
Computer Physics Communications 182 (2011) 926–934
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Enhanced molecular dynamics performance with a programmable graphics
processor

D.C. Rapaport

Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 May 2010
Received in revised form 20 December 2010
Accepted 22 December 2010
Available online 24 December 2010

Keywords:
Molecular dynamics simulation
Graphics processor
GPU
CUDA
Computer architecture
Optimized algorithm
Performance evaluation

Design considerations for molecular dynamics algorithms capable of taking advantage of the compu-
tational power of a graphics processing unit (GPU) are described. Accommodating the constraints of
scalable streaming-multiprocessor hardware necessitates a reformulation of the underlying algorithm.
Performance measurements demonstrate the considerable benefit and cost-effectiveness of such an ap-
proach, which produces a factor of 2.5 speed improvement over previous work for the case of the
soft-sphere potential.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The ability of computers to maintain an exponential perfor-
mance growth has been made possible by shrinking component
size permitting higher levels of integration, faster instruction ex-
ecution and a wealth of hardware capabilities including cached
memory access, multiple instruction units, pipelined processing,
and sophisticated instruction scheduling, to name but a few. Fea-
tures leading to higher effective computation speeds that were
once confined to costly high-performance hardware have gradually
trickled down to the affordable CPU chips in current use. Reduced
power needs also allow multiple processor cores to reside on a
single chip, a recent notable example being the graphics process-
ing unit, or GPU (conventional CPUs now also adopt this strategy).
The latest GPUs are fully programmable, and some are even ca-
pable of processing hundreds of separate data streams in parallel.
Of the many different kinds of scientific and engineering computa-
tions, those with a more regular data organization, matrix–vector
operations for example, can utilize GPU hardware very effectively,
while the inherent lack of systematically arranged data in, for ex-
ample, molecular dynamics – MD – simulation, complicates the
task of effective GPU usage.

The availability of optimized computational algorithms is es-
sential for carrying out MD simulations of large systems over

E-mail address: rapaport@mail.biu.ac.il.
0010-4655/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2010.12.029
long time intervals. Past efforts invested in developing hardware-
customized algorithms have tended to focus on high-end super-
computers, with architectures based on vector or parallel process-
ing, or even both together; the resulting algorithms can be quite
efficient, but introduce additional complexity to overcome hard-
ware constraints. What is special about the GPU is that it offers
high computational capability while avoiding the cost penalty of
other forms of supercomputing since it is a byproduct of consumer
product development (as, indeed, are the microprocessors power-
ing modern computers in general). Effective GPU utilization also
calls for specialized algorithms, but widespread availability makes
it an attractive platform for MD applications.

The present paper explores the requirements for developing a
GPU version of an efficient, scalable MD simulation for simple
fluid systems. Scalability is an essential characteristic of any al-
gorithm designed for the massive parallelism intrinsic to present
and future GPU designs, and, as will be described in detail, the
approach described here is not subject to the limitations of ear-
lier efforts that addressed this problem. After a brief outline of
the GPU as it appears from a software perspective, the way the
MD algorithms need to be modified to utilize the hardware fea-
tures is described, including a short digression on programming
issues specific to the kind of parallelism on which GPU design is
based that, due to their novelty, are still relatively unfamiliar. Mea-
surements of actual performance and its dependence on various
features of the algorithm are examined, as is the payoff – actual

http://dx.doi.org/10.1016/j.cpc.2010.12.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:rapaport@mail.biu.ac.il
http://dx.doi.org/10.1016/j.cpc.2010.12.029

D.C. Rapaport / Computer Physics Communications 182 (2011) 926–934 927
and potential – from the effort invested in the algorithm develop-
ment.

2. GPU hardware – a brief overview

Graphics have become an integral part of computing, and the
demand for increased capability has resulted in a gradual shift
in graphics processor design from hardwired functionality, via
software controlled vertex and pixel shaders, to the fully pro-
grammable GPU [1]. The reason a GPU can outperform a CPU,
sometimes by orders of magnitude, is that it is designed to support
structured floating-point intensive computation – the kind that lies
at the heart of the graphics rendering process – rather than being
optimized to support the high flexibility demanded from a ‘con-
ventional’ CPU. When provided with a suitable software interface,
the GPU can also be used as a high-performance coprocessor for
non-graphics tasks and, indeed, is a likely building block for the
next generation of supercomputers.

The CUDATM (compute unified device architecture) approach [2]
is a recent development aimed at simplifying the task of construct-
ing software to utilize complex GPU hardware without excessive
immersion in the details, while retaining the ability to scale the
computation as more powerful (in particular, increasingly paral-
lel) hardware becomes available. Conceptually, CUDA operates at
a high level of parallelism, and while in practice concurrency is
hardware limited, it exceeds that of a modern multiple-core CPU
by a considerable factor. Parallelism is expressed through indepen-
dently executed threads (not to be confused with Unix threads)
that are grouped into blocks; for MD computations, since thread
management costs little in terms of performance, a thread can be
assigned to evaluate some quantity associated with just a single
atom, so that there will be as many threads as there are atoms
(without regard for the actual parallelism of the hardware). This
represents the ultimate in fine-grained parallelism.

The ideal program consists of a series of calls by the host
CPU to execute blocks of threads in parallel on the GPU, to-
gether with other nonparallel tasks (hopefully not time consuming)
needed to support this effort. Blocks are processed independently
of one another, in parallel to the extent permitted by the hardware,
and then sequentially (strictly speaking, threads are processed in
smaller batches known as warps, a detail mostly invisible to the
software). Although threads do not communicate among them-
selves, the fact they can access high-speed shared memory and
be mutually synchronized provides a usable hardware abstraction.
If there are data-dependent conditional branches then groups of
parallel threads are executed in series, the groups following alter-
native paths with only threads on the path enabled.

