
J. Parallel Distrib. Comput. 73 (2013) 1469–1482

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Scalability study of molecular dynamics simulation on Godson-T
many-core architecture
Liu Penga,∗, Guangming Tanb,∗, Rajiv K. Kalia a, Aiichiro Nakanoa, Priya Vashishta a, Dongrui Fanb,
Hao Zhangb, Fenglong Songb

a Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA, 90089, USA
b Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China

a r t i c l e i n f o

Article history:
Received 13 June 2011
Received in revised form
2 June 2012
Accepted 29 July 2012
Available online 23 August 2012

Keywords:
Molecular dynamics
Many-core architecture
Scalability

a b s t r a c t

Molecular dynamics (MD) simulation has broad applications, and an increasing amount of computing
power is needed to satisfy the large scale of the real world simulation. The advent of the many-core
paradigm brings unprecedented computing power, but it remains a great challenge to harvest the
computing power due to MD’s irregular memory-access pattern. To address this challenge, this paper
presents a joint application/architecture study to enhance the scalability of MD on Godson-T -like many-
core architecture. First, a preprocessing approach leveraging an adaptive divide-and-conquer framework
is designed to exploit locality through memory hierarchy with software controlled memory. Then three
incremental optimization strategies – a novel data-layout to improve data locality, an on-chip locality-
aware parallel algorithm to enhance data reuse, and a pipelining algorithm to hide latency to shared
memory – are proposed to enhance on-chip parallelism for Godson-T many-core processor. Experiments
on Godson-T simulator exhibit strong-scaling parallel efficiency of 0.99 on 64 cores, which is confirmed
by a field-programmable gate array emulator. Also the performance per watt of MD on Godson-T is
much higher than MD on a 16-cores Intel core i7 symmetric multiprocessor (SMP) and 26 times higher
than MD on an 8-core 64-thread Sun T2 processor. Detailed analysis shows that optimizations utilizing
architectural features to maximize data locality and to enhance data reuse benefit scalability most.
Furthermore, a hierarchical parallelization scheme is designed to map the MD algorithm to Godson-T
many-core cluster and a simple performance model is derived, which suggests that the optimization
scheme is likely to scale well toward exascale. Certain architectural features are found essential for these
optimizations, which could guide future hardware developments.

Published by Elsevier Inc.

1. Introduction

Molecular dynamics (MD) simulation is widely used to study
material properties at the atomistic level [1], in which interatomic
forces are computed quantummechanically to accurately describe
chemical reactions [5]. Large-scale MD simulations involving
multibillion atoms are beginning to address broad material
problems, but an increasingly large amount of computing power
is needed to satisfy the spatiotemporal scale of the real world
simulations [22,21,26]. The advent of the many-core paradigm
has provided unprecedented computing power, and promises to
enable large-scale simulation only if we can efficiently harvest the
computing power.

Recently, many-core architectures started dominating the
design of computing engine in supercomputer systems, which

∗ Corresponding authors.
E-mail addresses: liupeng@usc.edu (L. Peng), tgm@ict.ac.cn (G. Tan).

makes the efficiency of on-chip parallelism increasingly more
important. Challenges to achieve an efficient on-chip parallel MD
algorithm mainly arise from two aspects: (1) MD application
is characterized by irregular memory access which imposes
a difficulty on locality optimization; (2) many-core hardware
limitation (volume of on-chip memory, bandwidth of on-chip
networking, etc.) constrains the size of working-set per core which
imposes difficulty on on-chip parallelization. To address these
difficulties, this paper presents a joint study from both application
and architecture aspects on how to achieve the scalability and
high performance of MD on an Godson-T -like emergingmany-core
architecture, where we map an MD algorithm to the architecture
for achieving high on-chip parallel efficiency. We focus on MD
simulationwithnonbondedn-tuple interactions,which is common
in materials simulations [26] and provides a broad computational-
characteristics context for algorithmic design.

The objective of this paper is not only to identify how appli-
cation scientists can utilize new mechanisms provided in emerg-
ing many-core architectures to improve performance of their

0743-7315/$ – see front matter. Published by Elsevier Inc.
doi:10.1016/j.jpdc.2012.07.007

http://dx.doi.org/10.1016/j.jpdc.2012.07.007
http://dx.doi.org/10.1016/j.jpdc.2012.07.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2012.07.007&domain=pdf
mailto:liupeng@usc.edu
mailto:tgm@ict.ac.cn

1470 L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482

applications, but also to compare the usefulness of various archi-
tectural mechanisms as evidenced by their impacts on application
performance, which could guide future hardware developments.
This work thus serves as an example of architecture-algorithm co-
design to inform the development of future exascale computing
systems [29].

The main contributions of this paper are eight-fold:

• A preprocessing approach leveraging an adaptive divide-and-
conquer (ADC) framework is designed to exploit locality
through explicit memory hierarchy, where an analytical
formula for divide-and-conquer (DC) criterion, in terms of the
size of each core’s local memory, is derived to enhance locality
by utilizing software controlled memory.

• A novel data layout is employed to re-organize linked-list
cell data structures to maximize data locality. Data structures
are designed, respectively, for atomic data in private local
memory and neighbor atomic data in shared L2 cache or off-
chip memory. Combined with cell-centered addressing, this
ensures consecutive accessing of atomic data within a cell.

• An on-chip locality-aware parallel algorithm is designed to
maximize data reuse and to reduce high-latency shared-data
access through a preprocessing approach to collect cell pairs
within the interaction cutoff radius.

• A pipelining algorithm using data transfer agent (DTA) to
orchestrate computation andmemory operations is designed to
hide latency to shared memory.

• Detailed experiments on an event-driven, cycle-accurate,
Godson-T simulator verify the effectiveness of the proposed
optimization strategy, as the optimized MD achieves a strong-
scaling parallel efficiency 0.99 on 64 cores, which is further
confirmedby a field-programmable gate array (FPGA) emulator.
In addition, the performance per watt of MD on Godson-T is 144
times higher than MD on a 16-cores Intel core i7 symmetric
multiprocessor (SMP) and 26 times higher than MD on an
8-core 64-thread Sun T2 processor.

• Detailed analysis is done to clarify the impact of specific
architectural features on applications’ performance.

• Software-controlled explicit memory hierarchy and efficient
on-chip communication mechanisms are identified as essential
architectural features to achieve high performance on a many-
core chip, which could guide future hardware developments.

• Ahierarchical parallelization scheme is designed tomap theMD
algorithm to a many-core cluster, while a simple performance
model is derived showing that the proposed optimization
scheme has the potential to scale well to much larger numbers
of computing elements than those in current petascale systems.

The rest of this paper is organized as follows. Section 2 briefly
introduces the divide-and-conquer MD algorithm used in this
work, where key performance bottlenecks are summarized. Sec-
tion 3 highlights the main architectural features of Godson-T, and
Section 4 describes our on-chip optimization strategies. Section 5
presents the experimental results and detailed analysis, and Sec-
tion 6 describes our hierarchical parallelization scheme and the
performance model. Section 7 compares our work with related
work, and finally Section 8 concludes the paper.

2. A divide-and-conquer MD algorithm

MD simulation follows the phase–space trajectories of an N-
atom system, where force fields describing the atomic force
laws between atoms are spatial derivatives of a potential energy
function E(rN) (rN = {r1, r2, . . . , rN} are positions of all atoms).
The most commonly used algorithm in parallel MD simulation
is DC-MD based on spatial decomposition, where the simulation
system is partitioned into subsystems of equal volume, and atoms

located in a particular subsystem are assigned to one of the
processors in a parallel computer, which are logically arranged
according to the topology of the simulation subsystems. In order
to compute interatomic interaction with cutoff radius rc at each
MD step, atomic coordinates of 26 neighbor subsystems, which
are located within rc from the subsystem boundary, are copied
to each processing unit, where data coherence is maintained by
copying the latest neighbor surface atoms every timebefore atomic
accelerations are computed. The periodic boundary condition is
applied to the system in three Cartesian dimensions.

