended Data Figs. 1, 3.

Letter reSeArCH

extended data table 2 | Comparison of the tianjic chip with existing specialized platforms

Platform TrueNorth3,55 Loihi6 EIE35 Eyeriss7 ESE56 Tianjic

Model SNN SNN MLP CNN LSTM Hybrid

BitWidth 9W-1S 9W-1S 4W-4A 16W-16A 12W-16A 8W-8A/1S

Memory SRAM SRAM SRAM DRAM DRAM SRAM

Technology 28 nm 14 nm 45 nm 65 nm 22 nm 28 nm

Clock (MHz) Async Async 800 100-250 200 300

Area (mm2) 430 60 40.8 16 N. A. 14.44

Power (W) 0.063-0.3 N. A. 0.59 0.2-0.3 41 0.95

GOPS/W N. A. N. A. 174 246 6.9 1278

GSOPS/W 400 N. A. N. A. N. A. N. A. 649
Tianjic is a specialized platform that can simultaneously support most of today’s neural network models across both neuroscience and computer-science domains. For a single chip, the effective peak
power efficiency could reach 1.28 TOPS W−1 (in ANN mode) and 649 GSOPS W−1 (in SNN mode with Tw values of less than 1). DRAM, dynamic random access memory. References cited are
refs 3,6,7,35,55,56.

LetterreSeArCH

extended data table 3 | Model topologies and input/output descriptions for networks applied in the bicycle demonstration

Network Topology Input Output

CNN

6C3-MP2-
12C3-MP2-
12C3-MP2-
FC192-10

70 70 grayscale images Confidences and coordinates of
objects (human, obstacle)

CANN 20 24
recurrent

Images clipped by the
initial coordinates of the
human from CNN

Coordinates of tracked human

SNN 510-256-7 510 converted voice
features from microphone

Classification results of 7
commands (one for noise)

MLP 30-256-32-1

Target and adjusted angle
(,), angular velocity
(), velocity (), voltage
coefficient ()

Target rotation angle () sent to
the motor controller

NSM
16 neurons

5 states
7 transitions

Signals from CNN, SNN
and hybrid-mode FCores

Enable signals to CNN and
CANN, and action signals to
hybrid-mode FCores

	Towards artificial general intelligence with hybrid Tianjic chip architecture
	Online content
	Fig. 1 The hybrid approach to the development of AGI.
	Fig. 2 Design of the Tianjic chip.
	Fig. 3 Summary of chip evaluation and modelling.
	Fig. 4 Demonstration of multimodal integration on a Tianjic chip for an unmanned bicycle.
	Extended Data Fig. 1 Overview of the FCore architecture.
	Extended Data Fig. 2 Fabrication of the Tianjic chip and testing boards.
	Extended Data Fig. 3 Throughput-aware unfolded mapping and resource-aware folded mapping.
	Extended Data Fig. 4 Chip measurements in different modes.
	Extended Data Fig. 5 Performance comparison and routing profiling.
	Extended Data Fig. 6 Overheads of the Tianjic chip during the bicycle experiment.
	Extended Data Fig. 7 Neural state machine.
	Extended Data Table 1 A unified description of neural network models.
	Extended Data Table 2 Comparison of the Tianjic chip with existing specialized platforms.
	Extended Data Table 3 Model topologies and input/output descriptions for networks applied in the bicycle demonstration.

