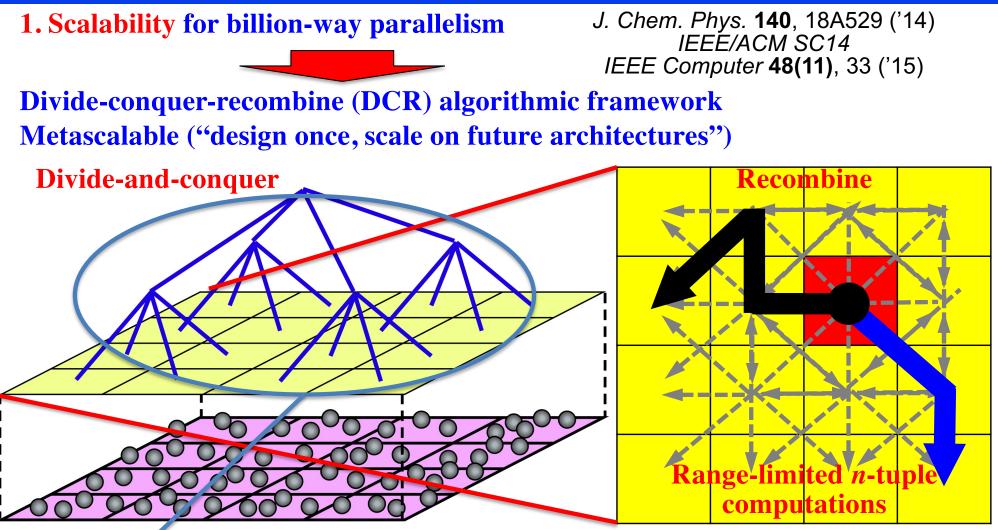
Order-Invariant Real Number Summation: Circumventing Accuracy Loss for Multimillion Summands on Multiple Parallel Architectures

Patrick E. Small, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Biological Sciences University of Southern California Email: (patrices, rkalia, anakano, priyav)@usc.edu

Proc. IEEE International Parallel & Distributed Processing Symposium, IPDPS, p. 152 ('16)

Exascale Computing Challenge

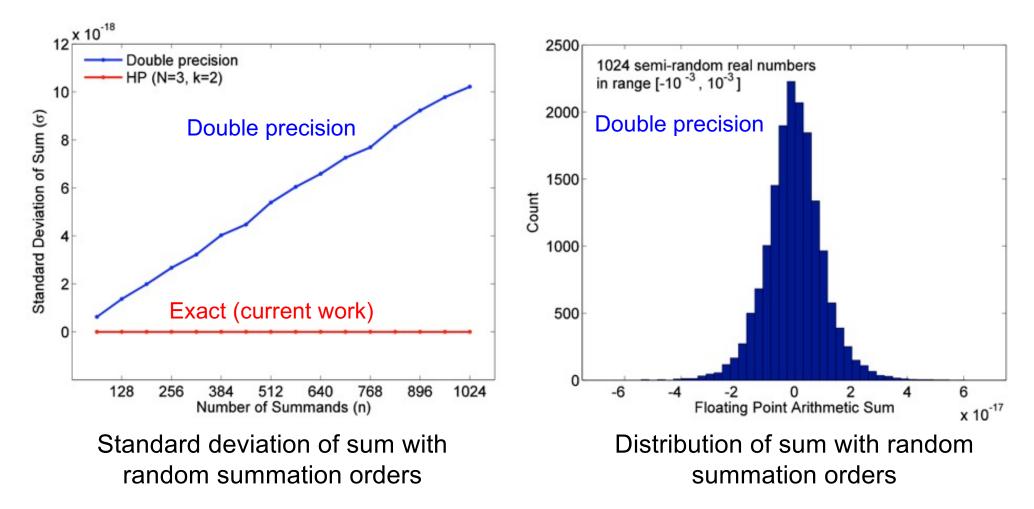


ACM/IEEE SC13

2. Reproducibility of real-number summation for multibillion summands in the global sum; double-precision arithmetic began to produce different results on different high-end architectures