This paper is concerned with large spatiotemporal-scale MD
simulation implementedwith the linked-list cell method, of which
E(rN) consists of two-body E2({rij}) and three-body E3({rijk}) terms.
The dimension Rc of the cells is usually chosen to be larger than rc .
For a given atom in a cell, the search space for interacting neighbor
atoms is limited to the 26 nearest neighbor cells (in addition to the
original cell). Fig. 1 shows a schematic of the computational kernel
of MD (for simplicity, we depict the algorithm as a 2D case, while it
is 3D in real implementation). A simulation domain is divided into
small rectangular cells, and the linked-list data structure is used to
organize atomic data (e.g. coordinates (r), velocities (v), atom type
(a) and indices (id)) in each cell. In addition,wemaintain a neighbor
list for each atom in order to calculate the three-body interactions,
which have a shorter cutoff length. The conventional summation
rule to compute the three-body interaction is written as

E3(rijk) =
N∑

i=1

nbr(i)∑

j=1

nbr(j)∑

k"=i

v(ri, rj, rk), (1)

where ri is the coordinate of the i-th atom and nbr(i) is the list
of neighbor atoms within the three-body cutoff length from atom
i, which acts as the center of atomic triplet (j, i, k). Traversing
through the linked list, one retrieves all atom information
belonging to a cell and thereby computes interatomic interactions.
Although the linked-list cell method is of space efficiency,
unfortunately, we observe several characteristics that prevent the
program from achieving high performance on traditional parallel
computers:

• Irregular memory access. Straightforward implementation of
linked-list data structure as shown in Fig. 1 leads to irregular
memory accesses in three-body interaction calculation. For
instance, for atom 9, its neighbor list nbr is {4, 8, 7, 0, 5, 6},
and atomic data (coordinates, velocities, atom type and indices)
are accessed according to this sequence, so that atom 7 is
accessed after atom 8. However, in the implementation of
linked-list data structure, atom 9 is stored after atom 8 instead
of atom 7, which leads to irregular memory access. The locality
mechanismbased on traditional transparentmemory hierarchy
cannot optimize much for this type of memory accessing.
A more efficient way is to replace the linked list with a
sparse-matrix-like data structure to record only cells that are
unempty, where the original list nbr in Fig. 1 is reorganized
as {[0, 5], [2, 7], [4, 8, 9], [1, 3], [6]}, and the original head is
re-written as {0, 2, 2, 4, 7, 9, 9, 10, 10} pointing to the end
of atoms in each cell. However, the sparse-matrix-like data
structure can only exploit a little locality for accessing atoms
located in a cell. Thus we do not expect that this data structure
could make great improvement as, to our best knowledge,
it is still very difficult to efficiently optimize sparse matrix
operations [27].

• High frequency communication. In a cellular decomposition
scheme, communication is mainly induced by atom caching
operations, where each processing unit gets cached atomic data
from its neighbors, which are located in other processing units,
for computing interatomic interaction at each MD step. This
results in high frequency communication, and in turn prevents

L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482 1471

Fig. 1. 2D schematic of the linked-list cell method and data structure. Only atoms within the cutoff radius from the shaded atom perform interaction. C0-8 are cell indices,
and a circled number represents an atom index.

our MD from scaling with a larger number of computing
units on conventional architecture due to its cache coherence
protocol and memory bandwidth restriction.

• High latency to access shared data. In a conventional implemen-
tation of MD algorithm, the neighbor-list nbr used in three-
body interaction is shared by all processing units. Let Nc denote
the number of cells in each Cartesian direction (we consider a
cubic system), and q the atom density, i.e. the number of atoms
divided by the system volume (NcRc)

3. Each cell containing qR3
c

atoms on average is surrounded by 26 neighbor cells that in-
volve 26qR3

c atoms in total. Thus, the number of cross-cell atom
pairs is qR3

c × 26qR3
c for each cell. Since there are N3

c cells in the
entire system, the total number of cross-cell pairs in the system
is given by N3

c × qR3
c × 26qR3

c . The size of atomic data (e.g. mil-
lions of atoms with each one occupying 100 bytes) for inter-
action computation easily exceeds that of the last level cache
(16 MB). Combining with the irregular memory access men-
tioned before, the latency problem becomes even worse.

3. Godson-T many-core architecture

Godson-T is a low-power many-core architecture developed by
Institute of Computing Technology, Chinese Academy of Sciences
to serve as a dedicated petaflops computing engine. As shown
in Fig. 2, Godson-T has 64 homogeneous, dual-issue and in-
order processing cores running at 1 GHz, where a floating-point
multiply-accumulate operation can be issued to a fully-pipelined
function unit in each cycle, resulting in a peak floating-point
performance of 128 Gflops. The 8-pipeline processing core
supports 32-bit MIPS ISA (64-bit ISA will be supported in
latter version) with synchronization instruction extensions. Key
architectural features for achieving decent scalability and high
performance include the following [9]:
• Fine-grained parallelism [28]. Each core works as a lightweight

hardware thread unit executing in a non-preemptive manner.
A dedicated synchronization manager (SM) is a centralized
unit to collect and handle synchronization requests, which
provides architectural support for fastmutual exclusion, barrier
and signal/wait synchronization. In addition, an extremely
efficient thread execution runtime system has been developed
to manage thread execution [28,16].

• Locality-awareness. Each processing core has a 16 kB 2-way
set-associative private instruction cache and a 64 kB local
memory (like data cache). As inspired by IBM CELL and
Nvidia GPU (graphics processing unit), an explicit memory
hierarchy is implemented for user to exploit better locality
with less complex hardware implementation compared to that
of the traditional transparent memory hierarchy. Moreover,
in Godson-T, each local memory is configured as explicitly-
controlled, globally-addressed scratch-pad memory (SPM) to
further help programmer maximize locality. A 128-bit wide,
8 × 8 packet-switching 2D mesh network connects all on-
chip units, employing deterministic X–Y routing policy, which
can provide a total of 2 TB/s on-chip bandwidth among 64
processing cores. In addition, there are 16 address-interleaved
L2 cache banks (256 kB each) distributed along the perimeter
of the chip, which are shared by all processing cores and can
serve up to 64 cache accessing requests in total per cycle. The
bandwidth between SPM and L2 cache is 256 GB/s, and each
four L2 cache banks on the same side of the chip share a a
25.6 GB/s memory controller.

• Latency tolerance. Since there may exist intensive contention
on on-chip network and memory controller, latency to L2
cache will possibly become primary obstacle to achieve decent
performance. To address this issue, a direct memory accessing
(DMA)-like coprocessor DTA is built in each core to do
fast data communication, that is, when one core is doing
calculations, DTA can be programmed to manage various data
communications at backend in parallel.

4. Optimizations on Godson-T

In this section, we describe how to design a scalable and
efficient MD algorithm based on the features provided by Godson-
T -like many-core architecture. First, we design a preprocessing
approach leveraging the adaptive divide-and-conquer (ADC)
framework to achieve better locality with the small on-chip
memory. Then we propose three incremental optimizations: a
novel data layout to re-organize linked-list cell data structures
to maximize data locality; an on-chip locality-aware parallel
algorithm is designed to improve data reuse; and a software
pipelining algorithm using DTA to hide latency to shared memory.
The following subsections discuss these techniques in detail.

1472 L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482

Fig. 2. Godson-T Architecture: INT is fixed point arithmetic unit, FP/MAC is floating point unit, and CU is communication unit.

Fig. 3. Cellular decomposition scheme for on-chip parallelization. Each subsystem is further divided into cells, where calculation of atomic interaction needs the latest
neighbor surface atoms (cached atoms) shown in the white box. The shaded boxes represent the resident cells.

4.1. Preprocessing

In the original DC-MD algorithm, the physical space is subdi-
vided into spatially localized cells, with local atoms constituting
subproblems [18,17]. The algorithm recursively divides a coarse
cell into finer cells until some criterion is satisfied. In our ADC algo-
rithm specially designed for many-core architectures, we use the
size of the first level memory (i.e. private local memory), Cpm, as a
critical factor of the criterion.

