JOURNAL OF COMPUTATIGNAL PHYSICS 117, 1-19 (1995)

Fast Parallel Algorithms for Short-Range Molecular Dynamics*!

STEVE PLIMPTON

Parallel Computational Sciences Deparunent 1421, MS 1111, Sandia National Laboratories, Albuguerque, New Mexico 87185-1111

Received June 17, 1993; revised June 10, 1994

Three parallel algorithms for classical molecular dynamics are
presented. The first assigns each processor a fixed subset of atoms;
the second assigns each a fixed subset of inter-atomic forces to
compute; the third assigns each a fixed spatial region. The algo-
rithms are suitable for molecular dynamics models which can be
difficult to parallelize efficiently—those with short-range forces
where the neighbors of each atom change rapidly. They can be
implemented on any distributed-memary parallel machine which
allows for message-passing of data between independently execut-
ing processors. The algorithms are tested on a standard Lennard—
Jones benchmark problem for system sizes ranging from 500 to
100,000,000 atoms on several parallel supercomputers—the nCUBE
2, Intel iPSC/B60 and Paragon, and Cray T3D. Comparing the results
to the fastest reported vectorized Cray Y-MP and C90 algorithm
shows that the current generation of parallel machines is competi-
tive with conventional vector supercomputers even for small prob-
lems. For large problems, the spatial algorithm achieves parallef
efficiencies of 80% and a 1840-node Intel Paragon performs up to
165 faster than a single Cray C90 processor. Trade-offs between the
three algorithms and guidelines for adapting them to more complex
molecular dynamics simulations are also discussed. ©1995 Aca-
demic Press, Inc.

1. INFRODUCTION

Classical molecular dynamics {(MD) is a commonly used
computational tool for simulating the properties of liquids, sol-
ids, and molecules [1, 2]. Each of the N atoms or molecules
in the simulation is treated as a point mass and Newton’s
equations are integrated to compute their motion. From the
motion of the ensemble of atoms a vartety of useful microscopic
and macroscopic information can be extracted such as transport
coefficients, phase diagrams, and structural or conformational
properties. The physics of the model is contained in a potential
energy functional for the system from which individual force
equations for each atom are derived.

* This work was partially supported by the Applied Mathematical Sciences
program, U.S. Departrent of Energy, Office of Energy Research, and was
performed at Sandia National Laboratories, operated for the DOE under Con-
tract DE-AC04-76DP00789.

+ The three paralle] benchmark codes used in this study are available on
the world-wide web at http:/ /www.cs.sandia.gov/tech_reports/sjplimp/
Ij_bench.html or from the author via e-mail.

t E-mail: sjplimp @cs.sandia.gov,

MD simulations are typically not memory intensive since
only vectors of atom information are stored. Computationally,
the simulations are *‘large” in two domains—the number of
atoms and number of timesteps. The length scale for atomic
coordinates is angstroms; in three dimensions many thousands
or millions of atoms must usually be simulated to approach
even the sub-micron scale. In liquids and solids the timestep
size is constrained by the demand that the vibrational motion
of the atoms be accurately tracked. This limits timesteps to the
femtosecond scale and so tens or hundreds of thousands of
timesteps are necessary to simulate even picoseconds of *‘real’”
time. Because of these computational demands, considerable
effort has been expended by researchers to optimize MDD calcu-
lations for vector supercomputers [23, 29, 34, 45, 47] and
even to build special-purpose hardware for performing MD
simulations [3, 4]. The current state-of-the-art is such that simu-
lating ten- to hundred-thousand atom systems for picoseconds
takes hours of CPU time on machines such as the Cray Y-MP.

The fact that MD computations are inherently parallel has
been extensively discussed in the literature [10, 21]. There has
been considerable effort in the last few years by researchers to
exploit this parallelism on various machines. The majority of
the work that has included implementations of proposed algo-
rithms has been for single-instruction/multiple-data (SIMD)
parallel machines such as the CM-2 [11, 52], or for multiple-
instruction/multiple-data (MiIMD) parallel machines with a few
dozens of processors [25, 36, 39, 46]. Recently there have been
efforts to create scalable algorithms that work well on hundred-
to thousand-processor MIMD machines [8, 13, 19, 41, 51]. We
are convinced that the message-passing model of programming
for MIMD machines is the only one that provides enough
flexibility to implement all the data structure and computational
enhancements that are commonly exploited in MD codes on
serial and vector machines. Also, we have found that it is only
the current generation of massively parallel MIMD machines
with hundreds to thousands of processors that have the computa-
tional power to be competitive with the fastest vector machines
tor MD calculations.

In this paper we present three parallel algorithms which are
appropriate for a general class of MD problems that has two
salient characteristics. The first characteristic is that forces are
limited in range, meaning each atom interacts only with other

0021-9991/95 $6.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

2 STEVE PLIMPTON

atoms that are geometrically nearby. Solids and liquids are
often modeled this way due to electronic screening effects or
simply to avoid the computational cost of including long-range
Coulombic forces. For short-range MD the computational effort
per timestep scales as N, the number of atoms.

The second characteristic is that the atoms can undergo large
displacements over the duration of the simulation. This could
be due to diffusion in a solid or liquid or conformational changes
in a biologicat molecule. The important feature from a computa-
tional standpoint is that each atom’s neighbors change as the
simulation progresses. While the algorithms we discuss could
also be used for fixed-neighbor simulations (e.g., all atoms
remain on lattice sites in a solid), it is a harder task to continually
track the neighbors of each atom and maintain efficient O(N)
scaling for the overall computation on a parallel machine.

Qur first goal in this effort was to develop parallel algorithms
that would be competitive with the fastest methods on vector
supercomputers such as the Cray. Moreover, we wanted the
algorithms to work well on problems with small numbers of
atoms, not just for large problems where paralfelism is often
easier to exploit. This is because the vast majority of MD
stmmulations are performed on systems of a few hundred to
several thousand atoms, where N is chosen to be as small as
possible while still accurate enough to model the desired physi-
cal effects [7, 44, 38, 53]. The computational goal in these
calculations is to perform each timestep as quickly as possible,
This is particularly true in non-equilibrium MD, where macro-
scopic changes in the systern may take significant time to
evolve, requiring millions of timesteps to model. Thus, it is
often more useful to be able to perform a 100,000 timestep
simulation of a 1000 atom system fast rather than 1000 time-
steps of a 100,000 atom system, although the O(N) scaling
means the computational effort is the same for both cases. To
this end, we consider model sizes as small as a few hundred
atoms in this paper.

For very large MD problems, our second goal in this work
was to develop parallel algorithms that would be scalable to
larger and faster parallel machines. While the timings we pre-
sent for large MD models (10° to 10® atoms) on the current
generation of parallel supercomputers (hundreds to thousands
of processors) are quite fast compared to vector supercomput-
ers, they are still too slow to allow long-timescale simulations
to be done routinely. However, our large-system algorithm
scales optimally with respect to N and P (the number of proces-
sors) so that as parallel machines become more powerful in
the next few years, algorithms similar to it will enable larger
problems to be studied.

Our earlier efforts in this area [40] produced algorithms
which were fast for systems with up to tens of thousands of
atoms but did not scale optimally with N for larger systems.
We improved on this effort to create a scalable large-system
algorithm in [41]. The spatial-decomposition algorithm we
present here is also unique in that it performs well on relatively
small problems (only a few atoms per processor). In addition,

we have added an idea due to Tamayo and Giles [31] that
has improved the algorithm’s performance on medium-sized
problems by reducing the inter-processor communication re-
quirements. We have also recently developed a new parallel
algorithm (force-decomposition) which we present here in the
context of MD simulations for the first time. It offers the advan-
tages of both simplicity and speed for small to medium-sized
problems.

In the next section, the computational aspects of MD are
highlighted and efforts to speed the calculations on vector and
parallel machines are briefly reviewed. In Sections 3, 4, and 5
we describe our three parallel algorithms in detail. A standard
Lennard—Jones benchmark calculation is outlined in Section 6.
In Section 7, implementation details and timing results for
the parallel algorithms on several massively parallel MIMD
machines are given and comparisons made to Cray Y-MP and
C90 timings for the benchmark calculation. Discussion of the
scaling properties of the algorithms is also included. Finally,
in Section 8, we give guidelines for deciding which parallel
algorithm is likely to be fastest for a particular short-range
MD simulation.

2. COMPUTATIONAL ASPECTS OF MOLECULAR
DYNAMICS

The computational task in a MDD simulation is to integrate
the set of coupled differential equations (Newton’s equations)
given by

dv,
Mg = 2 A, 5+ X D, 1, m) £
1 J ik

ir, _
dr

(N

¥i,

where s, is the mass of atom i, r; and v, are its position and
velocity vectors, F, is a force function describing pairwise
interactions between atoms, F, describes three-body interac-
tions, and many-body interactions can be added. The force
terms are derivatives of energy expressions in which the energy
of atom 7 is typically written as a function of the positions of
itself and other atoms. in practice, only one or a few terms in
equation (1) are kept and F;, Fs, etc. are constructed so as to
include many-body and quantum effects. To the extent that
the approximations are accurate these equations give a full
description of the time-evolution of the system. Thus, the great
computational advantage of classical MD, as compared to ab
initio electronic structure calculations, is that the dynamic be-
havior of the atomic system is described empirically without
having to solve Schrodinger’s equation at each timestep.

The force terms in Eq. (1) are typically non-linear functions
of the distance r; between pairs of atoms and may be either
long-range or short-range in nature. For long-range forces, such
as Coulombic interactions in an ionic solid or biological system,

FAST PARALLEL ALGORITHMS 3

each atom interacts with all others. Directly computing these
forces scales as N? and is too costly for large N. Various
approximate methods overcome this difficulty. They include
particle—mesh algorithms [30] which scale as f(M)N, where M
is the number of mesh poings, hierarchical methods [5} which
scale as Nog(N), and fast-multipole methods [22] which scale
as . Recent parallel implementations of these algorithms [18,
56] have improved their range of applicability for many-body
simulations, but because of their expense, long-range force
models are not commonly used in classical MD simulations.

By contrast, short-range force models are used extensively
in MD and is what we are concerned with in this paper. They
are chosen either because electronic screening effectively limits
the range of influence of the interatomic forces being modeled
or simply to truncate the long-range interactions and lessen the
computational load. In either case, the summations in Eq. (1)
are restricted to atoms within some small region surrounding
atom i. This is typically implemented using a cutoff distance
r., outside of which all interactions are ignored. The work to
compute forces now scales linearly with N. Notwithstanding
this savings, the vast majority of computation time spent in a
short-range force MD simulation is in evaluating the force
terms in Eq. (1). The time integration typically requires only
2-3% of the total time, To evaluate the sums efficiently requires
knowing which atoms are within the cutoff distance r, at every
timestep. The key is to minimize the number of neighboring
atoms that must be checked for possible interactions since
calculations performed on neighbors at a distance » > r, are
wasted computation. There are two basic techniques used to
accomplish this on serial and vector machines; we discuss them
briefly here since our parallel algorithms incorporate similar
ideas.

The first idea, that of neighbor lists, was originally proposed
by Verlet [55]. For each atom, a list is maintained of nearby
atoms. Typically, when the list is formed, all neighboring atoms
within an extended cutoff distance r, = r, + & are stored. The
list is used for a few timesteps to calculate all force interactions.
Then it is rebuilt before any atom could have moved from a
distance r > r, to r < r.. Although & is always chosen to be
small relative {o r., an optimal value depends on the parameters
(e.g., temperature, diffusivity, density) of the particular simula-
tion. The advantage of the neighbor list is that once it is built,
examining it for possible interactions is much faster than check-
ing all atoms in the system.

The second technique commonly used for speeding up MD
calculations is known as the link-cell method [31]. At every
timestep, all the atoms are binned into 3D cells of side length
d, where d = r, or slightly larger. This reduces the task of
finding neighbors of a given atom to checking in 27 bins—the
bin the atom is in and the 26 surrounding ones. Since binning
the atoms only requires O(N) work, the extra overhead associ-
ated with it is acceptable for the savings of only having to
check a local region for neighbors.