Threads all have access to common global memory in the GPU
that is separate from the host memory, and while there is con-
siderable latency involved, a high bandwidth can result if access
is correctly organized in a manner that allows memory requests
by different threads to be coalesced (there are also other mem-
ory spaces, some with faster access, of more limited visibility).
For those classes of problem with well-structured data, e.g., matrix
computations, GPU performance tends to be limited only by the
computation rate, while for others, such as MD simulation, it is the
memory access rate that limits performance; the situation is im-
proved somewhat both by the ability of large numbers of threads
to help conceal memory latency and by the availability of mem-
ory caching. In recognition of the potential usefulness of the GPU
as a numerical processor, hardware improvements are being aimed
at eliminating the usability constraints of earlier designs, examples
being the need for increased memory speed and flexibility, the lack
of error-correcting memory, and support for fast double-precision
arithmetic.
3. MD algorithms

3.1. Background

A typical MD computation entails evaluating forces on atoms
(or molecules), integrating the equations of motion, and measuring
various properties [3]. Of these tasks, by far the most intensive is
the force evaluation. In the case of large systems with short-range
forces, where each atom interacts only with a very small fraction
of the entire system, the key to efficiency is the identification of
potential interaction partners with a minimum of effort. This can
be accomplished by dividing the simulation region into cells of size
exceeding the interaction cutoff range rc , assigning atoms to cells
based on their current coordinates, and then only examining pairs
of atoms in the same or adjacent cells. This reduces the computa-
tional effort for a system with Na atoms from O (N2

a) to O (Na). It
is worth noting that systems with long-range forces can be trans-
formed into an essentially short-range problem; not doing so is
extremely inefficient for large Na , but does provide a good start-
ing point for learning GPU technique [4] since this naive O (N2

a)

method is able to use the same efficient, block-organized technique
employed in matrix multiplication [2].

A further performance improvement, this time by a multiplica-
tive factor only, is obtained by using the cell-organized data to
construct a list of neighbors that includes atom pairs with sepa-
ration r < rn = rc + δ, where δ is the thickness of a surrounding
shell (after enlarging the cells accordingly); since this list can be
guaranteed to include all pairs with r < rc over several integration
time steps, the work associated with list construction is amortized
over those steps, while the fraction of pairs encountered during the
force evaluations with r > rc is reduced substantially. The neighbor
list is updated when the cumulative maximum atom displacement
reaches δ/2.

The MD algorithm in this case, after setting up the initial state,
involves a loop containing the following operations [3]: (a) the first
part of the leapfrog integration (a half time step update of veloc-
ities and a full time step update of coordinates); (b) if neighbor
list updating is required then correct the coordinates for periodic
boundary crossings and do the rebuild; (c) compute forces and
potential energy; (d) the second part of the leapfrog integration
(a half time step update of velocities); (e) evaluate properties such
as kinetic energy and maximum velocity (used to decide when the
next neighbor list update is due); (f) during equilibration adjust
the velocities.

This approach is ideal for the conventional CPU; while the
neighbor list itself can be large, depending on rn and the mean
density, only minimal storage is required to support cell assign-
ment owing to the use of linked lists (see below). For ‘uncon-
ventional’ processors, such as those requiring vector operations to
achieve high performance, or those based on fine-grained paral-
lelism such as a GPU, the hardware is incompatible with the effi-
cient use of linked lists, and even simple tabulation of data about
neighboring pairs needs to be rethought.

The problem to be solved is as much one of data organization
as it is of computation; it is an issue that is awkward to accom-
modate when designing algorithms for a vector processor, and, to a
lesser degree, for a streamed-multiprocessing GPU. The algorithm
designed for the GPU will require increased storage to avoid the
use of linked lists, a change that originated in attempts to achieve
effective vectorization [3,5]; it will also entail significantly more
computation because Newton’s third law will not be used in order
to allow more systematic memory access. Such sacrifices are justi-
fiable when they contribute to the performance overall. The stages
in converting the computational algorithm to a form that resolves
the incompatibilities are described below. Alternative GPU imple-
mentations of MD for short-range forces are described in [6,7], and

928 D.C. Rapaport / Computer Physics Communications 182 (2011) 926–934
the intermediate-range case in [8]; these will be referred to again
subsequently.

Although Ref. [6] and the present paper share much in com-
mon, there is an essential difference in the way data is accessed, as
described below, that ensures optimal scaling of the new method
as hardware parallelism is increased in future GPUs, a capability
not present in the earlier work. Furthermore, a relatively large in-
teraction range is needed for the benchmarks reported in [6] to
achieve efficient hardware utilization, even with the more limited
parallelism offered by past generations of GPUs; reducing the range
below this value, as in the soft-sphere MD example discussed be-
low, leads to a drastic performance drop, whereas the efficiency of
the new approach is not directly affected by interaction range.

Two interaction potentials are considered. The Lennard-Jones
(LJ) potential has the form

u(ri j) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6]
ri j < rc (1)

with a cutoff rc that must be specified. The soft-sphere (SP) poten-
tial is the same, except that rc = 21/6σ and a constant ε is added
for continuity. In reduced MD units, length and energy correspond
to σ = 1, ε = 1, and atoms have unit mass.

The total number of atoms is Na = NxN y Nz , where Nx is the
x-component of the size of the ordered atom array in the ini-
tial state. The corresponding edge of the simulation region is of
length Lx = Nx/ρ

1/3, where ρ is the density. The size of the cell
array used for identifying neighbor pairs is Nc = GxG y Gz , with
Gx = �Lx/rn�; cells can be indexed both as vectors �c and scalars
c = ((cz − 1)G y + c y − 1)Gx + cx .