Reproducibility Challenge

• Rounding (truncation) error makes floating-point addition non-associative



• Sum becomes a random walk across the space of possible rounding error

High-Precision (HP) Method

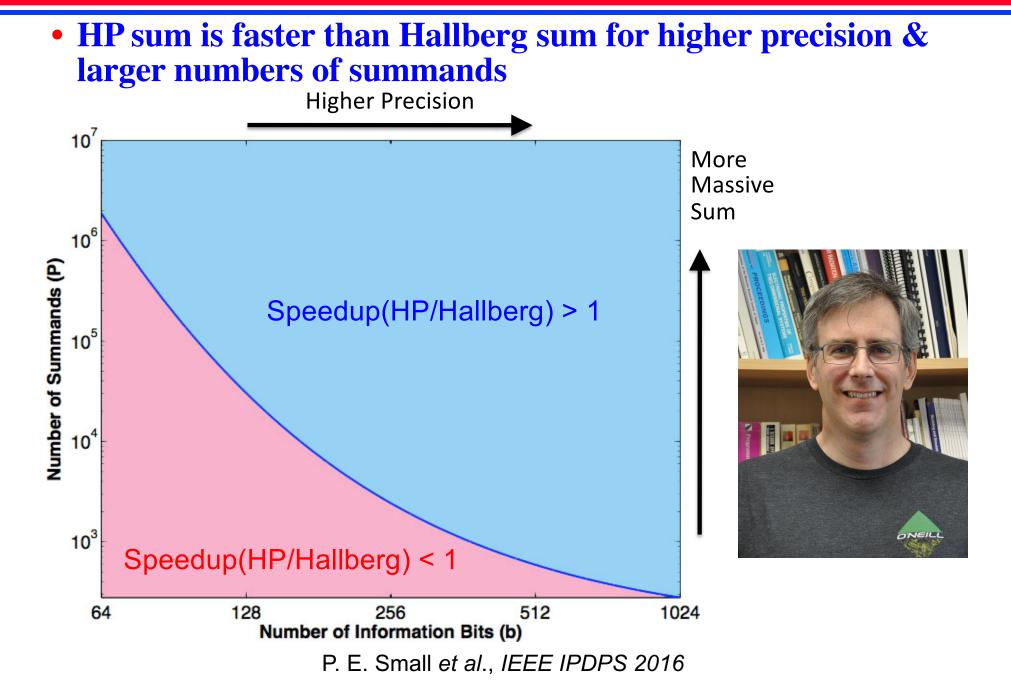
- Propose an extension of the order-invariant, higher-precision intermediate-sum method by Hallberg & Adcroft [Par. Comput. 40, 140 ('14)]
- The proposed variation represents a real number *r* using a set of *N* 64bit unsigned integers, *a_i* (*i* = 0, *N*-1)

$$r = \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)}$$

=
$$\underbrace{a_0 2^{64(N-k-1)} + \dots + a_{N-k-1}}_{N \leftarrow k} + \dots + \underbrace{a_{N-k} 2^{-64} + \dots + a_{N-1} 2^{-64k}}_{k}$$

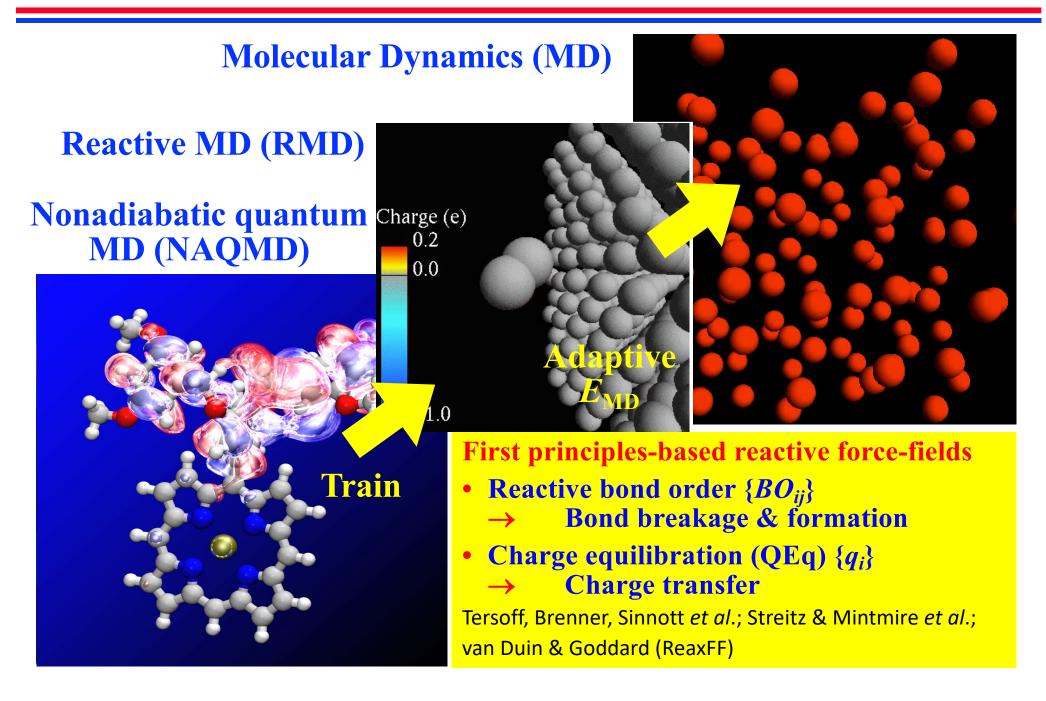
- *k* is the number of 64-bit unsigned integers assigned to represent the fractional portion of $r (0 \le k \le N)$, whereas *N*-*k* integers represent the whole-number component
- Negative number is represented by two's complement in integer representation, using only 1 bit