This section only addresses the issue of fine-grained parallelism
within a subsystem, and the interchange of cached atoms (atoms
near subsystem boundaries) has been completed by a higher-
level parallelism (e.g. using message passing interface (MPI))
among multiple many-core computing processors as described in
Section 6. Fig. 3 illustrates the scheme of cellular decomposition in
a subsystem. The algorithmdivides the subsystem consisting of the
resident and cached atoms into small cells of equal size. Assume
that there are P = Px × Py × Pz cores in a many-core processor and
that the number of cells in a subsystem is L = Lx × Ly × Lz . Then
each core i processes L/P cells as Eq. (2) (since how to efficiently

embed 3D mesh into 2D one has already been solved by classical
algorithms [12], the 2D on-chip network on Godson-T is viable for
this decomposition):
{

(cx, cy, cz)|cx ∈
[
iLx
Px

,
(i + 1)Lx

Px

)

, cy ∈
[
iLy
Py

,
(i + 1)Ly

Py

)

,

cz ∈
[
iLz
Pz

,
(i + 1)Lz

Pz

)}

. (2)

LetBdenote thememory space for storing one atomic data. In order
for all the resident atomic data to fit in the private local memory,
Rc should satisfy

L
P

× qR3
c × B ≤ Cpm ⇒ Rc ≤ 3

√
PCpm

LBq
. (3)

For the computation of three-body interactions, an extra space is
needed to store the list of neighbor atoms within the three-body

L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482 1473

Fig. 4. (a) The atomic data of cells in a core’s local memory SPM. 〈rx, ry, rz〉 represents atom position, 〈vx, vy, vz〉 represents atom velocity, tp represents atom type and id
represents global atom ID; (b) The neighbor atomic data of cells in the shared L2 cache or off-chipmemory. Pad is used for address alignment. Each L2_data_unit[i] represents
a contiguous block of all neighbor atomic data for the i-th cell in L2 cache or off-chip memory (i = 1, . . . , L/P).

cutoff radius. Let Nb denote the number of neighbor atoms per cell,
then Eq. (3) becomes

qR3
c ×

(
Nb + L

P

)
× B ≤ Cpm ⇒ Rc ≤ 3

√
PCpm

(PNb + L)Bq
. (4)

Our ADC algorithm performs recursive cellular decomposition
until Eq. (4) is satisfied. In fact, Eq. (4) gives an upper bound
of Rc . When the atomic data are distributed into each core’s
local memory, they are reused in both two- and three-body force
calculations, as the software controlled SPMprovides amechanism
for user to decide what data to locate in the private local memory
and when. However, a direct implementation based on the linked-
list cell data structure is not efficient enough because of MD’s
irregularity. In the next subsection, we propose a novel data layout
optimization to address this problem.

4.2. Data layout optimization

At the beginning of MD simulation, each atom is assigned an
integer in [0 . . .N−1], which is used as an identifier for the linked-
list based algorithm to access atomic data. We refer to this method
as global-ID-centered addressing. However, during the simulation,
the identifiers cannot be kept contiguous due to atom migration
between computing nodes/processors. In the ADC algorithm, it is
expected that the atomic data is distributed among different cores,
where each cell only interacts with 26 neighbor cells. Therefore,
if all the atomic data within one cell were grouped together, they
would be easily reached through its cell index. Here, we propose a
new strategy—cell-centered addressing.

Fig. 4(a) depicts the data structure designed for the atomic data
in SPM, where na denotes the maximum number of atoms in one
cell. Since all the atomic data for each cell are grouped, the cell
index (cc) can be used to search the neighbor cells, and then the
atomic data in each cell can be touched contiguously. Moreover,
considering the sequential mapping between cores and cells, the
searching of neighbor cells is completed in O(1) time: The scalar

value of cc is transformed into a vector (ccx, ccy, ccz), then the
neighbor cell index is calculated by the combination of {(ccx +
lx, ccy, +ly, ccz + lz)|lx, ly, lz ∈ {−1, 0, 1}}, where the number of
neighbors including itself is 27.

As was shown in Section 2, the number of cross-cell atom pairs
is qR3

c × 26qR3
c per cell, and it is impossible to store all the data

in each core’s private local memory SPM. Since the three-body
interaction calculation also involves atoms in one cell and its 26
neighbor cells, it can also benefit from the cell-centered addressing
for contiguous accessing of atomic data in a cell. Similarly, we
group the neighbor atoms as well. Fig. 4(b) depicts the data layout
of neighbor atoms located in L2 cache or off-chip memory, where
we group all the neighbor atomic data for the i-th cell together
as L2_data_unit[i], which can be transferred to the SPM through
a DMA like operation that utilizes high bandwidth provided in
Godson-T, which will be discussed in Section 4.4.

4.3. On-chip locality optimization

In this subsection, we present our on-chip locality aware
parallel algorithm to enhance data reuse and further to alleviate
the long latency to access the shared neighbor atomic data in L2
cache or off-chipmemory. The two-body force calculation involves
core–core communication, and it may cause on-chip network
congestion. Moreover, the access to L2 cache also goes through
the on-chip network, whichmay introducemore congestion. Here,
we propose a solution to enhance the data reuse and to reduce
the remote shared-data memory accessing, thereby alleviating the
long latency. Suppose that the atoms in a cell at core i interacts
with those in another cell at core j. In order to achieve on-chip
locality for core i, we maximize the data reuse of cells from core
j, and vice versa for core j. Our solution is first to construct a set
of cell pairs PC[cj] = {ci0, ci1, ., cik}, where cj is the global index
of the cell interacting with cells ci0, . . . , cik in core i. For example,
suppose that core i has cells {1, 4, 8}, and core j has cells {2, 5}.
Also assume that cell 2 interactswith {1, 4} and that cell 5 interacts
with {4, 8}. Then we construct two cell pairs PC[2] = {1, 4} and

1474 L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482

a b

Fig. 5. (a) Algorithm for calculating interatomic interactions while achieving on-chip locality for core i. Here ccore_i[k] is the k-th cell assigned to core i. (b) The algorithmic
pipelining for hiding latency to L2 cache and off-chip memory. spm_buf: a pointer to the SPM double-buffer, where tag1 and tag2 facilitate interleaving access to the double-
buffer.

PC[5] = {4, 8}. We then use the core–core communication to
transfer the atomic data according to the cell pairs from core j to
core i. The algorithm running on each core i is shown in Fig. 5(a). If
more than one cell are assigned to a core, then some neighbor cells
are located in the same core, and thus no core–core communication
is required (see lines 7–9 in Fig. 5(a)).

The algorithm in Fig. 5(a) uses a preprocessing approach to
collect the set of cell pairs. Since each cell only interacts with its
26 surrounding neighbors, the size of set PC is expected to be
less than O(L

P × 26). Since the calculation of neighbor’s indices is
done inO(1) time using cell-centered addressing, the preprocessing
requires O(L

P) time and O(L
P) space, which is negligible compared

with the two-body interaction time O(L
P × qR3

c × 26qR3
c).

4.4. Pipelining optimization

In this subsection, we present our pipelining algorithm that
reduces the latency to access globally shared data, i.e., the neighbor
atomic data used for three-body calculation. Specifically, we use
the DTA mechanism on Godson-T to hide latency to L2 cache or
off-chip memory: First we decouple computation with memory
operations, then we assign the memory operations to L2 cache or
off-chip memory to DTA while each core read/write data from/to
its private local memory SPM, and finally we try to overlap
computation with memory operations.

Specifically, the operations of line 11 in Fig. 5(a) generating
the neighbor atomic data involve L2 cache or off-chip memory
access. Since the neighbor atomic data of a cell are organized in
a contiguous region, it is natural to use DTA for block transfer. In
order to overlap the computation with memory operations, the
for-loop of lines 10–12 in Fig. 5(a) is transformed to a pipeline.
In addition, the reserved SPM space for the neighbor atomic data
is implemented as a double buffer, which supports the parallel
execution of one core’s computation and its DTA’s memory access.
Lines 8–12 in Fig. 5(a) are rephrased as the algorithm in Fig. 5. Half
of the double-buffer size is equal to the size of one L2_data_unit
in Fig. 4(b). The runtime system on Godson-T implements a non-
blocking system call dta_async, which asynchronously transfers
data for the next stage of the pipeline.

5. Evaluation

In this section,we present the experimental results and detailed
analysis of the proposed MD optimization on a Godson-T many-
core simulator. The experiments demonstrate relative usefulness

Fig. 6. FPGA emulator for Godson-T many-core processor.

of various optimization strategies based on Godson-T many-core
architecture.

5.1. Experimental methodology

Godson-T is an ongoing research project at the Institute of
Computing Technology, Chinese Academy of Sciences for building
a petaflops supercomputer, and a real chip is expected to be
shipped in late 2012. In order to evaluate its performance at
early stage of the architectural development, we here employ
an instruction-level simulator and FPGA emulator, where all
experiments on the instruction-level simulator is confirmed by the
FPGA emulator. Fig. 6 is the FPGA emulator for register transfer
level (RTL) verification. The Godson-T simulator is event-driven,
cycle-accurate, executing both kernel and application codes, and
hasmodeled all architectural features introduced previously. Since
it is an instruction-level simulator, it can produce detailed traces
and instruction mix of all executed instructions for any given
application after execution. The toolchain on Godson-T consists
of a gcc-3.3 compiler and a thread execution runtime system,
which provides a POSIX thread-like API. The configuration of the
simulator is summarized in Table 1. Since our ultimate objective is
to build a large-scale parallel computer, where on-chip parallelism
is of critical importance,wemainly focus on on-chip parallelization
with a fixed problem size, and the speedup on P cores is calculated

L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482 1475

Table 1
Godson-T simulator parameters.