3.2. Simple neighbor lists

The initial approach, an efficient method for general use [3],
provides a basis for subsequent comparison. Neighbor list con-
struction begins by assigning atoms to cells, based on coordinates,
with cell contents represented as linked lists of atom indices q j .
The first entry in the list for cell c appears in qNa+c , with subse-
quent entries q j all having j � Na; each q j is either the identity
of the next atom in the list of the owning cell, or zero if it the
last entry. The cell edge is wx = Lx/Gx and the simulation region
is centered at the origin.

for c = 1 to Nc do qNa+c = 0
for i = 1 to Na do

�r ′ = �ri + �L/2
cx = �r′

x/wx� + 1 (etc.)
qi = qNa+c

qNa+c = i

end do

Enumeration of neighbor pairs employs a set of nested loops, the
outermost three scanning all cells, the next one scanning the off-
sets between adjacent cells (only half are needed, 14, including the
cell itself), then the two innermost loops that scan the member
atoms of each of the selected pair of cells; atom pairs in the same
cell are only treated once. If the pair separation �r, after allowing
for periodic boundaries, satisfies the distance criterion, r < rn , the
identities of the atom pair are saved in t′

m and t′′
m , with a check

(not shown) that the size limit of the pair list is not exceeded. In-
formation about pairs separated by periodic boundaries is packed
into β (the 27 possibilities are encoded in the 6 high-order bits)
and stored along with the atom identities to avoid the need to re-
peat the tests each time the neighbor list is read (this technique
is an example of how computation can be reduced, but it is op-
tional, and only usable if it does not restrict the size of Na); �bβ is
the actual periodic correction to the coordinates (with components
0, ±Lx , etc.). N p is the list length.

m = 0
for c′

z = 1 to Gz , c′
y = 1 to G y , c′

x = 1 to Gx do
for k = 1 to 14 do

set β and �bβ for periodic boundaries (if any)
�c ′′ = �c ′+ cell offset (adjust for periodic boundaries)
i′ = qNa+c′
do while i′ > 0

i′′ = qNa+c′′
do while i′′ > 0

if c′ �= c′′ or i′ < i′′ then
�r = �ri′ − �ri′′ + �bβ

if r2 < r2
n then

m = m + 1
t′
m = i′ , t′′

m = i′′ | β
endif

endif
i′′ = qi′′

end do
i′ = qi′

end do
end do

end do
Np = m

The evaluation of the forces �f i and total interaction energy U fol-
lows; u(r) is the potential energy, Eq. (1), and f (r)�r the derived
force. The computation starts by initializing all �f i = 0 and U = 0,
and then treats each of the N p neighbor pairs. The adjustments re-
quired to account for periodic boundaries are encoded in β; B is a
mask used to extract the value of β (B̄ is the complement).

for m = 1 to N p do
i′ = t′

m , i′′ = t′′
m & B̄ , β = t′′

m & B
�r = �ri′ − �ri′′ + �bβ

if r2 < r2
c then

�f i′ = �f i′ + f (r)�r, �f i′′ = �f i′′ − f (r)�r, U = U + u(r)

endif
end do

This simple computation should be contrasted with the corre-
sponding GPU version developed subsequently. Here, although the
�f i are read and written multiple times in no systematic order, the
fact that there is just a single execution thread as well as sev-
eral levels of data cache for mediating transfers between CPU and
memory should minimize any performance degradation.

3.3. Alternative neighbor list organization

The alternative to tabulating neighbor pairs without any spe-
cific ordering is to group the entries according to one member of
the pair. Data redundancy is eliminated, but there is a minor dis-
advantage that will be indicated below. The neighbors of atom i
are stored sequentially in tm , with pi pointing to the first entry;
setting the final pNa+1 ensures the entries for the last atom are
properly terminated. After atoms are assigned to cells, as before,
for each atom i′ there are loops over the neighboring cells c′′ of
the cell c′ in which it resides, and then over the atoms i′′ belong-
ing to c′′ .

D.C. Rapaport / Computer Physics Communications 182 (2011) 926–934 929
m = 0
for i′ = 1 to Na do

�r ′ = �ri′ + �L/2
c′

x = �r′
x/wx� + 1 (etc.)

pi′ = m + 1
for k = 1 to 14 do

β , �bβ and �c ′′ (as above)
i′′ = qNa+c′′
do while i′′ > 0

if i′ < i′′ then
�r = �ri′ − �ri′′ + �bβ

if r2 < r2
n then

m = m + 1
tm = i′′ | β

endif
endif
i′′ = qi′′

end do
end do

end do
pNa+1 = m + 1

The evaluation of �f i is modified to use a double loop over atoms i
and over the set of tm itemizing i’s neighbors. The disadvantage is
that if the average number of neighbors is small, the overhead of
repeatedly initializing the inner loop may be noticeable [3].

for i′ = 1 to Na do
for m = pi′ to pi′+1 − 1 do

i′′ = tm & B̄ , β = tm & B
compute (as above)

end do
end do

Each atom pair (i′, i′′) is considered once during the force evalu-
ation, and both �f i′ and �f i′′ are updated. While the atoms indexed
by i′ are accessed sequentially, the i′′ atoms appear in no partic-
ular order. On the GPU, random read followed by write memory
accesses incur a substantial performance penalty. The alternative
is to avoid relying on Newton’s third law by computing �f i′ and �f i′′
separately; improved GPU memory performance more than com-
pensates for the extra computations. The corresponding modifica-
tions to the algorithm are minimal: the loop in the neighbor list
construction (above) over 14 of the neighbor cells is changed to all
27, and the test for i′ < i′′ is replaced by i′ �= i′′; only �f i′ is up-
dated, and the sum over u yields 2U . The length of the neighbor
list will of course be doubled.

3.4. Layer-based neighbor matrix

A variation of the last approach, based on organizing both the
cell contents and the neighbor pairs as matrices, leads to an algo-
rithm that goes a long way towards satisfying GPU limitations. Cell
assignment is as before, with ci now used to record the cell con-
taining atom i. Instead of a linked list, cell contents are organized
as a series of layers, as used for vector processing [3], where layer l
includes the lth members of all cells (for those cells with � l occu-
pants). Layer assignment is trivial, as shown below; li is the layer
containing atom i, and kc serves as a cell occupancy counter.

for c = 1 to Nc do kc = 0
for i = 1 to Na do

kci = kci + 1
li = kci

end do
The standard CPU implementation of this layer assignment algo-
rithm would be just as shown. When using the layer organization
for vector processing, the fact that the ci are not unique (cells
typically contain multiple atoms) requires the loop over i to be
replaced by a more complicated set of operations consistent with
vectorization. For the GPU version, the increments of kci must be
carried out as ‘atomic’ operations to avoid conflict. Newer GPUs
support certain operations of this kind, but they are relatively slow.
After testing, it was decided that this evaluation should be carried
out on the host (the remainder of the work is performed on the
GPU); the ci array (a total of Na integers) is copied from the GPU
to the host, the values of li computed, and the li array (of simi-
lar size) copied back to the GPU. The maximum of kci determines
the number of layers in use, Nl; this too is most readily evaluated
on the host (on the GPU, a reduction operation – discussed later –
would be needed).

