
GPU acceleration of extreme scale pseudo-spectral simulations
of turbulence using asynchronism

Kiran Ravikumar
kiran.r@gatech.edu

Georgia Institute of Technology
Atlanta, GA

David Appelhans
dappelh@us.ibm.com

IBM Research
Boulder, CO

P.K. Yeung
pk.yeung@ae.gatech.edu

Georgia Institute of Technology
Atlanta, GA

ABSTRACT
This paper presents new advances in GPU-driven Fourier pseudo-
spectral numerical algorithms, which allow the simulation of tur-
bulent fluid flow at problem sizes beyond the current state of the
art. In contrast to several massively parallel petascale systems, the
dense nodes of Summit, Sierra, and expected exascale machines
can be exploited with coarser MPI decompositions which result in
improved MPI all-to-all scaling. An asynchronous batching strat-
egy, combined with the fast hardware connection between the
large CPU memory and the fast GPUs allows effective use of the
GPUs on problem sizes which are too large to reside in GPU mem-
ory. Communication performance is further improved by a hybrid
MPI+OpenMP approach. Favorable performance is obtained up to a
184323 problem size on 3072 nodes of Summit, with a GPU to CPU
speedup of 4.7 for a 122883 problem size (the largest problem size
previously published in turbulence literature).

CCS CONCEPTS
• Computing methodologies→Massively parallel and high-
performance simulations; • Applied computing → Physics; •
Networks →Network measurement.

KEYWORDS
Asynchronous, Algorithm, Turbulence, Simulations, Out-of-core,
Distributed, FFT, Summit, all-to-all, Communication, GPU, CUDA,
MPI

ACM Reference Format:
Kiran Ravikumar, David Appelhans, and P.K. Yeung. 2019. GPU acceleration
of extreme scale pseudo-spectral simulations of turbulence using asyn-
chronism. In The International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC ’19), November 17–22, 2019, Denver, CO,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3295500.
3356209

1 INTRODUCTION
Many large-scale production codes running on leadership-class
computing platforms have inherent needs for data movement, both

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’19, November 17–22, 2019, Denver, CO, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356209

within and across different parallel execution processes. Obtain-
ing high scalability and/or satisfactory time to solution at large
problem sizes is often more challenging if communication costs
are dominant. In particular, in the present pre-exascale era, a key
question is how codes that are communication-intensive can benefit
from heterogeneous platforms whose principal advantage is fast
computation on hardware accelerators such as GPUs.

Turbulent fluid flows governed by the Navier-Stokes equations
with disorderly fluctuations over a wide range of scales in time and
space [16] represent a major challenge in both science and comput-
ing [10–12, 22, 23]. In work focused on fundamental understanding,
it is often useful to employ periodic boundary conditions on a cubic
domain, with solution variables expressed in a discrete Fourier se-
ries. In pseudo-spectral methods [3] nonlinear terms are evaluated
in physical space and then transformed to Fourier space, avoiding
extremely costly convolution integrals. These simulations are in-
herently communication intensive because of the need to collect
complete lines of data in the machine memory before transforms
can be taken. To date, the largest simulations have reached over 1
trillion grid points, via massive CPU-based parallelism [10, 11, 23].
However, the trend toward exascale appears to favor denser nodes
where future advances will likely require use of accelerator hard-
ware and new programming approaches to optimized on-node and
off-node data transfer. For example, Summit at the Oak Ridge Lead-
ership Computing Facility (OLCF), which is currently the fastest
supercomputer in the world, has fewer but much denser nodes than
its predecessor machine (Titan). Utilizing GPUs instead of CPUs
at very large problem sizes also presents new challenges since the
amount of GPU memory is substantially less than CPU memory.

In this paper we address the nontrivial task of implementing a
new pseudo-spectral turbulence code capable of reaching unprece-
dented problem sizes at the high throughput needed to complete
long running simulations on Summit. The shift to fewer but denser
nodes motivates a design strategy of hierarchical parallelism, with
a fine grained parallelism mapped to GPU threads coupled to a high
level parallelism managed by fewer MPI processes compared to
traditional massive parallelism via CPUs.

Our overall strategy, especially at scale, is based on the expected
needs to (1) improve MPI performance and to (2) use GPUs effi-
ciently on large problem sizes. To improve MPI performance, we
note that communication overhead (latency) can be reduced by
using fewer MPI processes, which is well facilitated by Summit’s
configuration as a modest number of dense nodes. The local prob-
lem size per MPI process can be increased by utilizing the larger
CPU memory without being restricted by the smaller GPU memory.
We also use a hybrid MPI+OpenMP approach to further reduce the
number of MPI ranks for the same problem size. In addition, we

https://doi.org/10.1145/3295500.3356209
https://doi.org/10.1145/3295500.3356209
https://doi.org/10.1145/3295500.3356209

SC ’19, November 17–22, 2019, Denver, CO, USA Ravikumar, Appelhans and Yeung

have studied the promise of overlapping host-based communication
using nonblocking MPI collectives, which provided good but not
the best performance.

These considerations above render the code less communication-
intensive than otherwise, and hence more readily amenable to the
benefits of GPU acceleration. In order to utilize the GPUs for large
problem sizes, we have implemented procedures that help hide the
costs of both data movement (between the host and the device) and
computation, while aggressively minimizing the costs of each. In
particular, we have 1) designed an asynchronous batching strategy
to overlap computation and data movement on GPU-sized pieces of
data, 2) developed custom data movement kernels that are highly
efficient at performing strided copies on the device, and 3) leveraged
optimized NVIDIA libraries on the GPU to accelerate computations
(e.g. cuFFT for 1-D FFTs).

The significant role of communication in our application implies
that neither sustained flop rate nor scalability are the most relevant
performance metrics. Instead, we show that the new code scales
similarly as a code performing only 3D transpose all-to-all calls,
with only a small overhead for actual computations. More impor-
tantly, the new code is capable of a favorable time to solution for
problem sizes beyond the current state-of-the-art. The CPU to GPU
speedup recorded is over 4.5X for a problem size equivalent to the
largest reported in the literature to date.

In the following sections we begin with some background on
equations, numericalmethods and current programming approaches,
while noting key differences between Summit and several exist-
ing petascale platforms. We then describe key ideas in the new
algorithm in some detail, before reporting and analyzing the per-
formance results. The new algorithm makes it possible to perform
simulations of three-dimensional isotropic turbulence at a problem
size of 184323 grid points, which (within some constraints discussed
further in the sections below) is the largest problem size that is
feasible on Summit for production purposes. In particular, using
3072 nodes the elapsed wall time per time step is about 14.5 seconds,
which is only 50% longer than the case for a long-running 81923 sim-
ulation (which had about 11.4 times fewer grid points in total) using
262,144 CPU cores [23]. This new grid resolution is expected to be
instrumental in further advances into fundamental understanding
of turbulence, especially those which are highly dependent on the
presence of a wide range of scales that are represented on a finite
solution domain with higher accuracy than previously practiced in
the literature.

2 EQUATIONS AND NUMERICAL METHODS
The application code in this work is written to compute fluctuating
velocity fields u(x, t) in time and three-dimensional space, according
to the Navier-Stokes equations expressing the principles of mass
and momentum conservation, in the form

∂u/∂t + (u · ∇)u = −∇(p/ρ) + ν∇2u + f , (1)

where u is a solenoidal vector, p is the pressure, ρ and ν are the fluid
density and viscosity (taken as constants), and f is a forcing term.
This is a partial differential equation of the advective-diffusive type,
which occurs in many studies of transport phenomena in science
and engineering.

We solve Eq. 1 in a simplified solution domain which is periodic
in all three directions. The velocity field is expressed in a finite-
terms Fourier series, as u(x, t) =

∑
k û(k, t) exp(ιk · x) where ι =√

−1, overhats denote (complex-valued) Fourier coefficients and k
is a wavenumber vector whose coordinate components on an N 3

grid take the values 1 − N /2, 2 − N /2,0...1....N /2. In Fourier
(i.e., wavenumber) space Eq. 1 becomes, for a given k, an ordinary
differential equation which can be written as

∂û/∂t = −�∇ · (uu)⊥k − νk2û + f̂ . (2)

To enforce mass conservation under the assumption of constant
density, the nonlinear term is projected into a plane perpendicular to
the vector k. Aliasing errors arising from the treatment of nonlinear
terms are generally controlled by a combination of phase-shifting
and truncation in wavenumber space [17].

In our simulations Eq. 2 is typically integrated over many thou-
sands of time steps, using explicit second- or fourth-order Runge
Kutta (RK2, RK4) schemes for the nonlinear terms, while viscous
terms are treated exactly via an integrating factor. In general RK4
offers improved accuracy and numerical stability. However, ex-
perience also shows (e.g. [17] and numerous publications in the
turbulence community adopting the algorithm described therein)
RK2 results are often adequate when the time step is made suffi-
ciently small. For simplicity we have reported RK2 timings in this
paper. The cost of RK4 per time step is approximately doubled, with
a small increase in the memory necessary to hold partially updated
values of the solution variables at different substages within a single
time step.

In our code, since time advance is performed in Fourier space (per
Eq. 2) each RK substep starts and ends in Fourier space, as well. The
essential mathematical operations involved include transforming
three velocity components to physical space, forming the nonlinear
products there, and transforming those products back to Fourier
space. The actual transforms are taken one direction at time. The
need for data movement arises from the need to collect complete
lines of data (successively, along each coordinate axis) in the core
memory to be operated on.

While the number of variables being transformed varies during
each time step, the structure and performance of our turbulence
simulation code share many similarities with 3D FFTs, which are
relevant to many science disciplines and have been the subject of
much software development (e.g. [7, 9, 14]). Thus, we believe some
of the novel programming techniques developed in the present
work are potentially relevant to the wider computational science
community, as well.

3 ALGORITHM DESCRIPTION
In this section we give a detailed description of our code devel-
opment, starting with our choice of domain decomposition, and
leading to our asynchronous algorithm for computing on the GPUs
while using the CPU memory capacity. The communication costs of
all-to-all communication, inherent in 3D FFT algorithms, dominates
overall runtime especially as the FFT kernels themselves become
very fast on the FLOP heavy GPUs. Because of this known com-
munication bottleneck, which will always limit speedup no matter
how many FLOPs the GPUs become capable of, algorithm design is

GPU acceleration of extreme scale pseudo-spectral simulations of turbulence SC ’19, November 17–22, 2019, Denver, CO, USA

driven by choices that allow as much communication overlap and
as large a message size as possible. We wish to emphasize that our
ultimate objective is not high scalability per se, but instead making
feasible simulations of a size exceeding the current state-of-the-art.
This includes a goal of approximately 20s per RK2 timestep in or-
der to solve long running simulations in a reasonable number of
wallclock hours.

3.1 Domain decomposition
The first decision in devising a parallel algorithm for very large prob-
lem sizes is how best to distribute memory requirements among,
say, P MPI processes. As seen in Fig. 1 an N 3 solution domain can
be decomposed into slabs or pencils, in one and two directions, re-
spectively. For a slab, or 1D decomposition, each MPI process works
on an integer number of planes (e.g., x−z) and can take FFTs in two
directions forming that plane. A global collective communication
call (of the “all-to-all” type) is used to re-divide the data along the
third direction (e.g. y). While the concept of a 1D decomposition is
straightforward, clearly, it is limited to P ≤ N .

P0
P1
P2
P3

y
x

z
mz

N

P0 P1

P2 P3

mz

my

Figure 1: 1D and 2D domain decompositions, illustrated for
case of MPI process count P = 4. On the left, each slab is of
size N × N ×mz, wheremz = N /P . On the right, each pencil
is of size N ×my ×mz, wheremy = N /Pr andmz = N /Pc .

A 2D domain decomposition divides the data in two directions,
allowing a finer-grained decomposition (i.e. larger P). A 2D Carte-
sian process grid is used, with P = Pr × Pc where Pr and Pc are the
sizes of the “row” and “column” communicators, respectively. Two
collective communication calls are performed using the (smaller)
row and column communicators instead of once globally over P
processes. The best performance is usually obtained if Pr equals the
number of MPI ranks per node, since some of the communication
will then occur solely on the node.

State-of-the-art turbulence simulations performed on massively
parallel platforms [10, 11, 23] have generally used a 2D domain
decomposition, as do the FFT portions of several of Exascale Com-
puting Project applications (lammps, hacc) [15]. However the lat-
est trends in HPC landscape appear to point towards machines
with fewer nodes which are more powerful in both memory and
speed, with Summit being a primary example. We have, accordingly,
adopted the 1D (slabs) decomposition for this work, with a hybrid
approach to further parallelize within a slab.

3.2 Target System and Software Stack
The target architecture around which the code was designed is
the IBM Power System AC922 [21] which is used in the Summit
and Sierra supercomputers. A node on Summit consists of a dual
socket POWER9 processor, with each socket connected via NVLink
to 3 NVIDIA V-100 GPUs (2 links/GPU) and 22 cores. Each core
is capable of supporting up to 4 hardware threads. Summit nodes
have 512 GB of DDR3 and each GPU has 16 GB of High Bandwidth
Memory (HBM). Each V-100 GPU has 80 Streaming Multiprocessors
(SMs). The overall picture is then of a very dense node with a large
amount of memory and compute resources per node.

The interaction of the CPU memory bandwidth, NVLINK band-
width, and network card bandwidth will be important in under-
standing some of the limitations of data movement overlap. The
Power 9 CPU memory bandwidth per socket is 135 GB/s peak uni-
directional, while the CPU-GPU NVLINK connection is capable of
150 GB/s (peak, per socket) and the network card on Summit is
capable of 12.5 GB/s (per socket, bi-directional) [20, 21]. This means
that NVLINK data transfers alone are capable of fully saturating the
P9 memory bandwidth and any simultaneous use of the network
card must compete with NVLINK bandwidth demands.

The code was written in Fortran and the GPUs were exercised
through CUDA Fortran, implemented in the IBM XL compiler,
and calls to NVIDIA’s cuFFT library. CUDA streams and CUDA
events were used to control the asynchronous tasks of batching
data on/off the GPU, computing FFTs, and determining when the
data was available in host memory to be sent through asynchronous
MPI_IALLTOALL calls.

3.3 A basic (synchronous) GPU algorithm
Prior to a detailed description of our best-performing asynchronous
algorithm, it is useful to review the basic requirements for a GPU
implementation, in terms of the work needed to perform a complete
3D FFT. Figure 2 shows the basic sequence of operations, focused
on how a 3D FFT is taken of solution variables initially in Fourier
space. This sequence is also a close match with the work performed
in the first half of each Runge-Kutta substage in our turbulence
code, before the nonlinear terms are formed and transformed back
to Fourier space. The sequence of operations shown in Fig. 2 also
reverts to that of a CPU code if the host-to-device (H2D) and device-
to-host (D2H) data copies are eliminated and all operations are
carried out on the CPUs.

At the beginning of the execution sequence in Fig. 2, each MPI
process holds a slab of data that consists of x−y planes stacked up
in N /P units in the z direction. This slab of data is copied from host
to device. Next the 1D FFTs in the y direction are computed on the
GPU using cuFFT. An all-to-all communication is then required to
transpose these partially-transformed quantities into slabs of x − z
planes. Since the data to be exchanged is not contiguous in the
local memory, we have to either (a) pack the data into contiguous
messages locally, or (b) use MPI derived datatypes. We compared
the performance of packing on the CPU, packing/moving through
the use of GPU zero copy kernels, and packing on the GPU and then
copying to the CPU. The fastest results were obtained by perform-
ing the packing on the GPU and then copying from device to host,
and then having the host perform an MPI_ALLTOALL. Subsequently

SC ’19, November 17–22, 2019, Denver, CO, USA Ravikumar, Appelhans and Yeung

H2D copy of complete slab

FFT : (kx , ky, kz) → (kx , y, kz)

Pack

D2H : send buffer

MPI Alltoall

H2D : receive buffer

Unpack

FFT : (kx , y, kz) → (x, y, z)

Similar for (x ,y, z) → (kx ,ky ,kz)

Figure 2: Schematic showing the different operations in-
volved in computing 3D FFTs using GPUs in a synchronous
manner. Similar operations in the reverse order are required
to transform back to Fourier space.

the transposed data is copied from host to device, unpacked into
the correct memory locations, and transformed in z and then x .
Recent advancements in software and hardware, such as CUDA-
aware MPI and GPU-Direct [19], allow MPI to directly transfer data
that is resident on the GPU. In theory such a strategy should help
avoid the additional data transfers before and after the global trans-
pose. However, since without GPU-direct we are already achieving
transfer rates at close to peak system memory bandwidth and are
limited most by the bandwidth of the network interface card, the
expected benefits of GPU-direct may be insignificant. In practice,
after implementing CUDA-aware MPI and GPU-direct we did not
see any noticeable benefit to our runtime.

Since the Fourier coefficients (being of real-valued variables)
satisfy the property of conjugate symmetry, i.e., û(−k) = û∗(k),
the transforms are complex-to-complex in two directions (y and
z) but complex-to-real in the third (x). This ordering of the trans-
form directions (y,z,x; reversed when transforming from physical
to wavenumber space) is chosen so that formation of nonlinear
terms in physical space can be performed more efficiently on arrays
of stride unity. In our data structure, FFTs in x are more efficient
because of a unit vector stride. For FFTs in y and z we have the
options of performing these transforms in a strided or unstrided
data structure, but on Summit we have found that either option
takes about the same time when the cost of additional local data
reordering is also factored in.