Performance Projection

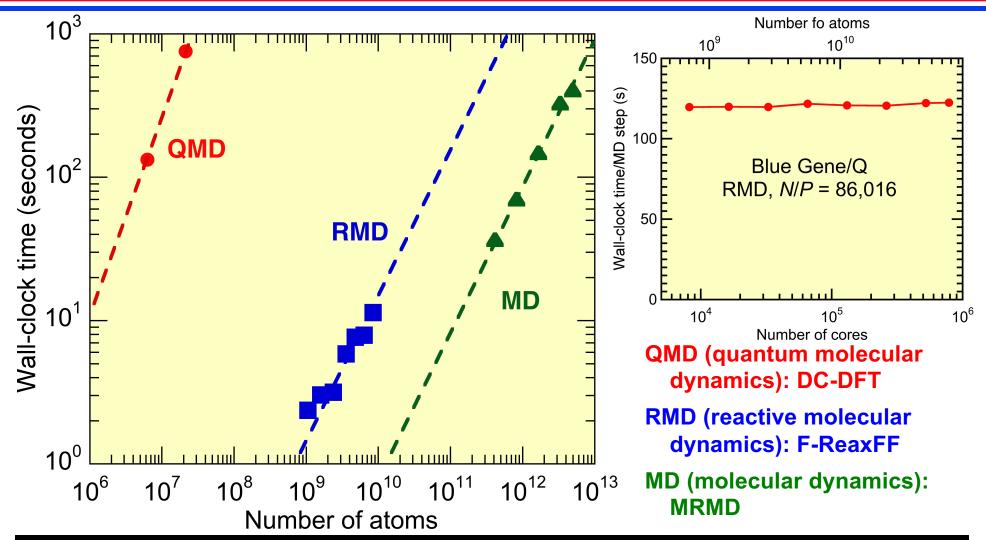


Detailed IPDPS 2016 Presentation

Hierarchy of Atomistic Simulation Methods

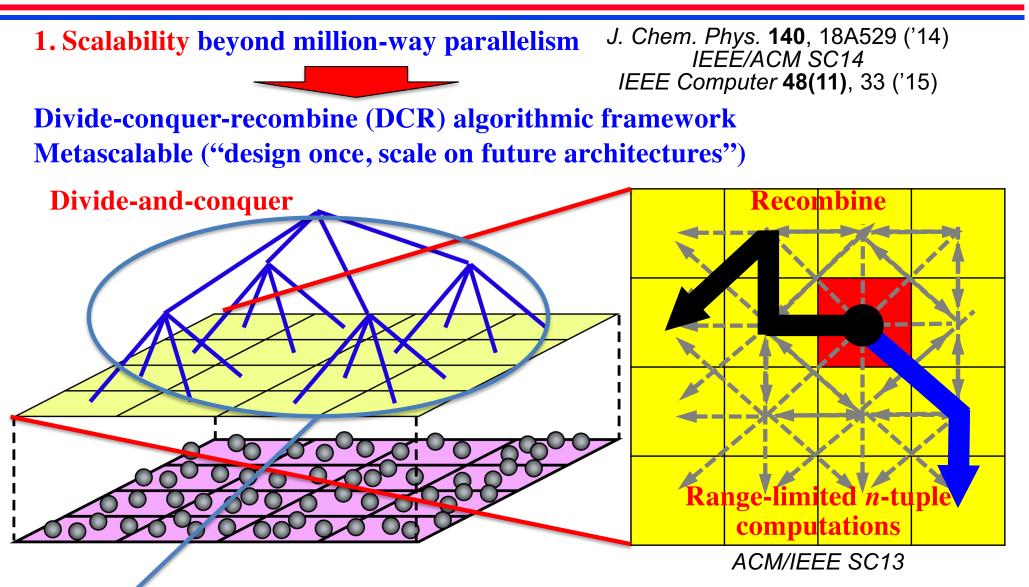


Scalable Simulation Algorithm Suite



4.9 trillion-atom space-time multiresolution MD (MRMD) of SiO₂
67.6 billion-atom fast reactive force-field (F-ReaxFF) RMD of RDX
39.8 trillion grid points (50.3 million-atom) DC-DFT QMD of SiC parallel efficiency 0.984 on 786,432 Blue Gene/Q cores