The fastest MD algorithms on serial and vector machines

use a combination of neighbor lists and link-cell binning. In
the combined method, atoms are only binned once every few
timesteps for the purpose of forming neighbor lists. In this case
atoms are binned into cells of size d = r,. At intermediate
timesteps the neighbor lists alone are used in the usual way to
find neighbors within a distance r. of each atom. This is a
significant savings over a conventional link-cell method since
there are far fewer atoms to check in a sphere of volume
4 7 #3/3 than in a cube of volume 27+, Additional savings
can be gained due to Newton’s third law by only computing a
force once for each pair of atoms (rather than once for each
atom in the pair). In the combined method this is done by only
searching half the surrounding bins of each atom to form its
neighbor list. This has the effect of storing atom j in atom i’s
list, but not atom # in atom §°s list, thus halving the number of
force computations that must be done.

Although these ideas are simply described, optimal perfor-
mance on a vector machine requires careful attention to data
structures and loop constructs to ensure complete vectorization.
The fastest implementation reported in the literature is that of
Grest et al. [23]. They use the combined neighbor list/link-
cell method described above to create long lists of pairs of
neighboring atoms. At each timestep, they prune the lists to
keep only those pairs within the cutoff distance r.. Finally,
they organize the lists into packets in which no atom appears
twice [45]. The force computation for each packet can then be
completely vectorized, resulting in performance on the bench-
mark problem described in Section 6 that is from 2 to 10 times
faster than other vectorized algorithms [19, 29, 47} over a wide
Tange of simvlation sizes.

In recent years there has been considerable interest in devis-
ing parallel MD algorithms. The natural parailelism in MD is
that the force calculations and velocity/position updates can be
done simultaneously for all atoms. To date, two basic ideas
have been exploited to achieve this parallelism. The goal in
each is to divide the force computations in Eq. (1) evenly across
the processors so as to extract maximum parallelism. To our
knowledge, all algorithms that have been proposed or imple-
mented (including ours) have been variations on these two
methods. References (20, 24, 49] include good overviews of
various techniques.

In the first class of methods a pre-determined set of force
computations is assigned to each processor. The assignment
remains fixed for the duration of the simulation. The simplest
way of doing this is to give a subgroup of atoms to each
processor. We call this method an atom-decomposition of the
workload, since the processor computes forces on its atoms
no matter where they move in the simulation domain. More
generally, a subset of the force loops inherent in Eq. (1) can
be assigned to each processor. We term this a force-decomposi-
tion and describe a new algorithm of this type later in the paper.
Both of these decompositions are analogous to Lagrangian
gridding in fluid simulations where the grid cells (computational
elements) move with the fluid {atoms in MD). By contrast, in

4 STEVE PLIMPTON

the second general class of methods, which we call a spatial-
decomposition of the workload, each processor is assigned a
portion of the physical simulation domain. Each processor com-
putes only the forces on atoms in its sub-domain. As the simula-
tion progresses processors exchange atoms as they move from
one sub-domain to another. This is analogous to an Eulerian
gridding for a fluid simulation where the grid remains fixed in
space as fluid moves through it.

Within the two classes of methods for parallelization of MD,
a variety of algorithms have been proposed and implemented
by various researchers. The details of the algorithms vary
widely from one parallel machine to another since there are
numerous problem-dependent and machine-dependent trade-
offs to consider, such as the relative speeds of computation and
communication. A brief review of some notable efforts follows.

Atom-decomposition methods, also called replicated-data
methods [49] because identical copies of atom information are
stored on all processers, are often used in MD simulations of
molecular systems. This is because the duplication of informa-
tion makes for straightforward computation of additional three-
and four-body force terms. Parallel implementations of state-
of-the-art biological MD programs such as CHARMM and
GROMOS using this technique are discossed in [12, 16]. Force-
decomposition methods which systolicaily cycle atom data
around a ring or through a grid of processors have been used
on MIMD [25, 49] and SIMD machines [15, 57]. Other force-
decomposition methods that use the force-matrix formalism we
discuss in Sections 3 and 4 have been presented in [11, 14].
Boyer and Pawley [11] decompose the force matrix by sub-
blocks, while the method of Brunet et al. [14] partitions the
matrix element by element. In both cases their methods are
designed for long-range force systems requiring all-pairs calcu-
lations {no neighbor lists) on SIMD machines. Thus the scaling
of these algorithms is different from the algorithm presented
in Section 4, as is the way that they distribute the atom data
among processors and perform inter-processor communication.

Spatial-decomposition methods, also called geometric meth-
ods [20, 24}, are more common in the literature because they
are well suited to very large MDD} simulations. Recent parallel
message-passing implementations for the Intel iPSC/2 hyper-
cube [39, 46, 49], CM-5 [8, 51], Fujitsu AP1000 [13], and a
T800 Transputer machine [19] have some features in common
with the spatial-decomposition algorithm we present in Section
5. Our algorithm has the additional capability of working well
in the regime where a processor’s sub-domain is smalier than
the force cutoff distance,

The fastest published algorithms for SIMD machines also
employ spatial-decomposition techniques [52]. However, the
data-parallel programming model, which on SIMD machines
requires processors executing each statement to operate simulta-
neously on a global data structure, introduces inefficiencies
in short-range MD algorithms, particularly when coding the
construction and access of variable-length neighbor lists via
indirect addressing. Thus the timings in [52] for the benchmark

o

~ ol ea] | wl T —[o

— |

FIG. 1. The division of the force matrix among eight processors in the
atom-decomposition algerithm. Processor 2 is assigned N/P rows of the matrix
and the corresponding x, piece of the pesition vector. In addition, it must know

the entire position vector x {shown spanning the columns) to compute the
matrix elements in £,.

problem discussed in Section 6 on a 32K-processor CM-2 are
slower than the single-processor Cray Y-MP timings presented
in Section 7. By contrast, the timings for the message-passing
paraliie! algorithms in this paper and Refs. (8, 13, 51] are consid-
erably faster, indicating the advantage a message-passing para-
digm offers for exploiting parallelism in short-range MD simu-
lations.

3. ATOM-DECOMPOSITION ALGORITHM

In our first parallel algorithm each of the P processors is
assigned a group of N/P atoms at the beginning of the simula-
tion. Atoms in a group nced not have any special spatial relation-
ship to each other. For ease of exposition, we assume that N
is a multiple of P, although it is simple to relax this constraint.
A processor will compute forces on only its N/P atoms and
will update their positions and velocities for the duration of
the simulation, no matter where they move in the physical
domain. As discussed in the previous section, this is an atom-
decomposition (AD) of the computational workload,

A useful construct for representing the computational work
involved in the algorithm is the N X ¥ force matrix F. The
(ij) element of F represents the force on atom i due to atom
J- Note that F is sparse due to short-range forces and skew-
symmetric, i.e. F;; = —F;, due to Newton’s third law. We also
define x and f as vectors of length N which store the position
and total force on each atom. For a 3D simulation, x; would
store the three coordinates of atom {. With these definitions,
the AD algorithm assigns each processor a sub-block of F
which consists of N/P rows of the matrix, as shown in Fig. 1.
If z indexes the processors from 0 to P — 1, then processor
P, computes matrix elements in the F, sub-block of rows. It
also is assigned the corresponding sub-vectors of length N/P
denoted by x, and f,.

Assume the computation of matrix element F; requires only
the two atom positions x; and x;. (We relax this assumption in
Section 8.) To compute all the elements in F,, processor P, will
need the positions of many atoms owned by other processors. In

FAST PARALLEL ALGORITHMS 5

(a) (b)
sets [([ERENR]] [[RERTT
»/ >~
s OTERAEAGLT] [[EEEERD
N N7
Step 3: lo]1]2]3]4]5]6]7]

9] lﬁw 7]

»/

FIG.2. Expandand fold operations among eight processors, each of which
requires three steps. (a) In the expand, processor 2 receives successively longer
shaded sub-vectors from processors 3, 0, and 6; {b) In the fold, processor 2
recgives successively shorter shaded sub-vectors from processors 6, 0, and 3.

Fig. 1 this is represented by having the horizontal vector x at
the top of the figure span all the columns of F. This implies
that every timestep each processor must receive updated atom
positions from all the other processors, an operation called ali-
to-all communjcation. Various algorithms have been developed
for performing this operation efficiently on different parallel
machines and architectures [6, 21, 54]. We use an idea outlined
in Fox et al. [21] that is simple, portable, and works well on
a variety of machines. We describe it briefly because it is the
chief communication component of both the AD algorithms of
this section and the force-decomposition algorithms presented
in the next section.

Following Fox’s nomenclature, we term the all-to-all com-
munication procedure an expand operation. Each processor allo-
cates memory of length & to store the entire x vector. At the
beginning of the expand, processor P, has x,, an updated piece
of x of length N/P. Each processor needs to acquire all the
other processor’s pieces, storing them in the correct places in
its copy of x. Figure 2a illustrates the steps that accomplish
this for an 8-processor example. The processors are mapped
consecutively to the sub-pieces of the vector. In the first commu-
nication step, each processor partners with an adjacent proces-
sor in the vector and they exchange sub-pieces. Processor 2
partners with 3. Now, every processor has a contiguous piece
of x that is of length 2N/P. In the second step, each processor
partners with a processor two positions away and exchanges
its new piece (2 receives the shaded sub-vectors from 0). Each
processor now has a 4N/P-length piece of x. In the last step,
each processor exchanges an N/2-length piece of x with a
processor P/2 positions away (2 exchanges with 6); the entire
vector now resides on each processor.

A communication operation that is essentially the inverse of
the expand will also prove useful in both the atom- and force-
decomposition algorithms. Assume each processor has stored
new force values throughout its copy of the force vector f.
Processer P, needs to know the N/P values in f,, where each
of the values is summed across all P processors, This is known
as a fold operation [21] and is outlined in Fig. 2b. In the first
step each processor exchanges half the vector with a processor

it partners with that is P/2 positions away. Note that each
processor receives the half that it is a member of and sends
the half it is not a member of (processor 2 receives the shaded
first half of the vector from 6). Each processor sums the received
values with its corresponding retained sub-vector. This opera-
tion is recursed, halving the length of the exchanged data at
each step.

Costs for g communication algorithm are typically quantified
by the number of messages and the total volume of data sent
and received. On both these accounts the expand and fold of
Fig. 2 are optimal; each processor performs log,() sends and
receives and exchanges ¥ — N/P data values. Each processor
also performs N — N/P additions in the fold. A drawback is
that the algorithms require O(N) storage On every processor.
Alternative methods for performing all-to-all communication
require less storage at the cost of more sends and receives. This
1s usually not a good trade-off for MD simulations because, as
we shall see, quite large problems can be run with the many
Mbytes of local memory available on current-generation proc-
£5S0rS.

We now present two versions of an AD algorithm which use
expand and fold operations. The first is simpler and does not
take advantage of Newton's third law. We call this Algorithm
Al; it is outlined in Fig. 3 with the dominating term(s} in the
computation or communication cost of each step listed on the
right. We assume at the beginning of the timestep that each
processor knows the current positions of all N atoms; i.e., each
has an updated copy of the entire x vector. Step (1} of the
algorithm is to construct neighbor lists for all the pairwise
interactions that must be computed in block F,. Typically this
will only be done once every few timesteps. If the ratio of the
physical domain diameter D to the extended force cutoff length
r; is relatively small, it is quicker for P, to construct the lists
by checking all N%/P pairs in its F block. When the simulation
is large enough that four or more bins can be created in each
dimension, it is quicker for each processor to bin all N atoms
and then to check the 27 surrounding bins of each of its N/P
atoms to form the lists. This checking scales as N/P but has a
large coefficient, so the overall scaling of the binned neighbor
list construction is recorded as N/FP + N,

In step (2) of the algorithm, the neighbor lists are used to
compute the non-zero matrix elements in F,. As each pairwise

{1) Construct neighbor lists of non-zero interactions in F,
{D < 4r,) All pairs

=
B

i
{D > 4r,) Binning E+N
(2) Compute elements of F,, summing results into f, £
(4) Update atom positions in z, using f, £
(5) Expand z, ameng all processors, result is ¢ N

FIG. 3. Single timestep of atom-decomposition algorithm Al for proces-
sor P.,

6 STEVE PLIMPTON

(1) Construet neighbor lists of non-zero interactions in G,

(I} < 4r,) All pairs e
(£} > 4r,) Binning H+N

(2) Compute elements of G;,
doubly summing results into local copy of f 23‘:5
(3) Fold f among all processors, result is f; N
{4) Update atom positions in z, using f: ;";
N

(5) Expand z, among all processors, result is z

FI1G.4. Single timestep of atom-decomposition algorithm A2 for processor
P,, which takes advantage of Newton’s third law.

force interaction is computed, the force components are
summed into f;, so that F_ is never actually stored as a matrix.
At the completion of the step, each processor knows the total
force f, on each of its N/P atoms. This is used to update their
positions and velocities in step (4). (A step (3} will be added
to other algorithms in this and the following sections.) Finally,
in step (5} the updated atom positions in x, are shared among
all P processors in preparation for the next timestep via the
expand operation of Fig. 2a. As discussed above, this operation
scales as N, the volume of data in the position vector x.