The algorithm illustrated here is readily extended to the pseudo-
spectral turbulence code, in which a reverse sequence of operations
takes place after the nonlinear terms are formed. However, there
are two hurdles to direct application of the above algorithm. The
first is that the algorithm is synchronous, such that each set of
operations is carried out sequentially without taking advantage
of the fact that operations on different portions of data can be
made to occur asynchronously (e.g. [5]). The second is that, as
written, each GPU is to process a single slab of data all at once,

which creates difficulties in processing larger problem sizes where
a single slab of data will not fit into the GPU memory. To compute
at larger problem sizes (as is our goal) it is beneficial to break a
slab into smaller portions that will fit into the GPU memory. This
data division inside a slab opens up the possibility of a significant
degree of task asynchronism, where, for instance, different planes
(or even parts of planes) within a slab may be copied, computed,
and communicated simultaneously. Indeed, this is the motivation
in the development of an asynchronous algorithm capable of larger
problem sizes, as described in the next subsection.

3.4 Batched asynchronous algorithm
Our objective is to be able to run large problem sizes efficiently
without being limited by the GPU memory capacity. The GPU
memory issue can be addressed by dividing a slab into several (np)
pencils and processing each pencil separately, as illustrated in Fig. 3.
This also provides an opportunity for overlapping operations on
different pencils within the same slab.

N
y

x

z
mz

nyp

Figure 3: Decomposition of a slab of data into multiple (np)
pencils, each of sizeN ×nyp×mz, wherenyp = N /np, to enable
larger problem sizes where a single slab does not fit into the
GPU memory.

To enable the desired asynchronism we use the programming
model of CUDA streams and events. We specify two separate CUDA
streams, one for computations and one for data movement. Besides
allowing overlap with data movement and compute, a distinct data
transfer stream ensures that bandwidth is devoted to one direction
of traffic at a time. This is beneficial on Summit, because while
NVLink supports both maximal read and maximal write bandwidth
simultaneously, the host memory bandwidth supports a combined
read or write bandwidth and the maximum aggregate bandwidth
is achieved when performing unidirectional movement [20]. Our
choice of a single transfer stream allows us to devote the full band-
width to whichever transfer operation is first put into the stream,
ensuring that the right piece of data is copied into the GPU as
quickly as possible. CUDA Events are used to enforce synchroniza-
tion between operations in different streams [18].

Figure 4 shows the sequence of operations in the new asynchro-
nous algorithm. For brevity we are showing only the operations
needed to transform from Fourier space to physical space (with
those from physical to Fourier space being very similar but reversed
in order). Color coding is used to help identify operations in the
transfer stream (H2D and D2H copies), compute stream (such as
FFTs in separate directions), and communication. Colons within a

GPU acceleration of extreme scale pseudo-spectral simulations of turbulence SC ’19, November 17–22, 2019, Denver, CO, USA

ip = 1 : H2D

for ip = 1 → np

if (ip > 1)
ip − 1 : D2H (Pack)

if (ip > 2)
ip − 2 : A2A ip : Compute - y if (ip ≤ np − 1)

ip + 1 : H2D

ip = np : D2H (Pack) ip ≥ np − 1 : A2A

ip = 1 : MPI_WAIT
ip = 1 : H2D (Unpack)

for ip = 1 → np

if (ip > 1)
ip − 1 : D2H ip : Compute - z

if (ip ≤ np − 1)
ip + 1 : MPI_WAIT
ip + 1 : H2D (Unpack)

ip = np : D2H

ip = 1 : H2D

for ip = 1 → np

if (ip > 1)
ip − 1 : D2H ip : Compute - x if (ip ≤ np − 1)

ip + 1 : H2D

ip = np : D2H

Figure 4: Schematic showing the asynchronous GPU algorithm where operations on the same row are performed asyn-
chronously. The operations in blue are performed in the transfer stream while the operations in green are in the compute
stream and the operations in red are using the network. The compute operations correspond to Fourier transforms and other
computations such as forming non-linear products in the DNS code.

box refer to operations carried out on a specific pencil whose ID,
denoted by ip, ranges from 1 to np. The three large regions bounded
by dashed lines correspond to computations carried out in the y, z
and x directions, respectively. Data transfer operations on the first
and last two pencils are handled separately as shown by the blocks
outside the large dashed regions.

Before entering the first dashed region the first pencil is copied
to the GPU. Then, if ip = 1 the code performs a compute. When
ip > 1 the (ip−1)th pencil is copied back from the GPU and packed
into a contiguous array on the CPU, provided the computations
on it have been completed. The pack operation is performed as
a strided data copy to avoid packing the data before the global
transpose. This way both the packing and the D2H are performed
in a single operation. Although operations on the same row are
executed asynchronously, our operations are launched from left to
right, which is to prioritize data copy out of the GPU so that the
global transpose can be initiated as soon as possible. A non-blocking

MPI all-to-all is launched on the (ip − 2)th pencil only when the
D2H copy of the (ip − 2)th pencil is completed. Computations are
performed as soon as the H2D copy on the ipth pencil is completed.
A H2D copy for the next pencil is also posted at this time. If ip
equals one of its last two values the code takes special action to
copy out the last pencils back to the CPU, and to post the global
transposes.

It should be noted that copy operations in the transfer stream
are performed asynchronously, i.e., the CPU can move forward to
other tasks but it does not imply the copy has completed or even
started. An event is recorded to track the progress of the copy. This
ensures the D2H copy will begin only once the computations on
the (ip − 1)th pencil are completed. Similarly, the H2D copy waits
for the data in the GPU buffer into which the host data needs to be
placed is copied out.

Operations in the second and third dashed regions, performed
on data in x − z slabs, are also scheduled in a manner that allows

SC ’19, November 17–22, 2019, Denver, CO, USA Ravikumar, Appelhans and Yeung

overlapping between the transfer and compute streams. The only
MPI function call from here until completion of the entire 3D FFT
sequence is an MPI_WAIT in the second dashed region. This is to
ensure the transpose completes before the H2D copy is posted.

N
y

x

z
mz

GPU 1
GPU 2
GPU 3

Figure 5: When running with multiple GPUs per MPI rank,
each pencil is further divided up vertically to allow running
with multiple GPUs per MPI task. The pencil fractions are
processed by the different GPUs available to the MPI rank.

As to be noted in Secs. 4 and 5, there is some advantage in using
OpenMP threads instead of pureMPI on the CPU. On Summit, when
the number of MPI ranks per node drops below 6, multiple GPUs
per MPI rank will become available. Each pencil is further divided
vertically such that a fraction of the pencil is run on each GPU as
shown in Fig. 5. One OpenMP thread per GPU is used to launch
the same operations as described in Fig. 4 to the different GPUs
available to each MPI rank. The device each thread works with is
set using the cudaSetDevice API call. The global MPI transpose
is posted only after the entire pencil has been processed by each
of the GPUs available to the MPI rank. The code is also capable of
waiting for all the pencils in a slab to be processed so that one large
all-to-all can be posted instead of multiple smaller ones. The logic
of the algorithm in Fig. 4 is still applicable.

3.5 Problem sizes and node counts
It is useful to develop estimates of the node count necessary to
meet the memory requirements of a chosen problem size. Our focus
is on solving the largest problem possible on Summit, subject to
some constraints. The first constraint is that we prefer a wallclock
speed on the order of 20 seconds per RK2 timestep because this
allows a reasonable simulation turnaround time in human hours.
The second constraint is that N be powers of 2 or at least an integer
rich in factors of 2 because this usually leads to the best discrete
FFT library performance. Furthermore N should be evenly divisible
by 3 to facilitate even division among Summit’s 3 GPUs per socket.
We choose N = 18432 as our target because it is rich in factors of 2,
divisible by 3, and (as will be shown below) it will fit in Summit’s
memory.

For anN 3 problem involvingD variables at single precision onM
nodes, the memory required per node is 4DN 3/M bytes. A detailed
counting of the number of velocity components, nonlinear terms,
and send/receive buffers which are used to transfer data between
CPUs and GPUs, yields D ≈ 25. These buffers are page-locked and
cannot be swapped to disk, because they are allocated as pinned
memory. From experiments, we estimate that the operating system
occupies approximately 64 GB on each Summit node, leaving 448 GB
for user codes. Equating 4DN 3/M (where D = 25 and N = 18432)

to 448 GB givesM = 1302, which is the minimum number of nodes
needed. However, for load balancing on a per-node basis the number
of nodes should be a factor of N . With N = 18432 and noting the
total system on Summit has approximately 4608 nodes, the only
2 possible values ofM are thus 1536 and 3072. In the interest of a
shorter time-to-solution we use 3072 nodes which is 67% of the full
system.

For a given CPU node count we also need to consider how the
memory might fit into the GPUs, generally by processing pencil-
sized portions of each slab at a time. For compute purposes, 9
pencil-sized buffers are required. This number needs to be tripled,
to 27, to allow asynchronous execution in the manner described
in Sec. 3.4, while pack and unpack operations can be performed
without additional buffers. If we have np pencils per slab then each
pencil contains N 3/(M × np) words (per variable). As for the GPU
memory we assume 96 GB of GPU memory on each node is user-
accessible, with no systems-related tasks running on the GPU. Thus,
equating 4×27×N 3/(M ×np) bytes (with N = 18432,M = 3072) to
96 GB gives, nominally,np = 2.13. In practice, because further needs
for memory also arise from other smaller arrays, for N = 18432 we
find that np needs to exceed 3.

Since np must be an integer, we conclude that each slab in the
184323 problem has to be divided up into a minimum of 4 pencils to
fit in the GPU memory. The node count and the number of pencils
required for a range of problem sizes are given in table 1.

Table 1: Node counts, problem sizes, minimum number of
pencils per slab and the size of each pencil (for 1 variable)
that can fit into the GPU memory. Problem sizes from 30723
to 122883 are exact weak scaling cases, while 184323 is larger
than what weak scaling suggests.

Nodes Problem Mem. occ. No. of Size of
size per node (GB) pencils pencil (GB)

16 30723 202.5 3 2.25
128 61443 202.5 3 2.25
1024 122883 202.5 3 2.25
3072 184323 227.8 4 1.90

4 CODE OPTIMIZATIONS
In our code development effort we have focused especially on cross-
node data communication and also on-node data movement be-
tween the CPU (host) and GPU (device). In the two subsections
below we discuss several different approaches and the performance
data obtained for them on Summit.

4.1 MPI Configurations
Given Summit’s node architecture, two natural choices for the
number of MPI tasks per node are 6 (one per GPU) or 2 (one per
socket). In the latter case, OpenMP threads can be used to launch
operations to the 3 GPUs per socket, while the message size per
MPI rank is increased by 3X. In addition, in both scenarios above,
since the slab of data assigned to each MPI rank is further broken
down into pencils of data which are batched on and off of the GPU
for processing, each MPI rank can be made to communicate the

GPU acceleration of extreme scale pseudo-spectral simulations of turbulence SC ’19, November 17–22, 2019, Denver, CO, USA

entire slab all at once, one pencil at a time, or a selected number
(say, Q) of pencils per call. The choice Q = 1, where an MPI all-to-
all is called to transpose a pencil of data as soon as the pencil has
been processed and copied back from device to host, is conducive to
overlapping MPI with data movement and computation. However it
also leads to messages that are potentially so small that they become
dominated by latency. Fewer MPI calls with larger messages can be
realized by choosing an non-unity value of Q , up to the number of
pencils present in each slab.

The network interconnect on Summit is a dual-rail EDR Infini-
Band network and provides a node injection bandwidth of 23 GB/s
[8] and a bisection bandwidth of 46GB/s. Although these band-
widths are in principle achievable for point-to-point communica-
tions of sufficient size, for all-to-all communication the bandwidth
achieved at scale can be considerably lower, because the individual
peer to peer (P2P) messages involved can become very small. In
our code, if each slab is divided into np pencils, then the message
chunk that must be delivered to each process (P2P message size) for
nv variables at single precision is 4 × nv × (N /np) × (N /P)2 bytes.

To understand the MPI performance we have conducted tests
using a standalone MPI all-to-all kernel which carries out commu-
nication operations mimicking those in the DNS code but do not
compute nor move data between CPU and GPU. One key difference
is that whereas the DNS code uses non-blocking MPI_IALLTOALL
to allow for overlapping between MPI and local operations, the
standalone kernel instead calls the blocking MPI_ALLTOALL, which
is important for clean MPI performance data to be obtained. A
collection of MPI performance data is shown in Table 2, where
problem sizes and node counts correspond to the information in
Sec. 3.5. The effective bandwidth is calculated by the formula

BW = (2 × P2P × P × tpn) / time (3)
where tpn is the number of MPI ranks per node, and a factor of 2 is
included since all-to-all’s are comprised of both sends and receives.
This formula includes on-node messages in the computation of the
bandwidth, but this simplification becomes insignificant at larger
problem sizes.

Table 2: Effective bandwidth per node of MPI all-to-all on
Summit at different node counts. The message size commu-
nicated between each MPI process (P2P) is reported (for 3
variables).

Nodes

A: 6 tasks/node B: 2 tasks/node C: 2 tasks/node
1 pencil/A2A 1 pencil/A2A 1 slab/A2A
P2P BW P2P BW P2P BW
(MB) (GB/s) (MB) (GB/s) (MB) (GB/s)

16 12 36.5 108 43.1 324 43.6
128 1.5 24.0 13.5 39.0 40.5 39.0
1024 0.19 11.1 1.69 23.5 5.06 25.0
3072 0.053 13.2 0.47 12.4 1.90 17.6

We refer to the three cases in Table 2 as A, B, C, respectively.
Between A and B, the P2P message size increases by 9X because
data per process is tripled and there are also 3 times fewer processes
to perform the data exchange. The increase in P2P message size
from B to C is a factor of np since there are np pencils per slab.

Case B gives a higher bandwidth achieved than case A, up to a
node count of 1024. At 3072 nodes it is surprising that case A
performs slightly better than case B, because this departs from 1)
the trend of larger P2Pmessage size leading to better bandwidth and
2) our experience with the full DNS code where case B has a faster
solution time than case A. However, as noted above, the DNS code
uses non-blocking MPI all-to-all calls, whereas the standalone MPI
code uses the blocking version. One possibility is that at sufficiently
small message sizes and without overlap, case A may be able to
take advantage of eager limits and hardware acceleration in the
network.

The trend in increased P2P message size leading to increased
bandwidth continues when comparing B to C, especially at scale.
This is expected because, in general, a shift from a larger number of
smaller messages to a smaller number of larger messages reduces
the effect of network latency. All three cases were implemented
in the turbulence code, and as was observed in the standalone
MPI tests, the configuration of case C led to the best-performing
implementation of the turbulence code as well, which is expected
because of the communication-intensive nature of these codes.

4.2 Strided copy optimization
Our batched asynchronous algorithm described in Sec. 3.4 requires
frequent strided copies of relatively small units of data between
host and device. This pattern can be expected for any algorithm
performing line operations on a distributed 3D domain. Such strided
copies occur when data stored on the CPU as either x − y or x − z
planes must be moved onto the GPU in smaller pieces, or when
being packed in preparation for MPI all-to-all communication.

Host

Device

Co
nt
ig
uo

us
M
em

or
y

n
x nxp

ny

Figure 6: Top down view of a slab of data on the CPU and a
pencil of data on the GPU where nxp = nx/np. Strided (in y)
copies of contiguous data (in x) is required in order to trans-
form in y direction since memory is linear (stride 1) in the
x direction on both the CPU and GPU. Strided FFTs are per-
formed in the y direction to avoid reordering on the GPU.

For example, for a x − y slab divided into 4 pencils as shown in
Fig. 6, copying a pencil of data to the GPU requires copying a series
of contiguous chunks of data to the GPU. For the 184323 problem
the innermost dimension to be copied will have 18432/4 = 4608
elements or 18 KB of contiguous memory. An entire pencil of such
lines of data must be copied, i.e., sincemz = 3 and nv = 3 the pencil
shape is 4608 × 18432 × 3 × 3. This gives 165888 chunks of 18 KB
each, which must be copied. When the chunk size is small (and the
number of chunks therefore large), the many cudaMemCpyAsync

SC ’19, November 17–22, 2019, Denver, CO, USA Ravikumar, Appelhans and Yeung

calls required can be very slow, presumably because the API call
overhead begins to become significant. A high performing solution
to this is potentially using a CUDA zero-copy kernel to have the
GPU instead of the CPU initiate the many small transfers on host
page-locked memory [2]. Therefore, for this work, we tested two
alternative approaches, namely custom written "zero-copy" CUDA
kernels and an asynchronous version of the CUDA library call
cudaMemCpy2D, as described below.

The custom zero-copy CUDA kernel uses threads to move data
between arrays allocated in the GPU memory and arrays which
reside in host memory. The zero-copy kernel makes use of the
fact that CUDA threads can access host resident memory directly
from the GPU without having to explicitly copy the data, i.e., there
are zero copies living on the device. This is enabled by using the
CUDA library call cudaHostGetDevicePointer to acquire a device
valid pointer to pinned host memory. This host memory must be
page-locked memory (pinned) which is also needed for maximum
transfer speeds for host arrays that are frequently copied in and
out of the GPU.

