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We present a method for optimizing transition state theory dividing surfaces with support vector
machines. The resulting dividing surfaces require no a priori information or intuition about re-
action mechanisms. To generate optimal dividing surfaces, we apply a cycle of machine-learning
and refinement of the surface by molecular dynamics sampling. We demonstrate that the machine-
learned surfaces contain the relevant low-energy saddle points. The mechanisms of reactions may
be extracted from the machine-learned surfaces in order to identify unexpected chemically relevant
processes. Furthermore, we show that the machine-learned surfaces significantly increase the trans-
mission coefficient for an adatom exchange involving many coupled degrees of freedom on a (100)
surface when compared to a distance-based dividing surface. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4707167]

I. INTRODUCTION

One of the great challenges of computational chemistry
and materials science is the disparity in time scales between
atomic vibrations and the material properties that evolve on
a human time scale. Molecular dynamics (MD) cannot reach
the time scales required to observe the rare events which gov-
ern phenomena such as bond-breaking during catalysis and
grain boundary migration.

The most successful framework for bridging the time
scale gap is transition state theory (TST).1–3 Within the TST
approximation, the description of rare events is transformed
from a problem of kinetics to one of equilibrium statistical
mechanics by constructing a hypersurface that separates a re-
actant state from product states. The rate of reaction can be
approximated by the equilibrium flux out of this hypersurface
as

kTST = 1
2
⟨δ(x − x∗)|v̄|⟩R, (1)

where ⟨. . . ⟩ R is a Boltzmann average over the reactant region,
x = x* is the location of the TS surface, and v̄ is the aver-
age velocity through the surface. For TST to be a meaningful
approximation, the TS surface should capture the bottleneck
regions through which reactive trajectories pass.

Given that there are at least as many crossing points as
reactive trajectories, the TST rate is always greater than or

a)Also at Theory Department, Fritz Haber Institute of the Max Planck
Society, Berlin, Germany.
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c)Present address: Institute of Pharmaceutical Sciences, ETH Zurich, Zurich,
Switzerland.

d)Electronic mail: henkelman@mail.utexas.edu.

equal to the true rate. From the relationship

kTrue = κ kTST, (2)

the transmission coefficient, κ ∈ [0, 1], quantifies the fraction
of successful trajectories which cross the TS surface.

In any complex system, however, finding such a TS is
a difficult problem. Even for systems in which the reaction
mechanisms are known, an analytic expression of the TS sur-
face can be intractable. In a suboptimal surface, not all cross-
ing points will lead to reactive trajectories, and reactive tra-
jectories may also re-cross the surface.

The challenge of choosing a TS dividing surface is shown
in Fig. 1. Consider a case where there is a priori knowledge
that a product state P1 is separated from the reactant state
R along the x direction. Choosing x = x* is then a logical
choice for a transition state (TS1). Such a surface, however, is
demonstrably suboptimal for separating R and P1; even if x*
is variationally optimized, regions of the surface lie in either
the reactant or product states. An even more serious problem
is the presence of the second product state, P2, which could
go undetected when calculating the TST rate through TS1.

A variational TS can only be as good as the parametriza-
tion of the surface. If the system reacts via an unexpected
mechanism, the TST approximation will fail. The problem of
an assumed reaction coordinate is particularly severe in the
case of a condensed phase system where there can be many
possible reactions involving collective degrees of freedom.4–6

Obtaining a dividing surface that contains all of the low-
energy processes is a formidable task.