Once the ci and li are available, the cell-layer occupancy ma-
trix Hc,l can be filled; each atom i contributes a nonzero element
Hci ,li = i. The row and column indices, c and l, specify the cell
(1 � c � Nc) and layer (1 � l � Nl); note that while Nc is fixed, Nl
varies, and the matrix must be able to accommodate the maximum
number of layers possible.

The final stage is enumerating the neighbor pairs. The results
are recorded in the neighbor matrix Wm,i , where each column i
corresponds to an atom, and row m specifies the mth neighbor
of each atom (the order is arbitrary). This layout, assuming the
matrix to be stored in row order, allows the identities of all mth
neighbors to occupy successive memory locations (permitting coa-
lesced access by threads processing individual atoms); transposing
the matrix Wm,i reduces performance by ≈ 9%, showing the sen-
sitivity to memory access issues.

Recording the neighbor pairs involves populating Wm,i . As be-
fore, the algorithm considers atoms i′ sequentially, and for each
there are loops, first over the neighboring cells c′′ of the cell c′
containing i′ , and then over layers l to access the neighbor atoms
i′′ = Hc′′,l . A count of i’s neighbors appears in mi .

for i′ = 1 to Na do
m = 0
�c ′ = cell containing i′ (as above)
for k = 1 to 27 do

β , �bβ and �c ′′ (as above)
for l = 1 to Nl do

i′′ = Hc′′,l
if i′′ = 0 then break
if i′ �= i′′ then

�r = �ri′ − �ri′′ + �bβ

if r2 < r2
n then

m = m + 1
Wm,i′ = i′′ | β

endif
endif

end do
end do
mi′ = m

end do

An alternative way of organizing this task, described in [6] for
neighbor pairs and in [8] for forces evaluated directly via the
cells, amounts to having outer loops over cells and their contents,
rather than over the atoms themselves (similar to the original
neighbor-list algorithm, above, but using Hc,l instead of qi). Such
an approach is designed to utilize GPU shared memory capability
(a subject discussed later), but the disadvantage is that the num-
ber of threads needed per block is determined by maximum cell
occupancy (equal to the layer count Nl), a number that can be

930 D.C. Rapaport / Computer Physics Communications 182 (2011) 926–934
very small; this in turn limits the scalability of the computation
since it is unable to benefit from large-scale thread parallelism.
The present approach, in which thread parallelism is limited only
by the GPU hardware and not by rn (which, in turn, determines
cell size and occupancy), is simpler, fully scalable and, as shown
below, exhibits relative performance varying from similar to sev-
eral times faster.

Force evaluation is based on Wm,i . Since evaluation of global
sums on the GPU is nontrivial (see below), the interaction energy
of each atom, ui , is recorded separately, to be combined at a later
stage. Note that quantities that are updated multiple times in the
innermost loop, namely �f i′ and ui′ , would be held in temporary
(register) storage rather than being written to memory at each it-
eration.

for i′ = 1 to Na do
�f i′ = 0, ui′ = 0
for m = 1 to mi′ do

i′′ = Wm,i′ & B̄ , β = Wm,i′ & B
�r = �ri′ − �ri′′ + �bβ

if r2 < r2
c then

�f i′ = �f i′ + f (r)�r, ui′ = ui′ + u(r)
endif

end do
end do

3.5. Additional details

Most other elements of the computation remain unchanged;
only the overall programming style needs CUDA adaptation, as dis-
cussed below. Generation of the initial state – consisting of atoms
on a cubic lattice of edge size Ne (Nx = Ne), whose velocities �vi
have magnitude

√
3T (T is the temperature) and random direc-

tion, adjusted so that the system center of mass is at rest – is
carried out on the host, and the data then transferred to the GPU.

For performance reasons associated with memory caching
when examining neighbors, demonstrated later, the sequence in
which atoms are stored in memory is periodically reordered to en-
sure that the occupants of each cell are kept together. Reordering
involves scanning the most recent version of the occupancy ma-
trix Hc,l in cell order, and it is carried out at regular intervals just
before rebuilding the neighbor matrix (but after periodic bound-
ary adjustments). A more complicated approach is described in
[6], where the scan follows a fractal-like space-filling curve. Only
the coordinate and velocity arrays must be reordered, but not the
forces which are due to recalculated. Since reordering is a com-
paratively infrequent (and undemanding) operation, the work is
carried out on the host for simplicity. Array elements kn record
the reordered atom indices and the array �ti (of size Na) provides
temporary storage needed while reordering.

n = 0
for c = 1 to Nc do

for l = 1 to Nl do
i = Hc,l
if i = 0 then break
n = n + 1
kn = i

end do
end do
for i = 1 to Na do �ti = �ri
for i = 1 to Na do �ri =�tki

The last remaining task in the basic MD computation is the evalua-
tion of system properties requiring sums, or other operations, over
all atoms; examples are the total kinetic and potential energies,
based on summing v2
i and ui , and the maximum of v2

i for deter-
mining whether the cumulative displacement is large enough to
require updating the neighbor data. Reduction operations of this
kind, trivial on a serial CPU, are more complex on the GPU. The
technique – demonstrated below – employs a series of partial re-
ductions carried out in parallel on the GPU, followed by a final
reduction on the host.

It is worth reiterating that layer assignment is the only task per-
formed on the host on a regular basis (its frequency, roughly once
every 10–15 time steps, is measured below); in addition to the
minimal amount of computation entailed by this task, it requires
only relatively small amounts of data to be transferred to and from
the host (an array of Na integers in each direction). Apart from
this, and with the exception of the one-time initialization and the
infrequent atom reordering, the entire computation is executed by
the GPU, and there is no need for any other large, time-consuming
data transfers to or from the GPU.