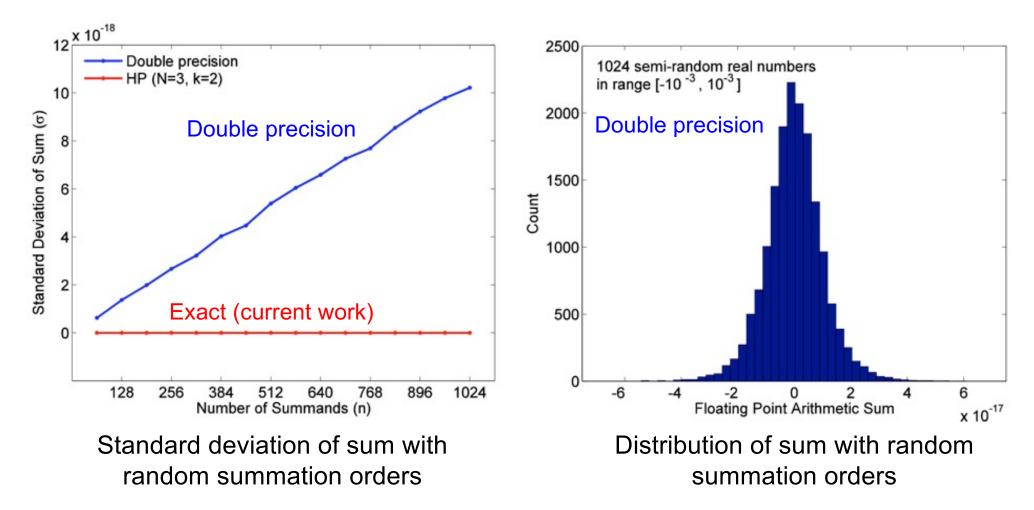
Exascale Computing Challenge



2. Reproducibility of real-number summation for multimillion summands & beyond in the global sum; double-precision arithmetic began to produce different results on different high-end architectures

Reproducibility Challenge

• Rounding (truncation) error makes floating-point addition non-associative



• Sum becomes a random walk across the space of possible rounding error

Related Works

- General-purpose arbitrary precision arithmetic [GNU-MPL '12]
 - → Extensive computation & memory usage
- Error-compensation methods
 - ➤ Error-free transformation for tracking residuals
 [Priest, '91, Higham '93, Rump '09, Demmel '13]
 → Complex implementation
 - > Summation reordering for minimizing error [Hel '01]

→ Prohibitive at large scales

Hardware solutions

[Gustafson '15]

- \rightarrow Not available yet
- **Higher-precision intermediate sums** [He '01, Hallberg '14]
 - → Simple implementation, low overhead

Contributions

- Propose an extension of the order-invariant, higherprecision intermediate-sum method by Hallberg & Adcroft
 [Par. Comput. 40, 140 ('14)]:
 - (1) Improves performance* for large (> 10⁶) number of summands
 - (2) Eliminates the aliasing problem of the original method
- The new method outperforms the previous state-of-the-art for large problems involving million+ summands on broad systems (MPI, OpenMP, CUDA/GPU, Xeon Phi)

*Performance is defined as the computational speed

Hallberg Order-Invariant Sum

Integer representation with higher accuracy: Represent a real number *r* using a set of *N* 64-bit signed integers, *a_i* (*i* = 0, *N*-1); *M* (< 63) is a positive integer

$$r = \sum_{i=0}^{N-1} a_i 2^{\left(i - \frac{N}{2}\right)M} = 2^{-NM/2} (a_0 + a_1 2^M + a_2 2^{2M} + \dots)$$

- Order-invariant parallel sum: Two real numbers are added by summing N pairs of corresponding integers concurrently
- Carry out (potential sequential dependence): When any of the integer additions exceeds 2^M, carry out must be added to the next integer in the set
- Carry-overhead reduction: Carry operations are avoided up to $P = 2^{63-M} 1$ summands to expose high parallelism

Drawback of Hallberg Sum

- Overhead: Not all integer bits serve to provide real-number precision; 63-*M* bits per integer are dedicated to book-keeping
- Aliasing: Multiple integer representations could represent the same real number
- Normalization & sum overheads to convert the integer representation back to real

High-Precision (HP) Method

The proposed variation of Hallberg method represents a real number *r* using a set of *N* 64-bit unsigned integers, *a_i* (*i* = 0, *N*-1)

$$r = \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)}$$

=
$$\underbrace{a_0 2^{64(N-k-1)} + \dots + a_{N-k-1}}_{N-k} + \underbrace{a_{N-k} 2^{-64} + \dots + a_{N-1} 2^{-64k}}_{k}$$

- k is the number of 64-bit unsigned integers assigned to represent the fractional portion of r (0 ≤ k ≤ N), whereas Nk integers represent the whole-number component
- Negative number is represented by two's complement in integer representation, using only 1 bit