The zero-copy kernel method, however, is limited by the fact that
it uses some of the GPU streaming multiprocessors to copy data,
which can slow down the other computational kernels. On the other
hand, the CUDA library call, cudaMemCpy2DAsync, uses the GPU
copy engines and accepts arguments that allows for simple strided
copies to be performed easily. This comes with the advantage of
not having to occupy GPU SMs to achieve the movement.

0

0.1

0.2

0.3

0.4

0.5

0.6

8.8 140.6 1152

T
im

e
(s
)

Continuous message size (KB)

many cudaMemCpyAsync
Zero-copy

cudaMemCpy2DAsync

Figure 7: Time to transfer a total of 216MB of data with
strided memory access using three different approaches.
Since the total pencil size is fixed, smaller contiguous mes-
sages in this plot also correspond to more required looping
over contiguous message chunks.

Figure 7 compares timings for strided memory copies obtained
from the three different approaches considered here. The copies
were performed on a fixed total message size of 216 MB but the size
of the contiguous memory in the strided copy is varied. It can be
seen that both the zero-copy and cudaMemCpy2DAsync approaches
perform much better than (many) cudaMemCpyAsyncwhen the con-
tiguous message sizes are below 100’s of KB. For the 184323 DNS
problem the contiguous extent of the pencils is 18 KB, which is
close to the 8.8 KB tested in the figure. From this data we can draw

two conclusions. The first is that the many cudaMemCpyAsync ap-
proach is much slower than the zero-copy or cudaMemCpy2DAsync
approaches, while the latter two gives similar timings. The second
is that when moving a fixed amount of data, the overhead involved
in moving a finer granularity of chunks can increase the movement
time.

0

5

10

15

20

25

30

35

40

1 10 100

E
ff

ec
ti

v
e

B
a
n

d
w

id
th

(G
B

/
s)

number of thread blocks

zero-copy : H2D
zero-copy : D2H

cudaMemCpy2DAsync : H2D
cudaMemCpy2DAsync : D2H

Figure 8: Effective bandwidth of zero-copy kernel (circles
or triangles) compared to using cudaMemCpy2DAsync (dashed
horizontal lines) for different numbers of thread blocks. The
size of the thread block was 1024 threads.

To understand the GPU resources required by the zero-copy ker-
nel to provide sufficient throughput we studied the behavior of the
zero-copy kernel using different numbers of CUDA blocks as shown
in Fig. 8. The kernel register usage of 32 registers per thread and the
chosen thread block layout of 128× 8 threads per block, allows two
blocks to occupy a single SM. The cudaMemCpy2DAsync is a CUDA
API call, not a CUDA kernel, and therefore does not use any blocks
(or SMs). If the zero-copy kernel is provided with sufficient GPU re-
sources, the bandwidth achieved is similar to cudaMemCpy2DAsync.
We also see that close to maximum throughput is attained even if
using only a small fraction (about 16 blocks) of the GPU resources.
This allows a small fraction of the GPU resources to be devoted to
a zero copy kernel while simultaneously running other compute
kernels on SMs of the GPU.

For best overall performance, cudaMemCpy2DAsync is still prefer-
able to zero-copy kernels since the former allows all the GPU re-
sources (streaming multiprocessors) to be available to the compute
kernels. However, cudaMemCpy2DAsync can only handle simple
strides, while the zero-copy kernel can handle data with complex
stride patterns, (e.g., in unpacking data from contiguous to non-
contiguous arrays after communication), while using up only a
small amount of GPU resources. Thus, in our production code,
most of the copying between host and device is implemented using
cudaMemCpy2DAsync, while data unpacking is performed using the
zero-copy kernel.

5 PERFORMANCE ANALYSIS
In this section we present and analyze the overall performance
of the newly developed DNS code at different problem sizes and
node counts as described in Sec. 3.5, with all data obtained on

GPU acceleration of extreme scale pseudo-spectral simulations of turbulence SC ’19, November 17–22, 2019, Denver, CO, USA

Table 3: Performance of the slab decomposed DNS code run under different configurations and speedups are calculated with
respect to the performance of the pencil decomposed synchronous CPU code.

Nodes Problem
Size

Sync CPU
Async GPU

6 tasks/node 2 tasks/node
1 pencil/A2A 1 slab/A2A

Time (s) Time (s) Speedup Time (s) Speedup Time (s) Speedup
16 30723 34.38 8.09 4.2 6.70 5.1 7.50 4.6
128 61443 40.18 12.17 3.3 8.66 4.6 8.07 5.0
1024 122883 47.57 13.63 3.5 12.62 3.8 10.14 4.7
3072 184323 41.96 25.44 1.6 22.30 1.9 14.24 2.9

Summit. Table 3 shows elapsed wall time per time step and speedup
relative to performance data collected using the synchronous pencil
decomposition CPU code that was used by the authors of [23] and
is based on the principles described in Sec. 3.2. Timings per step
were obtained by taking the maximum over all MPI ranks, averaged
over multiple time steps. It should be noted that for both CPU and
GPU codes, regardless of the domain decomposition chosen, load
balancing requires that the number of cores used per node should
be an integer factor of the linear problem size (N). This implies,
even though there are 42 cores per Summit node, only 32 cores
can be used for most problem sizes except for the 184323 problem
which allows 36 cores when run with 3072 nodes.

The best MPI configuration in our new asynchronous GPU al-
gorithm gives the time to solution at a resolution of 184323 grid
points, using 3072 nodes, at under 15 seconds per time step. To our
knowledge, considering the problem sizes involved this compares
favorably with the largest simulations performed in the recent
past [10, 23] using CPU-based massive-parallelism. A GPU-to-CPU
speedup close to 3X was observed for the 184323 problem. Given
the large problem size addressed and the communication-intensive
nature of our application, this speedup is substantial.

5.1 2 vs 6 tasks per Node
The DNS code was approximately weak scaled on Summit, starting
with a problem size of 30723 on 16 nodes up to 184323 on 3072 nodes.
The scaling is approximate because the number of MPI ranks must
be an integer factor of the number of grid points on each side
of the domain, while we are focused on simulating the largest
problem size that can fit into the memory available on the machine,
at scale. Timings are reported for the three MPI configurations
defined earlier in Table 2. In particular: (A) using 6 tasks per node
and communicating one pencil at a time; (B) using 2 tasks per
node and communicating 1 pencil at a time (overlapping MPI with
GPU movement and compute); or (C) using 2 tasks per node but
waiting to communicate until all pencils in the slab have been
computed and can be sent in a larger message (no MPI overlap
with GPU operations). In all three cases data movement to/from
the GPU and computation on the GPU are overlapped with each
other, in the manner described in Sec. 3.4. As might be expected
for a communication dominated code, performance comparisons
between these three MPI configurations follow the trends observed
in the achieved MPI bandwidth studies of Table 2. Namely, that
2 tasks per node perform better than 6 tasks per node and that
at 3072 nodes sending an entire slab per all-to-all performs better

than asynchronously sending each pencil as they become ready.
Figure 9 shows the GPU timing data as well as a standalone MPI
code which only performs the transposes without computation or
data movement between the host and device. This helps us estimate
standalone MPI costs; for example the difference between the red
line and dotted green line of figure 9 is time spent in non-MPI
activities, such as GPU kernels and GPU data transfer. This green
line provides an upper bound on the best possible performance
given the network characteristics of the machine we used. Faster
GPUs or optimization to the GPU kernels alone can at best approach
the performance of the dotted green line.

122883 184323
0

5

10

15

20

25

30
Performance Comparison

2 task/node, 1 pencil/A2A
6 task/node, 1 pencil/A2A
2 tasks/node, 1 slab/A2A
A2A-SLAB (MPI only)

Problem Size

T
im

e
pe

r
T

im
es

te
p

(s
)

61443

Figure 9: Time-per-step of the DNS slab code. The dot-
ted green line is a benchmark of performing only the re-
quiredMPI all-to-all calls (no computations). The solid lines
are runs of the DNS code in various configurations bench-
marked up to 3072 Summit nodes.

5.2 Timeline and Asynchronous MPI Analysis
Use of The NVIDIA visual profiler [13] coupled to a Fortran in-
terface to Nvidia’s nvtx markers [1] allows the visualization of a
timeline of asynchronous CPU and GPU operations. To better un-
derstand the performance differences of the code under the various
configurations, Fig. 10 shows plots of normalized and aligned time-
lines for the various configurations running on 1024 nodes. These
timeline plots are particularly illuminating because they directly
show the parts of the code which contribute to the performance
differences.

For example, the MPI time (shown in red) is immediately seen to
be the major user of runtime. Comparison between the MPI times of

SC ’19, November 17–22, 2019, Denver, CO, USA Ravikumar, Appelhans and Yeung

0 T

2 tasks/node, 1 pencil/A2A

6 tasks/node, 1 pencil/A2A

2 tasks/node, 1 slab/A2A

2 tasks/node, MPI without GPU ops

H2D MemCpy2DAsync
D2H Pack MemCpy2DAsync
cuFFT 1st direction

H2D Unpack-Zero-Copy
D2H MemCpy2DAsync
cuFFT 2nd direction
MPI All to All

Figure 10: A normalized timeline comparison of various
code configurations running the 122883 problem size on 1024
nodes. Each slab is divided into 3 pencils. The top timeline
shows the behavior of an MPI only code that communicates
the 3 pencils at the same points in time as the DNS code
in the second timeline. The second timeline shows the ac-
tual behavior of the DNS code where GPU operations are
running asynchronously with the all-to-all communication.
The third timeline shows the affect of waiting to send the
entire slab in one MPI all-to-all call instead of each pencil
as it becomes ready. The final timeline shows the behavior
of 6 tasks per node when each pencil is asynchronously sent
as they become ready.

the two uppermost timelines shows that MPI in the actual DNS code
takes somewhat longer than in the standaloneMPI code. Reasons for
this are not fully understood, but the results were very repeatable.
A known contributor is that both CPU-GPU data movement and
MPI data movement share the total bandwidth limit of the Power
9 memory. Our standalone tests revealed that if GPUs and the
network card were requesting data movement, the MPI bandwidth
suffered significantly until the GPU transferwas complete. However,
even if the GPU data transfer times are subtracted from the MPI
time in the second timeline, the MPI time still does not equal the
MPI time without GPU operations. The difference in timing is not
fully understood, but another important consideration is that these
timelines were generated using NVIDIA’s profiler which has non-
trivial overhead and file system resource demands.

Comparison between the second and third timelines shows that
the same amount of data can be transposed faster when processed as
one, larger, message. This highlights a trade off: GPU operations can
be overlapped with MPI communication of individual pencils (sec-
ond timeline), but the resulting MPI message sizes will be smaller
and must compete with GPU data movement bandwidth demands.
Both factors work to slow down the MPI operations. The best ap-
proach is dependent on the problem size. At large problem sizes the
individual message sizes that comprise the all-to-all become very

small and the effective bandwidth drops (see Table 2). Beyond 16
nodes, waiting to send the entire slab at once (1 slab/A2A) is faster
than overlapping computation with communications of a pencil at
a time (1 pencil/A2A).

In the (bottom) timeline for the 6 tasks per node case each MPI
call takes longer than those seen in the 2 tasks per node case (top).
This is because the P2P message size in this all-to-all is small and
there are more MPI tasks with which to communicate with, which
increases latency costs. An additional drawback for this 6 tasks
per node case is that the D2H packing MemCpy2DAsync section of
code takes much longer. This is because for the pack operation, the
number of times cudaMemCpy2DAsync must be called is directly
proportional to the number of tasks. Per GPU, the 6 tasks per node
and 2 task per node cases pack the same total size buffer, but with
6 tasks per node the packing must be done at a finer granularity.
The number of copies required is now 3X that for the 2 tasks per
node case. This results in increased overhead as seen in Sec. 4.2. A
zero-copy kernel can be used here but it degrades the performance
of the 2 tasks per node case by stealing GPU resources from the
compute kernels.

The last takeaway from these timelines is that for the 2 task per
node cases, the MPI cost is dominating the runtime of the code.
The overhead incurred in choosing to batch data between CPU
and GPU is not significant compared to the total runtime, yet by
batching we are able to solve using the much larger CPU memory.
Further gains in performance will depend on code redesigns and
hardware innovations that improve the performance of the all-to-all
communication.

5.3 Scalability
As noted throughout this paper, our core objective is to solve large
problems in a reasonable amount of time. In most cases, for each
node count we have attempted to solve the largest problem that
will fit into the memory. As a result, at each problem size we can
collect timings over only a narrow range of node counts, making
inferences on strong scaling of limited relevance in this work. We
therefore focus on a brief discussion of weak scaling here.

The significant communication costs of codes that depend on
large scale 3D FFTs imply perfect weak scaling is not achievable
[4, 6, 7, 14]. After speeding up the FFT and auxiliary kernels through
use of an accelerator, our code runtime is dominated by all-to-all
communication. MPI benchmarks given in Table 2 indicate that
algorithmic choices that leads to a small number of large messages
are usually beneficial. However, eventually at the large scales the
latency of small message sizes gives rise to longer MPI communica-
tion times (and decreased bandwidth).

Table 4: Weak scaling relative to 30723 problem size.

Nodes Ntasks Problem # pencils Time Weak Scaling
Size per A2A (s) (%)

16 32 30723 1 6.70 -
128 256 61443 3 8.07 83.0
1024 2048 122883 3 10.14 66.1
3072 6144 184323 4 14.24 52.9

GPU acceleration of extreme scale pseudo-spectral simulations of turbulence SC ’19, November 17–22, 2019, Denver, CO, USA

We calculate theweak scaling percentage (WS), based on problem
size, between two problem sizes N 3

1 , N
3
2 of node counts M1, M2

with execution times t1 and t2 respectively using the formula

WS =
N 3
2

N 3
1
×
t1
t2

×
M1
M2
. (4)

Table 4 shows weak scaling computed with respect to the 30723
(16 node) problem size, using the best performance timings for
each problem size as recorded earlier in Table 3. Considering that
between 30723 and 184323 the number of grid points has increased
by a factor of 63 = 216, we argue that a weak scaling around 53% is
very respectable, given that it is a pseudo-spectral code dominated
by all-to-all communication patterns.

In passing, we also examined the strong scaling of the 6 tasks/n-
ode configuration. For the 184323 problem, using 3072 nodes achieved
25.4s per timestep, while 1536 nodes achieved 48.7s, resulting a
strong scaling of 95.7%.

6 CONCLUSIONS
In this paper we have reported in detail on design and performance
aspects of a new GPU algorithm for direct numerical simulations
(DNS) of turbulent flow, optimized for the dense node architecture
of Summit, a 200 Petaflops pre-exascale computer which is currently
the world’s fastest. The best implementation of this algorithm gives
a favorable time to solution for a problem size of 184323 grid points,
of under 15 seconds of wall clock for each second-order Runge-
Kutta time step. This resolution is higher than that reported in
current state-of-the-art simulations, which mostly employed CPU-
based massive parallelism. Speedup measured relative to the best-
performing CPU code is of order 3 or higher for all problem sizes
tested.

Using the latest GPU data movement techniques allows efficient
use of the full node memory, which in turn allowed for solving
larger problems and larger MPI message sizes. A close examination
of code region runtimes (Fig. 10) shows that, as a result of powerful
GPUs and fast NVLink connections, the cost of FFT computation
and data movement between CPU and GPU is reduced to less than
one-seventh of the code runtime. The bulk of the remaining runtime
is spent on network all-to-all communications, which was also
studied independently using a standalone code (Sec. 4.1).

A one-dimensional decomposition combined with a hierarchy
of MPI+OpenMP parallelism is used to allow communication in
the form of a smaller number of larger messages, which is crucial
for achieving acceptable scaling performance, especially at larger
problem sizes. The new code features capability to asynchronously
overlap compute, GPU-CPU data movement, and MPI communi-
cations (Fig. 4). However, at node counts of 128 and greater, per-
forming MPI asynchronously become more expensive than simply
waiting for the entire slab of data to be processed before initiating
the MPI all-to-all.

The lessons learned as well as successes achieved in this work
are directly relevant to large computations in many science do-
mains where 3D Fast Fourier Transforms are useful, and in fact
generalizable to a variety of large production use codes character-
ized by substantial needs in communication. We have shown it is
possible to efficiently utilize the very large CPU memory while still

extracting substantial benefits from the GPU as an accelerator. Con-
tinuing research in achieving higher communication performance
on leadership computing platforms is still vital in the pre-exascale
era and beyond.

ACKNOWLEDGMENTS
This research used resources of the Oak Ridge Leadership Com-
puting Facility (OLCF), which is a Department of Energy (DOE)
Office of Science user facility supported under Contract DE-AC05-
00OR22725. We gratefully acknowledge use of advanced computing
resources at the OLCF under a Summit Early Science Award and an
INCITE 2019 Award. The DOE-IBM-NVIDIACenter of Excellence at
Oak Ridge was instrumental in this work. We also appreciate much
encouragement and valuable technical input from many OLCF staff
members, including R. Budiardja, O. Hernandez, J.C. Hill, J. Larkin,
and J.C. Wells. In addition, the first author is supported by Oak
Ridge National Laboratory. (Monitor: O. Hernandez).