The approach is readily extended to other kinds of MD systems
more complicated than the spherical atoms considered here. For
example, only minor modifications are necessary to allow the GPU
to handle multiple atomic species with different interactions, poly-
mers bound together by internal forces, the velocity-dependent
forces used in modeling granular systems, and even rigid bodies
with multiple interaction sites. There are, however, other exten-
sions of the general MD approach, such as the incorporation of
geometrical constraints or long-range forces, where efficient GPU
implementation requires additional algorithmic development out-
side the scope of the present work.

4. Implementation

4.1. Design environment

A brief discussion of the CUDA features used in this work fol-
lows; a more comprehensive treatment appears in the program-
ming documentation [2,9] and other material available on the
Web. Newer and more advanced hardware than used here includes
other features able to improve performance further; anticipated fu-
ture gains are likely to come primarily from increased parallelism,
fewer restrictions on memory access, and faster processing.

The freely available CUDA software environment simplifies de-
velopment, especially because of the cooperation between the GPU
and host compilers; thus for simple applications, both the C (or
other language) host code and the GPU functions, written in C, can
coexist in the same file for convenience. The necessary libraries are
also provided, so all that is required is a graphics processor sup-
porting CUDA and its device driver; the present study was carried
out on computers running the Linux (Fedora 11) operating system.

The parallel streaming multiprocessors of the GPU are subject
to limitations similar to those of vector processors regarding data
organization and usage. In the context of MD, since the basic algo-
rithm implicitly allows concurrent evaluation of the forces between
multiple pairs of atoms, careful organization is required to ensure
that individual contributions are combined correctly. This supplied
the motivation for the algorithm redesign described in the pre-
vious section. The problem now is to ensure efficient execution,
taking into account GPU hardware limitations.

The effect of high memory access latency can be reduced by
various means, but it turns out to be the limiting factor, otherwise
it would be the Gflop ratio that determines relative performance.
Latency is partially hidden by having a sufficiently large number of
thread blocks, so that while some are awaiting data from memory
others are able to execute. Accessing global memory in the cor-
rect manner allows coalesced data transfers that provide a major
increase in effective bandwidth, e.g., adjacent elements in mem-
ory accessed in parallel by a set of threads. Copying data to shared

D.C. Rapaport / Computer Physics Communications 182 (2011) 926–934 931
memory can also improve memory-related performance, as does
the use of texture caching for reading global memory when coa-
lesced transfers cannot be arranged; however, both these features
are of hardware-limited capacity.

4.2. Programming

The CUDA MD implementation entails, for the most part, a
few simple C extensions to support the multithreaded architec-
ture [2,9]. The examples included here are intended to provide a
taste of the style and conventions used in GPU programming. Ex-
cept where indicated to the contrary, the entire MD simulation is
readily adapted for GPU execution. The first example shows the
function for assigning atoms to cells. The underlying change, here
and in other segments of the computation that run on the GPU, is
the removal of the explicit (outermost) loop over atoms from the
function and deriving the atom identity from the local thread and
block indices instead.

The following code, extracted from the host program and sim-
plified, includes functions that allocate memory on the GPU and
copy an array from host to GPU, a kernel call with a wait for
completion (kernel calls are asynchronous), and an error check.
The function call to CellAtomAssignGPU is a request for the
GPU to execute this CUDA function, or kernel, in parallel (the
fraction of true parallelism is hardware dependent). The notation
<<<nBlock, nThread>>> is an extension to the C function
call mechanism specifying an execution configuration of nBlock
blocks, each containing nThread threads. The total thread count,
nBlock * nThread, ideally equals nAtom (Na), although a par-
tially used final block is handled correctly; thus, the loop over
atoms on the CPU is replaced by a single kernel call that pro-
cesses them all. The only limit to the total thread count (and also
to Na) is GPU memory; on the other hand, the number of threads
per block is limited by hardware resources and the number of ac-
tive blocks depends on the memory requirements per block. Some
experimentation may be needed to find the optimal number of
threads per block. Each thread receives the parameters passed in
the call, but otherwise has no access to the host.

The meaning of most variables should be obvious. r and
atomInCell – corresponding to �ri and ci – are arrays in GPU
memory. float3 and float4 specify 3- and 4-component
single-precision values, and int3 is a 3-component integer. The
availability of four components reflects the graphics origin of the
device; their use improves memory performance, even if the extra
padding is space wasted.

cudaMalloc ((void**) &r,
nAtom * sizeof (float4));

cudaMemcpy (r, rH, nAtom * sizeof (float4),
cudaMemcpyHostToDevice);

nThread = 128;
nBlock = (nAtom + nThread - 1) / nThread;
CellAtomAssignGPU <<<nBlock, nThread>>>
(r, atomInCell, nAtom, region,
invCellWid, cells);

cudaThreadSynchronize ();
if (cudaGetLastError () != cudaSuccess) { ... }

The kernel CellAtomAssignGPU (below) is executed by the
threads of the GPU. Each thread processes a single atom whose
unique identity, id, is determined from the following built-in
variables: the number of threads per block, blockDim.x (the
.x suffix arises from the optional multidimensional indexing of
blocks and threads – not needed here), the particular block un-
der consideration, blockIdx.x, and the thread within the block,
threadIdx.x (recall that C uses 0-based indexing). Since nAtom
need not be a multiple of blockDim.x, a test id < nAtom
is included in all kernels. The __global__ prefix identifies the
function as a CUDA kernel.