As mentioned above, Algorithm Al ignores Newton's third
law, If different processors own atoms / and j as is usually the
case, both processors compute the (§f) interaction and store the
resuiting force on their atom. This can be avoided at the cost
of more communication by using a modified force matrix G
which references each pairwise interaction only once. There
are several ways to do this by striping the force matrix [48];
we choose instead to form G as follows. Let G;; = F;, except
that G; = O when { > jand i + j is even, and likewise G;; =
0 when | <jand i + j is odd. Conceptually, & is colored like
a checkerboard with red squares above the diagonal set to zero
and black squares below the diagonal also set to zero. A modi-
fied AD algorithm A2 that uses G to take advantage of Newton’s
third law is outlined in Fig. 4.

Step (1) is the same as in Algorithm Al, except only half
as many neighbor list entries are made by each processor since
G, has only half the non-zero entries of F,. This is reflected in
the factors-of-2 included in the scaling entries. For neighbor
lists formed by binning, each processor must still bin all ¥
atoms, but it only needs to check half the surrounding bins of
each of its N/P atoms. In step (2} the neighbor lists are used
to compute the elements of G,. For an interaction between
atoms ¢ and j, the resulting forces on atoms i and j are summed
into both the 7 and j locations of force vector f. This means
each processor must store a copy of the entire force vector, as
opposed to just storing f, as in Algorithm Al. When all the
matrix elements have been computed, f is folded across all P
processors using the algorithm in Fig. 2b. Each processor ends
up with f;, the total forces on its atoms. Steps (4) and (5) then
proceed the same as in Al.

Note that implementing Newton’s third law essentially
halved the computation cost in steps (1) and (2), at the expense
of doubling the communication cost. There are now two com-
munication steps (3) and (5), each of which scale as N. This
will only be a net gain if the communication cost in Al is less
than a third of the overall run time. As we shall see, this will
usuatly not be the case on large numbers of processors, so in
practice we almost always choose Al instead of A2 for an AD
algorithm. However, for small P or expensive force models,
A2 can be faster.

Finally, we discuss the issue of load-balance. Each processor
will have an equal amount of work if each F, or G, block has
roughly the same number of non-zero elements. This will be
the case if the atom density is uniform across the simulation
domain. However, non-uniform densities can arise if, for exam-
ple, there are free surfaces so that some atoms border on vac-
uum, or if phase changes are occurring within a liquid or solid.
This is only a problem for load-balance if the N atoms are
ordered in a geometric sense as is typically the case. Then a
group of N/P atoms near a surface, for example, will have fewer
neighbors than groups in the interior. This can be overcome by
randomly permuting the atom ordering at the beginning of the
simulation, which is equivalent to permuting rows and columns
of F or G. This ensures that every F, or G, will have roughly
the same number of non-zeros. A random permutation also has
the advantage that the load-balance will likely persist as atoms
move about during the simulation. Note that this permutation
need only be done once, as a pre-processing step before begin-
ning the dynamics.

In summary, the AD algorithms divide the MD force compu-
tation and integration evenly across the processors (ignoring
the O(N) component of binned neighbor list construction which
is usually not significant). However, the algorithms require
global communication, as each processor must acquire informa-
tion held by all the other processors. This coramunication scales
as N, independent of P, so it limits the number of processors that
can be used effectively. The chief advantage of the algorithms is
that of simplicity. Steps (1), (2), and (4) can be implemented
by simply modifying the loops and data structures in a serial
or vector code to treat N/P atoms instead of N. The expand
and fold commaunication operations (3) and (5) can be treated
as black-box routines and inserted at the proper locations in the
code. Few other changes are typically necessary to parallelize an
existing code.

4. FORCE-DECOMPOSITION ALGORITHM

Our next paralle] MD algorithm is based on 2 block-decom-
position of the force matrix rather than a row-wise decomposi-
tion as used in the previous section. We call this a force-
decomposition (FD) of the workload. As we shall see, this
improves the O(N) scaling of the communication cost to
O(N/ \/I_’). Block-decompositions of matrices are common in
linear algebra algorithms for parallel machines [9, 27, 32] which

FAST PARALLEL ALGORITHMS : 7

X’B
| L
I I
]
ot] 2] 3
*a 415 |F| 7

8 9 101

12|13] t4 | I3

FIG. 5. The division of the permuted force matrix F' among 16 processors
in the force-decomposition algorithm. Processor Py is assigned a sub-block £}
of size NIVP by NIV'P. To compute its matrix elements it must know the
corresponding N/ V/I_J-lengﬂl pieces x, and xj of the position vector x and
permuted position vector x’.

sparked our interest in the idea, but to our knowledge we are
the first to apply this idea to short-range MD simulations [28,
43, 42]. The assignment of sub-blocks of the force matrix to
processors with a row-wise (calendar) ordering of the proces-
sors is depicted in Fig. 5. We assume for ease of exposition
that P is an even power of 2 and that N is a multiple of P,
although again it is straightforward to relax these constraints.
As before, we let z index the processors from O to P — 1,
processor P, owns and will update the N/P atoms stored in the
sub-vector x,.

To reduce communication (explained below) the block-de-
composition in Fig. 5 is actually of a permuted force matrix
F' which is formed by rearranging the columns of F in a
particular way. If we order the x, pieces in row-order, they
form the usual position vector x which is shown as a vertical
bar at the left of the figure. Were we to have x span the columns
as in Fig. 1, we would form the force matrix as before. Instead,
we span the columns with a permuted position vector x’, shown
as a horizontal bar at the top of Fig. 5, in which the x, pieces
are stored in column-order. Thus, in the 16-processor example
shown in the figure, x stores each processor’s piece in the usual
order (0, 1, 2, 3, 4, ..., 14, 15) while x' stores them as (0, 4,
8,12, 1,5, 9,13, 2, 6, 10, i4, 3, 7, 11, 15). Now the (ij)
element of F’ is the force on atom § in vector x due to atom j
in permuted vector x'.

The F, sub-block owned by each processor P, is of size
(N/ VP) x (N/ VP). To compute the matrix elements in F},
processor P, must know one N/ \/I_’-length piece of each of the
x and x' vectors, which we denote as x, and x;. As these
elements are computed they will be accumulated into corre-
sponding force sub-vectors £, and f;. The Greek subscripts o
and B each run from 0 1o VP — 1 and reference the row and
column position occupied by processor P,. Thus for processor
6 in the figure, x, consists of the x sub-vectors (4-7) and x;
consists of the x’ sub-vectors (2, 6, 10, 14).

Our first FD algorithm F1 is outlined in Fig. 6. As before,
each processor has updated copies of the needed atom positions
X, and xp at the beginning of the timestep. In step (1) neighbor

lists are constructed. Again, for small problems this is most
quickly done by checking all N%P possible pairs in F. For
large problems the N/ P atoms in xp are binned; then the 27
surrounding bins of each atom in x, are checked. The total
number of interactions stored in each processor’s lists is still
O(N/P). The scaling of the binned neighbor list construction
is thus N/P + N/VP. Tn step {2) the neighbor lists are used
to compute the matrix elements in F;. As before the elements
are summed into a local copy of f, as they are computed, so
F; never needs be stored in matrix form. In step (3) a fold
operation is performed within each row of processors so that
processor P, obtains the total forces f; on its N/P atoms. Al-
though the fold algorithm used is the same as in the preceding
section, there is a key difference. In this case the vector f, being
folded is only of length N/ VP and only the VP processors in
one row are participating in the fold. Thus this operation scales
as N/VP instead of N as in the AD algorithm.

In step (4), f; is used by P, to update the N/P atom positions
in x,. Steps (5a)-{5b) share these updated positions with all
the processors that will need them for the next timestep. These
are the processors which share a row or column with P,. First,
in (5a), the processors in row « perform an expand of their x,
sub-vectors so that each acquires the entire x,. As with the
fold, this operation scales as the NIVP length of x, instead of
as N as it did in Algorithms Al and A2. Similarly, in step (5b),
the processors in each column 8 perform an expand of their
x,. As a result they all acquire xz and are ready to begin the
next timestep.

It is in step (5) that using a permuted force matrix F' saves
extra communication. The permuted form of F” causes x. to
be a component of both x, and x; for each P,. This would not
be the case if we had block-decomposed the original force
matrix £ by having x span the columns instead of x’. Then in
Fig. 5 the xz for P, would have consisted of the sub-vectors
(8-11), none of which components are known by Pg. Thus,
before performing the expand in step (5b), processor 6 would
need to first acquire one of these four compenents from another
processor (in the transpose position in the matrix [287]), requir-
ing an extra O(N/P) communication step. The transpose-free
version of the FI atgorithms presented here was motivated by

(1} Construct neighbor lists of non—zero interactions in F’;
{D < 4r,} Al pairs a
(D = 4r,) Binning F+5
{2) Compute elements of F’;, storing results in fo %
(3) Fold f, within row c, result is f, j"}—,
{4} Update atom positions in =, using f, &
(5a} Expand =, within row a, result is ¢, 7”?
(5b) Expand 2, within column 3, result is z’s 7”3

FI1G. 6. Single timestep of force-decomposition algorithm Ft for proces-
sor P..

8 STEVE PLIMPTON

(1) Construct neighbor lists of non-zero interactions-in &',
(D < 4r,) All pairs o
- N
{D > 4r,) Binning =+ 7F
(2) Compute elements of &,
storing results in fo 2nd f'5 %
(3a) Fold #'5 within column g, result is f7, P
(3b) Fold £, within row «, result is f, %
(3c) Subtract f*, from f,, result is total f, ®
(4) Update atom positions in z, using f, g—
. . N
(5a) Expand z, within row o, result is z, 7F
(5b} Expand z, within column 8, tesult is 2’5 é‘%

FG.7. Single timestep of force-decomposition algorithm F2 for processor
P, which tukes advantage of Newton’s third taw.

a matrix permutation for parallel matrix-vector mulitiplication
discussed in Ref. [32].

As with Algorithm A1, Algorithm F1 does not take advantage
of Newton’s third law; each pairwise force interaction is com-
puted twice. Algorithm F2 avoids this duplicated effort by
checkerboarding the force matrix as in the preceding section.
Specifically, the checkerboarded matrix G is permuted in the
same way as F was, to form G'. Note that now the total force
on atom { is the sum of all matrix elements in row i minus the
sum of all elements in column i. The modified FD algorithm
F2 is outlined in Fig. 7. Step (1) is the same as in F1, except
that half as many interactions are stored in the neighbor lists.
Likewise, step (2) requires that only half as many matrix ele-
ments be computed. For each (ij) element, the computed force
components are now summed into two force sub-vectors instead
of one. The force on atom { is summed into f, in the location
corresponding to row i. Likewise, the force on atomj is summed
into fz in the location corresponding to column j. Steps (3a)—
(3c¢) accumulate these forces so that processor P, ends up with
the total force on its N/P atoms. First, in step (3a), the VP
processors in column S fold their ocal copies of f3. The result
is f;. Each element of this N/P-length sub-vector is the sum
of an entire column of G'. Next, in step (3b), the row contribu-
tions to the forces are summed by performing a foid of the f,
vector within each row «. The result is f,, each element of
which is the sum across a row of G'. Finally, in step (3c) the
column and row contributions are subtracted element by ele-
ment to yield the total forces f, on the atoms owned by processor
P.. The processor can now update the positions and velocities
of its atoms; steps 4 and 5 are identical to those of F1.

