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Abstract—Light-matter dynamics in topological quantum 
materials enables ultralow-power, ultrafast devices. A challenge is 
simulating multiple field and particle equations for light, 
electrons, and atoms over vast spatiotemporal scales on Exaflop/s 
computers with increased heterogeneity and low-precision focus. 
We present a paradigm shift that solves the multiscale/ 
multiphysics/heterogeneity challenge harnessing hardware 
heterogeneity and low-precision arithmetic. Divide-conquer-
recombine algorithms divide the problem into not only spatial but 
also physical subproblems of small dynamic ranges and minimal 
mutual information, which are mapped onto best-characteristics-
matching hardware units, while metamodel-space algebra 
minimizes communication and precision requirements. Using 
60,000 GPUs of Aurora, DC-MESH (divide-and-conquer 
Maxwell-Ehrenfest-surface hopping) and XS-NNQMD (excited-
state neural-network quantum molecular dynamics) modules of 
MLMD (multiscale light-matter dynamics) software were 152- 
and 3,780-times faster than the state-of-the-art for 15.4 million-
electron and 1.23 trillion-atom PbTiO3 material, achieving 1.87 
EFLOP/s for the former. This enabled the first study of light-
induced switching of topological superlattices for future 
ferroelectric ‘topotronics’. 

Keywords—multiscale light-matter dynamics, quantum 
dynamics, molecular dynamics, neural network, topotronics 

I. JUSTIFICATION FOR GORDON BELL 
First end-to-end exa-deployed multiscale light-matter dynamics 
simulation and machine learning for light, electrons, and atoms, 
achieving 152× and 3,780× improvements in time-to-solution 
compared to state-of-the-art for 15.4 million-electron quantum 
dynamics and 1.23 trillion-atom neural-network molecular 
dynamics, respectively, with 1.87 EFLOP/s for the former. 

II. PERFORMANCE ATTRIBUTES 
 

Category of  
achievement 

Time-to-solution, peak 
performance, scalability 

Performance 1.11×10-7 [sec/(electron•step)], 
1.87 EFLOP/s, ~100% weak-
scaling parallel efficiency for 
quantum dynamics; and 1.88 ×
10!"#	[sec/(atom • weight •
step)], 99.7% weak-scaling 
parallel efficiency for neural-
network molecular dynamics 

Type of method used Maxwell, Schrödinger, Newton, 
and neural-network dynamics 

Results reported on the basis of Whole application 
Precision reported Mixed precision 
System scale Full-scale system: 60,000 GPUs 
Measurement mechanism Timers and FLOP count 

 

III. PROBLEM OVERVIEW: MULTISCALE/MULTIPHYSICS LIGHT-
MATTER DYNAMICS AT A HPC CROSSROADS 

Light-matter dynamics in quantum materials holds promise for 
a sustainable society with ubiquitous artificial intelligence (AI). 
The enormous power required by AI demands ultralow-power 
and ultrafast computing and sensing devices [1] that are best 
enabled by quantum materials, in which quantum mechanics 
(QM), such as the topology of electronic wave functions, 
essentially governs functionality [2]. While topological 
quantum matter was the topic of the 2016 Nobel physics prize, 
ultrafast control of quantum materials on demand is best 
achieved via light-matter interaction [3]. Specifically, nonlinear 
interaction of laser light with matter generates attosecond (10-18 



second) pulses. The new era of attosecond physics was heralded 
by the 2023 Nobel physics prize to Agostini, Krausz, and 
L’Hullier. 

Classically, light dynamics is described by Maxwell’s 
equations published in 1861, whereas molecular dynamics (MD) 
in matter is described by Newton’s equations published in 1687. 
Quantum description of matter was the hallmark of science in 
the 20th century, but its application was hampered by the 
exponential computational complexity. For static quantum 
properties, the complexity was reduced to O(N3) (N is the 
number of electrons) by density functional theory (DFT) [4], for 
which Walter Kohn received the 1998 Nobel chemistry prize. 
The complexity was further reduced to O(N) by linear-scaling 
DFT algorithms [5] based on a physical data-locality principle 
called quantum nearsightedness [6]. For light-matter dynamics, 
time-dependent Schrödinger equations in time-dependent 
density functional theory (TDDFT) need be solved instead for 
electrons along with Maxwell’s equations for light [7, 8]. 

There are two complementary first-principles approaches to 
describe quantum dynamics (QD) of electrons coupled with MD 
of atoms, i.e., nonadiabatic quantum molecular dynamics 
(NAQMD) [9]: (1) Ehrenfest dynamics to describe short-time 
transient MD for atoms along with QD for electrons as in 
Maxwell+TDDFT simulations [7, 8]; and (2) surface hopping 
(SH) to describe longer-time MD driven by electronic 
transitions. Quantum uncertainty principle separates Ehrenfest 
and SH time-scales at 𝑡~ℏ/∆𝐸  (~10-15 s), where ∆𝐸  is the 
separation between key electronic energy levels that dictate 
light-induced MD, and ℏ is the Planck constant. While both are 
indispensable for understanding optical control of materials [10, 
11], their integration into single software has remained elusive. 
Here, we present a new multiscale NAQMD approach within a 
divide-and-conquer (DC) scheme named DC-MESH (divide-
and-conquer Maxwell-Ehrenfest-surface hopping) that 
seamlessly integrates Ehrenfest- and SH-NAQMD across time 
scales, along with Maxwell’s equations for light (Fig. 1) [12]. 

Light-matter dynamics is a challenging multiscale problem 
that encompasses the above multiphysics of vastly different 
computational characteristics at diverse spatiotemporal scales. 
Its temporal scales extend over fast (10-18 s) elementary 
processes of light-electron coupling and much slower (10-9 s) 
materials response through electron-atom coupling. In addition, 
disparate length scales need be accounted for, ranging from 
spatial variations of electronic wave functions (10-11 m) to large 
topological features of quantum materials for optoelectronic 
device applications (10-6 m). Such multiscale ‘topotronics’ 
beyond the reach of first-principles NAQMD (~10-12 s and 10-9 
m) has computationally been addressed by ‘second-principles’ 
approaches, in which approximate classical equations of motion 
are derived based on first-principles QM calculations [13]. 
Recent application of machine learning (ML) to neural-network 
quantum molecular dynamics (NNQMD) simulations has 
revolutionized this area, providing first-principles QM accuracy 
at a fraction of computational cost by replacing electronic wave 
functions by deep neural networks [14-16] (ML-enabled MD 
was cited in the 2024 Nobel physics prize announcement, which 
heralded the central role of AI in the very core of basic science). 
We have extended NNQMD to excited-state NNQMD (XS-
NNQMD) [11], allowing light-induced switching of large 

topological structures of device relevance to be studied from 
first principles for the first time (Fig. 1). 