Function unit Parameter

Core 64 cores running at 1 GHz, dual-issue
load-to-use latency = 3 cycles, FMAC latency = 4 cycles

SPM 64 kB, 16 64-bit-width SRAM sub-banks with 2 memory ports each (1 for read, 1 for write)
1 cycle for load and store.

L2 cache 16 banks, 4 MB in total, 8-way set-associative, 64 B/cacheline
4 cycles for contentionless hit request.

Memory controller 4 memory controllers, running at 1 GHz. 64-bit FSB.
Each memory controller controls one DRAM bank.

Off-chip memory 4 GB. DDR2-800 DRAM clock is 400 MHz
tCAS = 5, tRCD = 5, tRP = 5, tRAS = 15, tRC = 24 measured in memory clock.

Network 2-D mesh. Wormhole routing.
2 cycles contentionless latency per hop.

Synchronization (all cores) 6–66 cycles.

by

S(P) = Timeone_core
TimeP_cores

(5)

where TimeP_cores represents the executing time on P cores and
Timeone_core represents that on one core. The strong-scaling parallel
efficiency E(P) is then defined as

E(P) = S(P)

P
. (6)

Since power becomes increasingly more important in multi-
core/many-core processor design [14] and Godson architecture
features energy efficiency [4], we also consider power consump-
tion as a performance measure. We employ speedup of perfor-
mance per watt (PPW), SPPPW, to compare relative MD performance
across differentmulti-core/many-core architectures. Let Timei and
Poweri denote the executing time and power consumption on two
platforms p1 and p2. The PPW speedup of p1 to p2, SPPPW(p1, p2) is
calculated as

SPppw(p1, p2) = Time2 × Power2
Time1 × Power1

. (7)

In the following experiments, the MD simulation tested is for
a silica system. Within the ADC framework, the whole system is
divided into subsystems each containing 24,000 atoms as the fixed
problem size for strong scalability analysis.

5.2. Experimental results on Godson-T many-core processor

The experiments compare four incrementally improved ver-
sions of our MD algorithm:

• baseline: Implementation of preprocessing.
• optimization-1: Implementation of preprocessing and data

layout optimization.
• optimization-2: Implementation of preprocessing, data layout

optimization and on-chip locality optimization.
• optimization-3: Implementation of preprocessing, data layout

optimization, on-chip locality optimization, and pipelining.

First we test the scalability of our optimized MD on Godson-
T. Fig. 7 compares the speedup of our fully optimized MD (opti-
mization-3) with that of the baseline as a function of the number
of cores/threads. Although the preprocessing leverages the ADC
framework to achieve locality through memory hierarchy [10,11],
the scalability of baseline begins to deteriorate when the number
of cores exceeds 32. Additional optimizations, which take advan-
tage of architectural features to maximize data locality and exploit
data reuse,make optimization-3 scale almost linearly up to 64 cores

Fig. 7. Speedup as a function of the number of cores.

Fig. 8. Execution time in milliseconds on 64-core Godson-T. Here, opt-i represents
optimization-i (i = 1, 2, 3).

with an on-chip strong-scaling parallel efficiency 0.99 on 64 cores.
In fact, given a larger number of cores, each core needs less space
for its resident atomic data, and can spare more SPM space to hold
more neighbor atomic data, which can be used for further opti-
mization. Therefore, our optimized algorithm is expected to scale
well on more cores.

Fig. 8 plots an incremental reduction of execution time for the
four versions of parallel MD on fully-configured 64-core Godson-T.
The result demonstrates the efficiency of the locality optimization
methods of re-organizing data layout and exploiting data reuse.
Their combination, optimization-2, reduces the execution time by
a factor of 2.

To understand the reason behind the performance gain by
the data layout optimization optimization-1, Fig. 9 compares the
number of L2 cache events in baseline with that in optimization-1.
The numbers of L2 cache accesses, L2 cache misses and L2 cache

1476 L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482

N
um

be
r

of
 e

ve
nt

s

L2 cache event

Fig. 9. L2 cache performance with statistic data for all 16 banks in total. L2_access:
the number of L2 cache accesses. L2_miss: the number of L2 cache misses.
L2_replace: the number of requesting for replaced L2 cache lines (the number is
1976 for optimization-1).

6

4

2

0
1 16 32

Core ID

O
ve

rh
ea

d
of

 r
e-

or
ga

ni
ze

 d
at

a(
%

)

64

Fig. 10. The overhead of re-organizing data layout on each core of Godson-T, which
at most accounts for 6% of the entire execution time.

replaces are all much smaller with optimization-1 than those with
baseline. Compared to the original linked-list cell data structure,
the data layout optimization leads to more contiguous memory
access, which greatly improves L2 cache usage as shown in Fig. 9.
Another reason behind the improved L2 cache usage is explicitly
controlled private memory SPM. Since SPM is configured with
explicit control by the programmer, the new data layout puts a
contiguous block of the atomic data into a core’s SPM. Thus the
operations on its own atomic data only involve accesses to local
SPM, instead of the shared L2 cache.

In order to estimate the overhead for traversing the linked-
list cell data involved in the data layout re-organization, Fig. 10
plots the percentage of the data layout re-organization time out of
the entire execution time for each core. The result shows that the
optimization scheme has a low overhead, with the overhead lower
than 6%.

In order to quantify the advantage of achieving on-chip locality,
the simulator collects statistical data of remote SPM accessing, in
which a core reads from or writes to a memory address in another
core’s SPM. Fig. 11 shows that optimization-2 reduces the number
of remote SPM accesses to around 7% of that of optimization-1.
This explains the significant decrease of the execution time by
optimization-2 in Fig. 8. For given atomic data, the amount of reuse
can be estimated as follows. Assume that the size of pair set PC[cj]
in Fig. 5(a) ism, then the algorithm needs to calculate interactions
between one atom from cell cj and all atoms in m local cells.
According to the notation in Section 2, each cell contains qRc

3

atoms. Therefore, one atomic data may be reused bymqRc
3 atoms,

i.e., the algorithmmay reduce the number of remote SPM accesses
by mqRc

3 − 1.
After the strategies to improve locality are applied, the pipelin-

ing algorithm to hide latency achieves only a minor improve-
ment as shown in Fig. 8. In fact, it should be noted that previous

6×105

4×105

2×105

0

N
um

be
r

of
 r

em
ot

e
S

P
M

ac

ce
ss

es

1 16 32
Core ID

64

optimization-1 optimization-2

Fig. 11. The number of remote SPM accesses on each core of Godson-T.

R
at

io
 o

f D
TA

 tr
an

sf
er

 o
ut

 o
f

th
e

en
tir

e
ex

ec
ut

io
n

tim
e

Core ID
1 16 32 64

0.06

0.05

0.04

0.03

Fig. 12. Ratio of the cost of DTA transfer to the entire execution time on each core
of Godson-T.

Table 2
Execution time and power performance on Godson-T, 16-core Intel Nehalem SMP,
and 8-core 64-thread SUN T2 platforms.

Godson-T Intel Nehalem 16-core SMP SUN T2

Power (W) 10 360 130
Time (ms) 20.8 82.6 42.6
SPPPW (pGodson-T , px) 1 144 26

optimization strategies have a side effect of reducing the latency,
i.e. through block transfers and less network congestion. Fig. 12
plots the ratio of the cost of DTA transfer to the entire execution
time on each core. The cost of DTA operations is less than 6% of the
total time, and thus it is not surprising that thepipelining algorithm
improves the performance only slightly.

To evaluate power related performance, we compare the PPW
speedup of our fully optimized MD on Godson-T with those of
DC-MD on a 16-core Intel core i7 Nehalem SMP platform and an
8-core 64-thread SUN T2 processor. The Godson-T chip is targeted
at 10 W, while the 16-core Intel core i7 Nehalem SMP is around
360 W (each quadcore core i7 Nehalem processor is around 90 W,
and there are four quadcore processors in the 16-core SMP) and
SUN T2 processor is about 130 W. Table 2 shows that the PPW of
our optimized MD algorithm on Godson-T is improved 144 times
and 26 times, respectively, compared to the DC-MD algorithm
on the 16-core Intel core i7 Nehalem SMP platform and SUN T2
platform. It should be noted that our proposed optimizations take
advantage of special architectural features of Godson-T and as such
they cannot be implemented on the Intel or SUN T2 platform.

To further understand the performance at the instruction level,
Fig. 13 summarizes executed instructions per core. It illustrates
the total number of floating-point (fpu), arithmetic logic (alu)
(excluding branch operations), load, store and branch instructions.
In order to evaluate a core’s utilization, here we employ CPI
(cycles per instruction) by calculating the ratio of the number of
instructions over the number of computation cycles. Themeasured
CPI is 1.69, which is about three times the theoretical minimum
value of 0.5 (as each core is configured as dual-issue).

