
Preliminary Investigation of Accelerating Molecular Dynamics
Simulation on Godson-T Many-core Processor

Liu Peng1, Guangming Tan2, Rajiv K. Kalia1, Aiichiro Nakano1, Priya Vashishta1,
Dongrui Fan2 and Ninghui Sun2

1Collaboratory for Advanced Computing and Simulations, University of Southern California, USA
Email: {liupeng, rkalia, anakano, priyav}@usc.edu

2 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
Email: {tgm,fandr,snh}@ict.ac.cn

Abstract

Molecular dynamics (MD) simulation is widely used in computational science, however, its irregular
memory-access pattern imposes great difficulty on performance optimization. This paper presents a joint
application/architecture study to accelerate MD on an emerging unconventional computing platform–
Godson-T many-core architecture. We propose three incremental optimizations: (1) a divide-and-
conquer algorithm adaptive to on-chip memory; (2) a novel data-layout to re-organize linked-list cell
data structures to improve data locality; (3) an on-chip locality-aware parallel algorithm to enhance data
reuse. Experiments on an event-driven, cycle-accurate Godson-T simulator achieve excellent speedup of
62 on 64 cores.

1 Introduction

Molecular dynamics (MD) simulation is widely used to study material properties at the atomistic level. But
increasingly large computing power is needed to satisfy the spatiotemporal scale of the real world simula-
tions. The advent of many-core paradigm has provided unprecedented computing power, and promises to
enable large-scale and long-time simulation only if we can efficiently harvest the computing power. Chal-
lenges to achieve efficient parallel MD algorithm mainly on many-core platform arise from two aspects: (1)
MD application is characterized by irregular memory access which imposes difficulty on locality optimiza-
tion; (2) many-core hardware limitation (volume of on-chip memory, bandwidth of on-chip networking,
etc.) constrains the size of working-set per core which imposes difficulty on on-chip parallelization. To
address these difficulties, this paper presents a joint study from both application and architecture aspects on
how to accelerating MD on Godson-T emerging many-core architecture, where we map an MD algorithm
to architecture for achieving high on-chip parallel efficiency.

The main contribution of this paper are:(1)An adaptive divide-and-conquer (ADC) algorithm is designed
to optimize the use of memory hierarchy; (2)A novel data layout is employed to re-organize linked-list cell
data structures to maximize data locality;(3) An on-chip locality-aware parallel algorithm is designed to
maximize data reuse;(4)Detailed experiments on an Godson-T simulator shows the optimized MD achieves
a strong-scaling parallel efficiency 0.92 on 64 cores.

The rest of this paper is organized as follows. Section 2 briefly introduces the DC-MD algorithm used
in this work, where key performance bottlenecks are summarized. Section 3 highlights the main archi-
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Figure 1: (a)2D schematic of the linked-list cell method and data structure. C0−8 are the indices of cells;
number in a circle represents index of an atom; E represents the end of the listed atoms in a cell;(b)and
(c) are Percentages of events that cause last level cache (LLC) miss and data translation look aside buffer
(DTLB) miss for the original DC-MD algorithm on an Intel quadcore core i7 920 platform measured by
Intel VTune Performance Analyzer.

tectural features of Godson-T , and section 4 describes our optimization strategies. Section 5 presents the
experimental results and detailed analysis. Finally, section 6 concludes the paper.

2 A Divide-and-conquer MD Algorithm

MD simulation follows the phase-space trajectories of an N -atom system, where force fields describ-
ing the atomic force laws between atoms are spatial derivatives of a potential energy function E(rN )
(rN = {r1, r2, ..., rN} are positions of all atoms). The most commonly used algorithm in parallel MD
simulation is spatial decomposition, where the simulation system is partitioned into subsystems of equal
volume, and atoms located in a particular subsystem are assigned to one of the processors in a parallel
computer, which are logically arranged according to the topology of the simulation subsystems (e.g. 3D
mesh). In order to compute interatomic interaction with cutoff radius rc at each MD step, atomic coordi-
nates of 26 neighbor subsystems, which are located within rc from the subsystem boundary, are copied to
each processor, where data coherence is maintained by copying the latest neighbor surface atoms every time
before atomic accelerations are computed. The periodic boundary condition is applied to the system in three
Cartesian dimensions.