In the FD algorithms, exploiting Newton’s third law again
halves the computation required in steps (1) and (2). However,
the communication cost in steps (3) and (5) does not double.
Rather there are four expands and folds required in F2 versus
three in F1. Thus, in practice, itis usually faster to use Algorithm
F2 with its reduced computational cost and slightly increased
communication cost rather than F1. The key point is that all
the expand and fold operations in Fi and F2 scale as N/ vp

rather than as N as wag the case in Algorithms Al and A2, As
we shall see, when run on large numbers of processors this
significantly reduces the time that the FD algorithms spend on
communication as compared to the AD algorithms.

Finally, the issue of load-balance is a more serious concern
for the FD algorithms. Processors will have equal work to do
only if all the matrix blocks F; or & are uniformly sparse. If
the atoms are ordered geometrically this will not be the case
even for problems with uniform density. This is because such
an ordering creates a force matrix with diagonal bands of non-
zero elements. As in the AD case, a random permutation of
the atom ordering produces the desired effect. Only now the
permutation should be done as a pre-processing step for all
problems, even those with uniform atom densities.

In summary, Algorithms F1 and F2 divide the MD computa-
tions evenly across processors as did the AD algorithms. But
the block-decomposition of the force matrix means each proces-
sor only needs O(N/ /P) information to perform its computa-
tions. Thus the communication and memory costs are reduced
by a factor of VP versus Algorithms Al and A2. The FD
strategy retains the simpticity of the AD technique; F1 and F2
can be implemented using the same ‘‘black-box’’ communica-
tion routines as Al and AZ2. The FD algorithms also need
no geometric information about the physical problem being
modeled to perform optimally. In fact, for load-balancing pur-
poses the algorithms intentionally ignore such information by
using a random atom ordering.

5. SPATIAL-DECOMPOSITION ALGORITHM

In our final paraliel algorithm the physical simulation domain
is subdivided into small 3D boxes, one for each processor. We
call this a spatial-decomposition (SD) of the workload. Each
processor computes forces on and updates the positions and
velocities of all atoms within its box at each timestep. Atoms
are reassigned to new processors as they move through the
physical domain. In order to compute forces on its atoms, a
processor need only know positions of atoms in nearby boxes.
The communication required in the SD algorithm is thus local
in nature as compared to global in the AD and FD cases.

The size and shape of the box assigned to each processor
will depend on N, P, and the aspect ratio of the physical domain,
which we assume to be a 3D rectangular parallelepiped. Within
these constraints the number of processors in each dimension
15 chosen so as o make each processor’s box as “‘cubic’ as
possible. This is to minimize communication since in the large
N limit the communication cost of the SD algorithm will turn
out to be proportional to the surface area of the boxes. An
important point to note is that in contrast to the link-cell method
described in Section 2, the box lengths may now be smaller or
larger than the force cutoff lengths r, and r,.

Each processor in our SD algorithm maintains two data struc-
tures, one for the N/P atoms in its box and one for atoms in
nearby boxes. In the first data structure, each processor stores

FAST PARALLEL ALGORITHMS : 9

east/west exchanges

CORERE s

b onth/south exchanges
upfdown exchanges
FIG. 8. Method by which a processor acquires nearby atom positions in

the spatial-decomposition algorithm. In six data exchanges all atom positdons
in adjacent boxes in the (a) east/west, (b) nerth/south, and (c) up/down direc-
tions can be communicated.

compilete information—positions, velocities, neighbor lists, etc.
This data is stored in a linked list to allow insertions and
deletions as atoms move to new boxes, In the second data
strocture only atom positions are stored. Interprocessor commu-
nication at each timestep keeps this information current.

The communication scheme we use to acquire this informa-
tion from processors owning the nearby boxes is shown in Fig.
8. The first step (a) is for each processor to exchange informa-
tion with adjacent processors in the east/west dimension. Proc-
essor 2 fills a message buffer with atom positions it owns that
are within a force cutoff length r, of processor 1's box. (The
reason for using r, instead of r, will be made clear below.) If
d << r,, where d is the box length in the east/west direction,
this will be all of processor 2’s atoms; otherwise it will be
those nearest to box 1. Now each processor sends its message
to the processor in the westward direction (2 sends to 1) and
receives a message from the eastward direction. Each processor
puts the received information into its second data structure.
Now the procedure is reversed with each processor sending to
the east and receiving from the west. If d > r;, all needed atom
positions in the east—west dimension have now been acquired
by each processor. If d < r,, the east—west steps are repeated
with each processor sending more needed atom positions to its
adjacent processors. For example, processor 2 sends processor
1 atom positions from box 3 (which processor 2 now has
in its second data structure). This can be repeated until each
processor knows all atom positions within a distance r, of its
box, as indicated by the dotted boxes in the figure. The same
procedure is now repeated in the north/south dimension; see
step (b) of Fig. 8. The only difference is that messages sent to
the adjacent processor now contain not only atoms the processor
owns (in its first data structure), but also any atom positions
in its second data structure that are needed by the adjacent
processor. For d = r, this has the effect of sending three boxes
worth of atom positions in one message as shown in (b). Finally,
in step (c) the process is repeated in the up/down dimension.
Now atom positions from an entire plane of boxes (9 in the
figure) are being sent in each message.

There are several key advantages to this scheme, all of which
reduce the overall cost of communication in our algorithm.
First, for d = r,, needed atom positions from all 26 surrounding
boxes are obtained in just six data exchanges. Moreover, as
will be discussed in Section 7, if the parallel machine is a
hypercube, the processors can be mapped to the boxes in such
a way that all six of these processors will be directly connected
to the center processor. Thus message passing will be fast and
contention-free. Second, when o <C r, so that atom information
is needed from more distant boxes, this occurs with only a few
extra data exchanges, all of which are still with the six immedi-
ate neighbor processors, This is an important feature of the
algorithm which enables it to perform well even when large
numbers of processors are used on relatively small problems.

A third advantage is that the amount of data communicated
is minimized. Each processor acquires only the atom positions
that are within a distance r, of its box. Fourth, all of the received
atom positions can be placed as contiguous data directly into
the processor’s second data structure. No time is spent rearrang-
ing data, except to create the buffered messages that need to
be sent. Finally, as will be discussed in more detail below, this
message creation can be done very gquickly. A full scan of the
two data structures is only done once every few timesteps,
when the neighbor lists are created, to decide which atom
positions to send in each message. The scan procedure creates
a list of atoms that make up each message. During all the other
timesteps. the lists can be used, in lieu of scanning the full
atom list, to directly index the referenced atoms and buffer up
the messages quickly. This is the equivalent of a gather opera-
tion on vector machines.

We now outline our SD algorithm S1 in Fig. 9. Box z is
assigned to processor P,, where z runs from O to P — | as
before. Processor P, stores the atom positions of its N/P atoms
in x, and the forces on those atoms in f. Steps (la)—(1c) are the
neighbor list construction, performed once every few timesteps.
This is somewhat more complex than in the other algorithms
because, as discussed above, it includes the creation of lists of
atoms that will be communicated at every timestep. First, in

{12) Move necessary atoms to new boxes A

(1b) Make lists of ali atoms that will need to be exchanged Fa

(1<) Construct neighbor lists of interaction pairs in box 7
{d < 2r,) All pairs Fif +)
(d > 2Zr,) Binning F+A

{2) Compute forces on atoms in box z, doubly stering results in f, !“-_,'5— +A

{4) Update stom positions =, in box z using f; &

(5) Exchange atom positions across box boundaries

with neighboring pracessors S+ orfa)?

(d < r,) Send N/P positions to many neighbors sd
(d = r,) Send N/P positions to nearest neighbors fus
(d > r,) Send positions near box surface to nearest neighbors (%)2';3

FIG. 9, Single timestep of spatial-decomposition algorithm S1 for proces-
sor P,

10 STEVE PLIMPTON

step (la) the positions, velocities, and any other identifying
information of atoms that are no longer inside box z are deleted
from x, (first data structure) and stored in a message buffer.
These atoms are exchanged with the six adjacent processors
via the communication pattern of Fig. 8. As the information
routes through each dimension, processor P, checks for new
atoms that are now inside its box boundaries, adding them to
its x,. Next, in step (1b), all atom positions within a distance
r,of box z are acquired by the communication scheme described
above, As the different messages arc buffered by scanning
through the two data structures, lists of included atoms are
made. The lists will be used in step (5). The scaling factor A
for steps (1a) and (1b) will be explained below.

When steps (1a) and (1b) are complete, both of the proces-
sor's data structures are current. Neighbor lists for its N/P
atoms can now be constructed in step (1¢). If atoms i and j are
both in box z (an inner-box interaction), the (if) pair is only
stored once in the neighbor list. If / and f are in different boxes
(a two-box interaction), both processors store the interaction in
their respective neighbor lists. If this were not done, processors
would compute forces on atoms they do not own and communi-
cation of the forces back to the processors owning the atoms
would be required. A modified algorithm which performs this
communication to avoid the duplicated force computation of
two-box interactions is discussed below. When 4, the length
of box z, is less than two cutoff distances, it is quicker to
find neighbor interactions by checking each atom inside box z
against all the atoms in both of the processor’s data structures.
This scales as the square of N/P. If 4 = 2r,, then with the shell
of atoms around box z, there are four or more bins in each
dimension. In this case, as with the algorithms of the preceding
sections, it is quicker to perform the neighbor list construction
by binning. All the atoms in both data structures are mapped
to bins of size r,. The surrounding bins of each atom in box z
are then checked for possible neighbors.

Processor P, can now compute all the forces on its atoms in
step (2) using the neighbor lists. When the interaction is between
two atoms inside box z, the resulting force is stored twice in
£, once for atom { and onge for atom j. For two-box interactions,
only the force on the processor’s own atom is stored. After
computing f;, the atom positions are updated in step (4). Finally,
these updated positions must be communicated to the sur-
rounding processors in preparation for the next timestep. This
occurs in step (5) in the communication pattern of Fig. 8 using
the previously created lists. The amount of data exchanged in
this operation is a function of the relative values of the force
cutoff distance and box length and is discussed in the next
paragraph. Also, we note that on the timesteps that neighbor
lists are constructed, step (5) does not have to be performed
since step {1b) has the same effect.

The communication operations in Algorithm S1 occur in
steps (1a), (1b), and (5). The communication in the latter two
steps is identical. The cost of these steps scales as the volume
of data exchanged. For step (5), if we assume uniform atom

density, this is proportional to the physical volume of the shell
of thickness 7, around box z, namely (d + 2r,)® — d° Note
there are roughly N/P atoms in a volume of 4% since d° is the
size of box z. There are three cases to consider. First, if d <
r, data from many neighboring boxes must be exchanged and
the operation scales as 8rl Second, if 4 = r,, the data in all
26 surrounding boxes is exchanged and the operation scales as
27N/P. Finally, if d is much larger than 7,, only atom positions
near the six faces of box z will be exchanged. The communica-
tion then scales as the surface area of box z, namely 6r,
(N/P)3. These three cases are explicitly listed in the scaling
of step (5). Elsewhere in Fig. 9, we use the term A to represent
whichever of the three is applicable for a given N, P, and r,.
We note that step (1a) involves less communication since not
all the atoms within a cutoff distance of a box face will move
out of the box. But this operation still scales as the surface area
of box z, so we list its scaling as A.

The computational portion of Algorithm S1 is in steps (lc),
(2), and (4). All of these scale as N/P with additional work in
steps (1c} and (2) for atoms that are neighboring box z and
stored in the second data structure. The number of these atoms
is proportional to A so it is included in the scaling of those
steps. The leading term in the scaling of steps (1c) and (2) is
listed as N/2P as in Algorithms A2 and F2, since inner-box
interactions are only stored and computed once for each pair
of atoms in Algorithm S1. Note that as d grows large relative
to r, as it will for very large simulations, the A contribution to
the overall computation time decreases and the overall scaling
of Algorithm 51 approaches the optimal N/2P. In essence, each
processor spends nearly all its time working in its own box
and only exchanges a relatively small amount of information
with neighboring processors to update its boundary conditions.