Moreover, in order to study floating-point performance, CPF
(cycles per floating-point instruction) is introduced, which is

L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482 1477

Fig. 13. Instruction histogram on each core of Godson-T.

Fig. 14. The penalty of low instruction level parallelism on each core of Godson-T. reg: register dependency, div: latency of divide branch, res: resource conflict, branch:
branch miss predication.

defined as the average number of cycles per floating-point
instruction. According to Fig. 13, we get the CPF of 6.89, which
shows a relatively low floating-point utilization. There are mainly
two factors leading to this low utilization:

• Low proportion (27.39%) of the floating-point instructions out
of the total instructions, which was also reported by a previous
work [2].

• Lack of deep instruction level parallelism (ILP) in each core.
To achieve the objective of low power, each processing core is
simply designed (i.e. in-order execution, short pipelining, etc.).
Fig. 14 details the penalty introduced by register dependency,
resource conflict, branch miss predication and divide opera-
tions, which in total consume over 40% of the entire execu-
tion cycles. To further estimate the effect of ILP, an experiment
is conducted by comparing with the ILP on an Intel Nehalem
processor, where kernel code is extracted to generate a syn-
thetic micro-benchmark representing the main computational
features in an MD algorithm running on one core/thread, and
input data set is selected to totally fit into L1 cache on Nehalem.
Results show that the micro-benchmark on Nehalem is about
six times faster than that on Godson-T. Besides the architec-
tural ILP support, compiler optimization also contributes sig-
nificantly to achieve efficient ILP: While the code on Nehalem
is highly optimized by the Intel compiler, it is not fully opti-
mized on Godson-T as the gcc-3.3 compiler is not able to gener-
ate an optimized code best utilizing Godson-T ’s MIPS ISA, such
as generating multiply–add/sub to fill the dual-issued core. In
order to improve ILP onGodson-T, there are two approaches: Ar-
chitecture and compiler approaches. Between the two, the lat-
ter solution – smarter compiler with simple cores – has several

advantages: First is low power consumption; and second is the
likelihood of compiler-based optimization for achieving high
performance as demonstrated in this paper.

5.3. Impact of architectural features

To gain a better understanding of the proposed performance en-
hancement from architectural viewpoints, the following summa-
rizes architectural impacts on applications’ performance.

• ILP vs. Power. Extracting high ILP on a conventional heavy
core (e.g. Intel Nehalem) with aggressive clock frequency is
an effective approach to improve applications’ performance.
However, it is not an energy-efficient way to integrate such
many heavy cores to build many-core computing engines
for petascale or exascale supercomputer because of the
extremely high power consumption. Table 3 shows that power
consumption of Intel Nehalem core i7 920 2.66 GHz heavy-core
based parallel system to attain 1 petaflop/s and 1 exaflop/s with
various efficiency factor η, where η is defined as the ratio of
the maximum performance of a real application Rmax to the
theoretical peak performance Rpeak.1 It shows that extremely
large amounts of energy are needed: Even in the ideal case
with full efficiency, 34 MW and 34 GW of power are needed
to achieve 1 petaflop/s and 1 exaflop/s, respectively, which
demonstrates the impracticality of using heavy cores for future

1 The estimated power only includes processor power. No network, memory or
air conditioning power is considered.

1478 L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482

Table 3
Power consumption of Godson-T simple-core based parallel system (PowerGodson-T)
and Intel Nehalem core i7 920 heavy-core based parallel system (PowerNehalem) to
attain 1 petaflop/s and 1 exasflop/s. The 64-core Godson-T 1 GHz is targeted at
10W and the quadcore intel Core i7 920 2.66 GHz is about 90W. η is the efficiency
factor defined as the ratio of the real max performance Rmax to the theoretical peak
performance Rpeak.

{Rmax, η} PowerGodson-T (W) PowerNehalem (W)

{1 petaflop/s, 0.1} 0.78 × 106 338 × 106

{1 petaflop/s, 0.125} 0.64 × 106 272 × 106

{1 petaflop/s, 0.25} 0.32 × 106 136 × 106

{1 petaflop/s, 0.5} 0.16 × 106 68 × 106

{1 petaflop/s, 1} 0.08 × 106 34 × 106

{1 exaflop/s, 0.1} 0.78 × 109 338 × 109

{1 exaflop/s, 0.125} 0.64 × 109 272 × 109

{1 exaflop/s, 0.25} 0.32 × 109 136 × 109

{1 exaflop/s, 0.5} 0.16 × 109 68 × 109

{1 exaflop/s, 1} 0.08 × 109 34 × 109

parallel systems. Compared with the 90 W Intel quadcore
Nehalem core i7 920 heavy-core based processor, the 10 W
64-core Godson-T simple-core based processor is more suitable
to serve as the computing engine for future parallel system,
as it only requires 0.2% of the power of the Intel quadcore
Nehalem heavy-core based parallel system as shown in Table 3.
Although MD on the single core of Intel Nehalem runs 6 times
faster than MD on the single core of Godson-T (see Section 5.2),
simper-core based Godson-T architecture is much more power
efficient and accordingly more promising for future petascale
and exascale parallel systems. There should be a tradeoff
between performance and power for future parallel systems,
and here our design choice is the Godson-T -like simple-core
based many-core architecture for the low power consumption.
We expect to shorten the single-core performance gap via
compiler-based optimization for achieving high performance as
demonstrated in this paper.

• Multithreading vs. DMA (Direct Memory Access). Multithreading
and DMA are two major approaches to latency hiding. On
one hand, our highly optimized MD algorithm attempts to
take advantage of Godson-T ’s DTA (DMA-like) asynchronous
block transfer mechanism to hide latency, but it achieves
only minor performance enhancement. While the low ratio
(6%) – the required data transfer time divided by the entire
executing time – restricts DTA’s effectiveness, another major
factor is MD’s irregular memory access pattern, which cannot
be handled by current DTA protocol. On the other hand, the
SUN T2 processor, a well-known processor for multithreading
latency hiding [25], achieves a better performance than Intel
Nehalem platform shown in Table 2. Although MD on SUN T2
is about twice as slow as MD on Godson-T, we should take
into consideration that the major performance enhancement
is brought by Godson-T ’s software controlled explicit memory
hierarchy (see Fig. 8), which is not viable for SUN T2 platform.
Furthermore, with respect tomultithreading’s potential benefit
to irregular pattern and comparably easy-programmability, it
should be a good alternative solution for latency hiding.

• Single-Instruction Multiple-Thread (SIMT). SIMT [19,15] is an
emerging technique proposed by GPU architects for easily
building many-core processors. However, the SIMT execution
is extremely sensitive to branches, i.e. the branching restriction
in the thread warp of compute unified device architecture
(CUDA) [19]. As a result, it is not suitable for our MD algorithm,
as branch instructions account for more than 13% of the total
instructions as shown by the profiling data in Fig. 14.

• Explicit memory hierarchy. Explicit local memory and DMA-like
mechanism have already been used in IBM CELL computing en-
gine [13], and software controlled local memory mechanism

has demonstrated its advantages in several emerging comput-
ing architectures like IBM CELL [13], IBM Cyclops64 [20] and
GPU [15]. Here, our experimental results show that the soft-
ware controlled explicit memory benefits performance most,
and thus explicit memory hierarchy should be well suited in a
many-core processor.

• Fine-grained synchronization. In a fine-grained parallel algo-
rithm, the lightweight workload of each threadmakes the over-
head of synchronization non-negligible. From the early IBM
Blue Gene cellular architecture, to the new IBM Cyclopes 64,
and to the emerging CUDA GPU, efficient barrier synchroniza-
tion logic and barrier are implemented. Similarly, the Godson-
T many-core architecture also embeds a great synchronization
manager which supports efficient barrier and lock operations,
and it greatly contributes to its superior performance over Intel
and Sun T2 architectures, illustrating the importance and signif-
icance of efficient synchronization in many-core architecture.

6. Hierarchical parallelization and performance model of MD
on many-core parallel systems

In order to gain a deeper understanding and better evaluation
of the proposed MD optimization scheme on many-core based
parallel system, we first propose a hierarchical parallelization
scheme mapping MD application to a many-core cluster. We then
introduce a simple performance model to assess the scalability of
the optimization schemeonemergingparallel systems,whichhave
much larger numbers of computing elements than those in current
petascale systems.