We have previously proposed a space-time multiresolution MD (MRMD) algorithm to reduce the O(N2)
time complexity of potential evaluation to O(N)[1]. In the MRMD, E(rN ) consists of two-body E2{rij}
and three-body E3{rijk} terms within a cutoff radius rc. In the linked-list cell method, the dimension Rc of
the cells is usually chosen to be larger than rc. For a given atom in a cell, the search space for interacting
neighbor atoms is limited to the 26 nearest neighbor cells. Figure 1(a) shows a schematic of the computa-
tional kernel of MD in 2D. Conventional summation rule to compute the three-body interaction is written as
E3(rijk) =

∑N
i=1

∑nbr(i)
j=1

∑nbr(j)
k "=i v(ri, rj , rk), where ri is the coordinate of the i− th atom and nbr(i) is

the list of neighbor atoms within the three-body cutoff length from atom i, which acts as the center of atomic
triplet (j, i, k). To maximally exploit parallelism in a multi-core cluster, our EDC-STEP-HCD scheme has
employed a multi-level parallelization strategy[2, 3]. Although this scheme has achieved internode paral-
lel efficiency well over 0.95 for 218 billion-atom MD simulation on 212, 992 BlueGene/L processors[2],
it suffers inefficient on-chip parallelism with on-chip parallel efficiency only 0.65 for 8 threads on a dual
Intel quadcore Xeon SMP platform[3]. We observe several features that prevent the program from achieving
high performance on conventional multi-core architectures: (1)Irregular memory access. Straightforward or
sparse-matrix-like implementation of linked-list data structure as shown in Fig. 1(a) leads to irregular mem-
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Figure 2: Godson-T architecture: INT is fixed point
arithmetic unit, FP/MAC is floating point unit, and
CU is communication unit.
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Figure 3: Cellular decomposition scheme for on-chip
parallelization. Cached atoms and resident atoms are
shown in white and shaded boxes.

ory accesses in three-body interaction calculation; (2)High latency to access shared data. Let Nc denote the
number of cells in each Cartesian direction, q the atom density(number of atoms divided by system volume
(NcRc)3, then the total number of cross-cell pairs in the system is given by N3

c × qR3
c × 26qR3

c . Thereby
the size of atomic data for interaction computation easily exceeds that of the last level cache. Combining
with the irregular memory access mentioned before, the latency problem becomes even worse, as evidenced
by the memory accessing performance in Fig. 1(b) and Fig. 1(c) conducting on Intel quadcore core i7 920
platform measured by the Intel VTune Performance Analyzer. Therefore, it is of great significance to opti-
mize the memory accessing to improve the performance and scalability of our MD application on many-core
platforms.

3 Godson-T Many-core Architecture

Godson-T is a low-power many-core architecture developed by Institute of Computing Technology, Chinese
Academy of Sciences to serve as a dedicated petaflops computing engine. As shown in Fig. 2, Godson-
T has 64 homogeneous, dual-issue and in-order processing cores running at 1 GHz, where a floating-point
multiply-accumulate operation can be issued to a fully-pipelined function unit in each cycle, resulting in a
peak floating-point performance of 128Gflops. The 8-pipeline processing core supports 32-bit MIPS ISA
(64-bit ISA will be supported in latter version) with synchronization instruction extensions. Key architec-
tural features for achieving decent scalability and high performance include the following[4]:

• Fine-grained parallelism[5]. Each core works as a lightweight hardware thread unit executing in a
non-preemptive manner. A dedicated synchronization manager (SM) is a centralized unit to collect
and handle synchronization requests, which provides architectural support for fast mutual exclusion,
barrier and signal/wait synchronization. In addition, an extremely efficient thread execution runtime
system has been developed to manage thread execution[5, 6].

• Locality-awareness. Each processing core has a 16KB 2-way set-associative private instruction cache
and a 64KB local memory (like data cache). As inspired by IBM CELL and Nvidia GPU, an explicit
memory hierarchy is implemented for user to exploit better locality with less complex hardware im-
plementation compared to that of the traditional transparent memory hierarchy. Moreover, in Godson-
T , each local memory is configured as explicitly-controlled, globally-addressed scratched-pad mem-
ory (SPM) to further help programmer maximize locality. An 8 × 8 packet-switching 2D mesh net-
work connects all on-chip units with a 128bit bandwidth employing deterministic X-Y routing policy,
which can provide a total of 2TB/s on-chip bandwidth among 64 processing cores. In addition, there
are 16 address-interleaved L2 cache banks (256KB each) distributed along the perimeter of the chip,
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which are shared by all processing cores and can serve up to 64 cache accessing requests in total. The
bandwidth between SPM and L2 cache is 256GB/s, and each four L2 cache banks on the same side
of the chip share a memory controller with a 25.6GB/s memory-accessing bandwidth.