An important feature of Algorithm S1 is that the data struc-
tures are only modified once every few timesteps when neighbor
lists are constructed. In particular, even if an atom moves out-
side box z's boundaries if is not reassigned to @ new processor
until step (1a) is executed [51]. Processor P, can still compute
correct forces for the atom so long as two criteria are met. The
first is that an atom does not move farther than d between two
neighbor list constructions. The second is that all nearby atoms
within a distance r,, instead of r., must be updated every time-
step. The alternative is to move atoms to their new processors
at every timestep [41]. This has the advantage that only atoms
within a distance r, of box z need to be exchanged at all
timesteps when neighbor lists are not constructed. This reduces
the volume of communication since r, < r,. However, now
the neighbor list of a reassigned atom must also be sent. The
information in the neighbor list is atom indices referencing
local memoery locations where the neighbor atoms are stored.
If atoms are continuously moving to new processors, these
local indices become meaningless, To overcome this, our imple-
mentation in [41] assigned a global index (1 to N} to each atorn
which moved with the atom from processor to processor. A
mapping of a global index to local memory must then be stored

FAST PARALLEL ALGORITHMS i1

in a vector of size N by each processor or thé global indices
must be sorted and searched to find the correct atoins when
they are referenced in a neighbor list. The former solution limits
the size of problems that can be run; the latter solution incurs
extra cost for the sort and search operations. We found that
implementing the Tamayo and Giles idea {51] in our algorithm
51 made the resulting code less complex and reduced the com-
putational and communication overhead. This did not affect
the timings for simulations with large N, but it improved the
algorithm’s performance for medium-sized problems.

A modified version of S1 that takes full advantage of New-
ton’s third law can also be devised, call it Algorithm S2. If
processor P, acquires atoms only from its west, south, and
down directions {(and sends its own atoms only in the east,
north, and up directions), then each pairwise interaction need
only be computed once, even when the two atoms reside in
different boxes. This requires sending computed force results
back in the opposite directions to the processors who own the
atoms, as a step (3) in the algorithm. This scheme does not
reduce communication costs, since half as much information
is communicated twice as often, but it does eliminate the dupli-
cated force computations for two-box interactions. An algo-
rithm similar to this is detailed in [13] for the Fujitsu AP1000
machine with results that we highlight in the next section. Two
points are worth noting. First, the overall savings of S2 over
S1 is small, particularly for large N. Only the A term in steps
(1c) and (2} is saved. Second, as we will show in Section 7,
the performance of SD algorithms for large systems can be
improved by optimizing the single-processor force computation
in step {(2). As with vector machines this requires that more
attention be paid to data structures and loop orderings in the
force and neighbor-list construction routines to achieve high
single-processor flop rates. Implementing S2 requires special-
case coding for atoms near box edges and comers to ensure
that all interactions are counted only once [13]} which can hinder
this optimization process.

Finally, the issue of load-balance is an important concern in
any 8D algorithm. Algorithm 81 will be load-balanced only if
all boxes have a roughly equal number of atoms (and sur-
rounding atoms). This will not be the case if the physical atom
density is non-uniform. Additionally, if the physical domain is
not a rectangular parallelepiped, it can be difficult to split into
P equal-sized pieces. Sophisticated load-balancing algorithms
have been developed [26] to partition an irregular physical
domain or non-uniformly dense clusters of atoms, but they
create sub-domains which are irregular in shape or are con-
nected in an irregular fashion to their neighboring sub-domains.
In either case, the task of assigning atoms to sub-domains
and communicating with neighbors becomes more costly and
complex. If the physical atom density changes over time during
the MD simulation, the load-balance problem is compounded.
Any dynamic load-balancing scheme requires additional com-
putational overhead and data movement.

In summary, the SD algorithm, like the AD and FD alge-

rithms, evenly divides the MD computations across all the
processors. Its chief benefit is that it takes full advantage of
the local nature of the interatomic forces by performing only
local communication. Thus, in the large N limit, it achieves
optimal G(N/P) scaling and is clearly the fastest algorithm.
However, this is only true if good load-balance is also achiev-
able. Since its performance is sensitive to the problem geometry,
Algorithm 51 is more restrictive than A2 and F2 whose perfor-
mances are geometry-independent. A second drawback of algo-
rithmn 81 is its complexity; it is more difficult to implement
efficiently than the simpler AD and FD algorithms. In particular
the communication scheme requires extra coding and book-
keeping to create messages and access data received from neigh-
boring boxes. In practice, integrating Algorithm S1 into an
existing serial MD code can require a substantial reworking of
data siructures and code.

6. BENCHMARK PROBLEM

The test case used to benchmark our three parallel algorithms
is a MD preblem that has been used extensively by various
researchers [8, 13, 19, 23, 29, 41, 47, 51, 52]. Tt models atom
interactions with a Lennard—Jones potential energy between
pairs of atoms separated by a distance r as

o=l .

where & and o are constants. The derivative of this energy
expression with respect to r is the £, term in Eq. (1); 7, and
higher-order terms are ignored.

The N atoms are simulated in a 3D parallelepiped with peri-
odic boundary conditions at the Lennard—Jones state point de-~
fined by the reduced density p* = 0.8442 and reduced tempera-
ture T* = 0.72. This is a liquid state near the Lennard—Jones
triple point. The simulation is begun with the atoms on an fcc
lattice with randomized velocities. The solid quickly melts as
the system evolves to its natural liquid state. A roughly uniform
spatial density persists for the duration of the simulation. The
simulation is run at constant N, volume V, and energy E, a
statistical sampling from the microcanonical ensetnble. Force
computations using the potential in Eq. (2) are truncated at a
distance r, = 2.5¢. The integration timestep is 0.00462 in
reduced units. For simplicity we use a leapfrog scheme to
integrate Eq. (1) as in [2]. Other implementations of the bench-
mark [23] have used predictor—corrector schemes; this only
slows their performance by 2-3%.

For timing purposes, the critical features of the benchmark
for a given problem size N are p* and r,. These determine how
many force interactions must be computed at every timestep.
The number of atoms in a sphere of radius r* = r/¢ is given
by 4 7 p*(r*¥/3. For this benchmark, using r. = 2.5¢, each
atom has on average 35 neighbors. If neighbor lists are used,

12 STEVE PLIMPTON

the benchmark also defines an extended cutoff length r, = 2.8
(encompassing about 78 atoms) for forming the neighbor lists
and it specifies ‘that the lists be created or updated every 20
timesteps. Timings for the benchmark are usually reported in
CPU seconds/timestep. 1f neighbor lists are used then the cost
of creating them every 20 steps is amortized over the per
timestep timing.

It is worth noting that without running a standard benchmark
problem it can be difficult to accurately assess the performance
of a parallel algorithm. In particular, it can be misleading to
only compare performance of a parallel version of a code to
the original vectorized or serial code because, as we have
learned from our codes as well as other’s results, the vector
code performance may well be far from optimal. Even when
problem specifications are reported, it can be difficult to com-
pare two algorithm’s relative performance when two different
benchmark problems are used. This is because of the wide
variability in the cost of calculating force equations, the number
of neighbors included in cutoff distances, and the frequency of
neighbor list building as a function of temperature, atom den-
sity, cutoff distances, etc.

7. RESULTS

The parallel algerithms of Sections 3, 4, and 5 were tested
on several MIMD paralle] supercomputers capable of message-
passing programming, an nCUBE 2, an Intel iPSC/860 and
Intel Paragon, and a Cray T3D. The first three machines are at
Sandia; the T3D is at Cray Research. The nCUBE 2 15 a 1024-
processor hypercube. Each processor is a custom scalar chip
capable of about 2 Mflops peak and has 4 Gbytes of memory.
The communications bandwidth between processors is 2
Mbytes/s. Sandia’s iPSC/86(has 64 i860XR processors con-
nected in a hypercube topology. Its processors have 8 Mbytes
of memory and are capabie of about 60 Mflops peak, but in
practice 4-7 Mflops is the typical compiled Fortran perfor-
mance. Communications bandwidth on the iPSC/860 is 2.7
Mbyies/s. The Intel Paragon at Sandia has from 18340 to 1504
processors which are connected as a 2D mesh. The individual
i860XP processors have 16 Mbytes of memory and are about
30% faster than those in the iPSC/860. The Paragon communi-
cation bandwidth is 150 Mbytes/s peak, but in practice it is a
function of message length and data alignment. The Cray T3D
used in this study has 512 processors connected as a 3D torus,
each with 64 Mbytes of memory. Its processors are DEC Alpha
(RISC) chips capable of 150 Mflops peak with typical compiled
Fortran performance of 15-20 Mfiops. The T3D communica-
tions bandwidth is 165 Mbytes/s peak.

Because the algorithms were implemented in standard For-
tran with calls to vendor-supplied message-passing subroutines
(sends and receives), only minor changes were required to
implement the benchmark codes on the different machines. As
described, the algorithms do not specify a mapping of physical
processors to logical computational elements (force matrix sub-

blocks, 3D boxes). An optimal mapping would be tailored to
a particular machine architecture so as tc minimize message
contention (multiple messages using the same communication
wire) and the distance messages have to travel between pairs
of processors that are not directly connected by a communica-
tion wire. The mappings we use are near-optimal and conceptu-
ally simple.

For the atom-decomposition (AD) algorithm we simply as-
sign the processors in ascending order to the row-blocks of the
force matrix as in Fig. 1. The expands and folds then take place
exactly as in Fig. 2. On the hypercube machines (nCUBE and
iPSC/860) this is optimal; on the mesh machines (Paragon and
T3D) some messages will (unavoidably) be exchanged between
non-neighbor processors. For the force-decomposition (FD) al-
gorithm we use a natural calendar ordering of the processors
in the permuted force matrix as in Fig. 5. On a hypercube this
means that each row and column of the matrix is a sub-cube
of processors so that expands and folds within rows and columns
can be done optimally. On a 2D mesh (Paragen), all the commu-
nication s within rows and columns of processors, until we
use s0 many processors that (for example) 16 X 64 physical
processors are configured as a 32 X 32 logical mesh.

For the spatial-decomposition (SD) algorithm on the hyper-
cube machines we use a processor mapping that configures the
hypercube as a 3D torus. Such a mapping is done using a Gray-
coded ordering [21] of the processors. This ensures that each
processor’s box in Fig. [8] has six spatial neighbors (boxes in the
east, west, north, south, up, down directions) that are assigned to
processors which are also nearest neighbors in the hypercube
topology, Communication with these neighbors is thus con-
tention-free. Gray-coding also provides naturally for periodic
boundary conditions in the MD simulation since processors at
the edge of the 3D torus are topological nzarest neighbors to
those on the opposite edge. On the Paragon we assign planes
of boxes in the 3D domain to contiguous subsets of the 2D
mesh of processors; data exchanges in the third dimension thus
(unavoidably) require non-nearest-neighbor communication.
On the Cray T3D the physical 3D domain maps natarally to
the 3D torus of processors.

Timing results for the benchmark problem on the different
parallel machines are shown in Tables I, 11, and III for the AD,
FD, and SD algorithms. A wide range of problem sizes are
considered from N = 500 atoms to &' = 10¢ atoms. The lattice
size for each problem is also specified; there are 4 atoms per
unit cell for the 1nitial-state fec lattices. Entries with a dashed
ling are for problems that would not fit in available memory.
The 100,000,000 atom problem nearly filled the 30 Gbytes of
memory on the 1904-processor Paragon with neighbor lists
consuming the majority of the space.

For comparison, we also implemented the vectorized algo-
rithm of Grest, et al. [23] on single processors of Sandia’s Cray
Y-MP and a Cray C90 at Cray Research. Qur version is only
slightly different from the original Grest code, using a simpler
integrator and allowing for non-cubic physical domains. The

FAST PARALLEL ALGORITHMS

TABLE 1

13

CPU Seconds/Timestep for the Atom-Decomposition Algorithm Al on Several Parallel Machines for the Benchmark Simulation

Cray Cray Intel
Problem size 90 Y-MP Cray T3D nCUBE 2 IPSC/860 Intel Paragon
N Lattice P=1 P =1 P =125 P=35I12 FP=512 P=1024 P=32 P=064 P=512 P=1024
500 5X5X5 00373 00930 00252 00245 00724 00752 0111 00880 00309 00327
2048 BX8xX8 0154 0369 00569 00542 0252 0217 0446 0336 00548 00524
4000 10 x 10 X 10 0232 0610 00512 L0860 0458 0394 .0807 0616 00941 00879
6912 12 X 12 X 12 0425 106 0144 0135 0780 0669 .138 103 0146 0139
10976 14 x 14 X 14 0657 167 0212 0198 124 106 .220 164 0226 0212
16384 16 X 16 X 16 103 .250 315 0287 182 .L55 REY) 249 0313 0287
32000 20 X 20X 20 202 AT0 0578 03517 351 301 635 474 0584 0528
50000 20 % 25 X 25 286 733 0884 0804 546 469 993 740 0947 0869
100000 25 x 25 X 40 592 1.47 73 157 1.09 935 1.98 1.48 479 .16l

Note. Single processor Cray Y-MP and C90 timings using a fully vectorized algorithm are also given for comparison.