__global__ void CellAtomAssignGPU
(float4 *r, int *atomInCell, int nAtom,
float3 region, float3 invCellWid,
int3 cells)

{
int3 cc;
int id;

id = blockIdx.x * blockDim.x + threadIdx.x;
if (id < nAtom) {

cc.x = (r[id].x + 0.5 * region.x)
* invCellWid.x;

...
atomInCell[id] = (cc.z * cells.y + cc.y)

* cells.x + cc.x;
}

}

4.3. Reduction

A reduction operation, the simple evaluation of, for example,
the sum of a set of data values, requires careful implementation
on a multithreaded GPU to ensure both correctness and efficiency.
Several levels of optimized reduction are described in [10]. Ac-
ceptable efficiency can be obtained by iterative reduction on the
GPU, halving the number of elements in a block of data until only
one remains (extra effort, not warranted here, can further dou-
ble the speed). Since this computation is the most unfamiliar of
the changes required for the CUDA implementation, the second
of the software examples demonstrates the technique. The pro-
gram fragment shown evaluates the potential energy sum

∑
ui ,

and is readily generalized to evaluating several quantities at the
same time.

This example also demonstrates the use of shared memory, an
important feature of the GPU for general-purpose computation.
Shared memory is not subject to the high latency of global mem-
ory and is available to all threads in a block for the duration of the
block’s execution. In the kernel call (below) the third argument
in <<<...>>> specifies the amount of shared memory needed
(excessive use of shared memory, a limited resource, can impact
performance by reducing parallelism at the block level). Because
it is meaningless for multiple thread blocks to write to a com-
mon memory location in an unsynchronized manner, the partial
result from each block is written to a separate element of the ar-
ray uSumB, of size nBlock, in global memory; the final stage of
the reduction occurs on the host, after copying uSumB to the cor-
responding host array uSumH.

EvalPropsGPU <<<nBlock, nThread,
nThread * sizeof (float)>>>
(u, uSum, nAtom);

cudaMemcpy (uSumH, uSumB,
nBlock * sizeof (float),
cudaMemcpyDeviceToHost);

uSum = 0;
for (m = 0; m < nBlock; m ++) uSum += uSumH[m];
uSum = 0.5 * uSum;

When the following kernel is executed there is one thread per
atom. The first task is to copy that atom’s ui into the shared mem-
ory array uSh. Subsequent processing reads from and writes to
shared memory. Only half the threads participate in the initial it-
eration of the j loop, and the number is successively halved down

932 D.C. Rapaport / Computer Physics Communications 182 (2011) 926–934
to unity. The synchronization calls to __syncthreads () are
crucial to ensure data is written by all threads before being read
subsequently by other threads. The eventual result is stored in the
element of uSumB corresponding to the block.

__global__ void EvalPropsGPU
(float *u, float *uSumB, int nAtom)

{
extern __shared__ float uSh[];
int id, j;

id = blockIdx.x * blockDim.x + threadIdx.x;
uSh[threadIdx.x] = (id < nAtom) ? u[id] : 0;
__syncthreads ();
for (j = blockDim.x / 2; j > 0; j = j / 2){

if (j > threadIdx.x) uSh[threadIdx.x]
+= uSh[threadIdx.x + j];

__syncthreads ();
}
if (threadIdx.x == 0) uSumB[blockIdx.x]

= uSh[0];
}

4.4. Texture caching

The origin of the GPU as a graphics processor is reflected in
the ability to use a cache mechanism for efficiently reading stored
textures. This can be put to general use by binding a data array in
GPU global memory to a texture, as in the following (extended C)
host code (the need to invoke graphics capabilities in this way is
rare).

texture <float4, 1,
cudaReadModeElementType> texRefR;

cudaBindTexture (NULL, texRefR, r,
nAtom * sizeof (float4));

Then, rather than the GPU reading coordinates via, for example,
rC =r[id], the function call rC = tex1Dfetch (texRefR,
id) allows the data access to take advantage of the cache. The re-
sulting performance gain when processing atom pairs (where only
the first member of each pair is accessed sequentially), especially
if the data is reordered so that nearby atoms are also stored in
nearby memory locations (as much as possible), will be demon-
strated later. Texture caching is also used for reading the cell-layer
occupancy matrix Hc,l when recording neighbor pairs.

5. Performance measurements

5.1. Test environment

The GPU model used in the tests is the NVIDIA® Quadro
FX770M. This GPU is designed for laptop computers, an environ-
ment subject to strict power and thermal limitations; thus there
are only 32 CUDA stream processors (or four streaming multipro-
cessors), 512 Mbytes memory and a 26 Gbyte/s memory band-
width (with CUDA level 1.1 support). Other new and recent GPUs
have greatly enhanced performance: several times the number of
processors and higher bandwidth, together with fewer limitations
on efficient memory access and support for double-precision arith-
metic.

Performance tests have been carried out for two MD systems.
One consists of atoms interacting with the LJ potential; it is stud-
ied for comparison with earlier work [6] and has similar parameter
settings, T = 1.2, ρ = 0.38, rc = 3, and δ = 0.8. The other sys-
tem involves the very short-range SP potential; it is explored in
Table 1
Size dependence for soft sphere (SP) and Lennard-Jones (LJ) systems; the numbers
of atoms (Na = N3

e), cells (Nc) and the times per atom-step (t) in μs are shown.

Ne Na Nc t

SP 32 32 768 8000 0.072
40 64 000 13 824 0.070
48 110 592 27 000 0.067
56 175 616 39 304 0.068
64 262 144 64 000 0.068
72 373 248 85 184 0.067
80 512 000 125 000 0.067
88 681 472 157 464 0.069
96 884 736 216 000 0.067

LJ 32 32 768 1000 0.266
40 64 000 2744 0.240
48 110 592 4096 0.270
56 175 616 8000 0.243
64 262 144 10 648 0.254

greater depth, with parameters T = 1, ρ = 0.8, rc = 21/6, and (in
most cases) δ = 0.6. Other details, common to both systems, are
as follows: The integration time step is �t = 0.005 (MD units),
averages are evaluated over blocks of 1000 time steps, there is
an initial equilibration period of 500 steps during which veloci-
ties are rescaled every 20 steps to achieve a mean T close to that
required. Runs are normally of length 6000 steps, which is ample
for performance measurement (except when examining the effect
of reordering). Unless stated otherwise, 128 threads are used, the
texture cache is also used, and coordinate reordering is applied ev-
ery 100 steps.