Significant effort has been expended in order to deter-
mine the nature of the optimal dividing surface. Although
the dividing surface is frequently defined along a reaction

0021-9606/2012/136(17)/174101/8/$30.00 © 2012 American Institute of Physics136, 174101-1
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FIG. 1. Transition state TS1, placed along an assumed reaction coordinate x,
separates reactant R and product P1 but fails to describe the transition to P2.
TS2 is a surface which can be determined by training a machine to distinguish
a set of points as reactant or product.

coordinate in configuration space, it is possible to define a di-
viding surface in the higher dimensional phase space such that
trajectories which cross the surface never recross.7–11 This
definition seeks to identify the minimal set of states that all re-
active trajectories must encounter and all non-reactive trajec-
tories never encounter.12, 13 This method is formally exact but,
in practice, requires perturbative expansions and coordinate
transforms in order to apply to higher-dimensional systems.14

Ideally, one wishes to avoid having to perform a compu-
tationally expensive coordinate transformation and perturba-
tive expansion around some critical point. Support vector ma-
chines (SVMs) allow for one to quickly and efficiently map
observed data from configuration space into a higher dimen-
sional space in which the data are linearly separable without
having to explicitly determine the mapping function. SVMs
are a powerful machine learning technique for estimating non-
linear relationships in data. Most often used for classification
tasks, SVMs have been applied in engineering for search, im-
age processing, and intrusion detection, as well as in genetics,
bioinformatics, neuroscience, physics, and chemistry.15–17

Here, we demonstrate the application of an SVM to cre-
ate a TS surface which divides reactants from products with-
out parametrization or physical intuition. Figure 1 illustrates
a set of points that are identified as reactant or product by fol-
lowing the steepest descent paths to the local minimum. The
TS surface TS2 represents the hypersurface which divides the
points by this classification.

II. COMPUTATIONAL METHODS

A. Support vector machines

The SVM method, as proposed by Cortes and Vapnik,18

was originally an algorithm for binary classification. It con-
structs a plane that separates the data classes with a maximum
margin between the two classes. As long as the data are lin-
early separable, as in Fig. 2(a), no coordinate transformation
is required in order to generate this plane. If, as in Fig. 2(b),
the data are not linearly separable, then an implicit projection
via a kernel function into a high-dimensional feature space is
required.

(a) (b)

(d)(c)

F(x) = 

Input xi

φ

Linearly
Separable

F(x) = 

Non-Linearly
Separable

FIG. 2. For data that is linearly separable (a), the SVM method seeks to
identify the plane which separates the data with a maximum margin. When
the data are not linearly separable (b), a transform to a higher dimensional
space where the data are linearly separable (c) is required through the use of
a kernel. A decision function which properly classifies all data points (d) is
produced through a linear combination of support vectors, which are circled
in black. Note that the explicit form of φ is not required to produce F (x).

For data xi and xj that are defined on input space I, the
kernel function K must satisfy K(xi , xj ) = ⟨φ(xi),φ(xj )⟩S ,
where φ is a transform from I to the feature space S. This fea-
ture space is a high-dimensional reproducing kernel Hilbert
space in which the data are separable.15, 16 In this case, ⟨ · , · ⟩S

refers to the inner product in S. The so-called “kernel trick” is
that one does not need to define an explicit form for φ as long
as K(xi , xj ) is an inner product in S.

When applied to a chemical system, the input vectors for
the SVM are the position coordinates of the atoms. For a given
set of n input vectors x1, . . . , xn ∈ R3N , each xi denotes a vec-
tor of the position coordinates of the N atoms in the system.
With corresponding class labels y1, . . . , yn ∈ {−1, 1} for prod-
ucts or reactants, the SVM classification function is given by

F (x) =
n∑

i=1

αiyiK(xi , x), (3)

where K denotes the nonlinear kernel function.19

The expansion in Eq. (3) extends over all data points.
We note, however, that only few αi are non-zero; these are
the coefficients of the support vectors that define the surface.
The parameters αi are computed by solving the underlying
dual optimization problem for soft-margin SVMs, wherein
the quantity

n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαj yiyjK(xi , xj ) (4)

is maximized subject to the constraints

n∑

i=1

αiyi = 0, C ≥ αi ≥ 0. (5)
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In Eq. (5), the regularization parameter C controls the number
of support vectors used to define F (x) and, thus, controls the
complexity of the surface in order to avoid over-fitting.