TABLE 1I

CPU Seconds/Timestep for the Force-Decompuosition Algorithm F2 on Several Parallel Machines and the Cray Y-MP and C90

Cray Cray Intel
Problem size CH0 Y-MP Cray T3D nCUBE 2 iPSC/860 Inte] Paragon
N Laltice P=1 F=1 P =25 P=3512 P =512 pF=1024 P=32 P=t4 P=312 P=1024
300 S5X53XS 00373 00930 00273 00276 00592 00347 00980 00695 00312 .00332
2048 EXBXEY 0154 0369 00442 00372 0110 00864 0359 0250 00414 00379
6912 12X 12 X 12 0423 106 R133%: 00795 0245 0179 112 0759 00960 00810
10976 14 X 14X |4 0657 167 073 0114 0394 0277 180 122 0140 Olle
32000 20 x 20 % 20 202 470 .0422 0270 0890 .0603 521 349 0356 0277
50000 20X 25 % 25 .286 33 0637 .0398 162 12 828 544 0556 0424
100,000 25 X 25 X 40 592 1.47 122 0746 251 A7 175 110 1 D810
500,000 50 X 50 X 50 2.86% 7.33* 596 381 247 1.66 — 6.04 392 402
1,000,000 50 X 50 X 100 5.92% 14.7% 1.23 780 — 3.29 — — 1.24 836
TABLE 11
CPU Seconds/Timestep for the Spatial-Decomposition Algorithm S1
Cray Cray Intel
Problem size €90 Y-MP Cray T3D nCUBE 2 iPSC/860 Intel Paragon
N Lattice P =1 P=1 P=725% P =512 P =312 P=1024 P =32 =64 P =1024 P = 1904
500 5XS5%X5 00373 00930 00432 00446 0130 0119 |29 0106 00564 00634
2048 EFXEHB 0154 0369 00432 00356 (173 0148 0321 0189 L0509 00330
692 12X 12X 12 0425 106 04765 00568 0374 .0250 (768 0436 0065 1 00328
16384 16 X 16 X 16 103 250 0121 00747 0630 .0407 161 (0874 L0813 00610
50000 20 X 25 % 25 286 733 0289 .oLe? 160 0967 420 224 0174 0125
100,000 25 X 25 X 40 5392 1.47 .0309 0293 298 165 798 Al8 0282 0171
500,000 50 X 30 X 50 2.86* 7.33% 212 108 1.17 B30 3.66 1.88 111 0640
1,600,000 50 X 50 X 100 5.92*% 14.7* 405 205 2.23 1.17 — 3.08 199 113
5,000,000 100 x 100 X 125 28.6% 73.3% 1.86 994 10.2 5.28 — — 914 .504
10,000,000 100 X 125 x 200 59.2% 147% 1.85 —_ 10.2 — — 1.77 861
50,000,000 200 * 250 % 250 296> 735* — — — — — 8.54 4.66
100,000,000 250 ¥ 250 X 400 2% 1470% — — — —

- 911

14 STEVE PLIMPTON

TABLE IV

CPU Seconds/Timestep for Optimized Versions of the Spatial-
Decomposition Algorithm S1 on the Iatel Paragon for the
Benchmark Simulation

Foriran Assembler
N P=1840 P = 3680 P =1840 P = 3680
6912 00541 00472 00458 00400
16384 00693 00526 00520 00437
50000 0124 00824 00818 00610
100,000 0194 0119 0121 00835
500,000 0708 0404 0413 {0256
1,000,000 127 0713 0732 {0450
5,000,000 535 299 306 190
10,000,000 1.00 562 578 357
50,000,000 4.80 2.69 2.76 1.75
100,000,000 942 5.36 5.50 3.53

Note, The first twoe columns are for the Fortran version of the code run in
single- and dual-processor mode. The second two columns are timings with
an assemnbler version of the force-computation subroutine, again for single-
and dual-processor mode,

timings in Ref. [23] were for a Cray X-MP. We believe these
timings for the faster Y-MP and C90 architectures are the fastest
that have been reported for this benchmark problem on a single
processor of a conventional vector supercomputer. They show
a C90 processor to be about 2.5 times faster than a Y-MP
processor for this algorithm. The starred Cray timings in the
tables are estimates for problems too large to fit in memory on
the machines accessible to us. They are extrapolations of the
N = 10° system timing based on the observed linear scaling
of the Cray algorithm. It is also worth noting that ideas similar
to those used in the parallel algorithms of the previous sections
could be used to create efficient parallel Cray codes for multiple
processors of a Y-MP or C90. For example, a speedup of 6.8
on an 8-processor Cray Y-MP has been achieved by Astig and
Kremer with the Grest et al. algorithm [35].

Finally, we have also implemented specially optimized ver-
sions of the SD algorithm on the Intel Paragon. Performance
numbers for these codes are shown in Table 1V. The first
enhancement takes advantage of the fact that each “*node” of
the Paragon actually has two 1860 processors, one for computa-
tion and one for communication. An option under the SUNMOS
operating system [33] run on Sandia’s Paragon is to use the
second processor for computation. This requires minor coding
changes to stride the loops in the force and neighbor routines
so that each processor can perform independent computations
{without writing to the same memory location) simultaneously.
The speedup due to this enhancement is less than a factor of
two, since both processors are competing for bus bandwidth to
memory. The second enhancement was more work; it involved
writing an i860 assembler version (see Acknowledgments) of
the most critical computational kernel, the force computation,

which takes 70—80% of the time for large problems. The assem-
bler routine is about 2.5 times faster than its Fortran counterpart,
yielding an overall speedup of about 1.75 on large problems.
These enhancements can be combined {minus an overhead
factor due to bus competition) to yield the fastest version of
the code with a speedup of nearly three over the original For-
tran code.

The paralle] timings in all of the tables for the nCUBE and
Intel machines are for single-precision (32-bit) implementations
of the benchrmark, The Y-MP, C90, and T3D timings are for
64-bit arithmetic since that is the only option. MD simulations
do not typically require double precision accuracy since there
is a much coarser approximation inherent in: the potential model
and the integrator. This is particularly true of Lennard—-Jones
systems since the ¢ and o coefficients are only specified to a few
digits of accuracy as an approximate model of the interatomic
energies in real material. With this said, double precision tim-
ings can be easily estimated. The processors in the nCUBE
and Intel machines compute about 20-30% slower in double-
preciston arithmetic than single, so the time spent computing
would be increased by that amount. Communication costs in
each of the algorithms would essentially double, since the vol-
ume of information being exchanged in messages would in-
crease by a factor of two. Thus, depending on the fraction of
time being spent in communication for a particular ¥ and P
{see the scaling discussion below), the overall timings typically
increase by 20-50% for double-precision runs.

The tables show the parallel machines to be competitive with
the Cray Y-MP and C90 machines across the entire range of
problem sizes for all three parallel algorithms. The FD algo-
rithm is fastest for the smallest problem sizes; SD is fastest for
large N. For the Fortran version of the code the Cray T3D is
the fastest of the parallel machines on a per-pracessor basis;
overall the Intel Paragon is the fastest. On the 1840 dual-
processor nodes of the Paragon (3680 i860 processors) the
assembler-optimized SD code is 415 times faster than a single
Y-MP processor on the largest problem sizes and 165 times
faster than a C90 processor. A surprising result is that the
parallel machines are competitive with a single processor of
the Cray machines even for the smallest problem sizes. One
typically does not think of there being enough parallelism to
exploit when there are only a few atoms per processor.

The floating point operation {flop) rate for the parallel codes
can also be estimated, Computing the force between two inter-
acting atoms requires 23 flops with an average of 27.6 interac-
tions per atom (taking into account Newton’s third law) com-
puted each timestep for the benchmark. This gives a total flop
rate for the Fortran code of 6.97 Gflops for the 100,000,000
atom problem on 1904 processors of the Paragon. The dual-
processor assembler-optimized version runs the same problem
at 18.0 Gflops on 1840 nodes. By comparison the C90 processor
is running at 107 Mflops for large N though its hardware perfor-
mance monitor reports a rate of over 200 Mflops. The difference
is that both the vector and parallel codes perform flops to set

FAST PARALLEL ALGORITHMS 15

up neighbor lists and check atom distances that end up outside
the force cutoff; we are not counting them in these figures since
they do not contribute to the answer.,

Large N timings for this benchmark on other parallel ma-
chines are discussed in [8, 13, 19, 52], all for SD algorithms.
The best timings on SIMD machines are reported by Tamayo
¢t al. [52] who implemented several data-parallel algorithms
on a 32K-processor CM-2 (1024 floating point processors).
Their fastest algorithm ran at 0.57 s/timestep for a N = 18,000
atom system, about a factor of two slower than the single
processor Y-MP timing in the tables here. Brown er al. [13]
detail a message-passing algorithm similar to the S2 algorithm
discussed in Section 5. For a N = 729,000 atom system (at a
slightly smaller density of p* = 0.8) run on 512 processors of
the Fujitsu AP1000 they report a time of 0.927 s/timestep.
Esselink ef al. [19] report a time of 0.86 s/timestep fora N =
39,304 atom system (at a smaller density of p* = 0.7) on a
400 processor T800 Transputer system. Finally, Beazley ef al.
[81 report timings of 0.44 s/timestep for a N = 1,024,000 atom
svstem and 16.55 s/timestep for a N = 65,536,000 atom system
(both at a higher density of p* = 1.0) run on a 1024-node CM-
5. (Their current timings are about 15% faster [37]). The latter
run is at a rate of 28 Gflops, but a large fraction of these flops
are computed on atoms outside the force cutoff and they count
35 flops/interaction. Their algorithm does not use neighbor lists
s0 as to enable faster performance of assembler routines on the
CM-5 vector units; without the memory overhead for neighbor
lists they have simulated systems with up to 180,000,000 atoms,

The timings in Table I show that communication costs have
begun to dominate in the AD algorithm by the time hundreds
of processors are used. There is little speed gained by doubling
the number of processors. By contrast timings in Table IT show
the FD algorithm is speeding up by roughly 30% when the
number of processors is doubled. The timings for the largest
problem sizes in Table III evidence excellent scaling properties
even on relatively small problems when there are only a few
atoms per processor. Doubling P nearly halves the run times

F B—® Atom-Decomposition
*—& Force-Decomposition

4—& Spatial-Decomposition

100 I O—8a Cray Y-MPA

G—o Cray 590/

CPU Time (sec/timestep)

L 4

3 10* 10° 108
N (# of atoms)

FiG. 10. CPU timings (seconds/timestep) for the three parallel algorithms
on 1024 processors of the Intel Paragon for different problem sizes. Single-
processor Cray Y-MP and C90 1imings are also given for comparison.

102

a WO Atom-Decomposition
el #0 Faorce-Decomposition
A n Spatial-Decomposition

CPU Time (sechimesiep)
B

4| * Cray Y-MPA1
10
* Cray C80N1
-2 | N
10 IR T S
1 2 4 8 16 32 64 128 256 5121024

P {# of processors)

FIG. 11. CPU timings (seconds/timestep) for the three parallel algorithms
on the nCUBE 2 for different numbers of processors on the benchmark simula-
tion with N = 10,976 atoms for two different force cutoff lengths. Single-
processor Cray Y-MP and C90 timings are shown for comparisen.

for a given N. Similarly, as N increases for fixed P, the run
times per atom actually become faster as the surface-to-volume
ratio of each processor’s box is reduced. We note, however,
that this scaling depends on uniform atom density within a
simple domain such as the rectangular parallelepiped of the
benchmark problem.