• Latency tolerance[7]. Since there may exist intensive contention on on-chip network and memory
controller, latency to L2 cache will possibly become primary obstacle to achieve decent performance.
To address this issue, a DMA (direct memory accessing)-like coprocessor Data Transfer Agent (DTA)
is built in each core to do fast data communication, that is, when one core is doing calculations, DTA
can be programmed to manage various data communications at backend in parallel.

4 Optimizations on Godson-T

In this section, we describe how to design an efficient MD algorithm based on the features provided by
Godson-T many-core architecture.

4.1 Adaptive Divide-and-Conquer Algorithm

In the original DC-MD algorithm, the physical space is subdivided into spatially localized cells, with local
atoms constituting subproblems. The algorithm recursively divides a coarse cell into finer cells until some
criterion is satisfied. In our adaptive divide-and-conquer (ADC) algorithm specially designed for many-core
architectures, we use the size of the first level memory (i.e. private local memory), Cpm, as a critical factor
of the criterion.

Since this paper only addresses the issue of fine-grained parallelism within a subsystem, we assume that
the interchange of cached atoms (atoms near subsystem boundaries) has been completed by a higher-level
parallelism (e.g. using MPI) among multiple many-core computing processors[2]. Figure 3 illustrates of the
cells in a subsystem. The algorithm divides the subsystem consisting of the resident and cached atoms into
small cells of equal size. Assume that there are P = Px × Py × Pz cores in a many-core processor and that
the number of cells in a subsystem is L = Lx × Ly × Lz . Then each core i processes L

P cells as Eq. ??
(since how to efficiently embed 3D mesh into 2D one has already been solved by classical algorithms [8], the
2D on-chip network on Godson-T is viable for this decomposition): {(cx, cy, cz)|cx ∈ [ iLx

Px
, (i+1)Lx

Px
), cy ∈

[ iLy

Py
, (i+1)Ly

Py
), cz ∈ [ iLz

Pz
, (i+1)Lz

Pz
)}. Let B denote the memory space for storing one atomic data, Nb denote

the number of neighbor atoms per cell. In order for all the resident atomic data to fit in the private local
memory, Rc should satisfy

qR3
c × (Nb +

L

P
)×B ≤ Cpm ⇒ Rc ≤ 3

√
PCpm

(PNb + L)Bq
. (1)

ADC algorithm performs recursive cellular decomposition until Eq. 1 is satisfied. When the atomic data are
distributed into each core’s local memory, they are reused in both two- and three-body force calculations,
as the software controlled SPM provides a mechanism for user to decide what data locate in the private
local memory and when. However, a direct implementation based on the linked-list cell data structure is
not efficient enough because of MD’s irregularity. In the next subsection, we propose a novel data layout
optimization to address this problem.
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Figure 4: (a) The atomic data of cells in a core’s SPM. (b)The neighbor atomic data of cells in the shared L2
cache or off-chip memory. Pad is used for address alignment. Each L2 data unit[i] represents a contiguous
block of all neighbor atomic data for the i− th cell in L2 cache or off-chip memory (i = 1, ..., L/P ).
4.2 Data Layout Optimization

At the beginning of MD simulation, each atom is assigned an integer in [0...N − 1], which is used as an
identifier for the linked-list based algorithm to access atomic data. We refer to this method as global-ID-
centered addressing. However, during the simulation, the identifiers cannot be kept contiguous due to atom
migration between computing nodes/processors. In the ADC algorithm, it is expected that the atomic data
is distributed among different cores, where each cell only interacts with 26 neighbor cells. Therefore, if all
the atomic data within one cell were grouped together, they would be easily reached through its cell index.
Here, we propose a new strategy—cell-centered addressing.

Figure 4(a) depicts the data structure designed for the atomic data in SPM, where na denotes the max-
imum number of atoms in one cell. Since all the atomic data for each cell are grouped, the cell index (cc)
can be used to search the neighbor cells, and then the atomic data in each cell can be touched contiguously.
Moreover, considering the sequential mapping between cores and cells, the searching of neighbor cells is
completed in O(1) time: The scalar value of cc is transformed into a vector (ccx, ccy, ccz), then the neighbor
cell index is calculated by the combination of {(ccx + lx, ccy,+ly, ccz + lz)|lx, ly, lz ∈ {−1, 0, 1}}, where
the number of neighbors including itself is 27.