This function is demonstrated graphically in Figs. 2(c)
and 2(d). The explicit form of φ, which is the coordinate trans-
formation to the feature space in which the data are linearly
separable, is difficult to obtain. One, however, does not need
to know the form of φ but instead uses the kernel to deter-
mine the inner product in feature space. For the set of data in
Fig. 2(d), complete classification of all data may be achieved
by generating a surface of the form of Eq. (3) with only four
support vectors that define the surface. In this manner, one
does not need to explicitly compute the transform into feature
space but instead uses the kernel function in order to quickly
determine similarity.

We use a Gaussian radial basis function (RBF) kernel
given by

K(xi , xj ) = e−γ ∥xi−xj ∥2
, (6)

where the parameter γ > 0 controls the kernel width and,
thus, the smoothness of the underlying nonlinear classifier.20

The RBF kernel is chosen due to its stationarity and its perfor-
mance in classification as compared to polynomial, sigmoidal,
or linear kernels. The RBF kernel function has the added ben-
efit that the kernel value is guaranteed to fall on [0, 1], which
is not always the case for other kernels.

The parameter γ represents the influence a single data
point has on its local environment. γ is related to σ , the width
of the Gaussian, by γ = 1

2σ 2 . As γ grows large, the width of
the associated Gaussian function shrinks. As γ → ∞, the fea-
ture space consists of vectors that are orthogonal to one an-
other, and the kernel matrix approaches the identity matrix.
In contrast, smaller γ values indicate that all data points con-
tribute to the classification. In our methodology, γ has units
of 1/Å2 and C is unitless.

Our SVM implementation is based on the scikits.learn
python package21 and libsvm.22 The parameters C and
γ are determined using a grid search and 5-fold cross-
validation.15, 23 In this parameter optimization step, the data
are first split into five equally sized folds, and each fold serves
once as the test fold with the remaining folds as the training
data. The underlying optimization problem is solved on the
training data, and the resulting SVM is evaluated on the test
fold. The combination of C and γ with best performance in
classifying the test folds is then chosen as the optimal set of
parameters. In this manner, one does not need to know the
structure of the potential energy surface, especially in regards
to the curvature of the saddle point regions, in order to opti-
mize the parameters of the SVM surface.

B. Generating input vectors

There are many suitable ways to generate xi and yi; our
SVM method only requires one to accumulate points in con-
figuration space and assign a label corresponding to either re-
actant or product. The full class of methods for sampling a po-
tential energy surface in a computationally efficient way with
either dynamics or Monte Carlo is too broad to be fully sum-

marized in this work. We note that only a sampling method
and a rule for classification is required. We present a simple
scheme for generating an optimal dividing surface either with
a priori information or without. In order to classify points, we
have chosen to follow steepest descent paths from that point
to the local minimum. This classification is computationally
efficient and identifies the basin of attraction for a given reac-
tant state.

The first step is to collect an initial set of points in
both reactant and product states in order to generate an ini-
tial guess of the surface. If one has a priori information
about reaction mechanisms, points may be collected from
sampling an assumed dividing surface. If no such informa-
tion is present, high-temperature MD trajectories may be
initiated from which points xi are collected regularly and
minimized in order to determine yi. We employ the Bussi-
Donadio-Parrinello thermostat in order to sample the canoni-
cal ensemble.24

After generating an initial guess for the dividing surface,
we sample the surface using a harmonic potential and MD.
The SVM is then retrained on the new data set, and a new sur-
face is generated. The process is iterated with multiple sam-
pling/learning cycles. We note that this process is inherently
parallelizable and that multiple independent trajectories result
in faster convergence by simultaneously sampling the surface.

By iterating through the re-learning process, the problem
of identifying a dividing surface is transformed from one of
parametrization to one of sampling, which is a significantly
more tractable problem. If the low free energy regions of the
surface have been fully sampled, then the surface will contain
all of the relevant bottleneck regions.