The algorithm’s relative performance can be better seen in
graphical form using data from all three tables. Figure 10 shows
a 1024-processor Paragen’s performance on the benchmark
simulation as a function of problem size. Single processor
Y-MP and C90 timings are also included. The linear scaling
of all the algorithms in the large N limit is evident. Note that
FD is faster than AD across all problem sizes due to its reduced
communication costs. On this many processors, the SD algo-
rithm has significant overhead costs for small ¥. This is because
the d/r; ratio is so small that each processor has to communicate
with a large number of neighboring processors to acquire all
its needed information. As & increases, this overhead is reduced
relative to the computation performed inside the processor’s
box, and the algorithm’s performance asymptotically ap-
proaches its optimal G(N/P) performance. Thus there is a cross-
over size N at which the SD algorithm becomes faster than
FD. For this benchmark it is at about four atoms/processor
indicating that the spatial algorithm is still working quite well
even when the box size is small relative to the force cutoff.

In Fig. 11 we plot the nCUBE 2’s performance on the N =
10,976 atom benchmark as a function of number of processors
for two different cutoff lengths, 2.50 (solid symbols) and 5.0¢
(open symbols). Single processor Y-MP and C90 timings are
also shown for the 2.50 benchmark. The dotted lines are the
maximum achievable speed of the nCUBE if any of the algo-
rithms were 100% efficient, Parallel efficiency is defined as the
run time on 1 processor divided by the quantity (7 X run time
on P processors). Thus if the 512-processor timing is 256 times
as fast as the one-processor timing, the algorithm is 50% effi-
cient. On small numbers of processors communication is not

16 STEVE PLIMPTON

a significant factor and all the algorithms perform similarly;
as P increases, the algorithms become less efficient. The AD
algorithm falls off most rapidly due to the O(N) scaling of its
communication. For the 2.5¢ case, FD is next most efficient
due to its G(N/ \/F) communication scaling, When hundreds
of processors are used, even the SD algorithm becomes less
efficient since now the box size is small relative to the force
cutoff distance for this N. For the longer cutoff case (more
typical of what might be used in an organic system simulation
with Coulombic forces), the FI} algorithm is actually faster
than SD for all P. This is because the communication cost in
the AD and FD algorithms is independent of the cutoff length,
unlike the SD case.

Using one-processor timings as reference points, parallel
efficiencies can be computed for all the algorithms or, equiva-
lently, the fraction of time spent in communication in each of
the entries in Tables I, II, and III. Running the largest problems
that fit in memory on a single processor of each of the parallel
machines gave timings on the Cray T3D, nCUBE 2, and Intel
iPSC/860 and Paragon of 823 X 107° 9.15 X 1074
2.03 X 107 and 1.57 x 107 s/timestep/atom, respectively.
By comparison, single-processor Cray Y-MP and C90 timings
are 1.47 X 107° and 5.92 % 107 s/timestep/atom. Combining
these results with the Table HI timings for the ¥ = 1,000,000
atom simulation show the SD algorithm S1 has a parallel effi-
ciency of 76% and 77% on 1024 processors of the nCUBE 2
and Intel Paragon and 78% on 512 processors of the Cray T3D.,
The largest simulations on all three of these machines are about
90% parallel efficient. To put these numbers in context, consider
that on 1024 processors, a million-atom simulation requires
each processor to have 1000 atoms in its box. But the range
of the cutoff distance in the benchmark is such that 2600 atoms
from surrounding boxes are still needed at every timestep to
compute forces, Thus the SD algorithm S1 is 75-80% efficient
even though two-and-a-half times as many atom positions are
communicated as are updated locally by each processor.

Finally, we highlight the scalability of the different parallel
algorithms in the large N limit. Table V shows the overall
scaling of the computation and communication portions of the
five algorithms. This is constructed from the scaling entries for
the various steps of the algorithms in Figs. 3, 4, 6, 7, and 9,
using large N values when there is an option. Some coefficients
are included to show contrasts between the various algorithms.
The amount of memory required per processor to store atom
position and force vectors is also listed mn the table.

Computation in the AD algorithm Al scales as N/P + N,
where the second term is for binned neighbor list construction.
The coefficient on this term is small so it is usually not a
significant factor. The communication scales as N, as does the
memory to store all atom positions. By contrast, AD algorithm
A2 implements Newton’s third law so its leading computational
term is cut in half. Now the communication cost is doubled
and the entire force vector must be stored on each processor
as well.

TABLE V

Scaling Properties of All Five Parallel Algorithins as a Function of
Problem Size N and Number of Processors P

Algorithm Computation Communication Memory
Al Nown N N
P
A2 NN IN IN
2P
N
F1 N + 3i 3.‘!\;
PP VP VP
F2 N 4 N 4_N_ 4£
2P NP VP VP
ST N LA (N N NP
— = = = =
3p br, (P) 6r, P 7 + 6r, =

Note. Run time scaling for the computation and communication portions of
the algorithms as well as their per-processor memory requirements are listed.

FD algorithms F1 and F2 have the same computational com-
plexity as Al and A2, respectively, except that the binning for
neighbor list construction now scales as N/ \/P, again not typi-
cally a significant factor. In F1 there are three expands/folds
for a communication cost of 3N/VP. Similarly F2 requires
four expands/folds. Implementing F1 requires storing two atom
position sub-vectors and one force sub-vector, all of length
NIVP; F2 requires an extra force sub-vector.

Computation in the SD algorithm S1 scales as N/2P since
it implements Newton’s third law for interactions between atom
pairs inside a processor’s box. For large N problems there is
an extra factor for computations performed on nearby atoms
within a distance r, of the box faces. The number of these
atoms is proportional to the surface area of the box face (N/
P¥*) times r, for each of the six faces. The communication in
Algorithm S1 scales as the same factor as do the memory
requirements for storing the nearby atoms. Additionally, G(N/
P) memory must be allocated for storing the atoms in a proces-
sor’s box,

8. APPLICATION OF THE ALGORITHMS

While the benchmark problem discussed in Sections 6 and
7 is relatively simple, the parallel algorithms described in this
paper can be used in more complex MD simulations with little
modification. For example, the following common MD calcula-
tions can be carried out in parallel within the framework of
any of the three algorithms: on-the-fly computation of thermo-
dynamic quantities and transport coefficients, triggering of
neighbor list construction by atom movement, multiple-time-
scale methods [36, 50], more sophisticated time integrators,
and other statistical ensembles besides the constant NVE ensem-
ble of the benchmark, e.g., constant NPT simulations.

Virtually any form of short-range interatomic force function
can be implemented within the AD or SD framework. The FD

FAST PARALLEL ALGORITHMS 17

algorithm is less general in this respect. If higher-order (3-body,
4-body, etc.) interactions are included in the force model, one
must ensure that some processor knows sufficient information
to compute any given interaction. An implementation for the
embedded atom method (EAM) potentials [17] used in model-
ing metals and metal alloys is discussed in [43] and a FD
implementation of the many-body forces (angular, torsional)
encountered in molecular simulations is presented in [42]. We
know of no simple way to use the FD idea for the more general
case of simulations with dynamically changing connectivities,
such as for silicon three-body potentials. Long-range pairwise
forces can be computed directly with O(N?) work in the force-
matrix formalism of the AD and FD algorithms [28]. By con-
trast, the SD algorithm would now require long-range commu-
nication and become inefficient.

In practical terms, how does one choose the “*best’” parallel
algorithm for a particular MD simulation? Assuming that one
knows the ranges of & and P that the simulation will be run
with, we find the following four guidelines helpful:

{A) Choose an AD algorithm only if the communication
cost is expected to be negligible. In this case simplicity out-
weighs the inefficient communications. Typically this will only
be true for small P (say P = 16 processors) or very expensive
forces where computation time dominates communication time.

(B) A FD approach will be faster than AD in all other
cases. Both the AD and FD algorithms scale linearly with &
for fixed P. This means that for a given P, the parallel efficiency
of cither algorithm is independent of N. Moreover, as P doubles,
the communication time in the AD algorithm is unchanged,
while in the FD algorithm it decreases by a factor of /2. Thus,
once P is large enough that FD is noticeably faster than AD,
it will remain faster as P increases, independent of N. For the
benchmark problem this was the case for P = 16 processors.

(C) For a given P, the scaling of the SD algorithm is not
linear with N. This is due to the fact each processor’s box
has volume &* = N/P, but it conmputes and communicates
information in an extended volume of (4 + 2r.)}, where r, is
a neighbor list cutoff distance. For small N communication and
overhead costs are significant and the efficiency is poor; for
large N the efficiency is asymptotically optimal (100%). Thus
when compared to a FD approach, there will be some crossover
point as N increases for a given P where a SD algorithm
becomes faster. In the benchmark the crossover size was several
thousands of atoms on hundreds of processors, as in Fig. 10.
In general, the crossover peint is a function of the complexity
of the force model, force cutoff distances, and the computational
and communication capabilities of a particular paralle! machine,
It will also be a function of P. For example, if the force cutoff
distance is reduced to r. = 2" g to model a fluid with purely
repulsive forces, the parallel efficiency of the FD algorithm
will decrease since the computational work per processor de-
creases, but the communication cost of the algorithm is indepen-
dent of the cutoff length. By contrast, the efficiency of the SD

approach is not as dependent on the cutoff length since both
computation and communication costs decrease in this case.
Thus the net effect of a shorter cutoff distance is to reduce the
crossover size at which SD becomes faster. The converse case
of increasing the cutoff distance was illustrated in Fig. 11.

(D) The preceding paragraph assumes that the computation
in the S algorithm is perfectly load-balanced. Load-imbalance
imposes an upper bound on the efficiency that a SD algorithm
can achieve. For example, biological simulations of proteins
solvated by water may be performed in a vacuum so that the
atoms in the simulation fill a roughly spherical volume. If this
domain is treated as a cube and split into P pieces then the
sphere fills only a 7/6 fraction of the cube and a 50% parallel
inefficiency results. The net effect of load-imbalance is to in-
crease the crossover size at which a SD algorithm becomes
faster than a FD approach. In practice, we have found that the
FD algorithm can be faster or at least quite competitive with
SD algorithms for molecular simulations of up to many tens
of thousands of atoms f42].

9. CONCLUSION

We have detailed the construction and implementation of
three kinds of parallel algorithms for MD simulations with
short-range forces. Each of them has advantages and disadvan-
tages. The atom-decomposition algerithm is simplest to imple-
ment and load-balances automatically. But because it performs
all-to-all communication, its communication costs begin to
dominate its run time on large numbers of processors. The force-
decomposition algorithm is also relatively simple, although it
often requires some pre-processing to assure load-balance. It
also works well independently of the physicul problem’s geom-
etry. Its O(N/ VP) scaling is better than that of the AD algo-
rithm, but is not optimal for large simulations. The spatial-
decomposition algorithm does exhibit optimal O(N/P) scaling
for large problems. However, it suffers more easily from load-
imbalance and is more difficult to implement efficiently.

In Section 7 we discussed the performance of the parallel
algorithms on several different parallel computers. The results
show that current-generation parallel machines are competitive
with multi-processor Cray-class vector supercomputers for
short-range MD simulations. More generally, these algorithms
can be implemented on any parallel computer that allows its
processors to execute code independently of each other and
exchanges data between processors by standard message-pass-
ing techniques. Most of the current-generation parailel super-
computers support this mode of programming, including the
nCURBE 2, lntel Paragon, TMC CM-5, and Cray T3D machines.
Several features of the algorithms take advantage of the flexi-
bility of the message-passing model for MIMD machines, in-
cluding the code to build and access variable-length neighbor
lists via indirect addressing, to select/pack/unpack data for
messages, and to efficiently exchange variable-length data
structures between sub-groups of processors as in Figs. 2 and 8.

18 STEVE PLIMPTON

Finally, we are confident that these algorithms or versions
based on similar ideas will continue to be good choices for
MD simulations on parallel machines of the future. Optimizing
their performance for next-generation machines will require
improving their single-processor computational performance.
As the individual processors used in parallel machines become
faster and more complex, higher computational rates can only
be achieved by writing pipelined or vectorized code, as high-
lighted in Section 7 for the Intel Paragon. Thus, many of the
data reorganization and other optimization techniques that have
been developed for MD on vector machines (23] will become
important for parallel implementations as well.