REFERENCES
[1] D. Appelhans. 2018. Github repository: gpu-tips/nvtx/nvtx_mod.F90. (2018).

Retrieved April 10, 2019 from https://github.com/dappelha/gpu-tips/tree/master/
nvtx

[2] D. Appelhans. 2018. Tricks, Tips, and Timings: The DataMovement Strategies You
Need to Know. In GPU Technology Conference. http://on-demand.gputechconf.
com/gtc/2018/presentation/s8557-tricks-tips-timings-the-data-movement.pdf

[3] C Canuto, M.Y. Hussaini, A. Quarteroni, and Zang T.A. 1988. Spectral Methods in
Fluid Dynamics. Springer-Verlag, Berlin.

[4] A. G. Chatterjee, M. K. Verma, A. Kumar, R. Samtaney, B.. Hadri, and R. Khurram.
2018. Scaling of a Fast Fourier Transform and a pseudo-spectral fluid solver up
to 196608 cores. J. Parallel and Distrib. Comput. 113 (2018), 77–91.

[5] M. P. Clay, D. Buaria, P. K. Yeung, and T. Gotoh. 2018. GPU acceleration of a
petascale application for turbulent mixing at high Schmidt number using OpenMP
4.5. Comp. Phys. Comm. 228 (July 2018), 100–114.

[6] H. Czechowski, C. Battaglino, C. McClanahan, K. Iyer, P. K. Yeung, and R. Vuduc.
2012. On the communication complexity of 3D FFTs and its implications for
exascale. In Proceedings of the International Supercomputing Conference (ISC’12).
ACM, San Servolo Island, Venice, Italy, 205–214.

[7] L. Dalcin, M. Mortensen, and D. E. Keyes. 2018. Fast parallel multidimensional
FFT using advanced MPI. arXiv:1804.09536 [cs] (April 2018). arXiv: 1804.09536.

[8] Oak Ridge Leadership Computing Facility. 2019. Summit system user guide.
(2019). Retrieved Apr 10, 2019 from https://www.olcf.ornl.gov/for-users/
system-user-guides/summit/summit-user-guide/

[9] A. Gholami, J. Hill, D. Malhotra, and G. Biros. 2016. AccFFT: A library for
distributed-memory FFT on CPU and GPU architectures. CoRR abs/1506.07933
(May 2016). arXiv:1506.07933 http://arxiv.org/abs/1506.07933

[10] T. Ishihara, K. Morishita, M. Yokokawa, A. Uno, and Y. Kaneda. 2016. Energy
spectrum in high-resolution direct numerical simulation of turbulence. Phys. Rev.
Fluids 1 (Dec. 2016), 082403.

[11] M. Lee, N. Malaya, and R. D. Moser. 2013. Petascale direct numerical simulation
of turbulent channel flow up to 786K cores. In International Conference for High
Performance Computing, Networking and Storage Analysis (SC), Denver, CO. ACM,
New York, NY, USA, 61:1–61:11.

[12] P. D. Mininni, D. Rosenberg, R. Reddy, and A. Pouquet. 2011. A hybrid MPI-
OpenMP scheme for scalable parallel pseudospectral computations for fluid
turbulence. Parallel Comput. 37, 6 (June-July 2011), 316 – 326.

[13] Nvidia. 2019. The NVIDIA Visual Profiler. (2019). Retrieved April 10, 2019 from
https://developer.nvidia.com/nvidia-visual-profiler

[14] D. Pekurovsky. 2012. P3DFFT: A framework for parallel computations of Fourier
transforms in three dimensions. Siam. J. Sci. Comput. 34 (Aug. 2012), C192–C209.

[15] Steven J Plimpton. 2017. FFTs for (mostly) Particle Codes within the DOE Ex-
ascale Computing Project. Technical Report. Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States).

[16] S. B. Pope. 2000. Turbulent Flows. Cambridge University Press, Cambridge, UK.
[17] R. S. Rogallo. 1981. Numerical experiments in homogeneous turbulence. NASA

Tech. Memo. 81315, NASA Ames Research Center. (Sept. 1981).
[18] G. Ruetsch andM. Fatica. 2014. CUDA Fortran for Scientists and Engineers. Morgan

Kaufmann Publishers.
[19] G. Shainer, A. Ayoub, P. Lui, T. Liu, M. Kagan, C. R. Trott, G. Scantlen, and

P. S. Crozier. 2011. The Development of Mellanox/NVIDIA GPUDirect over

https://github.com/dappelha/gpu-tips/tree/master/nvtx
https://github.com/dappelha/gpu-tips/tree/master/nvtx
http://on-demand.gputechconf.com/gtc/2018/presentation/s8557-tricks-tips-timings-the-data-movement.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8557-tricks-tips-timings-the-data-movement.pdf
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/
http://arxiv.org/abs/1506.07933
http://arxiv.org/abs/1506.07933
https://developer.nvidia.com/nvidia-visual-profiler

SC ’19, November 17–22, 2019, Denver, CO, USA Ravikumar, Appelhans and Yeung

InfiniBand–a New Model for GPU to GPU Communications. Comput. Sci. 26, 3-4
(Jun 2011), 267–273.

[20] IBM POWER9 NPU team. 2018. Functionality and performance of NVLink with
IBM POWER9 processors. IBM Journal of Research and Development 62, 4/5 (July
2018), 9:1–9:10. https://doi.org/10.1147/JRD.2018.2846978

[21] S. Vetter, A.B. Caldeira, and IBM Redbooks. 2018. IBM Power System AC922
Introduction and Technical Overview. IBM Redbooks.

[22] T. Watanabe, J. J. Riley, S. M. de Bruyn Kops, P. J. Diamessis, and Q. Zhou. 2016.
Turbulent/non-turbulent interfaces in wakes in stably stratified fluids. J. Fluid
Mech. 797 (June 2016), R1.

[23] P. K. Yeung, X. M. Zhai, and K. R. Sreenivasan. 2015. Extreme events in computa-
tional turbulence. Proc. Nat. Acad. Sci. 112 (Oct. 2015), 12633–12638.

https://doi.org/10.1147/JRD.2018.2846978

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We ran a Fourier pseudo-spectral simulation code on Summit using
the IBM XL compiler v16.1.1-1 and IBM Spectrum MPI v 10.2.0.11.
CUDA library v9.2.148 and FFTW library v3.3.8 were used to collect
the data reported in the paper.

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:

NA

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: System name-Summit ; IBM AC922
nodes ; POWER9 CPUs ; NVIDIA VOLTA 100 GPUs ; IBM Spec-
trumScale file system ; Dual rail EDR InfiniBand network

Operating systems and versions: Red Hat Enterprise Linux Server
7.5 (Maipo) running Linux kernel 4.14.0-49.18.1

Compilers and versions: IBM XL compiler version 16.1.1-1

Libraries and versions: CUDA version 9.2.148 ; Spectrum-mpi
version 10.2.0.11-20190201 ; FFTW version 3.3.8

Key algorithms: Fourier pseudo-spectral algorithm

Input datasets and versions: Self generated

Paper Modifications: No modifications were made to the hard-
ware or Software. The Summit machine was used as is.

Output from scripts that gathers execution environment informa-
tion.

LMOD_FAMILY_COMPILER_VERSION=16.1.1-1
MANPATH=/autofs/nccs-svm1_sw/summit/.swci/1-compute/ ⌋

opt/spack/20180914/linux-rhel7-ppc64le/xl-16.1.1 ⌋

-1/fftw-3.3.8-vuwn274gfobnmpcr6d3bbualaqbj6nnc/sh ⌋

are/man:/autofs/nccs-svm1_sw/summit/.swci/0-core ⌋

/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8. ⌋

5/vim-7.4.2367-dhtu3xylmvrjytqpllknptgkiepkvafx/ ⌋

share/man:/autofs/nccs-svm1_sw/summit/.swci/0-co ⌋

re/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4. ⌋

8.5/tmux-2.2-z2cgytxdo3rzw643uj2fiwp7iwqbbbwp/sh ⌋

are/man:/sw/sources/hpss/man:/autofs/nccs-svm1_s ⌋

w/summit/.swci/1-compute/opt/spack/20180914/linu ⌋

x-rhel7-ppc64le/xl-16.1.1-1/spectrum-mpi-10.2.0. ⌋

11-20190201-6qypd6rixwrkcyd5gnijoacjqxrtblzk/sha ⌋

re/man:/sw/summit/xl/16.1.1-1/xlC/16.1.1/man/en_ ⌋

US:/sw/summit/xl/16.1.1-1/xlf/16.1.1/man/en_US:/ ⌋

sw/summit/lmod/7.7.10/rhel7.3_gnu4.8.5/lmod/lmod ⌋

/share/man:/opt/ibm/spectrumcomputing/lsf/10.1/m ⌋

an::

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

XALT_ETC_DIR=/sw/summit/xalt/1.1.3/etc
XDG_SESSION_ID=53
HOSTNAME=login1
ModuleTable003=Y3RpdmUiLFsidXNlck5hbWUiXT0iZmZ0dyI ⌋

sfSxoc2k9e1siZm4iXT0iL3N3L3N1bW1pdC9tb2R1bGVmaWx ⌋

lcy9zaXRlL2xpbnV4LXJoZWw3LXBwYzY0bGUvQ29yZS9oc2k ⌋

vNS4wLjIucDUubHVhIixbImZ1bGxOYW1lIl09ImhzaS81LjA ⌋

uMi5wNSIsWyJsb2FkT3JkZXIiXT0zLHByb3BUPXt9LFsic3R ⌋

hY2tEZXB0aCJdPTEsWyJzdGF0dXMiXT0iYWN0aXZlIixbInV ⌋

zZXJOYW1lIl09ImhzaSIsfSxbImxzZi10b29scyJdPXtbImZ ⌋

uIl09Ii9zdy9zdW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW5 ⌋

1eC1yaGVsNy1wcGM2NGxlL0NvcmUvbHNmLXRvb2xzLzIuMC5 ⌋

sdWEiLFsiZnVsbE5hbWUiXT0ibHNmLXRvb2xzLzIuMCIsWyJ ⌋

sb2FkT3JkZXIiXT01LHByb3BUPXt9LFsic3RhY2tEZXB0

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

ModuleTable009=cy9Db3JlOi9zdy9zdW1taXQvbG1vZC83Ljc ⌋

uMTAvcmhlbDcuM19nbnU0LjguNS9sbW9kL2xtb2QvbW9kdWx ⌋

lZmlsZXMvQ29yZSIsfQ==
↪→

↪→

SHELL=/bin/bash
TERM=screen-256color
HISTSIZE=100000
LMOD_SYSTEM_DEFAULT_MODULES=DefApps
MODULEPATH_ROOT=/sw/summit/lmod/7.7.10/rhel7.3_gnu4. ⌋

8.5/modulefiles↪→

SSH_CLIENT=128.61.185.168 55666 22
LIBRARY_PATH=/sw/summit/cuda/9.2.148/lib64:/autofs/n ⌋

ccs-svm1_sw/summit/.swci/1-compute/opt/spack/201 ⌋

80914/linux-rhel7-ppc64le/xl-16.1.1-1/fftw-3.3.8 ⌋

-vuwn274gfobnmpcr6d3bbualaqbj6nnc/lib:/autofs/ncc ⌋

s-svm1_sw/summit/.swci/1-compute/opt/spack/20180 ⌋

914/linux-rhel7-ppc64le/xl-16.1.1-1/spectrum-mpi ⌋

-10.2.0.11-20190201-6qypd6rixwrkcyd5gnijoacjqxrtb ⌋

lzk/lib

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PAMI_IBV_ADAPTER_AFFINITY=1

Ravikumar, et al.

LMOD_PKG=/sw/summit/lmod/7.7.10/rhel7.3_gnu4.8.5/lmo ⌋

d/lmod↪→

LSF_SERVERDIR=/opt/ibm/spectrumcomputing/lsf/10.1/li ⌋

nux3.10-glibc2.17-ppc64le-csm/etc↪→

OLCF_XL_ROOT=/sw/summit/xl/16.1.1-1
PAMI_ENABLE_STRIPING=0
LMOD_VERSION=7.7.10
OMPI_FC=/sw/summit/xl/16.1.1-1/xlf/16.1.1/bin/xlf200 ⌋

8_r↪→

OLCF_XLSMP_ROOT=/sw/summit/xl/16.1.1-1/xlsmp/5.1.1
SSH_TTY=/dev/pts/2
ModuleTable007=cGM2NGxlL3NwZWN0cnVtLW1waS8xMC4yLjA ⌋

uMTEtMjAxOTAyMDEtNnF5cGQ2ci94bC8xNi4xLjEtMSIsIi9 ⌋

zdy9zdW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC1yaGV ⌋

sNy1wcGM2NGxlL3hsLzE2LjEuMS0xIiwiL3N3L3N1bW1pdC9 ⌋

tb2R1bGVmaWxlcy9zaXRlL2xpbnV4LXJoZWw3LXBwYzY0bGU ⌋

vQ29yZSIsIi9zdy9zdW1taXQvbW9kdWxlZmlsZXMvY29yZSI ⌋

sIi9zdy9zdW1taXQvbG1vZC83LjcuMTAvcmhlbDcuM19nbnU ⌋

0LjguNS9tb2R1bGVmaWxlcy9MaW51eCIsIi9zdy9zdW1taXQ ⌋

vbG1vZC83LjcuMTAvcmhlbDcuM19nbnU0LjguNS9tb2R1bGV ⌋

maWxlcy9Db3JlIiwiL3N3L3N1bW1pdC9sbW9kLzcuNy4xMC9 ⌋

yaGVsNy4zX2dudTQuOC41L2xtb2QvbG1vZC9tb2R1bGVm

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__LMOD_REF_COUNT_CMAKE_PREFIX_PATH=/sw/summit/cuda/9 ⌋

.2.148:1;/autofs/nccs-svm1_sw/summit/.swci/1-com ⌋

pute/opt/spack/20180914/linux-rhel7-ppc64le/xl-1 ⌋

6.1.1-1/fftw-3.3.8-vuwn274gfobnmpcr6d3bbualaqbj6 ⌋

nnc:1;/autofs/nccs-svm1_sw/summit/.swci/0-core/o ⌋

pt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/ ⌋

vim-7.4.2367-dhtu3xylmvrjytqpllknptgkiepkvafx:1; ⌋

/autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spa ⌋

ck/20180914/linux-rhel7-ppc64le/gcc-4.8.5/tmux-2 ⌋

.2-z2cgytxdo3rzw643uj2fiwp7iwqbbbwp:1;/autofs/nc ⌋

cs-svm1_sw/summit/.swci/1-compute/opt/spack/2018 ⌋

0914/linux-rhel7-ppc64le/xl-16.1.1-1/spectrum-mp ⌋

i-10.2.0.11-20190201-6qypd6rixwrkcyd5gnijoacjqxr ⌋

tblzk:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__LMOD_REF_COUNT_LOADEDMODULES=xl/16.1.1-1:1;spectru ⌋