C. Molecular dynamics sampling

Once a dividing surface of the form from Eq. (3) has been
generated, MD sampling is necessary to calculate TST rates
through the surface, to refine the surface through increased
sampling, or to determine the free energy of the surface. At a
given point in configuration space, the value of the decision
function and the gradient of the decision function are known
analytically. In order to generate a spring force that attracts the
MD trajectory to the F (x) = 0 surface, the Cartesian distance
to the closest point on this surface is required. This informa-
tion is not known when only given a local gradient and the
value of F (x).

In order to determine a distance in Cartesian space from
a hypersurface defined in a high-dimensional Hilbert space,
we first expand the decision function F (x) in a Taylor series
around the point x0, which lies on the dividing surface, by

F (x) = ∇F (x0) · 'x + O('x2). (7)

The dividing surface F (x0) = 0 represents the inflection of
F (x) between reactants and products, so we assume that the
local curvature vanishes, ∇2F (x0) ≈ 0. The gradients of the
SVM are calculated according to Baehrens et al.25 The signed
Cartesian distance to the surface is, thus,

D(x) = F (x)
∥∇F (x)∥

. (8)
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A spring force to the decision surface from this point in the
direction of the unit gradient can then be applied

fsurf(x) = −k
F (x)∇F (x)
∥∇F (x)∥2

, (9)

where k is a spring constant for the restraint.
The system is initially placed on the surface and an MD

trajectory is initiated with a total force given by

f (x) = −∇U (x) + fsurf(x). (10)

In this manner, sampling is restricted to the region near the de-
cision surface. Using only local information, the new spring
force points along the smallest Cartesian distance to the point
at which F (x) = 0. In addition, the spring force may be cho-
sen in the conventional units of energy per Cartesian distance.

III. RESULTS AND DISCUSSION

A. Low-dimensional systems

1. The Voter97 potential

We first apply this method to the two-dimensional
Voter97 potential,26 which has the form

U (x, y) = cos(2πx)(1 + 4y) + 1
2

(2πy)2. (11)

This potential is periodic in the x direction and harmonic in y.
Periodic boundary conditions are appropriately set such that
there are three minima and three saddle points. Trajectories
may exit from one edge of the simulation box and come back
at the opposite edge without a discontinuity in either the po-
tential or the force.

If the center basin is chosen as the reactant, the optimal
dividing surface consists of two vertical lines through the sad-
dle points (dashed lines in Figs. 3(b) and 3(d)). The initial
high-temperature MD sampling and the resulting SVM sur-
face is shown in Figs. 3(a) and 3(b). For this surface, 100
points were collected via high-temperature MD. Sampling the
surface with a force given by Eq. (10) and re-learning a new
SVM surface in an iterative fashion results in the converged
surface shown in Figs. 3(c) and 3(d). The final surface has
600 total points, the later 500 of which were collected in sets
of 15 at a time before re-learning the surface.

From Fig. 3(a), the initial fraction of points which are
support vectors is 15%; however, with increased sampling,
this fraction of points with a non-zero α in Eq. (3) steadily
trends downward. By the time the initial data set has grown to
600 points, the fraction of points which are support vectors is
only 2.6%. The absolute number of support vectors between
the two surfaces is essentially the same. The difference is that
with more sampling, the vectors align more closely along the
ridge between basins. Since they are closer together, the value
of γ increases to reduce their range. In the limit of complete
sampling, the decision function approaches a step function at
the ridge surrounding the saddle region. Additional sampling
then does not change the structure of the surface.