Concurrent to these new scientific developments, the 
computing landscape is changing rapidly. In particular, high 
performance computing (HPC) nodes are becoming increasingly 
more heterogeneous by integrating different functional units (or 
chiplets), largely focusing on low-precision arithmetic 
accelerators to serve the market-dominating AI applications 
[17]. Thus, HPC is at a historic crossroads, where traditional 
modeling and simulation applications may not survive. This 
paper presents a paradigm shift that solves the 
multiscale/multiphysics/heterogeneity/low-precision challenge 
by leveraging hardware heterogeneity and low-precision 
arithmetic as resources rather than regarding them as obstacles, 
through innovations explained in Sec. V. 

IV. CURRENT STATE OF THE ART 
While high-end supercomputing has successfully been applied 
to quantum-mechanical study of static material properties, 
including a number of Gordon-Bell prizes [18-20], its 
application to quantum dynamics such as attosecond physics 
remains in its infancy [21-23]. Several software packages exist 
for Maxwell+Ehrenfest simulations on parallel computers such 
as Octopus [24] and SALMON [25], where a multiscale DC 
approach has been applied to the Maxwell-Ehrenfest (ME) 
subproblem [25], but not to the whole Maxwell-Ehrenfest-
surface hopping (MESH) problem considered in this work (Fig. 
1). Also never attempted is the integration of MESH-complete 
NAQMD with first-principles-accuracy XS-NNQMD as we do 
in our MLMD application (Fig. 1). As such, we describe below 
the state of the art (SOTA) for available subsets of MLMD. 

The multiscale MESH simulation concept is relatively new 
[10, 11], with the first integrated MESH program presented only 
very recently [12]. Accordingly, we here examine the SOTA of 
the ME subproblem of MESH, for which there exit several high-
end computing results in the literature. In [21], Qb@ll code was 

 
Fig. 1: Software and enabling technologies: MLMD (multiscale 
light-matter dynamics) simulation & machine-learning software 
integrates DC-MESH (divide-and-conquer Maxwell-Ehrenfest-
surface hopping) and XS-NNQMD (excited-state neural-network 
quantum molecular dynamics) modules. DCR (divide-conquer-
recombine) algorithms decompose the problem into not only spatial 
but also multiphysics subproblems that are mapped onto best 
characteristics-matching hardware units, while MSA (metamodel-
space algebra) allows the subproblems to reside in respective 
hardware units and minimizes inter-unit communications. 



used to simulate aluminum involving 59,400 electrons, where 
one QD time step took 53.2 seconds of wall-clock time on 
98,304 IBM BlueGene/Q nodes, achieving floating-point 
performance of 8.75 PFLOP/s (43.5% of theoretical peak). We 
define the time-to-solution (T2S) of ME simulation as the wall-
clock time per QD time step divided by the number of simulated 
electrons. The T2S of the Qb@ll code for this run is 
53.2	[sec] 59,400	[electrons]⁄ = 8.96 × 10!"	[sec]  per 
electron. In [22], PWDFT code was used to simulate 3,072 spin-
degenerate electronic wave functions in silicon, where one QD 
time step took 260.9 seconds of wall-clock time on 768 GPUs 
of Summit supercomputer. While this amounts to a raw T2S of 
8.49 × 10!#  [sec], their parallel-transport time-integration 
scheme allows the use of 100-times larger time step compared 
to conventional integrators, effectively reducing the computing 
time by a factor of 100. The effective T2S is thus 8.49 × 10!" 
[sec]. More recently, SALMON code was used to simulate 
71,040 electrons in 1.2 seconds using 27,648 nodes of Fugaku 
supercomputer, achieving a T2S of 1.69 × 10!$  [sec] [23]. 
Table I compares these SOTA performance numbers for ME-
NAQMD with our result for the MESH-NAQMD superset. 

Also unexplored is multiscale handshaking of NAQMD and 
excited-state (XS) NNQMD to enable seamless simulations from 
electronic- and atomistic- to device-scales, though ground-state 
(GS) NNQMD has been implemented on high-end 
supercomputers [15]. In this work, we employ the Allegro 
NNQMD model, which achieved the SOTA equivariant deep-
learning accuracy with 1,000-fold improvement in T2S over 
previous quantum simulation and improved sample efficiency 
over the previous SOTA in the GS-NNQMD setting [26]. The 
robustness of the Allegro model was further improved by the 
Allegro-Legato model [27], while its generalizability was 
extended to diverse material properties and processes by the 
Allegro foundation model (FM) [28]. This work is the first to 
apply these new developments to XS-NNQMD. The only XS-
NNQMD speed reported to date used a much smaller and less 
accurate neural-network model compared to the equivariant-
accuracy Allegro [11]. To account for the accuracy-speed trade-
off, we define the T2S of XS-NNQMD as the wall-clock time 
per MD time step divided by the product of the number of atoms 
and that of neural-network weights. In [11], one MD step to 
simulate 1,007,271,936,000-atom PbTiO3 material using 440-
weight XS-NNQMD took 3,142.66 seconds on Intel Theta 
computer. This amounts to T2S of 3,142.66	[sec]/
(1,007,271,936,000	[atoms] × 440	[weights]) = 7.091 ×
10!%#	[sec]; see Table II. 

V. INNOVATIONS REALIZED: METASCALABLE 
MULTISCALE/MULTIPHYSICS PARADIGM 

We present a metascalable (i.e., design-once, scale on future 
architectures [29]) paradigm that solves the 
multiscale/multiphysics/heterogeneity/low-precision challenge 
posed in Sec. III by harnessing hardware heterogeneity and 
low-precision arithmetic. We apply the paradigm to a 
multiscale light-matter dynamics (MLMD) simulation and 
machine-learning software that seamlessly integrates first-
principles DC-MESH (divide-and-conquer Maxwell-
Ehrenfest-surface hopping) and AI-enhanced XS-NNQMD 
(excited-state neural-network quantum molecular dynamics) 
modules. This innovation has for the first time allowed end-to-
end simulations of optically controlled topotronics extending 
from the atomistic to device scales in a hardware-optimal 
manner on an Exaflop/s computer (Fig. 1). 

The Algorithmic innovations in this work are: 
(1) Divide-conquer-recombine (DCR) algorithms divide a 
multiscale/multiphysics problem into not only spatial (Sec. 
V.A.1) but also physical (Sec. V.A.3-5) subproblems of 
different computational characteristics, which are separately 
solved using appropriate computational methods on best-
matching hardware units before recombined into a total solution 
[12, 30]. 
(2) Metamodel-space algebra (MSA) allows the key data 
structures of subproblems to reside in respective hardware 
units, while minimizing inter-unit communications. MSA 
integrates multiple methods using arithmetic operations in a 
metamodel space, where one axis is the level of theory and the 
other is the space (Sec. V.A.8 [31-33])/time (Sec. V.A.3 
[12])/dataset (Sec. V.A.7 [28]) size. DCR/MSA paradigm 
delineates multiphysics subproblems, each with a small 
dynamic range, which in turn maps well onto AI hardware 
accelerators with various precisions (Sec. V.B.7) [34]. 
(3) Globally scalable and locally fast (GSLF) [30]—or 
globally sparse yet locally dense (GSLD) [35]—solvers 
implement DCR algorithms efficiently on a network of GPU-
accelerated computing nodes (Sec. V.A.2). 
(4) Allegro-FM: Accurate, fast, robust, and foundational 
machine learning model describes diverse materials 
downstream tasks, based on group-theoretical equivariance 
[36], local descriptors [36], sharpness-aware training [27], and 
MSA to unify multifidelity training databases [28] (Sec. V.A.6-
7). 