6.1. Hierarchical parallelization scheme of MD on many-core parallel
systems

To take advantage of themulti-level feature of emergingmany-
core parallel systems, we propose a hierarchical parallelization
schememapping anMDapplication to amany-core parallel system
via inter-node and inter-core level parallelization.
• Inter-node level parallelism. Our inter-node level parallelism is

based on spatial decomposition, similar to DC-MD, where the
physical system is partitioned into subsystems of equal volume.
Atoms located in a particular subsystem are assigned to one of
the compute nodes in the cluster, which are logically arranged
according to the topology of the physical subsystems (specif-
ically, we use 3D mesh). In parallel MD, two communication
operations are implemented using message passing. The first
is atom caching: In order to compute interatomic interaction
with cut-off radius rc at each MD step, atomic coordinates of
26 neighbor subsystems, which are located within rc from the
subsystem boundary, are copied to each node, where data co-
herence is maintained by copying the latest neighbor surface
atoms every time before atomic accelerations are computed.
The second communication operation is atom migration: Af-
ter the atomic coordinates are updated according to the time-
integration algorithm, some resident atoms may have moved
out of the subsystem boundary, and such atoms are moved to
appropriate nodes. We implement the inter-node spatial de-
composition using the MPI standard.

• Inter-core level parallelism. After the inter-node level paral-
lelism, a finer inter-core level decomposition, cellular de-
composition, is employed to explore parallelism among cores
within each node – we further decompose each subsystem in
each node into small chunks and assign each chunk to a core
by multithreading implemented with the POSIX thread stan-
dard. To improve the inter-core parallel efficiency, similar opti-
mizations as those described in Section 4 can be implemented.
In addition, the followings optimization techniques can be
employed:

L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482 1479

Fig. 15. 2D example of the effect of cell dimension in cell decomposition. Assume that we calculate the interaction for shaded atom 9. The blue areas in the left and right
panels represent interacting neighbors with decomposition-cell size Rc and Rc/2, respectively. By employing a finer cell dimension than the interaction cutoff, it is possible
to reduce unnecessary computation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Illustration of a padding technique to eliminate false sharing among threads for NT = 3. The second and third lines are the cacheline layout without and with
padding, respectively. NPAD is the number of padding to fill the cacheline.

– Decomposition-cell size tuning. As described in Section 4.1,
we can determine the upper bound of decomposition-cell
size from Eq. (4). For better inter-core parallelism, we
analyze the effect of inter-core decomposition cell size
on pair interactions, which is representative of most of
the computation. In the conventional inter-core cellular
decomposition method, the cell size Rc is chosen to be larger
than the interaction cut-off length rc , so that, for a given
computation unit (denoted by the shaded circle 9 in Fig. 15)
in a cell, the search space for interacting neighbors is limited
to the 26 nearest-neighbor cells (in addition to the original
cell). As noted in Section 2, the total number of cross-cell unit-
pairs in each node N3

c × qR3
c × 26qR3

c . It is possible to reduce
the computation by choosing a finer cell size, so that neighbor
cells better approximate the surrounding volume within rc .
Specifically, consider a cell reduced in size by half, i.e. Rc/2.
The number of cells in each direction doubles to 2Nc , and
the average number of computation units per cell becomes
q(Rc/2)3. The number of interacting neighbor units in the
neighbor cells is q((5Rc/2)3−q(Rc/2)3), and thus the number
of interacting pairs for each cell is q(Rc/2)3 × q((5Rc/2)3 −
q(Rc/2)3). Finally, multiplying with the number of cells
(2Nc)

3, the total number of examined unit-pairs is 15.5N3
c ×

qR3
c × qR3

c , which is less than 60% of the original number.
– Cacheline false sharing elimination. Ourmultithreading scheme

also takes account of cacheline false sharing conditions
among threads. A typical example is an array sum[NT] (NT
is the number of threads) that provides separate accu-
mulators to different threads for global sum. Though this
eliminates a critical section at data level, cache-level race
condition still occurs when multiple threads simultaneously
modify sum[i] laid in the same cacheline. Here, we employ a
padding technique that separates sum[i] to different cache-
lines (see Fig. 16). Furthermore, better performance is ex-
pected by placing frequently used variables for individual
threads together in the same cacheline.

6.2. Performance model of MD on many-core parallel systems

In this subsection, a performance model, based on the hierar-
chical parallelization scheme, is derived to analyze the scalability
of MD on many-core based parallel systems.
• System configuration and assumptions. Aswemainly focus on the

efficiency regarding strong-scaling parallelism, here we fix the
simulation size N and assume that the N atoms are distributed
uniformly. Also we assume that our simulation is for solid-state
material characterized by negligible atomic diffusion so that
atom migrations are not done every step. To account for the
atom migration at intermediate steps, the decomposition cell
size is chosen to be rc +margin so that the communication cost
for atommigrations is negligible. For simplicity, we also assume
a cubic system.

• Machine configuration and assumption. As is the case for most
supercomputers today, we assume that the many-core based
parallelmachineswill usewormhole routing to send flits on the
network. In addition, an intelligent topology-aware mapping
is employed to limit the number of links traversed, so that
the routing time can be ignored. In addition, we assume that
our parallel machine only sends/receives large messages (via
message packing) so that the start time is negligible compared
with the transfer time. Let tw denote the per-word transfer
time: If the network bandwidth is Bw GB/s and the size of aword
is 4 bytes, each word spends tw = 4/Bw time to traverse the
network.
Then if an application sends M messages each containing L
words, the communication time is:

Tcomm = M × L × tw. (8)
Let T (N, p) be the execution time of N-atom MD simulation on
p processing units. Then speedup of p processing units over one
processing unit, S(p), can be calculated as

S(p) = T (N, 1)
T (N, p)

(9)

1480 L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482

and the corresponding parallel efficiency, E(p), can be calcu-
lated as

E(p) = S(p)
p

= T (N, 1)
T (N, p) × p

. (10)

The following describes our hierarchical parallelization model
(HPM):which is our performancemodel for inter-node paralleliza-
tion and performance model for inter-core parallelization.

• Performance model of inter-node parallelization. For inter-node
level parallelization, the N-atom simulation system is divided
into p subsystems executing independently on p computing
nodes, where each computing node deals with N/p atoms
on average, and the corresponding computation time can be
estimated as

Tcomp(N, p) = O
(
N
p

)
. (11)

Here the dominant overhead of inter-node parallelization is
communication cost induced by the following two operations:
– Atom caching. In atom caching operations, atoms near

subsystem boundaries within a cutoff radius, rc , are copied
from the nearest neighbor processors for interatomic force
calculation, whose communication time Tatom_comm scales
with the surface of each spatial subsystem:

Tatom_comm(N, p) =
((

N
p

) 2
3
)

. (12)

– Global reduction. For certain reduction operation such as the
global energy calculation, global summation is employed
which incurs a cost of
Tglobal_comm = O(log p). (13)

The entire execution time of the parallel MD program is then

T (N, p) = Tcomp(N, p) + Tatom_comm(N, p) + Tglobal_comm

= O

(
N
p

+ α

((
N
p

) 2
3

+ log p

))

(14)

where α is a communication factor accounting for network
transfer time per atom. The corresponding strong-scaling
parallel efficiency can be calculated as

E(p,N, α) = S(p)
p

= T (N, 1)
T (N, p)p

= N
(

N
p + α

((
N
p

) 2
3 + log p

))
p

= 1

1 + α

((p
N

) 1
3 + p log p

N

) . (15)

• Performance model of inter-core parallelization. Our HPM further
models the finer inter-core level optimization to exploit paral-
lelism among computing cores within a processor/computing
node as was done on Godson-T. The HPM is expected to achieve
decent scalability, as the communication factor, which acts as
a primary factor against high strong-scalability (see Eq. (15)),
is much smaller compared with that of processor-level net-
work communication: For example, core–core communication
via fast on-chip network, such as Godson-T is configured with
0.03 µs communication factor, while node–node communi-
cation using high performance communication cards, such as
Infiniband has a typical 2 µs MPI point-to-point communica-
tion factor. Assume that the whole simulation system is uni-
formly distributed among p1 nodes, while each subsystem is

Fig. 17. Performance of parallel MD algorithm onmany-core based parallel system
under hierarchical parallelization model.