The structure of the resulting surface can, however, be
dependent on the spring constant which is used to sample the
potential energy surface. As shown in Fig. 4(a), a weak spring

(c)

(a) (b)

(d)

saddle
points

FIG. 3. The process of sampling/re-learning a hypersurface is demonstrated
graphically for the Voter97 potential. An initial surface (a), defined by a set of
support vectors (b), is generated from high temperature dynamics. The final
surface (c) is defined by a small set of support vectors (d) along the reaction
bottlenecks.

constant will not hold the trajectory to the SVM surface. Al-
though the resulting dividing surface is still reasonably accu-
rate, Fig. 4(b) indicates that a serious problem may occur in
this sampling scheme. The norm of the gradient in the basins
becomes quite small. If one has chosen a small spring con-
stant in order to use a larger MD time step, the trajectory
could relax into this basin and encounter a very large force
due to the gradient norm in the denominator of Eq. (9). In
contrast, a large spring constant, although requiring a smaller
time step, does not allow for the trajectory to reach a region
where the gradient is small. The resulting surface, shown in
Fig. 4(c), has the support vectors aligned narrowly along the
ridge around the saddle points.

(a)

k = 5

(c)

k = 100

(d)

k - free

FIG. 4. On the Voter97 potential, a weak spring constant (a) results in a wider
spacing of support vectors and can cause sampling issues due to the small
norm of the gradient (b) near the basin. In contrast, a large spring constant (c)
results in a narrower spacing of the support vectors. A spring-free sampling
method (d) produces a similar surface without explicitly defining a spring
constant.
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TABLE I. Parameters for SVM dividing surfaces of the Voter97 potential.

C γ /Å2 Support vectors

k = 5 0.067 0.5 34.6%
k = 100 25 000 1.0 5.3%
k-free 67 000 1.0 4.6%

In Fig. 4(d), we demonstrate a spring-free data collection
method. Instead of refining the surface with MD sampling,
the same high temperature MD trajectories are initiated. Each
time the sign on the decision function F (x) changes, a new
data point is collected. After the same number of re-learning
cycles as in the two spring-sampled surfaces, the SVM sur-
face is nearly indistinguishable from a surface sampled with
a spring. Due to the elevated temperature, the distribution of
support vectors along the ridge is wider for the spring-free
method as compared to the lower-temperature surface with a
strong spring. This result demonstrates that the spring-based
sampling method detailed in Sec. II C is not strictly neces-
sary to generate a refined dividing surface. Our method sim-
ply requires a logical and systematic method for collecting
and classifying configuration space points.

The parameters that generate the surfaces in Fig. 4 are
summarized in Table I. When the spring constant is too weak
to hold the trajectory to the dividing surface, no support vec-
tors can reach the true ridge between states. The surface, then,
has a smaller γ , which corresponds to a larger distance be-
tween points and a wider Gaussian kernel. When the data
points are collected at the ridges, the width of the Gaussian
kernel drops and significantly fewer points are required to ac-
curately identify the ridges between states.

2. A mobile adatom on a frozen surface

A more challenging test is to find the mechanism of dif-
fusion for an adsorbed Al atom on an Al(100) surface with an
embedded-atom potential.27 Starting with a frozen (100) sur-
face on which only the adatom can move, as shown in Fig. 5,
there are four saddle points between the four surface atoms
which define the minimum. Unlike the Voter97 potential, the
ridges which contain the saddle points intersect at maxima
on top of each of the four frozen atoms. In this case, a sin-
gle high-temperature trajectory can sample all regions of the
dividing surface.

Specifically, a full surface is generated by running high-
temperature MD in order to determine an initial surface and
then iterated through 50 learning cycles with 10 points col-
lected per cycle. This process is shown in Fig. 5. The sin-
gle high-temperature trajectory, restricted to the surface by
Eq. (10), is able to fully sample all regions of the surface. With
sufficient sampling, the support vectors completely enclose
the reactant’s basin of attraction, as shown in Fig. 5(d). This
result demonstrates that, given sufficient sampling, the SVM
method can provide complete information about the structure
of the potential energy surface.