HP Algorithm (1): Conversion

• Simple procedure: A single pass converts a double-precision number *r* to HP integers *a_i* & translates them to two's complement

$$r = \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)}$$

```
dtmp = fabs(r)*2<sup>64*(N-k-1)</sup>;
isneg = (r < 0.0);
for (i=0; i<N-1; i++) {
    itmp = (uint64_t)dtmp;
    dtmp = (dtmp - (double)itmp)*2<sup>64</sup>;
    a[i] = (isneg) ? ~itmp + (dtmp<=0.0) : itmp;
}
a[N-1] = (isneg) ? ~(uint64_t)dtmp + 1 : (uint64_t)dtmp;
```

• Inverse of this algorithm converts HP number back to double-precision

HP Algorithm (2): Addition

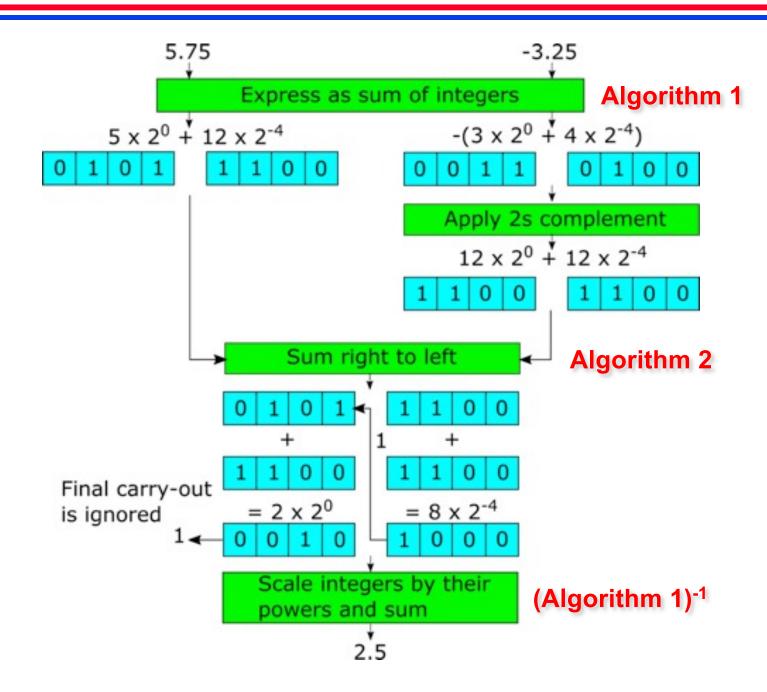
• Addition of two HP numbers, $a \leftarrow a + b$

$$\begin{cases} r_1 = \sum_{i=0}^{N-1} a_i 2^{64(N-k-i-1)} \\ r_2 = \sum_{i=0}^{N-1} b_i 2^{64(N-k-i-1)} \end{cases}$$

```
a[N-1] = a[N-1]+b[N-1];
co = (a[N-1]<b[N-1]);
for (i=N-2; i>=1; i--) {
    a[i] = a[i]+b[i]+co;
    co = (a[i]==b[i]) ? co : (a[i]<b[i]);
}
a[0] = a[0]+b[0]+co;
```

• Overflow of the sum is detected by comparing the signs of the summands with that of the sum

HP Sum: Example



Representation Power

• Maximum range & smallest representable HP number

$^{\prime}\mathrm{HP} = \angle_{i=0} \alpha_{l} \angle$							
N	k	Bits	Maximum range	Smallest number			
2	1	128	$\pm 9.223372 \times 10^{18}$	5.421011×10 ⁻²⁰			
3	2	192	$\pm 9.223372 \times 10^{18}$	2.938736×10 ⁻³⁹			
6	3	256	$\pm 3.138551 \times 10^{57}$	1.593092×10 ⁻⁵⁸			
8	4	512	$\pm 5.789604 \times 10^{76}$	8.636169×10 ⁻⁷⁸			

 $r_{\rm HD} = \sum^{N-1} a \cdot 2^{64} N - k - i - 1)$

• Equivalency with Hallberg representation power

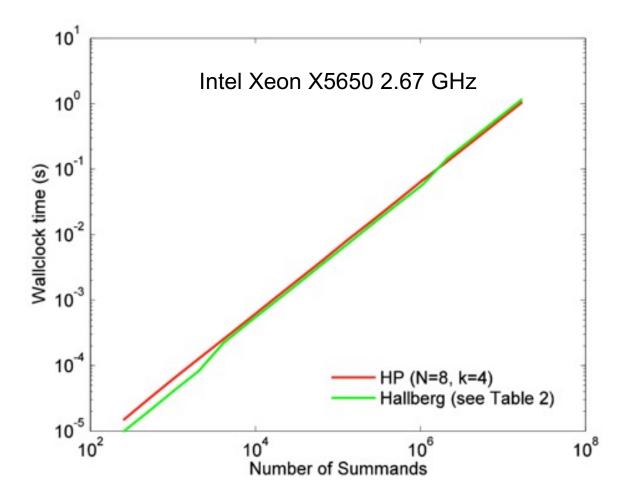
$$r_{\text{Hallberg}} = \sum_{i=0}^{N-1} a_i 2^{(i-N/2)M}$$