m-mpi/10.2.0.11-20190201:1;hsi/5.0.2.p5:1;xalt/1 ⌋

.1.3:1;lsf-tools/2.0:1;DefApps:1;tmux/2.2:1;vim/ ⌋

7.4.2367:1;fftw/3.3.8:1;cuda/9.2.148:1

↪→

↪→

↪→

LSF_LIBDIR=/opt/ibm/spectrumcomputing/lsf/10.1/linux ⌋

3.10-glibc2.17-ppc64le-csm/lib↪→

OPAL_PREFIX=/autofs/nccs-svm1_sw/summit/.swci/1-comp ⌋

ute/opt/spack/20180914/linux-rhel7-ppc64le/xl-16 ⌋

.1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6rix ⌋

wrkcyd5gnijoacjqxrtblzk

↪→

↪→

↪→

USER=USER

LD_LIBRARY_PATH=/sw/summit/cuda/9.2.148/lib64:/autof ⌋

s/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/ ⌋

20180914/linux-rhel7-ppc64le/xl-16.1.1-1/fftw-3. ⌋

3.8-vuwn274gfobnmpcr6d3bbualaqbj6nnc/lib:/autofs ⌋

/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/2 ⌋

0180914/linux-rhel7-ppc64le/xl-16.1.1-1/spectrum ⌋

-mpi-10.2.0.11-20190201-6qypd6rixwrkcyd5gnijoacjq ⌋

xrtblzk/lib:/sw/summit/xl/16.1.1-1/xlsmp/5.1.1/l ⌋

ib:/sw/summit/xl/16.1.1-1/xlmass/9.1.1/lib:/sw/s ⌋

ummit/xl/16.1.1-1/xlC/16.1.1/lib:/sw/summit/xl/1 ⌋

6.1.1-1/xlf/16.1.1/lib:/sw/summit/xl/16.1.1-1/li ⌋

b:/opt/ibm/spectrumcomputing/lsf/10.1/linux3.10- ⌋

glibc2.17-ppc64le-csm/lib:/opt/ibm/spectrum_mpi/ ⌋

jsm_pmix/lib

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

LMOD_sys=Linux
LS_COLORS=rs=0:di=38;5;27:ln=38;5;51:mh=44;38;5;15:p ⌋

i=40;38;5;11:so=38;5;13:do=38;5;5:bd=48;5;232;38 ⌋

;5;11:cd=48;5;232;38;5;3:or=48;5;232;38;5;9:mi=0 ⌋

5;48;5;232;38;5;15:su=48;5;196;38;5;15:sg=48;5;1 ⌋

1;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;1 ⌋

6:ow=48;5;10;38;5;21:st=48;5;21;38;5;15:ex=38;5; ⌋

34:*.tar=38;5;9:*.tgz=38;5;9:*.arc=38;5;9:*.arj= ⌋

38;5;9:*.taz=38;5;9:*.lha=38;5;9:*.lz4=38;5;9:*. ⌋

lzh=38;5;9:*.lzma=38;5;9:*.tlz=38;5;9:*.txz=38;5 ⌋

;9:*.tzo=38;5;9:*.t7z=38;5;9:*.zip=38;5;9:*.z=38 ⌋

;5;9:*.Z=38;5;9:*.dz=38;5;9:*.gz=38;5;9:*.lrz=38 ⌋

;5;9:*.lz=38;5;9:*.lzo=38;5;9:*.xz=38;5;9:*.bz2= ⌋

38;5;9:*.bz=38;5;9:*.tbz=38;5;9:*.tbz2=38;5;9:*. ⌋

tz=38;5;9:*.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9 ⌋

:*.war=38;5;9:*.ear=38;5;9:*.sar=38;5;9:*.rar=38 ⌋

;5;9:*.alz=38;5;9:*.ace=38;5;9:*.zoo=38;5;9:*.cp ⌋

io=38;5;9:*.7z=38;5;9:*.rz=38;5;9:*.cab=38;5;9:* ⌋

.jpg=38;5;13:*.jpeg=38;5;13:*.gif=38;5;13:*.bmp= ⌋

38;5;13:*.pbm=38;5;13:*.pgm=38;5;13:*.ppm=38;5;1 ⌋

3:*.tga=38;5;13:*.xbm=38;5;13:*.xpm=38;5;13:*.ti ⌋

f=38;5;13:*.tiff=38;5;13:*.png=38;5;13:*.svg=38; ⌋

5;13:*.svgz=38;5;13:*.mng=38;5;13:*.pcx=38;5;13: ⌋

.mov=38;5;13:.mpg=38;5;13:*.mpeg=38;5;13:*.m2v ⌋

=38;5;13:*.mkv=38;5;13:*.webm=38;5;13:*.ogm=38;5 ⌋

;13:*.mp4=38;5;13:*.m4v=38;5;13:*.mp4v=38;5;13:* ⌋

.vob=38;5;13:*.qt=38;5;13:*.nuv=38;5;13:*.wmv=38 ⌋

;5;13:*.asf=38;5;13:*.rm=38;5;13:*.rmvb=38;5;13: ⌋

.flc=38;5;13:.avi=38;5;13:*.fli=38;5;13:*.flv= ⌋

38;5;13:*.gl=38;5;13:*.dl=38;5;13:*.xcf=38;5;13: ⌋

.xwd=38;5;13:.yuv=38;5;13:*.cgm=38;5;13:*.emf= ⌋

38;5;13:*.axv=38;5;13:*.anx=38;5;13:*.ogv=38;5;1 ⌋

3:*.ogx=38;5;13:*.aac=38;5;45:*.au=38;5;45:*.fla ⌋

c=38;5;45:*.mid=38;5;45:*.midi=38;5;45:*.mka=38; ⌋

5;45:*.mp3=38;5;45:*.mpc=38;5;45:*.ogg=38;5;45:* ⌋

.ra=38;5;45:*.wav=38;5;45:*.axa=38;5;45:*.oga=38 ⌋

;5;45:*.spx=38;5;45:*.xspf=38;5;45:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PAMI_IBV_ENABLE_OOO_AR=1
LMOD_MPI_NAME=spectrum-mpi

GPU Acceleration of Extreme Scale Pseudo-Spectral Simulations of Turbulence Using Asynchronism

CPATH=/sw/summit/cuda/9.2.148/include:/autofs/nccs-s ⌋

vm1_sw/summit/.swci/1-compute/opt/spack/20180914 ⌋

/linux-rhel7-ppc64le/xl-16.1.1-1/fftw-3.3.8-vuwn ⌋

274gfobnmpcr6d3bbualaqbj6nnc/include:/autofs/ncc ⌋

s-svm1_sw/summit/.swci/1-compute/opt/spack/20180 ⌋

914/linux-rhel7-ppc64le/xl-16.1.1-1/spectrum-mpi ⌋

-10.2.0.11-20190201-6qypd6rixwrkcyd5gnijoacjqxrtb ⌋

lzk/include

↪→

↪→

↪→

↪→

↪→

↪→

↪→

ModuleTable004=aCJdPTEsWyJzdGF0dXMiXT0iYWN0aXZlIix ⌋

bInVzZXJOYW1lIl09ImxzZi10b29scyIsfSxbInNwZWN0cnV ⌋

tLW1waSJdPXtbImZuIl09Ii9zdy9zdW1taXQvbW9kdWxlZml ⌋

sZXMvc2l0ZS9saW51eC1yaGVsNy1wcGM2NGxlL3hsLzE2LjE ⌋

uMS0xL3NwZWN0cnVtLW1waS8xMC4yLjAuMTEtMjAxOTAyMDE ⌋

ubHVhIixbImZ1bGxOYW1lIl09InNwZWN0cnVtLW1waS8xMC4 ⌋

yLjAuMTEtMjAxOTAyMDEiLFsibG9hZE9yZGVyIl09Mixwcm9 ⌋

wVD17fSxbInN0YWNrRGVwdGgiXT0xLFsic3RhdHVzIl09ImF ⌋

jdGl2ZSIsWyJ1c2VyTmFtZSJdPSJzcGVjdHJ1bS1tcGkiLH0 ⌋

sdG11eD17WyJmbiJdPSIvc3cvc3VtbWl0L21vZHVsZWZpbGV ⌋

zL3NpdGUvbGludXgtcmhlbDctcHBjNjRsZS9Db3JlL3Rt

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__LMOD_REF_COUNT__LMFILES_=/sw/summit/modulefiles/si ⌋

te/linux-rhel7-ppc64le/Core/xl/16.1.1-1.lua:1;/s ⌋

w/summit/modulefiles/site/linux-rhel7-ppc64le/xl ⌋

/16.1.1-1/spectrum-mpi/10.2.0.11-20190201.lua:1; ⌋

/sw/summit/modulefiles/site/linux-rhel7-ppc64le/ ⌋

Core/hsi/5.0.2.p5.lua:1;/sw/summit/modulefiles/s ⌋

ite/linux-rhel7-ppc64le/Core/xalt/1.1.3.lua:1;/s ⌋

w/summit/modulefiles/site/linux-rhel7-ppc64le/Co ⌋

re/lsf-tools/2.0.lua:1;/sw/summit/modulefiles/si ⌋

te/linux-rhel7-ppc64le/Core/DefApps.lua:1;/sw/su ⌋

mmit/modulefiles/site/linux-rhel7-ppc64le/Core/t ⌋

mux/2.2.lua:1;/sw/summit/modulefiles/site/linux- ⌋

rhel7-ppc64le/Core/vim/7.4.2367.lua:1;/autofs/nc ⌋

cs-svm1_sw/summit/modulefiles/site/linux-rhel7-p ⌋

pc64le/spectrum-mpi/10.2.0.11-20190201-6qypd6r/x ⌋

l/16.1.1-1/fftw/3.3.8.lua:1;/sw/summit/modulefil ⌋

es/site/linux-rhel7-ppc64le/xl/16.1.1-1/cuda/9.2 ⌋

.148.lua:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

OLCF_LMOD_ROOT=/sw/summit/lmod/7.7.10/rhel7.3_gnu4.8 ⌋

.5↪→

OLCF_XLMASS_ROOT=/sw/summit/xl/16.1.1-1/xlmass/9.1.1
PROJWORK=/gpfs/alpine/proj-shared
TMUX=/tmp/tmux-13765/default,82078,0
LMOD_FAMILY_MPI_VERSION=10.2.0.11-20190201
NLSPATH=/sw/summit/xl/16.1.1-1/msg/en_US/%N:/sw/summ ⌋

it/xl/16.1.1-1/xlC/16.1.1/msg/en_US/%N:/sw/summi ⌋

t/xl/16.1.1-1/xlf/16.1.1/msg/en_US/%N
↪→

↪→

MAIL=/var/spool/mail/USER

PATH=/sw/sources/lsf-tools/2.0/summit/bin:/sw/summit ⌋

/xalt/1.1.3/bin:/sw/summit/cuda/9.2.148/bin:/aut ⌋

ofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spac ⌋

k/20180914/linux-rhel7-ppc64le/xl-16.1.1-1/fftw- ⌋

3.3.8-vuwn274gfobnmpcr6d3bbualaqbj6nnc/bin:/ccs/ ⌋

home/USER/scripts/Archival-Scripts:/ccs/home/USE ⌋

R/scripts:/autofs/nccs-svm1_sw/summit/.swci/0-co ⌋

re/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4. ⌋

8.5/vim-7.4.2367-dhtu3xylmvrjytqpllknptgkiepkvaf ⌋

x/bin:/autofs/nccs-svm1_sw/summit/.swci/0-core/o ⌋

pt/spack/20180914/linux-rhel7-ppc64le/gcc-4.8.5/ ⌋

tmux-2.2-z2cgytxdo3rzw643uj2fiwp7iwqbbbwp/bin:/u ⌋

sr/bin:/usr/sbin:/opt/ibm/csm/bin:/sw/sources/hp ⌋

ss/bin:/autofs/nccs-svm1_sw/summit/.swci/1-compu ⌋

te/opt/spack/20180914/linux-rhel7-ppc64le/xl-16. ⌋

1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6rixw ⌋

rkcyd5gnijoacjqxrtblzk/bin:/sw/summit/xl/16.1.1- ⌋

1/xlC/16.1.1/bin:/sw/summit/xl/16.1.1-1/xlf/16.1 ⌋

.1/bin:/opt/ibm/spectrumcomputing/lsf/10.1/linux ⌋

3.10-glibc2.17-ppc64le-csm/etc:/opt/ibm/spectrum ⌋

computing/lsf/10.1/linux3.10-glibc2.17-ppc64le-c ⌋

sm/bin:/usr/local/bin:/usr/local/sbin:/opt/ibm/f ⌋

lightlog/bin:/opt/ibutils/bin:/opt/ibm/spectrum_ ⌋

mpi/jsm_pmix/bin:/opt/puppetlabs/bin:/usr/lpp/mm ⌋

fs/bin

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

ModuleTable001=X01vZHVsZVRhYmxlXz17WyJNVHZlcnNpb24 ⌋

iXT0zLFsiY19yZWJ1aWxkVGltZSJdPWZhbHNlLFsiY19zaG9 ⌋

ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9e30sZmFtaWx5PXtbImN ⌋

vbXBpbGVyIl09InhsIixbIm1waSJdPSJzcGVjdHJ1bS1tcGk ⌋

iLH0sbVQ9e0RlZkFwcHM9e1siZm4iXT0iL3N3L3N1bW1pdC9 ⌋

tb2R1bGVmaWxlcy9zaXRlL2xpbnV4LXJoZWw3LXBwYzY0bGU ⌋

vQ29yZS9EZWZBcHBzLmx1YSIsWyJmdWxsTmFtZSJdPSJEZWZ ⌋

BcHBzIixbImxvYWRPcmRlciJdPTYscHJvcFQ9e30sWyJzdGF ⌋

ja0RlcHRoIl09MCxbInN0YXR1cyJdPSJhY3RpdmUiLFsidXN ⌋

lck5hbWUiXT0iRGVmQXBwcyIsfSxjdWRhPXtbImZuIl09Ii9 ⌋

zdy9zdW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC1y

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__LMOD_REF_COUNT_NLSPATH=/sw/summit/xl/16.1.1-1/msg/ ⌋

en_US/%N:2;/sw/summit/xl/16.1.1-1/xlC/16.1.1/msg ⌋

/en_US/%N:1;/sw/summit/xl/16.1.1-1/xlf/16.1.1/ms ⌋

g/en_US/%N:1

↪→

↪→

↪→

PAMI_IBV_QP_SERVICE_LEVEL=8
_=/usr/bin/env
OLCF_XLC_ROOT=/sw/summit/xl/16.1.1-1/xlC/16.1.1
OPAL_LIBDIR=/autofs/nccs-svm1_sw/summit/.swci/1-comp ⌋

ute/opt/spack/20180914/linux-rhel7-ppc64le/xl-16 ⌋

.1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6rix ⌋

wrkcyd5gnijoacjqxrtblzk/lib

↪→

↪→

↪→

OMPI_DIR=/autofs/nccs-svm1_sw/summit/.swci/1-compute ⌋

/opt/spack/20180914/linux-rhel7-ppc64le/xl-16.1. ⌋

1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6rixwrk ⌋

cyd5gnijoacjqxrtblzk

↪→

↪→

↪→

PWD=/gpfs/alpine/proj-shared/tur120/USER/PSDNS_HOMO_ ⌋

OMP/2019-04-10-Performance↪→

OLCF_VIM_ROOT=/autofs/nccs-svm1_sw/summit/.swci/0-co ⌋

re/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4. ⌋

8.5/vim-7.4.2367-dhtu3xylmvrjytqpllknptgkiepkvafx
↪→

↪→

Ravikumar, et al.

LMFILES=/sw/summit/modulefiles/site/linux-rhel7-pp ⌋

c64le/Core/xl/16.1.1-1.lua:/sw/summit/modulefile ⌋

s/site/linux-rhel7-ppc64le/xl/16.1.1-1/spectrum- ⌋

mpi/10.2.0.11-20190201.lua:/sw/summit/modulefile ⌋

s/site/linux-rhel7-ppc64le/Core/hsi/5.0.2.p5.lua ⌋

:/sw/summit/modulefiles/site/linux-rhel7-ppc64le ⌋

/Core/xalt/1.1.3.lua:/sw/summit/modulefiles/site ⌋

/linux-rhel7-ppc64le/Core/lsf-tools/2.0.lua:/sw/ ⌋

summit/modulefiles/site/linux-rhel7-ppc64le/Core ⌋

/DefApps.lua:/sw/summit/modulefiles/site/linux-r ⌋

hel7-ppc64le/Core/tmux/2.2.lua:/sw/summit/module ⌋

files/site/linux-rhel7-ppc64le/Core/vim/7.4.2367 ⌋

.lua:/autofs/nccs-svm1_sw/summit/modulefiles/sit ⌋

e/linux-rhel7-ppc64le/spectrum-mpi/10.2.0.11-201 ⌋

90201-6qypd6r/xl/16.1.1-1/fftw/3.3.8.lua:/sw/sum ⌋

mit/modulefiles/site/linux-rhel7-ppc64le/xl/16.1 ⌋

.1-1/cuda/9.2.148.lua

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

EDITOR=/usr/bin/vim
OLCF_MODULEPATH_ROOT=/sw/summit/modulefiles
OLCF_CUDA_ROOT=/sw/summit/cuda/9.2.148
__LMOD_REF_COUNT_PYTHONPATH=/sw/summit/xalt/1.1.3/si ⌋

te:1;/sw/summit/xalt/1.1.3/libexec:1↪→

MODULEPATH=/autofs/nccs-svm1_sw/summit/modulefiles/s ⌋

ite/linux-rhel7-ppc64le/spectrum-mpi/10.2.0.11-2 ⌋

0190201-6qypd6r/xl/16.1.1-1:/sw/summit/modulefil ⌋

es/site/linux-rhel7-ppc64le/xl/16.1.1-1:/sw/summ ⌋

it/modulefiles/site/linux-rhel7-ppc64le/Core:/sw ⌋

/summit/modulefiles/core:/sw/summit/lmod/7.7.10/ ⌋

rhel7.3_gnu4.8.5/modulefiles/Linux:/sw/summit/lm ⌋

od/7.7.10/rhel7.3_gnu4.8.5/modulefiles/Core:/sw/ ⌋

summit/lmod/7.7.10/rhel7.3_gnu4.8.5/lmod/lmod/mo ⌋

dulefiles/Core

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

LMOD_SYSTEM_NAME=summit
LOADEDMODULES=xl/16.1.1-1:spectrum-mpi/10.2.0.11-201 ⌋

90201:hsi/5.0.2.p5:xalt/1.1.3:lsf-tools/2.0:DefA ⌋

pps:tmux/2.2:vim/7.4.2367:fftw/3.3.8:cuda/9.2.148
↪→

↪→

_ModuleTable_Sz_=8
TMUX_PANE=%3
OLCF_XLF_ROOT=/sw/summit/xl/16.1.1-1/xlf/16.1.1
LMOD_CMD=/sw/summit/lmod/7.7.10/rhel7.3_gnu4.8.5/lmo ⌋