Although suitable for this low-dimensional case, sam-
pling the potential energy surface with a single high-

(d)

(e)

(b)

(c)

(f)

(a)

saddle
points

FIG. 5. For an Al adatom on a frozen Al(100) surface (a), an initial high-
temperature MD surface (b) may be refined through high temperature sam-
pling (c) to produce a set of support vectors (d) that align surrounding the
basin of attraction for the reactant state. Parallel tempering sampling for the
initial surface produces a dividing surface (e) that is refined at the saddle
points such that the crossing points (f) align along the true dividing ridges
(purple lines). All small points indicate locations of the adatom, with respect
to the four nearest surface atoms shown.

temperature trajectory scales very poorly with dimensionality.
A single high temperature trajectory may take a long time to
sample all regions of a high-dimensional surface. More im-
portantly, a high-dimensional system may have many degrees
of freedom that are almost entirely uncoupled from the modes
that contribute to reactive trajectories. Single-trajectory, high
temperature sampling will fail for these cases.

Ideally, sampling would be restricted to the low-energy
bottleneck regions through which all reactive trajectories must
pass at the temperature of interest. This goal can be accom-
plished with parallel tempering, in which many trajectories
are initiated at different temperatures. After a given number
of MD steps, swaps of configurations are attempted with a
probability of acceptance given by

p = min[1, exp((U (xi) − U (xj ))(βi − βj ))], (12)

where β = 1/kBT. When parallel tempering is implemented,
the resulting dividing surface, shown in Fig. 5(e), is not
well defined along the ridges. Importantly, however, parallel

Downloaded 09 May 2012 to 128.125.12.14. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



174101-6 Pozun et al. J. Chem. Phys. 136, 174101 (2012)

tempering sampling of the SVM surface concentrates support
vectors in the low free energy bottleneck regions around the
saddle points. The optimal choice between local and global
accuracy of the SVM surface will depend upon the appli-
cation. Even in this low-dimensional case, however, parallel
tempering generates a dividing surface that is optimized in
the important regions and requires fewer support vectors than
would be required to enclose the entire basin of attraction.

B. High-dimensional systems

Higher-dimensional systems present a greater challenge
for the SVM method. The degrees of freedom grow as 3N
with N free particles in the system; however, not all of these
extra modes contribute information about successful reac-
tion pathways. Due to equipartition, each mode has an av-
erage of 1

2kBT in thermal energy. The displacements along
these modes steadily grow with temperature but only con-
tributes noise to the SVM decision surface rather than mech-
anistic information. This extra information steadily increases
the ∥xi − xj∥ term in Eq. (6). We demonstrate that the SVM
classifier can still generate a dividing surface that outperforms
several purely geometric dividing surfaces.

1. A mobile adatom on a frozen (100) surface coupled
to harmonic oscillators

In order to demonstrate the dimensionality problem, we
return to the case of the adatom on a frozen (100) surface. The
only information necessary to represent this system as an in-
put vector, x, is the Cartesian positions of the adatom. If this
system were coupled to a series of fictitious harmonic oscil-
lators, the reactive pathways would still be defined only by
the adatom’s position but the full Gaussian kernel would have
noise corresponding to the uncoupled modes of the harmonic
oscillators.

In Table II, we present this case of a mobile adatom on
a frozen (100) surface. The system is coupled to a set of
independent harmonic oscillators with a spring constant of
0.25 eV/Å. The set of data points, shown in Fig. 5(e) at 100 K
is augmented by a random number drawn from the position
distribution of an oscillator at the same temperature. These
extra points do not affect the classification of each point as
reactant or product, yi; however, the structure of the optimal
dividing surface is affected.

In Table II, we note several trends. The adatom on the
frozen surface without any added oscillators has a γ of 5 Å−2,
which is a narrow Gaussian kernel surrounding each support
vector. The sharp Gaussian width implies that points are close
to one another in input space and that the kernel matrix is
sparse. With only three oscillators coupled to this system–
analogous to a free atom in the bulk away from the surface–
the γ parameter shrinks due to the greater distance between
points in input space. The extra noise added by the oscillators
also creates a steady downward trend in the fraction of points
in the data set which are accurately classified during 5-fold
cross-validation.