As was shown in section 2, the number of cross-cell atom pairs is qR3
c × 26qR3

c per cell, and it is
impossible to store all the data in each core’s private memory. Since the three-body interaction calculation
also involves atoms in one cell and its 26 neighbor cells, it can also benefit from the cell-centered addressing
for contiguous accessing of atomic data in a cell. Similarly, we group the neighbor atoms as well. Figure 4(b)
depicts the data layout of neighbor atoms located in L2 cache or off-chip memory, where we group all the
neighbor atomic data for the i-th cell together as L2 data unit[i], which can be transferred to the SPM
through a DMA like operation that utilizes high bandwidth provided in Godson-T .

4.3 On-chip Locality Aware Parallel Algorithm

In this subsection, we present our on-chip locality aware parallel algorithm to enhance data reuse and further
to alleviate the long latency to access the shared neighbor atomic data in L2 cache or off-chip memory. The
two-body force calculation involves core-core communication, and it may cause on-chip network conges-
tion. Moreover, the access to L2 cache also goes through the on-chip network, which may introduce more
congestion. Here, we propose a solution to enhance the data reuse and to reduce the remote shared-data
memory accessing, thereby alleviating the long latency. Suppose that the atoms in a cell at core i interacts
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Figure 5: Algorithm for calculating interatomic interactions while achieving on-chip locality for core i.
Here ccore i[k] is the k-th cell assigned to core i.

with those in another cell at core j. In order to achieve on-chip locality for core i, we maximize the data
reuse of cells from core j, and vice versa for core j. Our solution is first to construct a set of cell pairs
PC[cj] = {ci0, ci1, ., cik}, where cj is the global index of the cell interacting with cells ci0, ..., cik in core
i. For example, suppose that core i has cells {1, 4, 8}, and core j has cells {2, 5}. Also assume that cell 2
interacts with {1, 4} and that cell 5 interacts with {4, 8}. Then we construct two cell pairs PC[2] = {1, 4}
and PC[5] = {4, 8}. We then use the core-core communication to transfer the atomic data according to
the cell pairs from core j to core i. The algorithm running on each core i is shown in Fig. 5. If more than
one cell are assigned to a core, then some neighbor cells are located in the same core, and thus no core-core
communication is required (see lines 7-9 in Fig. 5).

The algorithm in Fig. 5 uses a preprocessing to collect the set of cell pairs. Since each cell only interacts
with its 26 surrounding neighbors, the size of set PC is expected to be less than O( L

P × 26). Since the
calculation of neighbor’s indices is done in O(1) time using cell-centered addressing, the preprocessing
requires O( L

P ) time and O( L
P ) space, which is negligible compared with the two-body interaction time

O( L
P × qR3

c × 26qR3
c).

5 Evaluation

In this section, we present the experimental results and detailed analysis of the proposed MD optimization
on a Godson-T many-core simulator.

Godson-T is an on-going research project for building a petaflops supercomputer, and a real chip is
expected to be shipped in late 2010. In order to evaluate its performance at early stage of the architectural
development, we here employ an instruction-level simulator. The Godson-T simulator is event-driven, cycle-

Table 1: Godson-T simulator parameters

function unit parameter
core 64 cores running at 1GHz, dual-issue, load-to-use latency=3 cycles, FMAC latency=4 cycles
SPM 64KB, 16 64-bit-width SRAM sub-banks with 2 memory ports each 1 cycle for load and store.
L2 cache 16 banks, 4MB in total, 8-way set-associative, 64B/cacheline, 4 cycles for contentionless and hit request.
memory controller 4 memory controllers, running at 1GHz. 64-bit FSB. Each memory controller controls one DRAM bank.
Off-chip memory 4GB. DDR2-800 DRAM clock is 400MHz. tCAS = 5, tRCD = 5, tRP = 5, tRAS=15, tRC = 24.
network 2-D mesh. Wormhole routing. 2 cycles contentionless latency per hop.
synchronization 6 ∼ 66 cycles.
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(a) (b) (c)
Figure 6: (a)Speedup as a function of the number of cores; (b)Execution time in milliseconds on 64-core
Godson-T ; (c)L2 cache performance for all 16 banks in total. the L2 replace is 1976 for optimization-2.