ACKNOWLEDGMENTS

I am indebted to Bruce Hendrickson of Sandia for many useful discussions
regarding MDD algorithms, particularky with respect to the force-decomposition
techniques described here. Early runs of the algorithms on the Intel iPSC/860
were performed at Oak Ridge National Labs; Al Geist was especially helpful
to me in this effort. Early runs of the algorithms were also perfermed on the
Intel Delta at Cal Tech under the auspices of the Concurrent Supercomputing
Consortiumn; [thank Sharon Brunet of the CSC staff for timely assistance in
this regard. 1 also thank Gary Grest at Exxon Research for sending me a copy
of his vectorized Cray algorithm and have benefited from discussions with
Pablo Tamayo at Thinking Machines Corporation concemning parallel MD
techniques. John Mentz and Barry Bolding of Cray Research performed or
assisted with the Cray C90 and T3D runs discussed in Section 7. Brent Leback
of Intel SSD wrote the i860 assembler code discussed in the same section.
Additionally, I thank several of these individuals for suggesting improvements
10 this manuscript. Finally, the SUNMOS operating system on the Intel Paragon
boosts both the user-available memory and the message-passing performance
for these algorithms. I thank Stephen Wheat of Sandia and the rest of the
SUNMOS team for creating a lightweight, scalable OS.

REFERENCES

1. F. F. Abrahamn, Computational statistical mechanics: Methodology, appli-
cations and supercomputing, Adv, in Phys, 35, 1 {1986).

2. M.P. Allen and D.). Tildesley, Computer Simulution of Liguids {Clarendon
Press, Oxford, 1987).

3. D. 1. Auverbach, W, Paul, A. F. Bakker, C. Lutz, W. E. Rudge, and F. F.
Abraham, A special purpese paratlel computer for molecular dynamics:
Motivation, design, implementation, and application, J. Phys. Chem. 91,
4881 (1987).

4. A. F. Bakker, G. H. Gilmer, M. H. Grabow, and K. Thompson, A special
purpose computer for molecular dynamics calculations, J. Comput. Phys.
90, 313 (1990).

5. J. E. Barnes and P. Hut, A hierarchical O(N log N) force-calculation
algorithm, Nature 324, 446 (1986).

6. M. Bammett, L. Shuler, R. van de Geijn, S. Gupta, D. Payne, and J. Watts,
Interprocessor collective communication library (Intercom), in Proc. Scal-
able High Performance Computing Conference-94, (IEEE Comput. Soc.
Press, Washington, DC, 1994), p. 357.

7. M. Baskes, M. Daw, B. Dodson, and S. Foiles, Atomic-scale simulation
in materials science, Materiuls Res. Soc. Bull., Feb., 28 (1988).

8. D. M. Beazley, P. 8. Lomdahl, N. Gronbech-Jensen, and P. Tamayo,
A high performance communication and memory caching scheme for
molecular dynamics on the CM-5, in Proc. 8th International Parallel
Processing Symposium, {IEEE Comput. Scc. Press, Washington, DC,
1594), p. 800.

9. R, H. Bisseling and J. G. G. van de Vorst, Parailel LU decomposition on
a transputer network, Lecture Notes in Computer Science, Yol. 384 edited
by (G. A. van Zee and J. G. G. van de Vorst (Springer-Verlag, New York/
Berlin, 1989), p. 61.

10. B. M. Boghosian, Computational physics on the Connection Machine,
Comput. Phys., Jan/Feb {1990).

11. L. L. Boyer and G. 8. Pawley, Molecular dynamics of clusters of particles
interacting with pairwise forces using a massively parallel computer, J.
Comput. Phys. 78, 405 (1988).

12. B. R. Brooks and M. Hodeiéek, Parallelization of CHARMM for MIMD
machines, Chem. Design Automat. News 7, 16 (1692),

13. D. Brown, J. H. R. Clarke, M. Okuda, and T. Yamazaki, A domain
decomposition parallelization strategy for molecular dynamics simulations
on distributed memery machines, Comput. Phys. Commun. 74, 67 (1993).

14.]. P. Brunet, A. Edelman, and J. P. Mesirov, Hypercube algorithms for
direct N-body solvers for different granularitics, $JAM J. Sci. Stat. Comput.
14(5), 1143 (1993).

15. 1. P. Brunet, I. P. Mesirov, and A. Edelman, An optimal hypercube direct
N-body solver on the Connection Machine, in Proc. Supercomputing '90
(IEEE Comput. Soc. Press, Washington, DC, 1990), p. 748.

16. T. W. Clark,J. A, McCammon, and L. R. Scott, Parallel molecular dynam-
ics, in Proc. 5th SIAM Conference on Parallel Processing for Scientific
Computing (SIAM, Philadelphia, 1992), p. 338.

I7. M. §. Daw and M. 1. Baskes, Embedded-atom method: Derivation and
application to impurities, surfaces, and other defecis in metals, Phys. Rev.
B 29, 6443 {1984).

18. H. Q. Ding, N. Karasawa, and W. A, Goddard III, Atomic level simulations
on a million particles: The cell multipole method for Coulomb and London
interacttons, J. Chem. Phys. 97, 4300 (1992).

19. K. Esselink, B. Smit, and P. A_]. Hilbers, Efficient parallel implementation
of molecular dynamics on a toroidal network, L. Parallelizing strategy, J.
Compur. Phys. 106, 101 (1993).

20. D. Fincham, Parallel computers and molecular simulation, Mol, Simul. 1,
1 (1987).

21. G. C. Fox, M. A. Johnson, G. A. Lyzenga, 8. W. Otte, J. K. Salmon, and
D. W. Walker, Solving Problems on Concurrent Processors: Volume 1
(Prentice Hall, Englewood Cliffs, NJ, 1988).

22. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations,
J. Comput. Phvs. 73, 325 (1087).

23. G. S. Grest, B. Diinweg, and K. Kremer, Vecterized link cell Fortran
code for melecular dynamics simulations for a large number of particles,
Comput. Phys. Commun. 55, 269 (1989).

24. 8. Gupta, Compating aspects of molecular dynamics simulations, Comput.
Phys. Commun. 70, 243 (1992).

25. H. Heller, H. Grubmuller, and K. Schulten, Molecular dynamics simulation
on a parallel computer, Mol. Simul. §, 133 (19900,

26. B. Hendrickson and R. Leland, An improved spectral graph partitioning
algorithm for mapping parallel computations, SIAM 1. Sci. Stat. Comput.,
10 appear. '

27. B. Hendrickson and D. Woemble, The torus-wrap mapping for dense matrix
calculations on massively parallel computers, STAM J. Sci. Stat. Comput.,
{0 appear.

28. B. A. Hendrickson and §. J. Plimpton, Parallel inany-body simulations
without all-to-all communication, J. Parallel Distrib. Comput. 1o appear.

29. D. M. Heyes and W. Smith, Inf Q. Comput. Simul. Condensed Phases
{Daresbury Lab) 28, 63 (1988).

30. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles
(Adam Hilger, New York, 1988},

31. R. W. Hockney, S. P. Goel, and J. W. Eastwood, Quiet high-resolution
computer models of a plasma, J. Comput. Phys. 14, 48 (1974).

FAST PARALLEL ALGORITHMS

32. 1. G. Lewis and R. A. van de Geijn, Distributed memory matrix-vector

33.

34.

3.
36.

I

38.

39.

40.

41.

42,

43,

multiplication and conjugate gradient algorithms, in Proc. Supercomputing
'93 (IEEE Comput. Soc. Press, Washington, DC, 1993), p. 484,

A.B. Maccabe, K. 8. McCurley, R. Riesen, and . R. Wheat, SUNMOS for
the intel Paragon: A brief user’s guide, in Proceedings, Intel Supercomputer
User’s Group. 1994 Annual North America User’s Conference.

J. J. Morales and M. J. Nuevo, Comparison of link-cell and neighbourhood
tables on a range of computers, Comput. Phys. Commun. 69, 223 (1992).
N. Auig and K. Kremer, unpublished, 1993

A. Nakano, P. Vashishta, and R. K. Kalia, Parallel multiple-time-step
molecular dynamics with three-body interaction, Comput. Phys. Commun.
77, 303 (1993).

p. s
1994,
8. 8. Patnaik, R. Pachter, S. J. Plimpten, and W, W, Adams, Molecular
dynamics simulation of a cyclic siloxane based liquid crystalline material,
in Electrical, Optical, and Magnetic Propertics of Organic Solid State
Materials, Vol. 328, Materials Research Society Symposium Proc., Fall
1993, p- 711,

M. R. S. Pinches, D. I. Tildesley, and W. Smith, Large-scale molecular
dynamics on parallel computers using the link-cell algorithm, Mol. Simul.
6, 51 (1991). .

S.). Plimpton, Molecular dynamics simulations of short-range force sys-
tems on 1024-node hypercubes. in Proc. 5th Distributed Memory Comput-
ing Conference (IEEE Comput. Soc. Press, Washington, DC, 1990), p. 478.
S.J. Plimpton, Scalable paraltel molecutar dynamics on MIMI} supercom-
putets, in Proc. Scalable High Performance Computing Conference-92
(IEEE Comput. Soc. Press, Washington, DC, 1992), p. 246.

S. J. Plimpton and B. A. Hendrickson, A New Parallel Method for Molecu-
tar Dynamics Simulation of Macromolecular Systems, Technical Report
SAND94-1862, Sandia National Laboratories, Albuquerque, NM, 1594;
submitted.

lomdahl, los alamos national labs, persenal communication,

§. 1. Plimpton and B. A, Hendrickson, Parallel molecular dynamics with
the embedded atom method, in Materials Theory and Modeling, Vol. 291
Matertals Research Society Symposium Proc., Fall 1992, p. 37.

. 8. 1. Plimpton and E. D. Wolf, Effect of interatomic potential on simulated

45.

46.

47,

48,

49.

50.

51,

52.

53.

54.

55,

56.

57.

19

grain-boundary and bulk diffusion: A molecular dynamics study, Phys.
Rev. B 41, 2712 (1990).

D. C. Rapaport, Large-scale molecular dynamics simulation using vecior
and parallel computers, Comput. Phys. Rep. 9, (1988).
D. C. Rapaport, Multi-millien particle molecular dynamics. Il. Design

considerations for distributed processing, Comput. Phys. Commun. 62,
217 (1991).

M. Schien, Structure of a simple molecular dynamics Fortran program
optimized for Cray vector processing computers, Comput. Phys, Commun.
52, 175 (1989).

H. Schreiber, O. Steinhauser, and P. Schuster, Paralle] molecular dynamics
of biomolecules, Parallel Comput. 18, 557 (1992},

W. Smith, Molecular dynamics on hypercube parallel computers, Comput.
Phys. Commun. 62, 225 (1691].

W. B. Street, D. I. Tildesley, and G. Saville, Multiple timestep methods
in molecular dynamics, Mol. Phys. 35, 639 (1978).

P, Tamayo and R. Giles, A parallel scalable approach to short-range molec-
ular dynamics on the CM-5, in Proc. Scalable High Performance Comput-
ing Conference-92 (IEEE Compaut. Soc. Press, Washington, DC, 1992),
p. 240.

P. Tamayo, I. P. Mesirov, and B. M. Boghesian, Parallel approaches to
short-range molecular dynamics simulations, in Proc. Supercomputing ‘91
(IEEE Comput. Soc. Press, Washington, DC, 1991), p. 462.

P. A, Taylor, I. 8. Nelson, and B. W, Dodson, Adhesion between atomically
flat metallic surfaces, Phys. Rev. B 44, 5834 (1991).

R. van de Geijn, Efficient global combine opetations, in Proc., 6th Distrib-
uted Memory Computing Conference (IEEE Comput. Soc. Press, Washing-
ton, DC, 1991), p. 291.

L. Verlet, Computer experiments on classical fluids. I, Thermodynamical
properties of Lennard—Jones molecules, Phys, Rev. 159, 98 (1967).

M. 8. Warren and J. K. Salmon, A paralle! treecode for gravitational
N-body simulations with up to 20 million particles, Bull. Amer. Astronom.
Soc. 23, 1345 (1991).

A. Windemuth and K. Schulten, Molecular dynamics simulation on the
Connection Machine, Mol. Simul. 5, 353 (1991),