TABLE II. Optimal SVM surfaces for a mobile adatom on a frozen (100)
surface coupled to harmonic oscillators.

Oscillators γ /Å2 Support vectors Classification success

0 5.0 32% 93%
3 0.75 32% 90%

15 0.01 37% 85%
50 0.002 48% 74%

As the number of oscillators coupled to the system in-
creases, the parameter γ steadily trends downward and the
number of support vectors increases. The SVM machinery
requires a wider Gaussian kernel in order to average out
the noise dimensions and to classify the points properly.
With an increasing number of oscillators, the Gaussian width
grows and the kernel matrix becomes dense. The scaling with
dimensionality presents a problem for optimizing a divid-
ing surface for a high-dimensional system; however, as we
demonstrate in Sec. III B 2, the SVM surface still outperforms
purely geometric dividing surfaces.

2. A mobile adatom on a relaxed (100) surface

When the previously frozen surface is allowed to relax,
the dimensionality of the dividing surface increases from 3 to
603 for a cell containing four layers that are free to move atop
two frozen layers in a 20 × 20 Å cell. Not all of these de-
grees of freedom are strongly coupled to the diffusion of the
adatom, however. Similar to the case of coupled oscillators,
the vibrations of a bulk atom are essentially uncoupled from
the vibrational modes that point toward a successful reac-
tion. Despite this dimensionality issue, we show that the
SVM method can outperform a purely geometric dividing
surface without any a priori information about the reaction
pathways.

An optimal SVM dividing surface maximizes the trans-
mission coefficient κ , which is calculated as in Lu et al.28 κ

values for the SVM method are compared in Table III to those
for dividing surfaces that are defined by (i) the adatom dis-
placement from its equilibrium position in the reactants and
(ii) the maximum fractional displacement of the adatom to
neighboring atoms, as in the bond-boost method.29 In the case
of the frozen Al(100) surface, the escape pathways are well

TABLE III. κ values for different dividing surfaces.

Al(100) surface at 100 K
Frozen surface Free surface

Spherical dividing surface 0.95 0.42
Bond-boost dividing surface >0.95 0.35
SVM dividing surface 0.97 0.62

Al(100) surface at 400 K
Frozen surface Free surface

Spherical dividing surface 0.92 0.22
Bond-boost dividing surface 0.95 0.11
SVM dividing surface 1.00 0.31
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FIG. 6. For an adatom on a relaxed (100) surface, the saddle point for the
exchange mechanism (a) displaces nearby surface atoms. The components of
the negative mode are shown with arrows. The SVM crossing points cluster at
each escape bottleneck, and the centroids of these clusters (b) correctly iden-
tify the exchange saddle with a local gradient that points along the negative
mode.

defined by only the adatom displacement, so all three surfaces
easily divide reactants and products.

In contrast, when the atoms of the Al(100) surface are
allowed to relax in addition to the adatom, the dimension-
ality of the system increases tremendously. As shown in
Fig. 6(a), the negative mode at the exchange saddle point,
which is the dominant escape pathway at low temperature,
involves many coupled degrees of freedom. An accurate TS
surface must identify this coupled motion.

The SVM correctly identifies both the configuration of
the saddle points as well as the direction of the negative mode
at each saddle. The increase in κ noted in Table III is the result
of the mechanistic information contained in the SVM surface.
An average crossing point through the SVM surface, shown
in Fig. 6(b), has a structure which closely approximates the
true saddle point for the exchange mechanism. At this point,
the gradient of the SVM surface points substantially along
the unstable mode of the true saddle point; the inner product
between the two vectors is 0.6.