Implementation innovations complement the algorithmic 
innovations for exascale performance optimization: (1) Open 
programming approach based on OpenMP target for portability 
across exascale computing platforms; (2) data/loop reordering; 
(3) blocking/tiling; (4) hierarchical parallelization; (5) 
converting nonlocal correction into dense matrix 

Table II. State-of-the-art XS-NNQMD simulations. 

Work Machine Time-to-solution 
[sec] 

Linker et al. (2022) [11] Theta 7.09 × 10!"$ 
This work Aurora 1.88 × 10!"# 

 

Table I: State-of-the-art Maxwell-Ehrenfest simulations (subset of the Maxwell-Ehrenfest-surface hopping as in DC-MESH of this work). 

Work Benchmark system Machine Time-to-solution [sec] PFLOP/s (% of FP64 peak) 
Qb@ll (2016) [21] Aluminum, 59,400 electrons IBM BlueGene/Q 8.96 × 10!% 8.75 (43.5) 

PWDFT (2020) [22] Silicon, 3,072 electrons Summit 8.49 × 10!% 0.12 (2.0) 
SALMON (2022) [23] Silica, 71,040 electrons Fugaku 1.69 × 10!# 2.69 (3.17) 

This work PbTiO3, 15,360,000 electrons Aurora 1.11 × 10!& 1873 (100.2) 
 



multiplications (‘GEMMification’); (6) GPU-resident kernels; 
(7) parameterized mixed-precision computation; (8) ahead-of-
time compilation; and (9) block-model inference. 

A. Algorithmic Innovations 
A.1 Spatial divide-and-conquer (DC)–DCR1. The first level of 
DCR is spatial decomposition (Fig. 1). DFT reduces the 
exponential complexity of the quantum many-body problem to 
O(N3) by self-consistently solving N one-electron problems 
instead of directly solving the intractable N-electron problem 
[4]. Among various O(N) DFT approaches [5], we employ the 
DC-DFT algorithm, in which the three-dimensional space Ω is 
decomposed into spatially localized domains, Ω = ⋃ Ω&&  (Fig. 
2a), and local electronic Kohn-Sham (KS) wave functions 
within the domains and the global KS potential are determined 
by global-local self-consistent-field (SCF) iterations [37]. DC-
MESH adopts hierarchical MPI parallelization by assigning one 
MPI communicator per domain, each handled by multiple MPI 
ranks through hybrid band-space decomposition, which 
subdivides KS orbitals (or bands) or space among ranks, 
depending on a specific computational task [30].  

A.2 Globally scalable and locally fast (GSLF) [30]—or 
globally sparse yet locally dense (GSLD) [35]—solvers. We 
combine: (1) O(N) tree-based multigrid method, which is sparse 
and scalable, to represent global KS potential; and (2) fast 
Fourier transform (FFT) to represent local KS wave functions 
(Fig. 2a) [30]. These solvers apply to the mean-field electrostatic 
contribution to the KS potential (i.e., Hartree potential). On the 
other hand, nonlocal exchange-correlation (xc) and nonlocal 
pseudopotential effects, which represent higher-order 
correlations and complex chemical interactions, act on the entire 
spatial extent of each KS wave function at once [38]. Such dense 
computations are performed only within each domain, taking 
advantage of their short spatial ranges based on the quantum-
nearsightedness locality principle (Fig. 1) [6]. 

A.3 Shadow dynamics–DCR2/MSA1. This is the second level 
of DCR along with the first type of MSA (Figs. 1 and 2b). The 
key insight is that fundamental physics equations are all local at 
the finest spatiotemporal scales, i.e., simple partial differential 
equations with differential operators acting locally. On the other 
hand, coarse-grained schemes to approximately describe 
complex chemical interactions come with an excessive 
computational cost of nonlocal operations. Simple data 

parallelism in the former—which we call Local Field Dynamics 
(LFD)—fits naturally to hardware accelerators such as GPU 
(Figs. 1 and Fig. 2b). On the other hand, complex chemical 
interaction in the latter—which we call Quantum eXcitation 
Molecular Dynamics (QXMD)—can take advantage of 
complex instruction sets in CPU (Figs. 1 and 2b). To minimize 
data transfer between CPU and GPU, we adopt a shadow 
dynamics approach [39], in which a GPU-resident proxy is 
solved to capture effective action of LFD on QXMD through 
electronic occupation numbers, 𝑓'

(&) ∈ [0,1]  (for the s-th KS 
wave function in the 𝛼-th domain) [10, 11], which are negligible 
compared to the large memory footprint of KS wave functions 
𝜓'
(&)(𝐫) represented on many spatial grid points. 

A.4 Local-nonlocal split-operator LFD–DCR3. The third level 
of DCR is multiphysics decomposition between local 
Hamiltonian dynamics and nonlocal correction within LFD, 
which can be formulated as vector and tensor computations, 
respectively (Figs. 1 and 2b); see Sec. A5. In MD simulation, 
time evolution of 𝑁*+,-  atoms is achieved by repeatedly 
updating 3𝑁*+,--element position and velocity vectors, 𝐑 and 
𝐑̇, using a time step of ∆./~100 attoseconds: 
S𝐑(𝑡 + ∆./), 𝐑̇(𝑡 + ∆./)U = expS𝐿Y∆./US𝐑(𝑡), 𝐑̇(𝑡)U, (1) 
where 𝐿Y is the Liouville operator in classical mechanics. In DC-
MESH, faster time evolution of electronic wave functions 
during each MD step is achieved by 
Z𝜓'

(&)(𝑡 + Δ./)\ =

∏ ^
%!