Fig. 18. Performance of parallel MD algorithm on a traditional parallel system
under a pure node-level parallelization model.

further distributed uniformly among p2 cores in each node, and
then the number of all computation units in the parallel sys-
tem is p = p1 × p2. Let α1 and α2 denote the latency factor
for node-level and core-level (on-chip level) communication,
respectively. Thus, the strong-scaling parallel efficiency of the
parallel MD under HPM, Ehpm, can be estimated as

Ehpm(p,N) = E(p1,N, α1) × E(p2,N/p1, α2). (16)

To evaluate the performance of MD on many-core based par-
allel system under HPM, Fig. 17 plots the strong scalability of the
parallel system with various configurations: N = 1012, p1 = 106,
p2 ∈ {1, 10, 102, 103} representing different number of cores per
node, α1 = 3 µs, α2 ∈ {0.01 µs, 0.03 µs, 0.1 µs, 0.3 µs} repre-
senting different core–core communication factors. The horizon-
tal axis represents the number of computing units (calculated by
p1 × p2), while the vertical axis shows the strong scaling parallel
efficiency and different line-color denotes different core–core
communication latency α2. Fig. 17 shows that the strong-scaling
parallel efficiency remains over 0.93 up to 109 processing units,
which shows the potential scalability of the proposed MD opti-
mization on many-core based parallel system with much larger
numbers of computing elements than those in current petascale
systems.

In order to evaluate the potential of Godson-T -like many-
core architecture for emerging parallel systems, we compare the
scalability of the many-core based parallel system under HPM
with that of the traditional parallel system under pure node-
level parallelization. Fig. 18 shows the strong-scalability of MD
on traditional parallel system under pure node-level paralleliza-
tion with various node–node communication latency ranging in
{1 µs, 2 µs, 3 µs, 4 µs, [0]5 µs, 6 µs} and different number of

L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482 1481

computing nodes ranging from 103 to 109. The horizontal axis rep-
resents the number of computing nodes while the vertical axis
shows the strong scaling parallel efficiency and different line-color
denotes different node–node communication latency α1. Fig. 18
shows that the parallel efficiency drops down to around 0.65 with
109 computing units compared to 0.93 in many-core based su-
percomputers under the same configuration. This illustrates the
effectiveness and significance of many-core architecture in im-
proving scalability, and consequently indicates the potential of
adopting many-core architecture as computing engines in emerg-
ing parallel system: Enhancing the scalability of parallel system
throughmany-core’s on-chip parallelism to alleviate the sharp de-
crease of strong-scaling efficiency when the number of computing
units exceeds millions.

7. Related work

Molecular dynamics simulation is one of the most prominent
applications driving the development of new computer architec-
tures and supercomputing systems. Accordingly, there have been
great efforts on accelerating MD simulation. For example, special
hardware accelerators including MD-GRAPE [20], Anton [24] and
reconfigurable computers [23] promise to reach millisecond-level
simulations. Erez et al. [7,8] implemented MD application, GRO-
MACS, on Stanford’s streaming supercomputer, Merrimac [6]. Our
goal is instead to investigate how to improveMD performance and
scalability on a general low-cost platform, which is available to
public research groups. A. George et al. [2] conducted a similar
research work at the initial stage of IBM BlueGene cellular archi-
tecture but did not discuss memory hierarchy optimization. Other
projects like NAMD [21,3] mainly target supercomputing systems
composed of conventional processors. However, there are few to
our knowledge that reports fine-grained strong scalability of on-
chip parallelism on many-core (64) processors.

8. Conclusion

The emergence of many-core architecture has provided un-
precedented computing power to computational scientists, and
it is of great significance to exploit the computational power of
such new platforms to improve the performance and scalability
of large-scale scientific applications. In this paper, we have de-
scribed our investigation of accelerating MD simulation on rep-
resentative many-core architecture Godson-T. We have designed a
preprocessing approach leveraging the EDC framework to achieve
better locality of the on-chip local memory, a novel data layout to
improve data locality to alleviate the irregular memory accessing,
an on-chip locality-aware parallel algorithm to enhance data reuse
to amortize the long latency to access shared data, and a pipelin-
ing algorithm to hide latency to shared memory. These techniques
havemade the parallel MD algorithm scale nearly linearly with the
number of cores. Alsowe have found that the data locality and data
reuse schemes taking advantage of explicit memory architecture
and high-bandwidth on-chip network are essential to achieve high
scalability. Furthermore, we have derived a simple performance
model, which shows that the proposed optimization of MD is ex-
pected to scale well to parallel systems with much larger numbers
of computing elements than those in current petascale systems.
Also the model demonstrates the potential of many-core architec-
tures for future exascale parallel systems. The contribution of this
work lies not only in giving application scientists advice on how
to optimize their applications utilizing architectural mechanisms,
but also in guiding future hardware developments.

Acknowledgments

The work at USC was supported by NSF–CMMI/PetaApps/EMT,
DOE-SciDAC/SciDAC-e/BES/EFRC/INCITE, and DTRA. The design

and development of Godson-T was supported by National Natural
Science Foundation of China (No. 60803030, No. 61033009,
No. 60921002, No. 60925009, No. 61003062), and 973 Program
(No. 2011CB302500 and No. 2011CB302502).

References

[1] M. Allen, D. Tildesley, Computer Simulation of Liquids, Oxford Science
Publication, Oxford, 1987.

[2] G.S. Almasi, C. Caşcaval, J.G. Castaños, M. Denneau, W. Donath, M. Eleftheriou,
M. Giampapa, H. Ho, D. Lieber, J.E. Moreira, D. Newns, M. Snir, H.S.
Warren Jr., Demonstrating the scalability of a molecular dynamics application
on a petaflop computer, in: ICS’01: Proceedings of the 15th International
Conference on Supercomputing, ACM, New York, NY, USA, 2001, pp. 393–406.

[3] A. Bhatelé, L.V. Kalé, S. Kumar, Dynamic topology aware load balancing
algorithms formolecular dynamics applications, in: ICS’09: Proceedings of the
23rd International Conference on Supercomputing, ACM, New York, NY, USA,
2009, pp. 110–116.

[4] J. Calamia, Chinese chip wins energy-efficiency crown, IEEE Spectrum (2011)
14–16.

[5] R. Car, M. Parrinello, Unified approach for molecular dynamics and density-
functional theory, Physical Review Letters 55 (22) (1985) 2471–2474.

[6] W.J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn, J. Gummaraju,
M. Erez, N. Jayasena, I. Buck, T.J. Knight, U.J. Kapasi,Merrimac: supercomputing
with streams, in: SC’03: Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing, IEEE Computer Society, Washington, DC, USA, 2003, p. 35.

[7] M. Erez, J.H. Ahn, A. Garg,W.J. Dally, E. Darve, Analysis and performance results
of a molecular modeling application on Merrimac, in: SC’04: Proceedings of
the 2004 ACM/IEEE Conference on Supercomputing, IEEE Computer Society,
Washington, DC, USA, 2004, p. 42.

[8] M. Erez, J.H. Ahn, J. Gummaraju, M. Rosenblum, W.J. Dally, Executing irregular
scientific applications on stream architectures, in: ICS’07: Proceedings of the
21st Annual International Conference on Supercomputing, ACM, New York,
NY, USA, 2007, pp. 93–104.

[9] D.R. Fan, N. Yuan, J.C. Zhang, Y.B. Zhou, W. Lin, F.L. Song, X.C. Ye, H. Huang,
L. Yu, G.P. Long, H. Zhang, L. Liu, Godson-T : an efficient many-core architecture
for parallel program executions, Journal of Computer Science and Technology
24 (6) (2009) 1061–1073.

[10] M. Frigo, C.E. Leiserson, H. Prokop, S. Ramachandran, Cache-oblivious
algorithms, in: FOCS’99: Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, IEEE Computer Society, Washington, DC,
USA, 1999, p. 285.

[11] M. Frigo, V. Strumpen, The cache complexity of multithreaded cache
oblivious algorithms, in: SPAA’06: Proceedings of the Eighteenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, ACM, New York,
NY, USA, 2006, pp. 271–280.

[12] A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel Computing,
Benjamin Cummings, 2003.

[13] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, T. Yamazaki,
Synergistic processing in cell’s multicore architecture, IEEE Micro (2006)
10–24.

[14] R.H. Katz, D.E. Culler, S. Sanders, S. Alspaugh, Y. Chen, S. Dawson-Haggerty,
P. Dutta, M. He, X. Jiang, L. Keys, A. Krioukov, K. Lutz, J. Ortiz, P. Mohan,
E. Reutzel, J. Taneja, J. Hsu, S. Shankar, An information-centric energy
infrastructure: the Berkeley view, Sustainable Computing: Informatics and
Systems 1 (1) (2011) 7–22.

[15] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, Nvidia tesla: a unified
graphics and computing architecture, IEEE Micro 28 (2) (2008) 39–55.