At low temperatures, a plane defined by the saddle point
and the eigenvector of the unstable mode produces a near
unity κ . Similarly, the mechanistic information–the geometry
and the gradient–contained in the SVM surface produces the
large value of κ seen in Table III. For comparison, the spher-
ical dividing surface contains the saddle points but provides
no information about the unstable mode eigenvector. At high
temperatures, however, the plane is a poor approximation for
the TS due to anharmonicity away from the saddle points. The
SVM and spherical surfaces are better able to follow the TS
as it curves between escape mechanisms.

The effect of sampling and the number of vectors in-
put into the SVM machinery are summarized in Table IV.
With increasing vectors in the data set, the value of κ steadily
grows as the saddle point regions are increasingly well char-
acterized. Unfortunately, the value for γ does not fall corre-
spondingly with increasing vectors. This behavior indicates
that each new point is essentially uncorrelated from each other
point and that the machinery is attempting to tile a high-

TABLE IV. The effect of sampling size on κ at 100 K.

Input points C γ /Å2 Support vectors κ

250 2.0 0.05 88% 0.01
500 2.0 0.1 93% 0.05

1000 5.0 0.1 78% 0.07
1500 5.0 0.1 74% 0.17
2000 10.0 0.1 72% 0.41
3000 10.0 0.1 67% 0.59
5600 5.0 0.1 58% 0.62

dimensional space. The steady increase in κ flattens, however,
as the data set grows very large. At this point, the surface is
essentially converged and the nonunity of κ indicates that an
effect other than undersampling is the cause.

The trend in κ with increased sampling can be under-
stood in terms of the adatom coupled to fictitious harmonic
oscillators. The SVM surfaces whose properties are described
in Tables III and IV represent the most general case of our
methodology. Every degree of freedom in the system is in-
cluded, but, as shown in Fig. 6, the only important displace-
ments are local to the adatom. With some intuition about the
system, one realizes that only the motion of the atoms near to
the adatom need to be included in the SVM machinery.

By only considering the positions of the atoms within a
5.0 Å radius of the adatom, the dimensionality of the free sur-
face is reduced to 54 degrees of freedom from the full 603. As
summarized in Table V, when the input into the SVM is local-
ized to the positions of the atoms around the diffusing adatom,
the structure of the surface is altered. Fewer points (from the
same overall collection) are required to define the SVM clas-
sifier. At 100 K, the value of κ significantly increases due to
the lack of noise from the vibrating bulk atoms. At 400 K,
which is close to the melting point of the surface, the vibra-
tional modes from the bulk are more strongly coupled to the
reactive modes and the value of κ is negatively affected due
to the reduction in information.

While our aim is to find TS surfaces which maximize κ ,
it is important to note that the TST rate can be corrected to
provide the true rate by evaluating κ . The cost of this evalua-
tion is that of N ≈ 1/κ short trajectories initiated from the TS
surface. If, for example, several hundreds of trajectories can
be calculated, a value of κ = 0.01 can be evaluated and this
“poor” TS surface is sufficient for evaluating an accurate rate.

TABLE V. The effect of reducing dimensionality.

Free Al(100) surface at 100 K
C γ /Å2 Support vectors κ

Reduced SVM 50.0 0.5 39% 0.82
Full SVM 10.0 0.1 67% 0.59

Free Al(100) surface at 400 K
C γ /Å2 Support vectors κ

Reduced SVM 2.0 0.2 39% 0.29
Full SVM 10.0 0.1 89% 0.31
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IV. CONCLUSIONS

We have demonstrated a novel method for optimizing
TS dividing surfaces using SVMs. Our method is capable of
achieving high transmission coefficients for systems contain-
ing many degrees of freedom without parametrization. The
success of the SVM method is a result of the information
density of the surface. In contrast to a dividing surface that re-
quires intuition to be constructed, the SVM surface provides
intuition about the structure of the reaction mechanisms. For
condensed phase systems in which reactive pathways may be
hard to predict, the SVM surface identifies not only the low-
energy saddle points but also the mechanisms that result in a
successful reaction.
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