d/lmod/libexec/lmod↪→

ModuleTable005=dXgvMi4yLmx1YSIsWyJmdWxsTmFtZSJdPSJ ⌋

0bXV4LzIuMiIsWyJsb2FkT3JkZXIiXT03LHByb3BUPXt9LFs ⌋

ic3RhY2tEZXB0aCJdPTAsWyJzdGF0dXMiXT0iYWN0aXZlIix ⌋

bInVzZXJOYW1lIl09InRtdXgiLH0sdmltPXtbImZuIl09Ii9 ⌋

zdy9zdW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC1yaGV ⌋

sNy1wcGM2NGxlL0NvcmUvdmltLzcuNC4yMzY3Lmx1YSIsWyJ ⌋

mdWxsTmFtZSJdPSJ2aW0vNy40LjIzNjciLFsibG9hZE9yZGV ⌋

yIl09OCxwcm9wVD17fSxbInN0YWNrRGVwdGgiXT0wLFsic3R ⌋

hdHVzIl09ImFjdGl2ZSIsWyJ1c2VyTmFtZSJdPSJ2aW0iLH0 ⌋

seGFsdD17WyJmbiJdPSIvc3cvc3VtbWl0L21vZHVsZWZpbGV ⌋

zL3NpdGUvbGludXgtcmhlbDctcHBjNjRsZS9Db3JlL3hh

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

LSF_BINDIR=/opt/ibm/spectrumcomputing/lsf/10.1/linux ⌋

3.10-glibc2.17-ppc64le-csm/bin↪→

HISTCONTROL=ignoredups:ignorespace
WORLDWORK=/gpfs/alpine/world-shared

HOME=/ccs/home/USER
MEMBERWORK=/gpfs/alpine/scratch/USER
SHLVL=3
OMPI_CC=/sw/summit/xl/16.1.1-1/xlC/16.1.1/bin/xlc_r
__LMOD_REF_COUNT_PATH=/sw/sources/lsf-tools/2.0/summ ⌋

it/bin:3;/sw/summit/xalt/1.1.3/bin:1;/sw/summit/ ⌋

cuda/9.2.148/bin:1;/autofs/nccs-svm1_sw/summit/. ⌋

swci/1-compute/opt/spack/20180914/linux-rhel7-pp ⌋

c64le/xl-16.1.1-1/fftw-3.3.8-vuwn274gfobnmpcr6d3 ⌋

bbualaqbj6nnc/bin:1;/ccs/home/USER/scripts/Archi ⌋

val-Scripts:2;/ccs/home/USER/scripts:2;/autofs/n ⌋

ccs-svm1_sw/summit/.swci/0-core/opt/spack/201809 ⌋

14/linux-rhel7-ppc64le/gcc-4.8.5/vim-7.4.2367-dh ⌋

tu3xylmvrjytqpllknptgkiepkvafx/bin:1;/autofs/ncc ⌋

s-svm1_sw/summit/.swci/0-core/opt/spack/20180914 ⌋

/linux-rhel7-ppc64le/gcc-4.8.5/tmux-2.2-z2cgytxd ⌋

o3rzw643uj2fiwp7iwqbbbwp/bin:1;/usr/bin:3;/usr/s ⌋

bin:3;/opt/ibm/csm/bin:1;/sw/sources/hpss/bin:1; ⌋

/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/ ⌋

spack/20180914/linux-rhel7-ppc64le/xl-16.1.1-1/s ⌋

pectrum-mpi-10.2.0.11-20190201-6qypd6rixwrkcyd5g ⌋

nijoacjqxrtblzk/bin:1;/sw/summit/xl/16.1.1-1/xlC ⌋

/16.1.1/bin:1;/sw/summit/xl/16.1.1-1/xlf/16.1.1/ ⌋

bin:1;/opt/ibm/spectrumcomputing/lsf/10.1/linux3 ⌋

.10-glibc2.17-ppc64le-csm/etc:1;/opt/ibm/spectru ⌋

mcomputing/lsf/10.1/linux3.10-glibc2.17-ppc64le- ⌋

csm/bin:1;/usr/local/bin:1;/usr/local/sbin:1;/op ⌋

t/ibm/flightlog/bin:1;/opt/ibutils/bin:1;/opt/ib ⌋

m/spectrum_mpi/jsm_pmix/bin:1;/opt/puppetlabs/bi ⌋

n:1;/usr/lpp/mmfs/bin:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__LMOD_REF_COUNT_CPATH=/sw/summit/cuda/9.2.148/inclu ⌋

de:1;/autofs/nccs-svm1_sw/summit/.swci/1-compute ⌋

/opt/spack/20180914/linux-rhel7-ppc64le/xl-16.1. ⌋

1-1/fftw-3.3.8-vuwn274gfobnmpcr6d3bbualaqbj6nnc/ ⌋

include:1;/autofs/nccs-svm1_sw/summit/.swci/1-co ⌋

mpute/opt/spack/20180914/linux-rhel7-ppc64le/xl- ⌋

16.1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6r ⌋

ixwrkcyd5gnijoacjqxrtblzk/include:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

BINARY_TYPE_HPC=
ModuleTable002=aGVsNy1wcGM2NGxlL3hsLzE2LjEuMS0xL2N ⌋

1ZGEvOS4yLjE0OC5sdWEiLFsiZnVsbE5hbWUiXT0iY3VkYS8 ⌋

5LjIuMTQ4IixbImxvYWRPcmRlciJdPTEwLHByb3BUPXt9LFs ⌋

ic3RhY2tEZXB0aCJdPTAsWyJzdGF0dXMiXT0iYWN0aXZlIix ⌋

bInVzZXJOYW1lIl09ImN1ZGEiLH0sZmZ0dz17WyJmbiJdPSI ⌋

vYXV0b2ZzL25jY3Mtc3ZtMV9zdy9zdW1taXQvbW9kdWxlZml ⌋

sZXMvc2l0ZS9saW51eC1yaGVsNy1wcGM2NGxlL3NwZWN0cnV ⌋

tLW1waS8xMC4yLjAuMTEtMjAxOTAyMDEtNnF5cGQ2ci94bC8 ⌋

xNi4xLjEtMS9mZnR3LzMuMy44Lmx1YSIsWyJmdWxsTmFtZSJ ⌋

dPSJmZnR3LzMuMy44IixbImxvYWRPcmRlciJdPTkscHJvcFQ ⌋

9e30sWyJzdGFja0RlcHRoIl09MCxbInN0YXR1cyJdPSJh

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

SHOST=login1
BASH_ENV=/sw/summit/lmod/7.7.10/rhel7.3_gnu4.8.5/lmo ⌋

d/lmod/init/bash↪→

OLCF_HSI_ROOT=/sw/sources/hpss

GPU Acceleration of Extreme Scale Pseudo-Spectral Simulations of Turbulence Using Asynchronism

OLCF_TMUX_ROOT=/autofs/nccs-svm1_sw/summit/.swci/0-c ⌋

ore/opt/spack/20180914/linux-rhel7-ppc64le/gcc-4 ⌋

.8.5/tmux-2.2-z2cgytxdo3rzw643uj2fiwp7iwqbbbwp
↪→

↪→

ModuleTable008=aWxlcy9Db3JlIix9LFsic3lzdGVtQmFzZU1 ⌋

QQVRIIl09Ii9zdy9zdW1taXQvbG1vZC83LjcuMTAvcmhlbDc ⌋

uM19nbnU0LjguNS9tb2R1bGVmaWxlcy9MaW51eDovc3cvc3V ⌋

tbWl0L2xtb2QvNy43LjEwL3JoZWw3LjNfZ251NC44LjUvbW9 ⌋

kdWxlZmlsZXMvQ29yZTovc3cvc3VtbWl0L2xtb2QvNy43LjE ⌋

wL3JoZWw3LjNfZ251NC44LjUvbG1vZC9sbW9kL21vZHVsZWZ ⌋

pbGVzL0NvcmUiLH0=

↪→

↪→

↪→

↪→

↪→

↪→

LESS= -R -R
LOGNAME=USER
MPI_ROOT=/autofs/nccs-svm1_sw/summit/.swci/1-compute ⌋

/opt/spack/20180914/linux-rhel7-ppc64le/xl-16.1. ⌋

1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6rixwrk ⌋

cyd5gnijoacjqxrtblzk

↪→

↪→

↪→

PAMI_IBV_ENABLE_DCT=1
PYTHONPATH=/sw/summit/xalt/1.1.3/site:/sw/summit/xal ⌋

t/1.1.3/libexec↪→

CVS_RSH=ssh
OLCF_SPECTRUM_MPI_ROOT=/autofs/nccs-svm1_sw/summit/. ⌋

swci/1-compute/opt/spack/20180914/linux-rhel7-pp ⌋

c64le/xl-16.1.1-1/spectrum-mpi-10.2.0.11-2019020 ⌋

1-6qypd6rixwrkcyd5gnijoacjqxrtblzk

↪→

↪→

↪→

SSH_CONNECTION=128.61.185.168 55666 128.219.134.71 22
XLSF_UIDDIR=/opt/ibm/spectrumcomputing/lsf/10.1/linu ⌋

x3.10-glibc2.17-ppc64le-csm/lib/uid↪→

MODULESHOME=/sw/summit/lmod/7.7.10/rhel7.3_gnu4.8.5/ ⌋

lmod/lmod↪→

__LMOD_REF_COUNT_LIBRARY_PATH=/sw/summit/cuda/9.2.14 ⌋

8/lib64:1;/autofs/nccs-svm1_sw/summit/.swci/1-co ⌋

mpute/opt/spack/20180914/linux-rhel7-ppc64le/xl- ⌋

16.1.1-1/fftw-3.3.8-vuwn274gfobnmpcr6d3bbualaqbj ⌋

6nnc/lib:1;/autofs/nccs-svm1_sw/summit/.swci/1-c ⌋

ompute/opt/spack/20180914/linux-rhel7-ppc64le/xl ⌋

-16.1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6r ⌋

ixwrkcyd5gnijoacjqxrtblzk/lib:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

LESSOPEN=||/usr/bin/lesspipe.sh %s
LMOD_SETTARG_FULL_SUPPORT=no
OMPI_CXX=/sw/summit/xl/16.1.1-1/xlC/16.1.1/bin/xlc++ ⌋

_r↪→

PKG_CONFIG_PATH=/autofs/nccs-svm1_sw/summit/.swci/1- ⌋

compute/opt/spack/20180914/linux-rhel7-ppc64le/x ⌋

l-16.1.1-1/fftw-3.3.8-vuwn274gfobnmpcr6d3bbualaq ⌋

bj6nnc/lib/pkgconfig

↪→

↪→

↪→

__LMOD_REF_COUNT_LD_LIBRARY_PATH=/sw/summit/cuda/9.2 ⌋

.148/lib64:1;/autofs/nccs-svm1_sw/summit/.swci/1 ⌋

-compute/opt/spack/20180914/linux-rhel7-ppc64le/x ⌋

l-16.1.1-1/fftw-3.3.8-vuwn274gfobnmpcr6d3bbualaq ⌋

bj6nnc/lib:1;/autofs/nccs-svm1_sw/summit/.swci/1 ⌋

-compute/opt/spack/20180914/linux-rhel7-ppc64le/x ⌋

l-16.1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd ⌋

6rixwrkcyd5gnijoacjqxrtblzk/lib:1;/sw/summit/xl/ ⌋

16.1.1-1/xlsmp/5.1.1/lib:1;/sw/summit/xl/16.1.1- ⌋

1/xlmass/9.1.1/lib:1;/sw/summit/xl/16.1.1-1/xlC/ ⌋

16.1.1/lib:1;/sw/summit/xl/16.1.1-1/xlf/16.1.1/l ⌋

ib:1;/sw/summit/xl/16.1.1-1/lib:1;/opt/ibm/spect ⌋

rumcomputing/lsf/10.1/linux3.10-glibc2.17-ppc64l ⌋

e-csm/lib:1;/opt/ibm/spectrum_mpi/jsm_pmix/lib:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

LMOD_MPI_VERSION=10.2.0.11-20190201-6qypd6r
OMPI_MCA_io=romio321
__Init_Default_Modules=1
LMOD_FAMILY_COMPILER=xl
OLCF_FFTW_ROOT=/autofs/nccs-svm1_sw/summit/.swci/1-c ⌋

ompute/opt/spack/20180914/linux-rhel7-ppc64le/xl ⌋

-16.1.1-1/fftw-3.3.8-vuwn274gfobnmpcr6d3bbualaqbj ⌋

6nnc

↪→

↪→

↪→

CMAKE_PREFIX_PATH=/sw/summit/cuda/9.2.148:/autofs/nc ⌋

cs-svm1_sw/summit/.swci/1-compute/opt/spack/2018 ⌋

0914/linux-rhel7-ppc64le/xl-16.1.1-1/fftw-3.3.8- ⌋

vuwn274gfobnmpcr6d3bbualaqbj6nnc:/autofs/nccs-sv ⌋

m1_sw/summit/.swci/0-core/opt/spack/20180914/lin ⌋

ux-rhel7-ppc64le/gcc-4.8.5/vim-7.4.2367-dhtu3xyl ⌋

mvrjytqpllknptgkiepkvafx:/autofs/nccs-svm1_sw/su ⌋

mmit/.swci/0-core/opt/spack/20180914/linux-rhel7 ⌋

-ppc64le/gcc-4.8.5/tmux-2.2-z2cgytxdo3rzw643uj2fi ⌋

wp7iwqbbbwp:/autofs/nccs-svm1_sw/summit/.swci/1- ⌋

compute/opt/spack/20180914/linux-rhel7-ppc64le/x ⌋

l-16.1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd ⌋

6rixwrkcyd5gnijoacjqxrtblzk

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

XALT_OLCF=1
XDG_RUNTIME_DIR=/run/user/13765
XL_LINKER=/sw/summit/xalt/1.1.3/bin/ld
__LMOD_REF_COUNT_PKG_CONFIG_PATH=/autofs/nccs-svm1_s ⌋

w/summit/.swci/1-compute/opt/spack/20180914/linu ⌋

x-rhel7-ppc64le/xl-16.1.1-1/fftw-3.3.8-vuwn274gf ⌋

obnmpcr6d3bbualaqbj6nnc/lib/pkgconfig:1

↪→

↪→

↪→

LMOD_DIR=/sw/summit/lmod/7.7.10/rhel7.3_gnu4.8.5/lmo ⌋

d/lmod/libexec↪→

LSF_ENVDIR=/opt/ibm/spectrumcomputing/lsf/conf
ModuleTable006=bHQvMS4xLjMubHVhIixbImZ1bGxOYW1lIl0 ⌋

9InhhbHQvMS4xLjMiLFsibG9hZE9yZGVyIl09NCxwcm9wVD1 ⌋

7fSxbInN0YWNrRGVwdGgiXT0xLFsic3RhdHVzIl09ImFjdGl ⌋

2ZSIsWyJ1c2VyTmFtZSJdPSJ4YWx0Iix9LHhsPXtbImZuIl0 ⌋

9Ii9zdy9zdW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC1 ⌋

yaGVsNy1wcGM2NGxlL0NvcmUveGwvMTYuMS4xLTEubHVhIix ⌋

bImZ1bGxOYW1lIl09InhsLzE2LjEuMS0xIixbImxvYWRPcmR ⌋

lciJdPTEscHJvcFQ9e30sWyJzdGFja0RlcHRoIl09MSxbInN ⌋

0YXR1cyJdPSJhY3RpdmUiLFsidXNlck5hbWUiXT0ieGwiLH0 ⌋

sfSxtcGF0aEE9eyIvYXV0b2ZzL25jY3Mtc3ZtMV9zdy9zdW1 ⌋

taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC1yaGVsNy1w

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Ravikumar, et al.