5.2. Size dependence

GPU performance over a range of system sizes is summarized
in Table 1; times are expressed in μs per atom-step (i.e., measured
wall clock time per step divided by Na) and are reproducible with
minimal variation (assuming the GPU is not borrowed by other
tasks). The measurements show minimal size dependence beyond
that attributable to variations in the mean number of atoms per
cell Na/Nc . Other performance-related observations include the
following: For the SP case, with the corresponding LJ values shown
in parentheses, there are typically N p/Na = 15 (89) entries in the
neighbor list per atom, Nl = 8–10 (40–50) layers, and the neigh-
bor list must be updated every Nu = 11–12 (14–15) steps. For the
largest systems, fractions tn/t = 0.38 (0.35) and t f /t = 0.37 (0.58)

of the total computation time, respectively, are used for neighbor
list construction and force calculation (for SP, periodic boundary
adjustment, atom reordering, and cell and layer assignment to-
gether account for a fraction 0.03 of the time, even less for LJ).
The computations require GPU storage of ≈220 (770) bytes/atom;
the largest systems, with Na ≈ 8.8 × 105 (2.6 × 105), both need
≈200 Mbytes.

5.3. GPU vs CPU and other performance comparisons

The most important result is the magnitude of the performance
improvement relative to a more conventional CPU. The C version of
the layer-matrix program (corresponding to the CUDA version) was
run on a Dell Precision 470 workstation with a 3.6 GHz Intel Xeon
processor, similar to, but slightly faster (nominally 1.2x) than that
used in [6], and compiled with maximum optimization. Timings
appear in Table 2, together with the speedup factor. The gain is
impressive, and in the case of LJ, consistent with [6] which used a
GPU (NVIDIA GeForce 8800 GTX) with 4x the number of processors
(128 vs 32) and over 3x memory bandwidth (86 vs 26 Gbyte/s, re-
flecting a correspondingly wider memory interface); the approach

D.C. Rapaport / Computer Physics Communications 182 (2011) 926–934 933
Table 2
Performance comparisons – GPU vs CPU.

Ne t tCPU/tGPU

CPU GPU

SP 64 0.795 0.068 11.7
LJ 40 4.480 0.240 18.7

Table 3
Performance comparisons – new vs old [6] algorithms.

Ne t told/tnew

new old

LJ rc = 3.0 48 0.270 0.254 0.94
LJ rc = 2.5 48 0.176 0.185 1.05
LJ rc = 2.2 48 0.137 0.164 1.20
SP 64 0.068 0.168 2.47

in [6] is itself several times faster than [7] (which used cells but
not neighbors) on the same model GPU.

Another important comparison addresses the performance of
the old (Ref. [6]) and new methods as rc is varied, particularly
since the earlier work considered an LJ system with only a single,
relatively large value of rc . The algorithm used to tabulate neigh-
bors in [6] is readily incorporated into the present program (after
correcting a few minor errors) since similar matrix organization
is used to represent cell and neighbor data. The timing measure-
ments appear in Table 3. For the largest rc the two methods exhibit
similar performance, as indicated above, but as rc is lowered (us-
ing values from [11,12]) the performance figures begin to favor the
new approach, culminating in an almost 2.5x gain in the SP case.
The improvement is due solely to the modified approach to neigh-
bor tabulation (which, unlike the old method, does not require a
large rc to benefit from thread parallelism). For the SP system, the
time fractions used for neighbor list construction are tn/t = 0.34
and 0.74 for the new and old methods, respectively; the latter
value reveals how this portion of the computation dominates in
the old method. The present new approach is expected to show
further improvements in performance when used with more ad-
vanced (current and future) GPUs incorporating greatly increased
parallel capability.

There is a performance loss associated with the alterations that
were made to the MD algorithm. A series of measurements for
each of the versions of the neighbor list and force computations
conducted on the Ne = 48 SP system, subsequently referred to as
S , were run on an Intel T9600 CPU (2x the speed of the 3.6 GHz
Xeon) belonging to the laptop with the GPU (HP EliteBook 8530w).
Relative to the base algorithm that used a list of neighbor pairs,
grouping the neighbors by atom (with the extra inner loop) in-
creases the time by 1.16x, relinquishing Newton’s third law a fur-
ther 1.42x, and the use of the layer matrix another 1.17x; the cu-
mulative increase is 1.92x. Thus, in order to reap the benefits of the
GPU hardware it is necessary to work with an algorithm roughly
half as efficient as the original, but the loss is more than justified
by the net performance gain. A similar situation arose when adapt-
ing MD for vector processing; whether some of the other changes
made to aid vector efficiency might be helpful here remains to be
investigated.

The more processing the GPU can apply to data retrieved from
memory (the ‘arithmetic intensity’) the greater the expectation for
improved performance. With short-range MD, and the SP problem
in particular, atoms have few interaction partners, a fact that offers
a difficult challenge for the GPU when compared to a CPU. Given
the positive outcome of the comparison, despite the unfavorable
nature of the problem, the future of the GPU-based approach ap-
pears promising.
Table 4
Test of energy conservation showing mean total
and kinetic energy per atom, 〈etot〉 and 〈ekin〉, av-
eraged over the 1000 steps preceding Nstep .

Nstep 〈etot〉 〈ekin〉
2000 2.3260603 1.5000234

100 000 2.3265371 1.5005983

Table 5
Dependence on shell thickness (δ) for system S; the values shown are the number
of cells (Nc), the mean number of neighbors (Np/Na), the maximum number of
layers (Nl), the mean number of steps between neighbor updates (Nu), the fractions
of computation time devoted to neighbor processing (tn/t) and force calculation
(t f /t), and the time per atom-step (t).

δ Nc N p/Na Nl Nu tn/t t f /t t

0.4 32 768 11.57 7 8.1 0.425 0.295 0.070
0.5 27 000 13.33 8 10.1 0.378 0.337 0.069
0.6 27 000 15.44 8 12.0 0.331 0.386 0.067
0.7 21 952 18.12 9 14.0 0.310 0.425 0.070
0.8 17 576 21.64 11 15.9 0.292 0.462 0.075

Table 6
Dependence of time per atom-
step on thread count (NT).