!"#$
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where i𝜓'
(&)(𝑡)\ is the s-th complex-valued KS wave function 

within DC domain Ω&  at time t, 𝑁=/ = ∆.//∆=/  is the 
number of QD time steps per MD step (∆=/~1 attosecond), 
𝑈h>?S𝐑̇, Δ./U is the surface-hopping procedure to update the 
electron occupation 𝑓'

(&)  perturbatively according to 
nonadiabatic coupling arising from slow atomic motions [9], 
𝑖 = √−1, and the electronic Hamiltonian operator is 

 
Fig. 2: (a) Divide-and-conquer domains embedded in a global potential.  (b) DC-MESH module consists of (i) LFD to describe light-electron 
interaction on GPU and (ii) QXMD to describe electron-atom coupling on CPU, with minimal CPU-GPU data transfer via metamodel space 
algebra (MSA).  (c) Machine learning-based XS-NNQMD extends light-matter dynamics to large device-level spatiotemporal scales. 
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Here, m and e are the electron mass and charge, ℏ is the Planck 
constant, c is the light speed, and 𝐀𝐗(G) is the electromagnetic 
vector potential at the spatial position 𝐗(α) of the α-th domain, 
which is determined by solving Maxwell’s equations. In Eq. (3), 
the local potential 𝑣7,8

(&) operates spatial-point-by-point, whereas 
the nonlocal operator 𝑣nH7

(&) here collectively denotes the nonlocal 
ionic pseudopotential and nonlocal exchange-correlation 
potential, which has much more complex computational 
characteristics [38]. In the shadow dynamics approach in Sec. 
A3, only a small change ∆𝑣7,8

(&) in local potential due to slight 
atomic movements during ∆./ is passed from QXMD to LFD 
(Fig. 2b). In return, LFD passes back the change of electron 
occupation 𝑓'

(&)  due to light-matter coupling (Fig. 2b). These 
CPU-GPU data transfers are amortized by subsequent 
𝑁=/	(~100) QD time steps without any data transfer. 

A.5 Local-vector and nonlocal-tensor solvers. To expose 
natural data-parallelism in local Hamiltonian dynamics, 
expS−𝑖∆=/ℎY7,8

(&)/ℏU , in Eq. (2), we employ finite-difference 
representation of wave functions and adopt data-parallel local 
Hamiltonian-dynamics solvers that perform uniform operations 
on nearest-neighbor mesh points [40]: (1) a block-diagonal split-
operator solver for electronic wave functions [41]; and (2) an 
iterative dynamical simulated annealing (DSA) solver for the 
Hartree potential [42]. To ensure stable time propagation, we 
employ a self-consistent, time-reversible unitary approach that 
handles nonlinearity, i.e., the time-propagation operator itself 
depends on the wave functions being propagated [43]. On the 
other hand, we apply nonlocal 𝑣nH7

(&) in Eq. (2) instead in a vector 
space spanned by KS wave functions [44]. This switch of 
representation converts nonlocal correction to dense matrix 
multiplications [12], as will be detailed in Sec. B.5. 

A.6 Allegro-Legato: fast and robust XS-NNQMD. The next 
algorithmic innovation deals with the XS-NNQMD module of 
the MLMD software (Fig. 2c). A recent breakthrough in 
NNQMD has drastically improved the accuracy of inter-atomic 
force prediction over previous models, which was achieved via 
rotationally equivariant neural networks based on a group 
theoretical formulation of tensor fields [45]. SOTA accuracy has 
now been combined with a record speed based on spatially 
localized descriptors in the latest NNQMD model named 
Allegro (meaning fast), making it the first exa-deployable model 
with the SOTA equivariant accuracy [36]. 

Despite its remarkable computational scalability, exascale 
NNQMD simulations face a major unsolved issue known as 
fidelity scaling, i.e., small prediction errors propagate and lead 
to unphysical atomic forces that even cause the simulation to 
terminate unexpectedly [27]. As simulations become spatially 
larger and temporarily longer, the number of unphysical force 
predictions increases proportionally, which severely limits the 
fidelity of exascale NNQMD simulations, especially for far-
from-equilibrium XS-NNQMD. We reduce the number of 
unphysical force-prediction outliers by enhancing the robustness 
of the model through sharpness-aware minimization (SAM) 

[46], i.e., regularizing the curvature of the loss surface during 
training. The resulting Allegro-Legato (meaning fast and 
“smooth”) model elongates the time-to-failure 𝑡I*J7KLM , while 
maintaining the same inference speed and accuracy [27]. 
Allegro-Legato exhibits much weaker dependence of time-to-
failure on the problem size, 𝑡I*J7KLM ∝ 𝑁*+,-!<.%" compared to the 
Allegro model (𝑡I*J7KLM ∝ 𝑁*+,-!<.#O) [27]. This breakthrough has 
enabled spectroscopically-stable, long-time MD simulations for 
the first time to reproduce the fine vibrational structures 
observed in SOTA neutron-scattering experiments [47]. 

A.7 Allegro-FM: universal NNQMD–MSA2. Foundation 
models (FM) are a paradigm shift in AI, where a single universal 
model acquires sufficient generalizability to enable diverse, out-
of-distribution downstream tasks [48]. Our equivariant Allegro-
FM describes a wide variety of material properties and processes 
accurately with a single pretrained model, covering 89 elements 
in the periodic table, and is applicable to diverse downstream 
tasks including structural correlations, reaction kinetics, 
mechanical strengths, fracture, and solid/liquid dissolution, 
exhibiting emergent capabilities for which the model was not 
trained [28]. This universality arises from a large training 
database unifying multiple first-principles training datasets with 
varying fidelities (e.g., different exchange-correlation 
functionals). This unification in turn is achieved by a total 
energy alignment (TEA) framework [49], which is the second 
type of MSA that uses affine (shift and scale) transformations in 
a metamodel space (Fig. 2c). 

A.8 Multiscale XN/NN–MSA3. Minimal-communication 
handshaking between DC-MESH and XS-NNQMD is achieved 
by the third type of MSA (Figs. 1 and 2) akin to multiscale 
quantum-mechanics/molecular-mechanics (QM/MM) method, 
which was the topic of the 2013 Nobel chemistry prize to 
Karplus, Levitt, and Warshel. QM/MM can be formulated as 
extrapolation in a metamodel space, where the two axes are 
model accuracy and problem size [31, 32, 50]. The sole 
assumption is that the difference between QM and MM methods 
remains the same across problem sizes (Fig. 1). We have applied 
this MSA to adaptive multiscale QM/MM simulations, in which 
compute-intensive QM computations are dynamically 
embedded in lower-fidelity MM computation only where and 
when high fidelity is called for [51]. We have recently extended 
the MSA to multiscale NN/MM, which embeds first-principles-
accuracy NNQMD in MM [33]. In this paper, we further extend 
the MSA to XN/NN, where excited-state XS-NNQMD is 
perturbatively added to ground-state GS-NNQMD. Here, GS-
NNQMD is based on the pretrained Allegro-FM in Sec. A7, 
which is fine-tuned with additional NAQMD training data to 
generate an XS-NNQMD model for describing photoexcitation.  

XS-NNQMD passes atomic positions to DC-MESH, 
whereas DC-MESH returns a number of photoexcited electrons 
𝑛MP8
(&)  per domain 𝛼  (which is computed from 𝑓'

(&) ) to XS-
NNQMD (Fig. 2, b and c). We collect 𝑛MP8

(&)  using MPI gather 
across domains only once at the end of DC-MESH, thus 
preventing frequent pauses to GPU activity. In each MD step, 
GS- and XS-NNQMD models independently predict atomic 
force on the i-th atom 𝑭4  as 𝑭QR4  and 𝑭SR4  based on the same 
tensor object inputs, then the predicted forces are combined as 
𝑭4 = (1 − 𝑤)𝑭QR4 +𝑤𝑭SR4 , (4) 



where w is the fraction of XS model. The value of w is 
determined by the electronic excitation number 𝑛MP8

(&)  [11]. To 
minimize costly data movement, all models per MD domain are 
offloaded to GPU at the beginning of simulation and the force 
inference from these models is done on single GPU tile. 