[16] W. Lin, D. Fan, H. Huang, N. Yuan, X. Ye, A low-complexity synchronization
based cache coherence solution for many cores, in: CIT’09: Proceedings of
the 2009 Ninth IEEE International Conference on Computer and Information
Technology, IEEE Computer Society, Washington, DC, USA, 2009, pp. 69–75.

[17] A. Nakano, R.K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A.C.T. van
Duin, W.A. Goddard, R. Biswas, A divide-and-conquer/cellular-decomposition
framework for million-to-billion atom simulations of chemical reactions,
Computational Materials Science 38 (2007) 642–652.

[18] A. Nakano, R.K. Kalia, P. Vashishta, T.J. Campbell, S. Ogata, F. Shimojo,
S. Saini, Scalable atomistic simulation algorithms for materials research,
in: Supercomputing’01: Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing, CDROM, ACM, New York, NY, USA, 2001, p. 1.

[19] Cuda programming guide, version 2.2, Tech. Rep., NVIDA Corp., 2008.
[20] Y. Ohno, E. Nishibori, T. Narumi, T. Koishi, T.H. Tahirov, H. Ago, M. Miyano,

R. Himeno, T. Ebisuzaki, M. Sakata, M. Taiji, A 281 tflops calculation for
x-ray protein structure analysis with special-purpose computers mdgrape-3,
in: SC’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing,
ACM, New York, NY, USA, 2007, pp. 1–10.

[21] J.C. Phillips, G. Zheng, S. Kumar, L.V. Kalé, Namd: biomolecular simulation
on thousands of processors, in: SC’02: Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, IEEE Computer Society Press, Los Alamitos,
CA, USA, 2002, pp. 1–18.

[22] S.J. Plimpton, Fast parallel algorithms for short-range molecular dynamics,
Journal of Computational Physics 117 (1995) 1–19.

[23] R. Scrofano, V.K. Prasanna, Preliminary investigation of advanced electrostatics
inmolecular dynamics on reconfigurable computers, in: SC’06: Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing, ACM, New York, NY, USA,
2006, p. 90.

1482 L. Peng et al. / J. Parallel Distrib. Comput. 73 (2013) 1469–1482

[24] D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon,
C. Young, B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo,
J.P. Grossman, C.R. Ho, D.J. Ierardi, I. Kolossváry, J.L. Klepeis, T. Layman,
C. McLeavey, M.A. Moraes, R. Mueller, E.C. Priest, Y. Shan, J. Spengler,
M. Theobald, B. Towles, S.C. Wang, Anton, a Special-Purpose Machine for
Molecular Dynamics Simulation, Vol. 35, ACM, New York, NY, USA, 2007,
pp. 1–12.

[25] Niagara2: a highly threaded server-on-a-chip, Tech. Rep., SunCorp.
[26] P. Vashishta, M.E. Bachlechner, A. Nakano, T.J. Campbell, R.K. Kalia,

S. Kodiyalam, S. Ogata, F. Shimojo, P. Walsh, Multimillion atom simula-
tion of materials on parallel computers—nanopixel, interfacial fracture,
nanoindentation, and oxidation, Applied Surface Science 18 (2001) 258–264.

[27] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel, Optimization
of sparse matrix–vector multiplication on emerging multicore platforms,
in: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC’07,
ACM, New York, NY, USA, 2007, pp. 38:1–38:12.

[28] L. Yu, Z. Liu, D. Fan, F. Song, J. Zhang, N. Yuan, Study on fine-grained
synchronization in many-core architecture, in: SNPD’09: Proceedings of
the 2009 10th ACIS International Conference on Software Engineering,
Artificial Intelligences, Networking and Parallel/Distributed Comput-
ing, IEEE Computer Society, Washington, DC, USA, 2009, pp. 524–529.
http://dx.doi.org/10.1109/SNPD.2009.61.

[29] T. Zacharia, J. Kinter, R. Pennington, R. Arimilli, R. Cohen, L. Davis, T.D. Matteo,
B. Harrod, G. Karniadakis, R. Landau,M.Macy, D.McCombie, D. Randall, S. Scott,
H. Simon, T. Sterling, T.Windus, National science foundation advisory commit-
tee for cyberinfrastructure task force on high performance computing, 2011
March, http://www.nsf.gov/od/oci/taskforces/TaskForceReport_HPC.pdf.

Liu Peng received the B.S. degree in Computer Science
from Huazhong University of Science and Technology,
Wuhan, China, in 2004 and the M.S. degree in Computer
Science from the Graduate University of Chinese Academy
of Sciences, Beijing, China, in 2007. She obtained the Ph.D.
degree in Computer Science in 2011 from University of
Southern California, Los Angeles, CA, USA. Her research in-
terests include high performance computing, performance
analysis and optimization.

Guangming Tan received the Ph.D. degree in Computer
Science from the Chinese Academy of Science, Beijing.
He is an associate professor in the State Key Laboratory
of Computer Architecture, Institute of Computing Tech-
nology, Chinese Academy of Science. From 2006 to 2007,
he was a visiting researcher in the Computer Architec-
ture and Parallel Systems Laboratory (CAPSL), University
of Delaware. His main research interests include parallel
algorithm and programming, performance modeling and
evaluation, and computer architecture. He has published
several papers in important conferences and journals, such

as SC, ICS, SPAA, TPDS. He is a member of the ACM and CCF.

Rajiv K. Kalia is a professor in the Department of Physics &
Astronomywith joint appointments in Chemical Engineer-
ing &Materials Science, Computer Science, and the Collab-
oratory for Advanced Computing and Simulations at the
University of Southern California. His expertise is in the
area of multiscale materials simulations involving atom-
istic, mesoscale and continuum approaches on parallel
supercomputers. He received a Ph.D. in physics from
Northwestern University in 1976.

Aiichiro Nakano is a professor of Computer Science with
joint appointments in Physics & Astronomy, Chemical
Engineering &Materials Science, and the Collaboratory for
Advanced Computing and Simulations at the University of
Southern California. His research interests include scalable
scientific algorithms, high-end parallel and distributed
computing, and computational materials science. He
received a Ph.D. in Physics from the University of Tokyo,
Japan, in 1989.

Priya Vashishta is a professor in the Department of Chem-
ical Engineering & Materials Science with joint appoint-
ments in Physics & Astronomy, Computer Science, and the
Collaboratory for Advanced Computing and Simulations at
the University of Southern California. His research inter-
ests include high performance computing to carry out very
large multiscale simulations of novel materials and pro-
cesses onmassively parallel and distributed computers. He
received a Ph.D. in physics from Indian Institute of Tech-
nology, Kanpur, India, in 1967.

Dongrui Fan received Ph.D. degree in Computer Archi-
tecture in 2005 from the Institute of Computing Tech-
nology, Chinese Academy of Sciences, and has been an
associate professor of the institute since 2006. Dongrui
participated Godson-1 and Godson-2 micro-architecture
designs from 2000. Currently, his research interests fo-
cus on multi-core/many-core architecture and low-power
micro-architecture design. He leads the AMS research
Lab and designed the new processor models—Godson-X,
Godson-T and Godson-D, which are researches on the new
generation Godson series chips. Dongrui is a technical

committee member of computer architecture and system software of the Chinese
Computer Federation (CCF) and is also HiPEAC/IEEE/ACMmember.

Hao Zhang is an assistant professor at ICT. He is the asso-
ciate chief architect of the Godson-T many core processor.
His research interests include high throughput CPU mi-
croarchitectures. Zhang received a Ph.D. in Computer Sci-
ence from ICT in 2008.

Fenglong Song received a Ph.D.degree from the major
of Computer Architecture at the Institute of Computing
Technology, Chinese Academy of Sciences. He is currently
an assistant professor of ICT, CAS. His research interests
focus on high performance computer architecture, on-
chip memory hierarchy design and optimization, parallel
computing, and highly energy-efficient computing.

http://www.nsf.gov/od/oci/taskforces/TaskForceReport_HPC.pdf
http://dx.doi.org/doi:10.1109/SNPD.2009.61

	Scalability study of molecular dynamics simulation on Godson-Tmany-core architecture
	Introduction
	A divide-and-conquer MD algorithm
	Godson-T many-core architecture
	Optimizations on Godson-T
	Preprocessing
	Data layout optimization
	On-chip locality optimization
	Pipelining optimization

	Evaluation
	Experimental methodology
	Experimental results on Godson-T many-core processor
	Impact of architectural features

	Hierarchical parallelization and performance model of MD on many-core parallel systems
	Hierarchical parallelization scheme of MD on many-core parallel systems
	Performance model of MD on many-core parallel systems

	Related work
	Conclusion
	Acknowledgments
	References