NT t

32 0.097
64 0.067

128 0.068
256 0.085

5.4. Energy conservation

Energy conservation is an essential requirement for any MD
simulation in the microcanonical ensemble. It is simple to test
whether the fact that the GPU used here is limited to single-
precision arithmetic affects this capability. Table 4 compares the
values at the beginning and end of a longer run (excluding the first
1000 steps that are influenced by velocity rescaling during equili-
bration). The measured drift for system S is 1 part in 5000 over
105 steps, a more than acceptable value.

5.5. Parameter dependence

Table 5 shows the dependence on δ, the shell thickness, for sys-
tem S . As δ increases fewer cells are used, and there are increases
in both the layer count Nl and the interval between neighbor list
updates Nu . Computation time reflects the decreasing amount of
work required for the neighbor lists and the corresponding in-
crease for the forces (although the overall variation is fairly small
over the δ range considered), with a minimum in the vicinity of
δ = 0.6 as used previously.

The number of threads per block, NT , is a runtime parameter
that must be determined empirically, and will vary with GPU capa-
bility as well as with problem type and size; NT should exceed and
be a multiple of the number of GPU processors (here 32). Table 6
shows the performance of system S with different NT ; processors
must be kept busy, while not overutilizing resources available to
the threads. The choice of 128 threads used throughout the study
appears justified.

The importance of reordering based on the atom coordinates as
a means to improving memory access times was mentioned ear-
lier. Table 7 shows the effect of varying the nominal number of
steps NR between reorderings (the operation is carried out when
the next neighbor list rebuild falls due) for system S . Frequent re-
ordering clearly makes an important contribution to performance;
the value NR = 100 is a reasonable choice.

934 D.C. Rapaport / Computer Physics Communications 182 (2011) 926–934
Table 7
Dependence of time per atom-
step on reorder interval (NR).

NR t

50 0.066
100 0.067
250 0.070
500 0.075

1000 0.081
2000 0.094

Table 8
Increasing time per atom-step
when reordering is omitted.

Nstep t

1000 0.088
2000 0.105
5000 0.127

10 000 0.151
20 000 0.183
40 000 0.214
60 000 0.232
80 000 0.242

100 000 0.249

Table 8 shows the consequences of failing to reorder, an even-
tual 4x performance drop relative to the optimal case. The use of
the texture cache as a means of improving memory access has
also been tested; overall computation time for system S is nearly
doubled (actually 1.85x) without the cache, demonstrating its im-
portance in compensating for the effects of high memory latency.

6. Conclusion

The present work has been based on a rather modest GPU de-
signed for laptop computers, whose performance lags behind cur-
rent high-end devices and, even more so, behind products sched-
uled (at the time of writing) to appear in the near future. Nev-
ertheless, the processing speed is found to be considerably higher
than a typical CPU, a goal achieved without encountering any ma-
jor algorithmic or programming obstacles. An especially important
feature of the present MD approach for short-range interactions is
that, unlike previous work, it is completely scalable, enabling it to
benefit fully from the inherent parallelism of the hardware.

It is reasonable to expect that further improvements in GPU de-
sign and performance, particularly the enhanced parallel-process-
ing capability, will provide a major advance in affordable MD sim-
ulation at the single-GPU level for models of both simple and more
complex systems, as well as enabling its utilization as a convenient
building block for massively parallel supercomputers aimed at ex-
tending the realm of feasible simulation.

References

[1] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips, GPU com-
puting, IEEE Proc. 96 (2008) 879.

[2] NVIDIA CUDA programming guide, version 2.2, available at http://www.nvidia.
com/object/, 2009.

[3] D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edition, Cam-
bridge University Press, Cambridge, 2004.

[4] L. Nyland, M. Harris, J. Prins, Fast N-body simulation with CUDA, in: H. Nguyen
(Ed.), GPU Gems 3, Addison–Wesley Professional, 2007, p. 677, available at
http://developer.nvidia.com/object/gpu-gems-3.html.

[5] D.C. Rapaport, Multibillion-atom molecular dynamics: Design considerations
for vector-parallel processing, Computer Phys. Comm. 174 (2006) 521.

[6] J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynam-
ics simulations fully implemented on graphics processing units, J. Comput.
Phys. 227 (2008) 5342.

[7] J.A. van Meel, A. Arnold, D. Frenkel, S.F. Portegies Zwart, R.G. Belleman, Har-
vesting graphics power for MD simulations, Mol. Sim. 34 (2008) 259.

[8] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten,
Accelerating molecular modeling applications with graphics processors, J. Com-
put. Chem. 28 (2007) 2618.

[9] NVIDIA CUDA reference manual, version 2.2, available at http://www.nvidia.
com/object/cuda_develop.html, 2009.

[10] M. Harris, Optimizing parallel reduction in CUDA, Examples accompanying the
CUDA software, available at http://www.nvidia.com/object/cuda_get.html, 2008.

[11] A. Rahman, Correlations in the motion of atoms in liquid argon, Phys. Rev. 136
(1964) A405.

[12] L. Verlet, Computer experiments on classical fluids. I. Thermodynamical prop-
erties of Lennard-Jones molecules, Phys. Rev. 159 (1967) 98.

http://www.nvidia.com/object/
http://www.nvidia.com/object/
http://developer.nvidia.com/object/gpu-gems-3.html
http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_get.html

	Enhanced molecular dynamics performance with a programmable graphics processor
	Introduction
	GPU hardware - a brief overview
	MD algorithms
	Background
	Simple neighbor lists
	Alternative neighbor list organization
	Layer-based neighbor matrix
	Additional details

	Implementation
	Design environment
	Programming
	Reduction
	Texture caching

	Performance measurements
	Test environment
	Size dependence
	GPU vs CPU and other performance comparisons
	Energy conservation
	Parameter dependence

	Conclusion
	References