__LMOD_REF_COUNT_MANPATH=/autofs/nccs-svm1_sw/summit ⌋

/.swci/1-compute/opt/spack/20180914/linux-rhel7- ⌋

ppc64le/xl-16.1.1-1/fftw-3.3.8-vuwn274gfobnmpcr6 ⌋

d3bbualaqbj6nnc/share/man:1;/autofs/nccs-svm1_sw ⌋

/summit/.swci/0-core/opt/spack/20180914/linux-rh ⌋

el7-ppc64le/gcc-4.8.5/vim-7.4.2367-dhtu3xylmvrjy ⌋

tqpllknptgkiepkvafx/share/man:1;/autofs/nccs-svm ⌋

1_sw/summit/.swci/0-core/opt/spack/20180914/linu ⌋

x-rhel7-ppc64le/gcc-4.8.5/tmux-2.2-z2cgytxdo3rzw ⌋

643uj2fiwp7iwqbbbwp/share/man:1;/sw/sources/hpss ⌋

/man:1;/autofs/nccs-svm1_sw/summit/.swci/1-compu ⌋

te/opt/spack/20180914/linux-rhel7-ppc64le/xl-16. ⌋

1.1-1/spectrum-mpi-10.2.0.11-20190201-6qypd6rixw ⌋

rkcyd5gnijoacjqxrtblzk/share/man:1;/sw/summit/xl ⌋

/16.1.1-1/xlC/16.1.1/man/en_US:1;/sw/summit/xl/1 ⌋

6.1.1-1/xlf/16.1.1/man/en_US:1;/sw/summit/lmod/7 ⌋

.7.10/rhel7.3_gnu4.8.5/lmod/lmod/share/man:1;/op ⌋

t/ibm/spectrumcomputing/lsf/10.1/man:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__LMOD_Priority_PATH=/sw/sources/lsf-tools/2.0/summi ⌋

t/bin:-9999;/sw/summit/xalt/1.1.3/bin:-9999↪→

LMOD_FAMILY_MPI=spectrum-mpi
BASH_FUNC_module()=() { eval $($LMOD_CMD bash "$@")

&& eval $(${LMOD_SETTARG_CMD:-:} -s sh)↪→

}
BASH_FUNC_ml()=() { eval $($LMOD_DIR/ml_cmd "$@")
}
+ lsb_release -a
LSB Version: :core-4.1-noarch:core-4.1-ppc64le
Distributor ID: RedHatEnterpriseServer
Description: Red Hat Enterprise Linux Server

release 7.5 (Maipo)↪→

Release: 7.5
Codename: Maipo
+ uname -a
Linux login1 4.14.0-49.18.1.el7a.ppc64le #1 SMP Thu

Nov 29 03:27:24 EST 2018 ppc64le ppc64le ppc64le
GNU/Linux

↪→

↪→

+ lscpu
Architecture: ppc64le
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 4
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 6
Model: 2.1 (pvr 004e 1201)
Model name: POWER9, altivec supported
CPU max MHz: 3800.0000
CPU min MHz: 2300.0000
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 10240K
NUMA node0 CPU(s): 0-63
NUMA node8 CPU(s): 64-127

NUMA node252 CPU(s):
NUMA node253 CPU(s):
NUMA node254 CPU(s):
NUMA node255 CPU(s):
+ cat /proc/meminfo
MemTotal: 601183424 kB
MemFree: 12398080 kB
MemAvailable: 40824640 kB
Buffers: 0 kB
Cached: 50194176 kB
SwapCached: 0 kB
Active: 379617344 kB
Inactive: 24476800 kB
Active(anon): 371714560 kB
Inactive(anon): 3353152 kB
Active(file): 7902784 kB
Inactive(file): 21123648 kB
Unevictable: 16819840 kB
Mlocked: 16819840 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 64 kB
Writeback: 0 kB
AnonPages: 370375872 kB
Mapped: 157961664 kB
Shmem: 21175232 kB
Slab: 5219968 kB
SReclaimable: 2000960 kB
SUnreclaim: 3219008 kB
KernelStack: 80624 kB
PageTables: 1108864 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 300591680 kB
Committed_AS: 646581952 kB
VmallocTotal: 549755813888 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 128 kB
AnonHugePages: 3276800 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
CmaTotal: 26853376 kB
CmaFree: 6080 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
+ inxi -F -c0
/ccs/home/kiran92/scripts/SC19AD-script.sh: line 14:

inxi: command not found↪→

+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sdb 8:16 1 1.8T 0 disk

GPU Acceleration of Extreme Scale Pseudo-Spectral Simulations of Turbulence Using Asynchronism

loop0 7:0 0 1 loop
sda 8:0 1 1.8T 0 disk
nvme0n1 259:0 0 1.5T 0 disk
+ lsscsi -s
/ccs/home/kiran92/scripts/SC19AD-script.sh: line 16:

lsscsi: command not found↪→

+ module list
++ /sw/summit/lmod/7.7.10/rhel7.3_gnu4.8.5/lmod/lmod ⌋

/libexec/lmod bash
list

↪→

↪→

Currently Loaded Modules:
1) xl/16.1.1-1 2) spectrum-mpi/10.2.0.11-20190201

3) hsi/5.0.2.p5 4) xalt/1.1.3 5)
lsf-tools/2.0 6) DefApps 7) tmux/2.2 8)
vim/7.4.2367 9) fftw/3.3.8 10) cuda/9.2.148

↪→

↪→

↪→

+ eval 'MODULEPATH="/autofs/nccs-svm1_sw/summit/modu ⌋

lefiles/site/linux-rhel7-ppc64le/spectrum-mpi/10 ⌋

.2.0.11-20190201-6qypd6r/xl/16.1.1-1:/sw/summit/ ⌋

modulefiles/site/linux-rhel7-ppc64le/xl/16.1.1-1 ⌋

:/sw/summit/modulefiles/site/linux-rhel7-ppc64le ⌋

/Core:/sw/summit/modulefiles/core:/sw/summit/lmo ⌋

d/7.7.10/rhel7.3_gnu4.8.5/modulefiles/Linux:/sw/ ⌋

summit/lmod/7.7.10/rhel7.3_gnu4.8.5/modulefiles/ ⌋

Core:/sw/summit/lmod/7.7.10/rhel7.3_gnu4.8.5/lmo ⌋

d/lmod/modulefiles/Core";'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

export 'MODULEPATH;' '_ModuleTable001_="X01vZHVsZVRh ⌋

YmxlXz17WyJNVHZlcnNpb24iXT0zLFsiY19yZWJ1aWxkVGlt ⌋

ZSJdPWZhbHNlLFsiY19zaG9ydFRpbWUiXT1mYWxzZSxkZXB0 ⌋

aFQ9e30sZmFtaWx5PXtbImNvbXBpbGVyIl09InhsIixbIm1w ⌋

aSJdPSJzcGVjdHJ1bS1tcGkiLH0sbVQ9e0RlZkFwcHM9e1si ⌋

Zm4iXT0iL3N3L3N1bW1pdC9tb2R1bGVmaWxlcy9zaXRlL2xp ⌋

bnV4LXJoZWw3LXBwYzY0bGUvQ29yZS9EZWZBcHBzLmx1YSIs ⌋

WyJmdWxsTmFtZSJdPSJEZWZBcHBzIixbImxvYWRPcmRlciJd ⌋

PTYscHJvcFQ9e30sWyJzdGFja0RlcHRoIl09MCxbInN0YXR1 ⌋

cyJdPSJhY3RpdmUiLFsidXNlck5hbWUiXT0iRGVmQXBwcyIs ⌋

fSxjdWRhPXtbImZuIl09Ii9zdy9zdW1taXQvbW9kdWxlZmls ⌋

ZXMvc2l0ZS9saW51eC1y";'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

export '_ModuleTable001_;' '_ModuleTable002_="aGVsNy ⌋

1wcGM2NGxlL3hsLzE2LjEuMS0xL2N1ZGEvOS4yLjE0OC5sdW ⌋

EiLFsiZnVsbE5hbWUiXT0iY3VkYS85LjIuMTQ4IixbImxvYW ⌋

RPcmRlciJdPTEwLHByb3BUPXt9LFsic3RhY2tEZXB0aCJdPT ⌋

AsWyJzdGF0dXMiXT0iYWN0aXZlIixbInVzZXJOYW1lIl09Im ⌋

N1ZGEiLH0sZmZ0dz17WyJmbiJdPSIvYXV0b2ZzL25jY3Mtc3 ⌋

ZtMV9zdy9zdW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC ⌋

1yaGVsNy1wcGM2NGxlL3NwZWN0cnVtLW1waS8xMC4yLjAuMT ⌋

EtMjAxOTAyMDEtNnF5cGQ2ci94bC8xNi4xLjEtMS9mZnR3Lz ⌋

MuMy44Lmx1YSIsWyJmdWxsTmFtZSJdPSJmZnR3LzMuMy44Ii ⌋

xbImxvYWRPcmRlciJdPTkscHJvcFQ9e30sWyJzdGFja0RlcH ⌋

RoIl09MCxbInN0YXR1cyJdPSJh";'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

export '_ModuleTable002_;' '_ModuleTable003_="Y3Rpdm ⌋

UiLFsidXNlck5hbWUiXT0iZmZ0dyIsfSxoc2k9e1siZm4iXT ⌋

0iL3N3L3N1bW1pdC9tb2R1bGVmaWxlcy9zaXRlL2xpbnV4LX ⌋

JoZWw3LXBwYzY0bGUvQ29yZS9oc2kvNS4wLjIucDUubHVhIi ⌋

xbImZ1bGxOYW1lIl09ImhzaS81LjAuMi5wNSIsWyJsb2FkT3 ⌋

JkZXIiXT0zLHByb3BUPXt9LFsic3RhY2tEZXB0aCJdPTEsWy ⌋

JzdGF0dXMiXT0iYWN0aXZlIixbInVzZXJOYW1lIl09ImhzaS ⌋

IsfSxbImxzZi10b29scyJdPXtbImZuIl09Ii9zdy9zdW1taX ⌋

QvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC1yaGVsNy1wcGM2NG ⌋

xlL0NvcmUvbHNmLXRvb2xzLzIuMC5sdWEiLFsiZnVsbE5hbW ⌋

UiXT0ibHNmLXRvb2xzLzIuMCIsWyJsb2FkT3JkZXIiXT01LH ⌋

Byb3BUPXt9LFsic3RhY2tEZXB0";'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

export '_ModuleTable003_;'
'_ModuleTable004_="aCJdPTEsWyJzdGF0dXMiXT0iYWN0aXZl ⌋

IixbInVzZXJOYW1lIl09ImxzZi10b29scyIsfSxbInNwZWN ⌋

0cnVtLW1waSJdPXtbImZuIl09Ii9zdy9zdW1taXQvbW9kdW ⌋

xlZmlsZXMvc2l0ZS9saW51eC1yaGVsNy1wcGM2NGxlL3hsL ⌋

zE2LjEuMS0xL3NwZWN0cnVtLW1waS8xMC4yLjAuMTEtMjAx ⌋

OTAyMDEubHVhIixbImZ1bGxOYW1lIl09InNwZWN0cnVtLW1 ⌋

waS8xMC4yLjAuMTEtMjAxOTAyMDEiLFsibG9hZE9yZGVyIl ⌋

09Mixwcm9wVD17fSxbInN0YWNrRGVwdGgiXT0xLFsic3Rhd ⌋

HVzIl09ImFjdGl2ZSIsWyJ1c2VyTmFtZSJdPSJzcGVjdHJ1 ⌋

bS1tcGkiLH0sdG11eD17WyJmbiJdPSIvc3cvc3VtbWl0L21 ⌋

vZHVsZWZpbGVzL3NpdGUvbGludXgtcmhlbDctcHBjNjRsZS ⌋

9Db3JlL3Rt";'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

export '_ModuleTable004_;' '_ModuleTable005_="dXgvMi ⌋

4yLmx1YSIsWyJmdWxsTmFtZSJdPSJ0bXV4LzIuMiIsWyJsb2 ⌋

FkT3JkZXIiXT03LHByb3BUPXt9LFsic3RhY2tEZXB0aCJdPT ⌋

AsWyJzdGF0dXMiXT0iYWN0aXZlIixbInVzZXJOYW1lIl09In ⌋

RtdXgiLH0sdmltPXtbImZuIl09Ii9zdy9zdW1taXQvbW9kdW ⌋

xlZmlsZXMvc2l0ZS9saW51eC1yaGVsNy1wcGM2NGxlL0Nvcm ⌋

UvdmltLzcuNC4yMzY3Lmx1YSIsWyJmdWxsTmFtZSJdPSJ2aW ⌋

0vNy40LjIzNjciLFsibG9hZE9yZGVyIl09OCxwcm9wVD17fS ⌋

xbInN0YWNrRGVwdGgiXT0wLFsic3RhdHVzIl09ImFjdGl2ZS ⌋

IsWyJ1c2VyTmFtZSJdPSJ2aW0iLH0seGFsdD17WyJmbiJdPS ⌋

Ivc3cvc3VtbWl0L21vZHVsZWZpbGVzL3NpdGUvbGludXgtcm ⌋

hlbDctcHBjNjRsZS9Db3JlL3hh";'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

export '_ModuleTable005_;' '_ModuleTable006_="bHQvMS ⌋

4xLjMubHVhIixbImZ1bGxOYW1lIl09InhhbHQvMS4xLjMiLF ⌋

sibG9hZE9yZGVyIl09NCxwcm9wVD17fSxbInN0YWNrRGVwdG ⌋

giXT0xLFsic3RhdHVzIl09ImFjdGl2ZSIsWyJ1c2VyTmFtZS ⌋

JdPSJ4YWx0Iix9LHhsPXtbImZuIl09Ii9zdy9zdW1taXQvbW ⌋

9kdWxlZmlsZXMvc2l0ZS9saW51eC1yaGVsNy1wcGM2NGxlL0 ⌋

NvcmUveGwvMTYuMS4xLTEubHVhIixbImZ1bGxOYW1lIl09In ⌋

hsLzE2LjEuMS0xIixbImxvYWRPcmRlciJdPTEscHJvcFQ9e3 ⌋

0sWyJzdGFja0RlcHRoIl09MSxbInN0YXR1cyJdPSJhY3Rpdm ⌋

UiLFsidXNlck5hbWUiXT0ieGwiLH0sfSxtcGF0aEE9eyIvYX ⌋

V0b2ZzL25jY3Mtc3ZtMV9zdy9zdW1taXQvbW9kdWxlZmlsZX ⌋

Mvc2l0ZS9saW51eC1yaGVsNy1w";'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Ravikumar, et al.

export '_ModuleTable006_;' '_ModuleTable007_="cGM2NG ⌋

xlL3NwZWN0cnVtLW1waS8xMC4yLjAuMTEtMjAxOTAyMDEtNn ⌋

F5cGQ2ci94bC8xNi4xLjEtMSIsIi9zdy9zdW1taXQvbW9kdW ⌋

xlZmlsZXMvc2l0ZS9saW51eC1yaGVsNy1wcGM2NGxlL3hsLz ⌋

E2LjEuMS0xIiwiL3N3L3N1bW1pdC9tb2R1bGVmaWxlcy9zaX ⌋

RlL2xpbnV4LXJoZWw3LXBwYzY0bGUvQ29yZSIsIi9zdy9zdW ⌋

1taXQvbW9kdWxlZmlsZXMvY29yZSIsIi9zdy9zdW1taXQvbG ⌋

1vZC83LjcuMTAvcmhlbDcuM19nbnU0LjguNS9tb2R1bGVmaW ⌋

xlcy9MaW51eCIsIi9zdy9zdW1taXQvbG1vZC83LjcuMTAvcm ⌋

hlbDcuM19nbnU0LjguNS9tb2R1bGVmaWxlcy9Db3JlIiwiL3 ⌋

N3L3N1bW1pdC9sbW9kLzcuNy4xMC9yaGVsNy4zX2dudTQuOC ⌋

41L2xtb2QvbG1vZC9tb2R1bGVm";'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

export '_ModuleTable007_;' '_ModuleTable008_="aWxlcy ⌋

9Db3JlIix9LFsic3lzdGVtQmFzZU1QQVRIIl09Ii9zdy9zdW ⌋

1taXQvbG1vZC83LjcuMTAvcmhlbDcuM19nbnU0LjguNS9tb2 ⌋

R1bGVmaWxlcy9MaW51eDovc3cvc3VtbWl0L2xtb2QvNy43Lj ⌋

EwL3JoZWw3LjNfZ251NC44LjUvbW9kdWxlZmlsZXMvQ29yZT ⌋

ovc3cvc3VtbWl0L2xtb2QvNy43LjEwL3JoZWw3LjNfZ251NC ⌋

44LjUvbG1vZC9sbW9kL21vZHVsZWZpbGVzL0NvcmUiLH0=";'

↪→

↪→

↪→

↪→

↪→

↪→

export '_ModuleTable008_;' '_ModuleTable_Sz_="8";'
export '_ModuleTable_Sz_;'
++ MODULEPATH=/autofs/nccs-svm1_sw/summit/modulefile ⌋

s/site/linux-rhel7-ppc64le/spectrum-mpi/10.2.0.1 ⌋

1-20190201-6qypd6r/xl/16.1.1-1:/sw/summit/module ⌋

files/site/linux-rhel7-ppc64le/xl/16.1.1-1:/sw/s ⌋

ummit/modulefiles/site/linux-rhel7-ppc64le/Core: ⌋

/sw/summit/modulefiles/core:/sw/summit/lmod/7.7. ⌋

10/rhel7.3_gnu4.8.5/modulefiles/Linux:/sw/summit ⌋

/lmod/7.7.10/rhel7.3_gnu4.8.5/modulefiles/Core:/ ⌋

sw/summit/lmod/7.7.10/rhel7.3_gnu4.8.5/lmod/lmod ⌋

/modulefiles/Core

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

++
export MODULEPATH
++ _ModuleTable001_=X01vZHVsZVRhYmxlXz17WyJNVHZlcnNp ⌋

b24iXT0zLFsiY19yZWJ1aWxkVGltZSJdPWZhbHNlLFsiY19z ⌋

aG9ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9e30sZmFtaWx5PXtb ⌋

ImNvbXBpbGVyIl09InhsIixbIm1waSJdPSJzcGVjdHJ1bS1t ⌋

cGkiLH0sbVQ9e0RlZkFwcHM9e1siZm4iXT0iL3N3L3N1bW1p ⌋

dC9tb2R1bGVmaWxlcy9zaXRlL2xpbnV4LXJoZWw3LXBwYzY0 ⌋

bGUvQ29yZS9EZWZBcHBzLmx1YSIsWyJmdWxsTmFtZSJdPSJE ⌋

ZWZBcHBzIixbImxvYWRPcmRlciJdPTYscHJvcFQ9e30sWyJz ⌋

dGFja0RlcHRoIl09MCxbInN0YXR1cyJdPSJhY3RpdmUiLFsi ⌋

dXNlck5hbWUiXT0iRGVmQXBwcyIsfSxjdWRhPXtbImZuIl09 ⌋

Ii9zdy9zdW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC1y

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

++
export _ModuleTable001_
++ _ModuleTable002_=aGVsNy1wcGM2NGxlL3hsLzE2LjEuMS0x ⌋