B. Implementation Innovations 
In this section, we describe a series of optimizations applied to 
improve the performance of MLMD on Exaflop/s platforms. 

B.1 Open programming approach. For portability across 
supercomputers in the US and elsewhere, we use open 
programming approaches for parallel programing: Message 
Passing Interface (MPI) for message passing and Open Multi-
Processing (OpenMP) for multithreading. To facilitate 
minimally invasive offloading to GPU, we use high-level 
OpenMP target constructs (except for the use of low-level SYCL 
only through BLAS library) instead of proprietary languages. 
We also avoid unnecessary overheads by creating a common 
device data environment to reduce the overall amount spent in 
host-to-device data transfer in the OpenMP target region. In 
addition to these open parallel-programming approaches, 
machine-learning (ML) modules in XS-NNQMD use the most 
widely used PyTorch. Our open parallel and ML programming 
approach not only achieves EFLOP/s performance for a specific 
application on a particular platform but also brings it to general 
ML-integrated high-performance scientific computing on any 
computing platform around the globe. 

B.2 Data and loop re-ordering. Data-parallel solvers in Sec. 
A.5 introduce sparse stencil operations with strided data access 
in the x, y, and z directions. To achieve optimal memory access 
patterns in registers, we make the array of wave functions for 
Norb KS orbitals each on Ngrid spatial grid points as a structure 
of arrays (SoA), i.e., consecutively store the complex values for 
Norb orbitals for each grid point. Accordingly, wave-function-
update loops are ordered such that the fastest-changing index 
corresponds to the orbital. This allows space-dependent stencil 
operators to be reused for Norb orbitals on both CPU and GPU 
[12]. 

B.3 Blocking/tiling. We further block each innermost loop over 
Norb orbitals, so that the wave functions accessed in the loop fit 
into the cache. The added loop of blocks also allows 
distributing the computation to more GPU blocks when 
offloading is used [12]. 

B.4 Hierarchical parallel regions. Through our loop re-
ordering and SoA optimizations, we expose the kernel to a high 
level of parallelism. For example, propagation of wave 
functions on the grid points of a y-z grid plane can be 
concurrently computed for an x-direction stencil. Hence, the 
first level of parallelism is achieved as time-evolution requires 
only knowledge of the wave function at the current time step 
and the previous step within the same plane. A second level of 
parallelism comes into effect from the ability to propagate the 
wave function independently of the orbital. This hierarchical 
parallelism applies to both single-instruction multiple-data 
(SIMD) and single-instruction multiple-threads (SIMT) 
paradigms. The parallelization over planes and orbitals are 
collapsed into a larger loop. Combined optimizations in Secs. 

B.2-4 have significantly sped up the computation of local time-
propagator expS−𝑖∆=/ℎY7,8

(&)/ℏU	 (Sec. A.5) [12]. Table III 
shows the reduction of its key kernel, kin_prop(), on the Polaris 
computer at Argonne Leadership Computing Facility, with 2.8 
GHz AMD EPYC Milan 7543P CPU and Nvidia A100 GPU. 
The timing is for 1,000 QD steps involving 64 KS wave 
functions each on 70 × 70 ×72 finite-difference mesh points. 
For simplicity, a single GPU timing is compared with a single 
CPU-core timing. The optimizations B.2 and B.3 have achieved 
9.22-fold speedup on CPU, while GPU offloading (B.4) has 
resulted in 36.1-fold speedup over CPU version. The overall 
speedup is thus 338-fold over the baseline [12].  

B.5 GEMMification of nonlocal correction. The orders-of-
magnitude speedup of the local Hamiltonian propagator 
expS−𝑖∆=/ℎY7,8

(&)/ℏU  in Table III has left the nonlocal 
counterpart 𝑣nH7

(&)  as the performance hotspot for DC-MESH. 
Switching from finite-difference to KS-orbital representations 
in Sec. A.5 transforms this computation into matrix 
multiplications. Let us define a Ngrid×Norb wave-function matrix 
Ψ(𝑡), where Ngrid and Norb are the number of grid points to 
represent each wave function and that of KS wave functions. 
The nonlocal correction in Eq. (2) then reads 
Ψ(𝑡)−= 𝛿Ψ(0)ΨT(0)Ψ(𝑡), (5) 
where 𝛿 is a small complex number and ΨT denotes a Hermitian 
transpose matrix. We implement Eq. (5) using BLAS (basic 
linear algebra subprograms) level 3 GEMM (general matrix-
matrix multiply) calls [12]. Specifically, we use GEMM kernels 
on the device by accessing data that is already allocated on GPU 
with the OpenMP clause use_device_ptr(list). This allows us to 
make SYCL-BLAS on an explicitly-defined GPU queue, thus 
eliminating the need to allocate from host code to take advantage 
of the high performance oneMKL BLAS. In addition to time-
propagation in Eq. (2), GEMMification is applied to nonlocal 
correction in energy and electric current (within time-dependent 
current density functional theory, TDCDFT [52]), with the latter 
used in Maxwell’s equations for light.  

B.6 GPU-resident kernels. The key computational advantage 
of the shadow dynamics is that the large wave-function arrays, 
Ψ(𝑡)  and Ψ(0) , can be made GPU-resident, thereby 
eliminating massive CPU-GPU data transfer. Such GPU-
resident data structures are facilitated by our custom C++ class 
constructor and destructor based on OpenMP target data 
constructs. The custom allocator named OMPallocator is used 
for container classes (e.g., std::vector), which are intended to 
be GPU-resident. Upon initialization, the allocator calls 
#pragma omp target enter data map(alloc), while upon 
destruction, it calls #pragma omp target exit data map(delete). 

Table III. Runtime of the kin_prop() function for local time-
propagator in the LFD subprogram of the DC-MESH module. 

Implementation Target Runtime (s) Speedup 
Baseline CPU 8.655 1 
Data & loop re-ordering 
(Sec. B.2) CPU 2.356 3.67 

Blocking/tiling (Sec. B.3) CPU 0.939 9.22 
Hierarchical parallel 
regions (Sec. B.4) GPU 0.026 338 

 



This significantly eases the programming burden of managing 
GPU-resident data, while keeping the use-side code neat. In 
addition, the HostAllocator may be replaced with a customized 
allocator using pinned host memory to further improve host-
device transfer rate [12]. 