N	M	Precision bits	Max summands
10	52	520	2048
12	43	516	1 M
14	37	518	64 M

- Invariance of sum with respect to both summation order & architecture is guaranteed with appropriate setting of N & k to provide sufficient accuracy
- Overflow & underflow can be readily detected at runtime at double-precision (DP)-to-HP conversion, HP-sum & HP-to-DP conversion steps
- Atomicity of addition (which is essential for multithreading) is guaranteed using only the widely available compare-&-swap (CAS) synchronization primitive

Performance

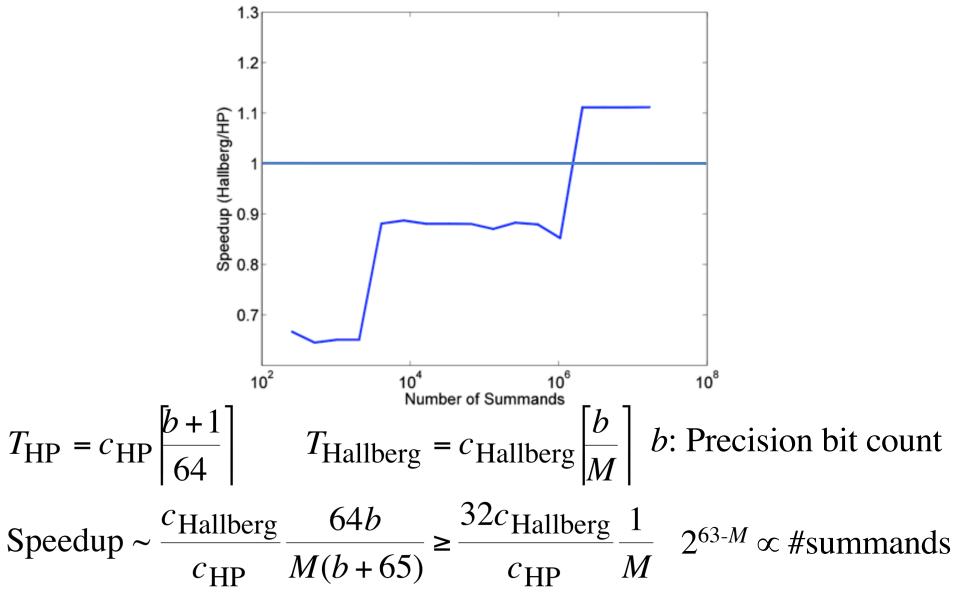
Computing time of real-number sum using the current (HP)
 & Hallberg methods as a function of # of summands