Figure 7: The overhead of re-organizing data layout
on each core of Godson-T , which at most accounts
for 6% of the entire execution time.

Figure 8: The number of remote SPM accesses on
each core of Godson-T .

accurate, executing both kernel and application codes, and has modeled all architectural features introduced
previously. Since it is an instruction-level simulator, it can produce detailed traces and instruction mix of
all executed instructions for any given application after execution. The toolchain on Godson-T consists
of a gcc-3.3 compiler and a thread execution runtime system, which provides a POSIX thread-like API.
The configuration of the simulator is summarized in Table 5. Moreover, since our ultimate objective is to
build a large-scale parallel computer, where on-chip parallelism is of critical importance, we mainly focus
on on-chip parallelization with a fixed problem size, and the speedup on p cores is calculated by S(p) =
Timeone core
Timep cores

, where Timep cores represents the executing time on p cores and Timeone core represents that

on one core. And strong-scaling parallel efficiency E(p) is then defined as E(p) = S(p)
p for a fixed problem

size. In the following experiments, the MD simulation tested is for a silica system [2]. Within the DC
framework, the whole system is divided into subsystems each containing 24, 000 atoms as the fixed problem
size for strong scalability analysis.

The experiments compare three incrementally improved versions of MD algorithm:(1)optimization-1–
Implementation of ADC algorithm; (2)optimization-2–Implementation of ADC algorithm and data layout
optimization; (3)optimization-3–Implementation of ADC algorithm, data layout optimization and on-chip
locality-aware algorithm.

First we test the scalability of the parallel algorithms. Figure 6(a) shows that optimization-3 makes MD
scale excellently with an on-chip strong-scaling parallel efficiency 0.92 on 64 cores while optimization-1
begins to deteriorate when the number of cores exceeds 32. It tells that optimizations which take advantage
of architectural features to maximize data locality and exploit data reuse benefit scalability most, which is
also evidenced by the running time in Fig. 6(b) as optimization-3reduces the execution time by a factor of 2.
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To understand the reason behind the performance gain, Fig. 6(c) compares the number of L2 cache
events: the numbers of L2 cache accesses, L2 cache misses and L2 cache replaces are all much smaller with
optimization-2 than those with optimization-1. Compared to the original linked-list cell data structure, the
data layout optimization leads to more contiguous memory access, which greatly improves L2 cache usage.

Further Fig. 7 plots data layout re-organization overhead: the scheme is light overhead, with the overhead
lower than 6%.

Finally, to quantify the advantage of achieving on-chip locality, the simulator collects statistical data of
remote SPM accessing. Figure 8 shows that optimization-3 reduces the number of remote SPM accesses
to around 7% of that of optimization-2. This explains the significant decrease of the execution time by
optimization-3 in Fig. 6(b). For a given atomic data, the number of reuse can be estimated as follows.
Assume that the size of pair set PC[cj] in Fig. 5 is m, then the algorithm needs to calculate interactions
between one atom from cell cj and all atoms in m local cells. According to the notation in section 1, each
cell contains qRc

3 atoms. Therefore, one atomic data may be reused by mqRc
3 atoms, i.e., the algorithm

may reduce the number of remote SPM accesses by mqRc
3 − 1.

6 Conclusion
The emergence of many-core architecture has provided unprecedented computing power to computational
scientists, and it is of great significance to exploit the computational power of such new platforms to improve
the performance and scalability of large-scale scientific applications. In this paper, we have described our
investigation of accelerating MD simulation on representative many-core architecture Godson-T . We have
proposed a divide-and-conquer algorithm adaptive to the memory hierarchy to facilitate the on-chip local
memory, a novel data layout to improve data locality to alleviate the irregular memory accessing, an on-chip
locality-aware parallel algorithm to enhance data reuse to amortize the long latency to access shared data.
These techniques have made the parallel MD algorithm scale nearly linearly with the number of cores. Also
we have found that the data locality and data reuse schemes taking advantage of explicit memory archi-
tecture and high-bandwidth on-chip network are essential to achieve high scalability. The contribution of
this work lies not only in giving application scientists advice on how to optimize their applications utilizing
architectural mechanisms, but also in guiding future hardware developments.
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