B.7 Parameterized mixed-precision computation. In DCR, 
judicious decomposition of a problem results in subproblems 
with small dynamic ranges and minimal mutual information. 
While chemical accuracy for the QXMD subproblem in DC-
MESH requires FP64 precision, shadow dynamics requires 
minimal information from the proxy LFD, i.e., only small 
change ∆𝑓'

(&)  to occupation number 𝑓'
(&) , which itself has a 

limited dynamic range, [0,1]. This can be achieved in FP32 
without sacrificing accuracy. Similar decomposition of 
occupation numbers into mixed-precision arithmetic was 
adopted in a previous Gordon Bell prize [19]. In DCR, 
FP64/FP32 decomposition is done instead at a subprogram 
level by simply using a class template with parameterized 
precision. Furthermore, nonlocal correction, Eqs. (2) and (5), in 
LFD is perturbatively added [53] and is constructed to 
reproduce the dominant energy term exactly [44], which is 
amenable to even lower-precision GEMM. In fact, brain-
floating point 16 (BF16) [54] with FP32 accumulation (hybrid 
FP32/BF16) was shown to be sufficient for this computation in 
[34] (see Sec. VI.C). In XS-NNQMD, Allegro-FM uses FP32 
to represent normalized weights and internal activations again 
with limited dynamic range [0,1], while employing FP64 for the 
final stage of deep learning to compute interatomic forces [26]. 

B.8 Ahead-of-time (AOT) compilation. To enhance code 
portability, just-in-time (JIT) compilation is used by default on 
Aurora. However, this incurs large time penalty at the 
beginning of each simulation. To avoid this, we employ AOT 
compilation, so that the binary contains the actual assembly 
code of target platform instead of intermediate SPIR-V code. 

B.9 Block model inference. GPU memory offers high 
bandwidth to enable ultrahigh-throughput computation, 
however, the relatively small storage capacity often becomes a 
serious bottleneck in the scalability of simulation size. In 
Allegro model, besides network parameters, atomic position, 
type, and neighbor-list tensors need be stored in GPU memory. 
All three tensors scale linearly, though the neighbor-list tensor 
has a large prefactor, about 50-200, compared to the other two 
tensors. Thus, we block the model inference calculation in two 
batches to overcome the limitation in the system scalability and 
have achieved an order-of-magnitude larger system size 
compared to the SOTA. 

VI. HOW PERFORMANCE WAS MEASURED 

A. Applications Used to Measure Performance 
Ultrafast modulation of electronic structures via photo-
excitation can open hidden pathways to exotic quantum material 
phases that are not obtainable otherwise [3]. Of particular 
interest is optical manipulation of emergent polarization 
topologies in ferroelectric materials [55]. Since toplogical 
quantum structures like polar skyrmions are characterized by 
integer topological indices, they are protected from thermal 

noise [2]. Accordingly, topological optoelectronic devices can 
be operated at much lower voltages than the current CMOS 
devices, thereby overcoming the so called Boltzmann’s tyranny 
that imposes practical limits to sustain Moore’s law. However, 
fundamental understanding of topological polarization control 
under far-from-equllibrium optical exciation remains critically 
lacking due to the multiscale/multiphysics challenge explained 
in Sec. III. The open science question is how to control 
attosecond electronic excitation dynamics initiated by ultrafast 
laser-light pulses to generate longer-time structural changes 
relevant for device operation. The performance-optimized 
MLMD software described in Sec. V has overcome this 
challenge and has for the first time enabled the study of light-
induced topological switching for future ultrafast and ultralow-
power ferroelectric topotronics applications from first 
principles. 

We study laser-induced ultrafast dynamics of topological 
patterns in a prototypical ferroelectric topotronics material, 
PbTiO3. While an elementary topological pattern like skyrmion 
may have a length scale of 10-8 m, studying its device application 
requires simulation of an array (or superlattice) of such 
elementary patterns extending 10-6 m. Such photo-induced 
topological switching of superlattices has indeed been realized 
by a recent experimental breakthrough [56]. We adopt a 
multiscale simulation approach [11], where we first prepare a 
complex polar topology, i.e., a superlattice of skyrmions using 
GS-NNQMD. These atomic positions are fed to DC-MESH to 
simulate electronic and structural responses to a femtosecond 
laser pulse. Informed by the resulting electronic-excitation 
number from DC-MESH, XS-NNQMD simulation is then 
performed to study larger spatiotemporal-scale topological 
dynamics (Fig. 3). 

B. Systems and Environment 
We test the performance of our MLMD simulation and machine-
learning software on the Aurora supercomputer at Argonne 
Leadership Computing Facility. It is an HPE Cray EX 
supercomputer where each node is a vertically installed compute 
blade, 64 blades per rack, and 166 racks amount to a total of 
10,624 blades. Each blade has two 2.00 GHz Intel® Xeon Max 
9470 52-core CPUs with 64 GB High Bandwidth Memory 
(HBM) and 512 GB DDR5 Memory each. Each blade has 6 
Intel® Data Center GPU Max 1550 (2 tile) GPU, containing 128 
GB of HBM2e memory, and a maximum frequency of 1.6 GHz. 
The CPU-GPU interconnect is through PCIe and the GPU-GPU 

 
Fig. 3. Photo-switching of a ferroelectric skyrmion superlattice in 
PbTiO3. 



interconnect is through Xe Link. The system interconnect is 
Slingshot 11, which has high radix 64-port switches and offers 
adaptive routing, congestion control, and bandwidth guarantees 
by assigning traffic classes to applications and is coupled with 
Dragonfly topology. PVC tiles per blade have a peak floating-
point performance of 187 TFLOP/s, which makes the entire 
machine’s theoretical peak performance ~2 EFLOP/s for FP64. 

The MLMD software consist of two modules: DC-MESH 
and XS-NNQMD. The DC-MESH code consists of QXMD 
subprogram written in Fortran with MPI and LFD subprogram 
written in C++ with OpenMP. For performance evaluation on 
Aurora, DC-MESH is built using Intel® oneAPI 2025.0 release 
compilers as well as Intel® Math Kernel Library (MKL) 2025.0. 
Similarly, XS-NNQMD consists of an MD engine written in 
Fortran with MPI and a C++ code for Allegro model inference. 
XS-NNQMD is built with Intel® Extension for PyTorch (IPEX) 
version 2.1.40 and Intel® oneAPI version 2024.2.1. 

Floating-point performance of DC-MESH is quantified by 
measuring total FLOP/s (floating point operations per second). 
This metric is determined using several software packages for 
both CPU and GPU. First, Intel® Software Development 
Emulator (Intel® SDE) is used to determine the total FLOP 
count of the workload and its breakdown into CPU and GPU. 
We then measure the wall-clock time on the GPUBLAS with 
unitrace, part of the Profiling Tools Interfaces for GPU. 
Dividing the GPU FLOP count by GPU wall-clock time gives 
us GPU FLOP/s. The same computation is performed on the 
CPU side to give us CPU FLOP/s. Finally, sum of FLOP/s for 
CPU and GPU provides the total FLOP/s. 