• HP sum is faster than Hallberg sum over million summands

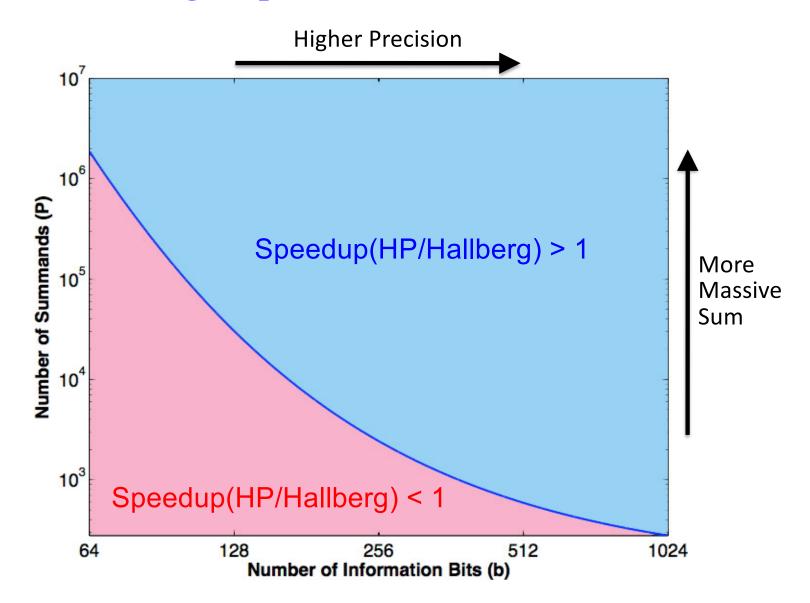
Performance Analysis

• Speedup of HP sum over Hallberg sum as a function of the number of summands



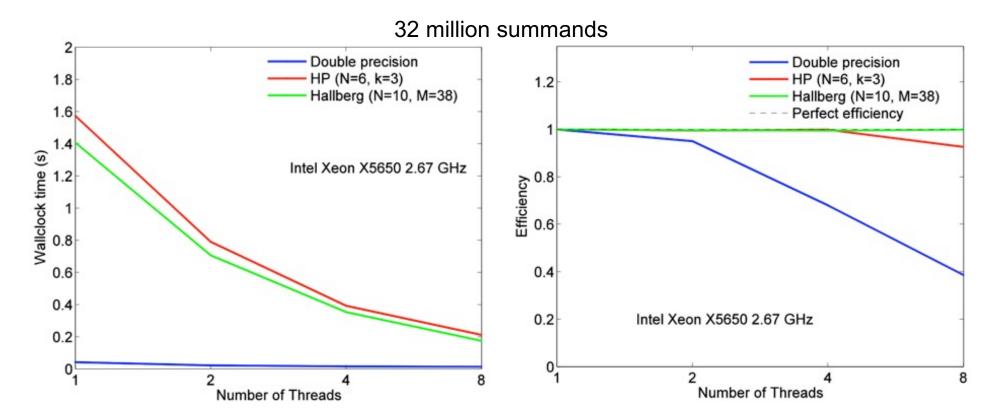
Performance Projection

• HP sum is faster than Hallberg sum for larger numbers of summands & higher precision



Parallel Efficiency with OpenMP

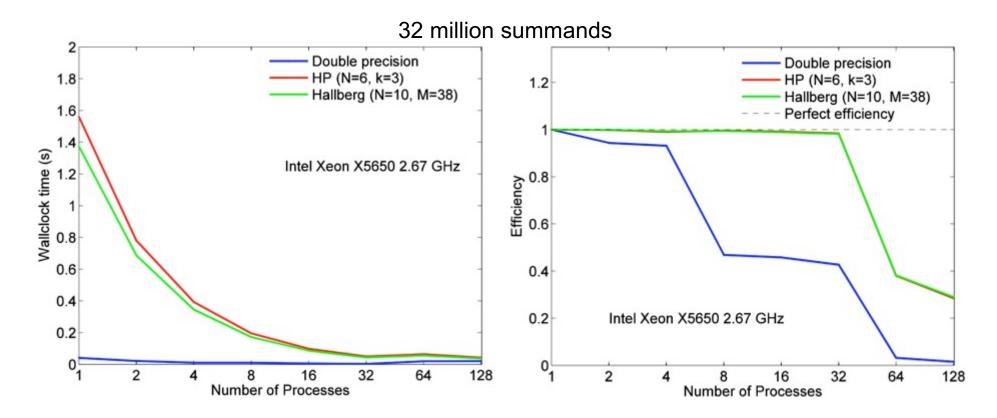
• Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of OpenMP threads on Xeon



 Higher parallel efficiency of HP & Hallberg sums over double-precision sum

Parallel Efficiency with MPI

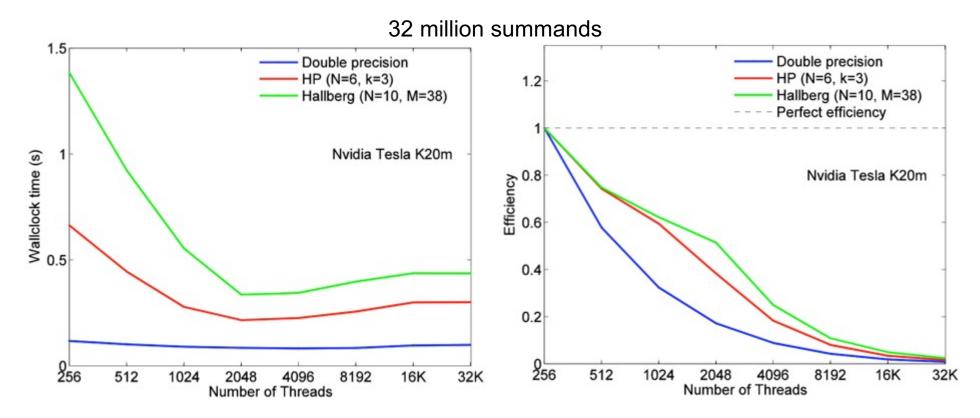
• Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of MPI processes on Xeon