L2N1ZGEvOS4yLjE0OC5sdWEiLFsiZnVsbE5hbWUiXT0iY3Vk ⌋

YS85LjIuMTQ4IixbImxvYWRPcmRlciJdPTEwLHByb3BUPXt9 ⌋

LFsic3RhY2tEZXB0aCJdPTAsWyJzdGF0dXMiXT0iYWN0aXZl ⌋

IixbInVzZXJOYW1lIl09ImN1ZGEiLH0sZmZ0dz17WyJmbiJd ⌋

PSIvYXV0b2ZzL25jY3Mtc3ZtMV9zdy9zdW1taXQvbW9kdWxl ⌋

ZmlsZXMvc2l0ZS9saW51eC1yaGVsNy1wcGM2NGxlL3NwZWN0 ⌋

cnVtLW1waS8xMC4yLjAuMTEtMjAxOTAyMDEtNnF5cGQ2ci94 ⌋

bC8xNi4xLjEtMS9mZnR3LzMuMy44Lmx1YSIsWyJmdWxsTmFt ⌋

ZSJdPSJmZnR3LzMuMy44IixbImxvYWRPcmRlciJdPTkscHJv ⌋

cFQ9e30sWyJzdGFja0RlcHRoIl09MCxbInN0YXR1cyJdPSJh

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

++
export _ModuleTable002_
++ _ModuleTable003_=Y3RpdmUiLFsidXNlck5hbWUiXT0iZmZ0 ⌋

dyIsfSxoc2k9e1siZm4iXT0iL3N3L3N1bW1pdC9tb2R1bGVm ⌋

aWxlcy9zaXRlL2xpbnV4LXJoZWw3LXBwYzY0bGUvQ29yZS9o ⌋

c2kvNS4wLjIucDUubHVhIixbImZ1bGxOYW1lIl09ImhzaS81 ⌋

LjAuMi5wNSIsWyJsb2FkT3JkZXIiXT0zLHByb3BUPXt9LFsi ⌋

c3RhY2tEZXB0aCJdPTEsWyJzdGF0dXMiXT0iYWN0aXZlIixb ⌋

InVzZXJOYW1lIl09ImhzaSIsfSxbImxzZi10b29scyJdPXtb ⌋

ImZuIl09Ii9zdy9zdW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9s ⌋

aW51eC1yaGVsNy1wcGM2NGxlL0NvcmUvbHNmLXRvb2xzLzIu ⌋

MC5sdWEiLFsiZnVsbE5hbWUiXT0ibHNmLXRvb2xzLzIuMCIs ⌋

WyJsb2FkT3JkZXIiXT01LHByb3BUPXt9LFsic3RhY2tEZXB0

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

++
export _ModuleTable003_
++ _ModuleTable004_=aCJdPTEsWyJzdGF0dXMiXT0iYWN0aXZl ⌋

IixbInVzZXJOYW1lIl09ImxzZi10b29scyIsfSxbInNwZWN0 ⌋

cnVtLW1waSJdPXtbImZuIl09Ii9zdy9zdW1taXQvbW9kdWxl ⌋

ZmlsZXMvc2l0ZS9saW51eC1yaGVsNy1wcGM2NGxlL3hsLzE2 ⌋

LjEuMS0xL3NwZWN0cnVtLW1waS8xMC4yLjAuMTEtMjAxOTAy ⌋

MDEubHVhIixbImZ1bGxOYW1lIl09InNwZWN0cnVtLW1waS8x ⌋

MC4yLjAuMTEtMjAxOTAyMDEiLFsibG9hZE9yZGVyIl09Mixw ⌋

cm9wVD17fSxbInN0YWNrRGVwdGgiXT0xLFsic3RhdHVzIl09 ⌋

ImFjdGl2ZSIsWyJ1c2VyTmFtZSJdPSJzcGVjdHJ1bS1tcGki ⌋

LH0sdG11eD17WyJmbiJdPSIvc3cvc3VtbWl0L21vZHVsZWZp ⌋

bGVzL3NpdGUvbGludXgtcmhlbDctcHBjNjRsZS9Db3JlL3Rt

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

++
export _ModuleTable004_
++ _ModuleTable005_=dXgvMi4yLmx1YSIsWyJmdWxsTmFtZSJd ⌋

PSJ0bXV4LzIuMiIsWyJsb2FkT3JkZXIiXT03LHByb3BUPXt9 ⌋

LFsic3RhY2tEZXB0aCJdPTAsWyJzdGF0dXMiXT0iYWN0aXZl ⌋

IixbInVzZXJOYW1lIl09InRtdXgiLH0sdmltPXtbImZuIl09 ⌋

Ii9zdy9zdW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC1y ⌋

aGVsNy1wcGM2NGxlL0NvcmUvdmltLzcuNC4yMzY3Lmx1YSIs ⌋

WyJmdWxsTmFtZSJdPSJ2aW0vNy40LjIzNjciLFsibG9hZE9y ⌋

ZGVyIl09OCxwcm9wVD17fSxbInN0YWNrRGVwdGgiXT0wLFsi ⌋

c3RhdHVzIl09ImFjdGl2ZSIsWyJ1c2VyTmFtZSJdPSJ2aW0i ⌋

LH0seGFsdD17WyJmbiJdPSIvc3cvc3VtbWl0L21vZHVsZWZp ⌋

bGVzL3NpdGUvbGludXgtcmhlbDctcHBjNjRsZS9Db3JlL3hh

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

++
export _ModuleTable005_
++ _ModuleTable006_=bHQvMS4xLjMubHVhIixbImZ1bGxOYW1l ⌋

Il09InhhbHQvMS4xLjMiLFsibG9hZE9yZGVyIl09NCxwcm9w ⌋

VD17fSxbInN0YWNrRGVwdGgiXT0xLFsic3RhdHVzIl09ImFj ⌋

dGl2ZSIsWyJ1c2VyTmFtZSJdPSJ4YWx0Iix9LHhsPXtbImZu ⌋

Il09Ii9zdy9zdW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW51 ⌋

eC1yaGVsNy1wcGM2NGxlL0NvcmUveGwvMTYuMS4xLTEubHVh ⌋

IixbImZ1bGxOYW1lIl09InhsLzE2LjEuMS0xIixbImxvYWRP ⌋

cmRlciJdPTEscHJvcFQ9e30sWyJzdGFja0RlcHRoIl09MSxb ⌋

InN0YXR1cyJdPSJhY3RpdmUiLFsidXNlck5hbWUiXT0ieGwi ⌋

LH0sfSxtcGF0aEE9eyIvYXV0b2ZzL25jY3Mtc3ZtMV9zdy9z ⌋

dW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC1yaGVsNy1w

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

++
export _ModuleTable006_

GPU Acceleration of Extreme Scale Pseudo-Spectral Simulations of Turbulence Using Asynchronism

++ _ModuleTable007_=cGM2NGxlL3NwZWN0cnVtLW1waS8xMC4y ⌋

LjAuMTEtMjAxOTAyMDEtNnF5cGQ2ci94bC8xNi4xLjEtMSIs ⌋

Ii9zdy9zdW1taXQvbW9kdWxlZmlsZXMvc2l0ZS9saW51eC1y ⌋

aGVsNy1wcGM2NGxlL3hsLzE2LjEuMS0xIiwiL3N3L3N1bW1p ⌋

dC9tb2R1bGVmaWxlcy9zaXRlL2xpbnV4LXJoZWw3LXBwYzY0 ⌋

bGUvQ29yZSIsIi9zdy9zdW1taXQvbW9kdWxlZmlsZXMvY29y ⌋

ZSIsIi9zdy9zdW1taXQvbG1vZC83LjcuMTAvcmhlbDcuM19n ⌋

bnU0LjguNS9tb2R1bGVmaWxlcy9MaW51eCIsIi9zdy9zdW1t ⌋

aXQvbG1vZC83LjcuMTAvcmhlbDcuM19nbnU0LjguNS9tb2R1 ⌋

bGVmaWxlcy9Db3JlIiwiL3N3L3N1bW1pdC9sbW9kLzcuNy4x ⌋

MC9yaGVsNy4zX2dudTQuOC41L2xtb2QvbG1vZC9tb2R1bGVm

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

++
export _ModuleTable007_
++ _ModuleTable008_=aWxlcy9Db3JlIix9LFsic3lzdGVtQmFz ⌋

ZU1QQVRIIl09Ii9zdy9zdW1taXQvbG1vZC83LjcuMTAvcmhl ⌋

bDcuM19nbnU0LjguNS9tb2R1bGVmaWxlcy9MaW51eDovc3cv ⌋

c3VtbWl0L2xtb2QvNy43LjEwL3JoZWw3LjNfZ251NC44LjUv ⌋

bW9kdWxlZmlsZXMvQ29yZTovc3cvc3VtbWl0L2xtb2QvNy43 ⌋

LjEwL3JoZWw3LjNfZ251NC44LjUvbG1vZC9sbW9kL21vZHVs ⌋

ZWZpbGVzL0NvcmUiLH0=

↪→

↪→

↪→

↪→

↪→

↪→

++
export _ModuleTable008_
++ _ModuleTable_Sz_=8
++
export _ModuleTable_Sz_
++ : -s sh
+ eval
+ nvidia-smi
Wed Apr 10 13:27:42 2019
+--- ⌋

--------------------------+↪→

| NVIDIA-SMI 396.64 Driver Version:

396.64 |↪→

|-------------------------------+------------------- ⌋

---+----------------------+↪→

| GPU Name Persistence-M| Bus-Id Disp.A

| Volatile Uncorr. ECC |↪→

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage

| GPU-Util Compute M. |↪→

|===============================+=================== ⌋

===+======================|↪→

| 0 Tesla V100-SXM2... On | 00000004:04:00.0 Off

| 0 |↪→

| N/A 38C P0 37W / 300W | 14432MiB / 16128MiB

| 0% E. Process |↪→

+-------------------------------+------------------- ⌋

---+----------------------+↪→

| 1 Tesla V100-SXM2... On | 00000004:05:00.0 Off

| 0 |↪→

| N/A 45C P0 38W / 300W | 14684MiB / 16128MiB

| 0% E. Process |↪→

+-------------------------------+------------------- ⌋

---+----------------------+↪→

| 2 Tesla V100-SXM2... On | 00000035:03:00.0 Off

| 4 |↪→

| N/A 38C P0 38W / 300W | 14458MiB / 16128MiB

| 0% E. Process |↪→

+-------------------------------+------------------- ⌋

---+----------------------+↪→

| 3 Tesla V100-SXM2... On | 00000035:04:00.0 Off

| 0 |↪→

| N/A 48C P0 41W / 300W | 15451MiB / 16128MiB

| 0% E. Process |↪→

+-------------------------------+------------------- ⌋

---+----------------------+↪→

+--- ⌋

--------------------------+↪→

| Processes:

GPU Memory |↪→

| GPU PID Type Process name

Usage |↪→

|=== ⌋

==========================|↪→

| No running processes found

|↪→

+--- ⌋

--------------------------+↪→

+ lshw -short -quiet -sanitize
+ cat
/ccs/home/kiran92/scripts/SC19AD-script.sh: line 19:

lshw: command not found↪→

+ lspci
0000:00:00.0 PCI bridge: IBM Device 04c1
0000:01:00.0 Non-Volatile memory controller: Samsung

Electronics Co Ltd NVMe SSD Controller 172Xa (rev
01)

↪→

↪→

0001:00:00.0 PCI bridge: IBM Device 04c1
0001:01:00.0 USB controller: Texas Instruments

TUSB73x0 SuperSpeed USB 3.0 xHCI Host Controller
(rev 02)

↪→

↪→

0002:00:00.0 PCI bridge: IBM Device 04c1
0002:01:00.0 PCI bridge: ASPEED Technology, Inc.

AST1150 PCI-to-PCI Bridge (rev 04)↪→

0002:02:00.0 VGA compatible controller: ASPEED

Technology, Inc. ASPEED Graphics Family (rev 41)↪→

0003:00:00.0 PCI bridge: IBM Device 04c1
0003:01:00.0 Infiniband controller: Mellanox

Technologies MT28800 Family [ConnectX-5 Ex]↪→

0003:01:00.1 Infiniband controller: Mellanox

Technologies MT28800 Family [ConnectX-5 Ex]↪→

0004:00:00.0 PCI bridge: IBM Device 04c1
0004:01:00.0 PCI bridge: PLX Technology, Inc. Device

8725 (rev ca)↪→

0004:01:00.1 System peripheral: PLX Technology, Inc.

Device 87d0 (rev ca)↪→

0004:01:00.2 System peripheral: PLX Technology, Inc.

Device 87d0 (rev ca)↪→

0004:01:00.3 System peripheral: PLX Technology, Inc.

Device 87d0 (rev ca)↪→

Ravikumar, et al.

0004:01:00.4 System peripheral: PLX Technology, Inc.

Device 87d0 (rev ca)↪→

0004:02:02.0 PCI bridge: PLX Technology, Inc. Device

8725 (rev ca)↪→

0004:02:0a.0 PCI bridge: PLX Technology, Inc. Device

8725 (rev ca)↪→

0004:02:0b.0 PCI bridge: PLX Technology, Inc. Device

8725 (rev ca)↪→

0004:02:0c.0 PCI bridge: PLX Technology, Inc. Device

8725 (rev ca)↪→

0004:03:00.0 SATA controller: Marvell Technology
Group Ltd. 88SE9235 PCIe 2.0 x2 4-port SATA 6 Gb/s
Controller (rev 11)

↪→

↪→

0004:04:00.0 3D controller: NVIDIA Corporation

GV100GL [Tesla V100 SXM2] (rev a1)↪→

0004:05:00.0 3D controller: NVIDIA Corporation

GV100GL [Tesla V100 SXM2] (rev a1)↪→

0005:00:00.0 PCI bridge: IBM Device 04c1
0005:01:00.0 Ethernet controller: Broadcom Limited

NetXtreme BCM5719 Gigabit Ethernet PCIe (rev 01)↪→

0005:01:00.1 Ethernet controller: Broadcom Limited

NetXtreme BCM5719 Gigabit Ethernet PCIe (rev 01)↪→

0006:00:00.0 Bridge: IBM Device 04ea (rev 01)
0006:00:00.1 Bridge: IBM Device 04ea (rev 01)
0006:00:00.2 Bridge: IBM Device 04ea (rev 01)
0006:00:01.0 Bridge: IBM Device 04ea (rev 01)
0006:00:01.1 Bridge: IBM Device 04ea (rev 01)
0006:00:01.2 Bridge: IBM Device 04ea (rev 01)
0007:00:00.0 Bridge: IBM Device 04ea (rev 01)
0007:00:00.1 Bridge: IBM Device 04ea (rev 01)
0007:00:00.2 Bridge: IBM Device 04ea (rev 01)
0007:00:01.0 Bridge: IBM Device 04ea (rev 01)
0007:00:01.1 Bridge: IBM Device 04ea (rev 01)
0007:00:01.2 Bridge: IBM Device 04ea (rev 01)
0030:00:00.0 PCI bridge: IBM Device 04c1
0030:01:00.0 Ethernet controller: Broadcom Limited

NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev
10)

↪→

↪→

0030:01:00.1 Ethernet controller: Broadcom Limited
NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev
10)

↪→

↪→

0030:01:00.2 Ethernet controller: Broadcom Limited
NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev
10)

↪→

↪→

0030:01:00.3 Ethernet controller: Broadcom Limited
NetXtreme II BCM57800 1/10 Gigabit Ethernet (rev
10)

↪→

↪→

0033:00:00.0 PCI bridge: IBM Device 04c1
0033:01:00.0 Infiniband controller: Mellanox

Technologies MT28800 Family [ConnectX-5 Ex]↪→

0033:01:00.1 Infiniband controller: Mellanox

Technologies MT28800 Family [ConnectX-5 Ex]↪→

0034:00:00.0 PCI bridge: IBM Device 04c1
0035:00:00.0 PCI bridge: IBM Device 04c1

0035:01:00.0 PCI bridge: PLX Technology, Inc. Device

8725 (rev ca)↪→

0035:02:04.0 PCI bridge: PLX Technology, Inc. Device

8725 (rev ca)↪→

0035:02:05.0 PCI bridge: PLX Technology, Inc. Device

8725 (rev ca)↪→

0035:02:0d.0 PCI bridge: PLX Technology, Inc. Device

8725 (rev ca)↪→

0035:03:00.0 3D controller: NVIDIA Corporation

GV100GL [Tesla V100 SXM2] (rev a1)↪→

0035:04:00.0 3D controller: NVIDIA Corporation

GV100GL [Tesla V100 SXM2] (rev a1)↪→

	Abstract
	1 Introduction
	2 Equations and Numerical Methods
	3 Algorithm description
	3.1 Domain decomposition
	3.2 Target System and Software Stack
	3.3 A basic (synchronous) GPU algorithm
	3.4 Batched asynchronous algorithm
	3.5 Problem sizes and node counts

	4 Code Optimizations
	4.1 MPI Configurations
	4.2 Strided copy optimization

	5 Performance Analysis
	5.1 2 vs 6 tasks per Node
	5.2 Timeline and Asynchronous MPI Analysis
	5.3 Scalability

	6 Conclusions
	Acknowledgments
	References