C. Parametereized Mixed-Precision Implementation 
Intel® MKL supports multiple compute modes for BLAS level 
3 routines to handle accuracy-speed trade-off. In the 
float_to_{BF16,BF16x2,BF16x3} modes, the library internally 
converts single-precision input data to sums of 1, 2, or 3 BF16 
values, then uses the fast systolic arrays available on recent 
discrete GPUs to multiply the resulting BF16 component 
matrices and accumulate in single precision. As the number of 
BF16 components increases, so does expected accuracy, to the 
point that BF16x3 accuracy is comparable to standard single-
precision arithmetic. As explained in Sec. V.B.7, 
float_to_BF16 was found to provide sufficient accuracy for 
nonlocal correction in DC-MESH in [34]. 

VII. PERFORMANCE RESULTS 
We measure the scalability, FLOP/s performance, and T2S of 
the DC-MESH and XS-NNQMD modules of the MLMD 
software on the Aurora supercomputer. 

A. Weak and Strong Scalability 
A.1 DC-MESH. We first perform a weak-scaling benchmark of 
DC-MESH, in which the number of electrons per MPI rank (or 
spatial DC domain), N/P is kept constant. Each MPI rank 
represents PbTiO3 material containing up to 1,024 KS wave 
functions represented by the plane-wave basis in the QXMD 
subprogram, while each complex-valued KS wave function in 
the LFD subprogram is represented on finite-difference mesh 
points. We use up to 10,000 computing nodes with 12 MPI 
ranks per node, where each rank is accelerated by one tile of 

GPU. Each spatial DC domain consists of a mutually exclusive 
core surrounded by a buffer layer (Fig. 2a). For a buffer 
thickness equal to half the core domain length in each Cartesian 
direction, the total problem size excluding the overlap is 
(1 + 2 × 1 2⁄ )0 = 8  times smaller than the product of the 
number of electrons in each overlapping domain and that of 
domains. The largest system on 10,000 nodes with 1,024 KS 
wave functions per domain thus contains 1,024/8 × 12 ×
10,000 = 15,360,000 electrons. 

We measure the wall-clock time per MD step, which 
includes 1,000 QD steps, with scaled workloads — 32P and 
128P-electron PbTiO3 material using P MPI ranks (Fig. 4a). By 
increasing the number of electrons linearly with the number of 
MPI ranks, the wall-clock time remains nearly constant, 
indicating excellent weak scalability. To quantify the weak-
scaling parallel efficiency, we first define the speed of the DC-
MESH program as the product of the total number of electrons 
and the number of MD simulation steps executed per second. 
The isogranular speedup is given by the ratio between the speed 
on P MPI ranks and that on the smallest run (P = 6,144) as a 
reference. The weak-scaling parallel efficiency is the 
isogranular speedup divided by P/6,144. With the granularity 
of 128 electrons per MPI rank, the parallel efficiency is perfect 
1.0 within measurement fluctuation on P = 120,000 for 
15,360,000-electron PbTiO3 material. This result demonstrates 
very high scalability of DC-MESH, mainly due to the globally-
sparse yet locally-dense electronic solvers [30, 35] within the 
divide-conquer-recombine algorithmic framework. 

Next, we perform a strong-scaling test for 12,582,912-
electron PbTiO3. In this test, the number of MPI ranks ranges 
from P = 24,576 to 98,304, while keeping the total problem size 
constant. Figure 4b shows the wall-clock time per MD 
simulation step as a function of P. The strong-scaling speedup 
is defined as the wall-clock time on the smallest number of MPI 
ranks divided by that on a larger number of MPI ranks. The 
strong-scaling parallel efficiency is the speedup divided by the 
ratio of the numbers of MPI ranks. It is 0.843 with 98,304 MPI 
ranks for 12,582,912 electrons. It is more difficult to achieve 

 
Fig. 4. (a) Weak-scalability of the DC-MESH module with scaled 
workloads — 32P and 128P-electron PbTiO3 material with P MPI 
ranks (P = 6,144, ..., 120,000). (b) Strong-scalability of the DC-
MESH module as a function of the number of MPI ranks for 
12.6M-electron PbTiO3 material. 



high strong-scaling parallel efficiency compared with weak-
scaling due to the increased communication/ computation ratio 
as the workload reduces. 

A.2 XS-NNQMD. We also perform weak and strong scalability 
tests of XS-NNQMD up to 120,000 MPI ranks on 10,000 nodes 
and 73,800 MPI ranks on 6,150 nodes, respectively. The 
training dataset of PbTiO3 material was created using Materials 
Project Trajectory [57] and SPICE [58] datasets combined with 
TEA framework [49] with the cutoff distance of 5.2 Å. We 
measure the wall-clock time per MD step averaged over 5 MD 
steps. Figure 5a shows weak-scaling performance with three 
different granularities of Natom/P = 160,000, 640,000, and 
10,240,000 atoms per MPI rank. The wall-clock time remains 
nearly constant as a function of the number of MPI ranks. We 
have achieved an excellent weak-scaling parallel efficiency of 
0.997 for the largest granularity of Natom/P = 10,240,000. With 
smaller granularities, Natom/P = 160,000 and 640,000, 
respective efficiencies, 0.957 and 0.964, are still excellent 
despite increased communication/ computation ratio. Figure 5b 
shows strong-scaling performance, where the number of atoms 
is kept constant. We consider two problem sizes: Natom = 
221,400,000 and 984,000,000. We have obtained a decent 
strong-scaling parallel efficiency of 0.773 for the larger 
problem size of Natom = 984,000,000. However, the efficiency 
drops to 0.440 with the smaller problem size Natom = 
221,400,000, indicating an excessive communication-to-
computation ratio. 

B. Sustained Performance 
We first measure GPU performance of DC-MESH on a single 
PVC tile by collecting kernel metrics using unitrace. This 
allows us to analyze the Level Zero, SYCL and OpenMP 
software layers within the region of interest. Table IV compares 
TFLOP/s performance, along with its percentage of the 
theoretical peak FP64 FLOP/s of PVC, for several problem 
sizes in terms of the number of electrons for PbTiO3. We 

observe increased FLOP/s performance for larger problem 
sizes, reaching 17.95 TFLOP/s (78.03% of the peak FP64 
performance) using a hybrid FP32/BF16 configuration for 
precisions (see Sec. VI.C). 

The increased performance is largely due to the increased 
arithmetic intensity in the complex GEMM (CGEMM) 
operations in nonlocal time-propagation. To confirm it, Table 
V compares TFLOP/s performance of the nlp_prop() function 
for nonlocal time-propagation and the kin_prop() function for 
local time-propagation for the 1,024-orbital run using FP32 in 
Table IV. Table V also shows TFLOP/s performance of the two 
CGEMM calls from nlp_prop(): one to compute an overlap 
matrix between KS orbitals at time t and 0, Ψ(𝑡) and Ψ(0), and 
the other to add a nonlocal correction to Ψ(𝑡) (Eq. 5). The two 
CGEMM calls with different row-column size combinations 
indeed achieve 18.72 to 21.66 TFLOP/s (81.39% to 94.17% of 
the peak performance), which leads to 16.02 TFLOP/s (69.65% 
of the peak) for the overall performance of nlp_prop(). On the 
other hand, the kin_prop() function for local time-propagation 
achieves 3.51 TFLOP/s (15.26% of the peak). The relatively 
low performance of the local stencil computation for local time-
propagation is consistent with, but much higher than, those in 
the previous SOTA quantum dynamics, e.g., 2.0% and 3.17% 
of the peak performance on Summit [22] and Fugaku [23] 
supercomputers, respectively, as shown in Table I. In more 
recent work, 7-point star stencil (on which local computation is 
based) achieves ~3% of the peak performance of the GPU [59], 
which is again consistent with the previous SOTA values but 
lower than our result presented in Table V. 

As described in Sec. V.B.7, shadow dynamics allows LFD 
computation of incremental low-dynamic-range quantities in 
FP32, while keeping FP64 for computation of complex 
chemistry in QXMD. While the peak performance of PVC is 
identical for FP64 and FP32 due to the dual-issued pipes for the 
former [60], we do observe higher performance for FP32 
compared to FP64. For the 1,024-orbital case, Table IV shows 
14.98 TFLOP/s (FP32) vs. 7.69 TFLOP/s (FP64). On Aurora, 
peak FP64 performance is restricted to 11 TFLOP/s due to 
power throttling. FP32 trades precision for a reduced weight 
value signified with less digits. Less digits results in reduced 
memory consumption, which in turn improves speed. In Table 

Table IV. FLOP/s performance of DC-MESH for several problem 
sizes on single PVC tile. 

Number of KS 
orbitals 

TFLOP/s % of FP64 peak 
(23 TFLOP/s) 

256 5.22 (FP32) 22.69 
864 9.74 (FP32) 42.35 
1024 14.98 (FP32) 65.16 
1024 17.95 (FP32/BF16) 78.03 
1024 7.69 (FP64) 33.43 

 

 
Fig. 5. (a) Weak-scalability of the XS-NNQMD module with 
160,000 (green), 640,000 (blue), and 10,240,000 (red) atoms per 
MPI rank. (b) Strong-scalability of the XS-NNQMD module with 
problem sizes of 221,400,000 (blue) and 984,000,000 (red) atoms. 

Table V. FLOP/s performance of hotspot kernels on single PVC 
tile for the 1,024-orbital problem in Table IV. 

Kernels TFLOP/s % of peak 
CGEMM (1) 18.72 (FP32) 81.39 
CGEMM (2) 21.66 (FP32) 94.17 
nlp_prop() 16.02 (FP32) 69.65 
kin_prop() 3.51 (FP32) 15.26 

 



IV, we also include results for hybrid FP32/BF16 computation. 
It uses the BF16 BLAS precision model with FP32 
accumulation, reaching 17.95 TFLOP/s (19.83% improvement 
over FP32) with negligible loss of accuracy (see Sec. V.B.7). 

Because of the divide-and-conquer approach, the number of 
floating-point operations of a total DC-MESH application on 
multiple computing nodes can be counted by multiplying the 
number of domains to the above FLOP count obtained from a 
single domain measurement. FLOP/s performance is then given 
by the number of aggregated FLOP count divided by the wall-
clock time of the entire application. For a 15,360,000-electron 
problem (1,024/8 × 12 × 10,000) solved on 10,000 Aurora 
nodes, the measured performance is 1.873 EFLOP/s, which is 
100.2% of FP64 peak or 70.1% of FP32 peak. 

C. Time to Solution 
C.1 DC-MESH. For 15,360,000-electron problem, one QD step 
took 1.705 sec on 10,000 Aurora nodes. This amounts to T2S 
of 1.705	[sec] 15,360,000	[electrons]⁄ = 1.11 × 10!U	[sec] 
per electron for the ME-NAQMD subproblem, which is 152-
fold reduction of the SOTA [23]; see Table I. 

C.2 XS-NNQMD. Our XS-NNQMD program uses the Allegro 
model, which has already achieved 1,000-fold improvement in 
T2S over previous quantum simulation and improved sample 
efficiency over the previous SOTA in ground-state NNQMD 
[26]. In this work, we apply the Allegro-FM with improved 
fidelity scaling [27] and generalizability [28] instead to harder 
excited-state NNQMD. We have achieved 1590.31	[sec]/
(1,228,800,000,000	[atoms] × 690,000	[weights]) =
1.876 × 10!%$	[sec] on 10,000 Aurora nodes. This amounts to 
3,780-fold reduction compared to the SOTA T2S of 7.091 ×
10!%#	[sec] [11]; see Table II.  

VIII. IMPLICATIONS 
As AI becomes ubiquitous at every corner of our society, its 
enormous power demand exposes fundamental physics limits 
like the Boltzmann tyranny [1]. Developing ultrafast and 
ultralow-power computing and sensing devices to overcome 
these limits will require new developments in attosecond 
physics and topological quantum matter (or topotronics). 
Disruptive possibilities include petahertz electronics [61], as 
well as topologically protected attojoule-switching logic and 
robust quantum computing [55, 62], which are many orders-of-
magnitude faster and less energy-consuming than the current 
CMOS technology. However, this is a formidable 
multiscale/multiphysics problem involving multiple field and 
particle equations for light, electrons, and atoms, encompassing 
electron/atom-to-device scales. The 2024 Nobel physics and 
chemistry prizes heralded the new era, where AI is embedded 
into the very fabric of science to attack such challenges. This 
work is an exemplar, using AI-enhanced NNQMD to boost first-
principles NAQMD. Meanwhile, HPC is at a historic 
crossroads, where increasingly heterogeneous computing 
hardware focusing on low-precision arithmetic puts traditional 
modeling and simulation applications at a risk of extinction [17]. 
This work unleashed the power of AI-enhanced 
multiscale/multiphysics simulation, where the divide-conquer-
recombine/metamodel-space-algebra (DCR/MSA) paradigm 

with parameterized precision exploits increasingly 
heterogeneous exascale computing platforms that support a 
spectrum of hybrid precision modes. This new paradigm offers 
viable algorithm-hardware co-design pathways for a wide 
variety of multiscale/multiphysics problems in the coming post-
exascale era. Moreover, our open parallel programming 
approach provides the benefit of post-exascale computing to the 
general HPC community. We are using our multiscale-light-
matter-dynamics software on Aurora to inform SOTA X-ray 
free-electron laser experiments at the newly upgraded LCLS at 
Stanford [63]. Such integrated computational/experimental 
studies will be critical not only for future topotronics but also for 
a wide range of advanced technologies. Furthermore, 
DCR/MSA allows exponentially hard topological quantum 
many-body dynamics subproblems [64] to be offloaded from 
Exaflop/s supercomputers to emerging quantum processing 
units (QPUs) with minimal CPU-QPU communication, i.e., 
realizing quantum-centric supercomputing [65]. Thus, the 
DCR/MSA paradigm is metascalable at the emerging nexus of 
post-exascale HPC, AI, and quantum computing. 
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