 Higher parallel efficiency of HP & Hallberg sums over double-precision sum

Parallel Efficiency on GPGPU

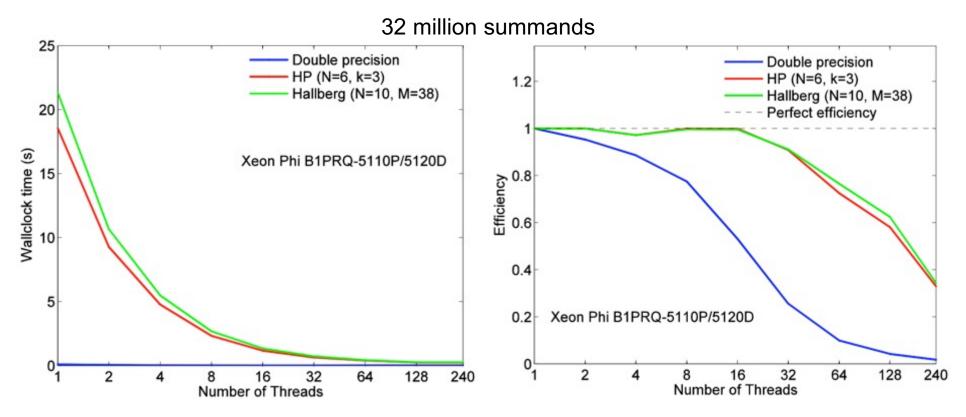
• Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of CUDA threads on generalpurpose graphics processing unit (GPGPU)



• Faster speed of HP sum (7 reads & 6 writes on global memory) over Hallberg sum (11 reads & 10 writes)

Parallel Efficiency on Xeon Phi

• Runtime & strong-scaling parallel efficiency of HP, Hallberg & (order-sensitive) double-precision sums as a function of the number of threads on Intel Xeon Phi coprocessor



• Faster speed of HP sum over Hallberg sum

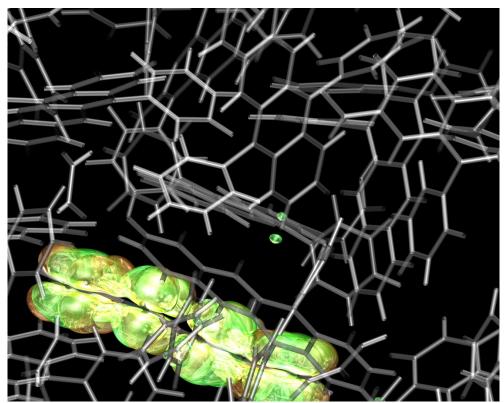
Large Production Simulations

 16,661-atom quantum molecular dynamics (QMD) simulation on 786,432 IBM Blue Gene/Q cores suggests a rapid H₂-production technology that is industrially scalable

21,140 time steps (129,208 selfconsistent-field iterations); *Nano Lett.* **14**, 4090 ('14)

• Up-to 6,400-atom divide-conquerrecombine nonadiabatic QMD simulation reaches experimental time scales from first principles for photoexcitation dynamics

Appl. Phys. Lett. **102**, 173301 ('13); *Sci. Rep.* **5**, 19599 ('16)

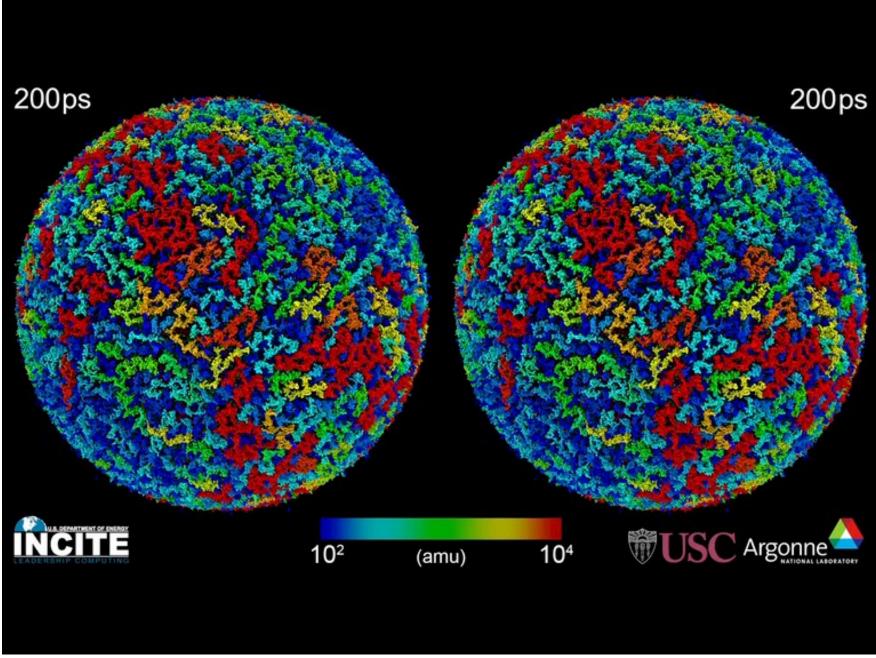


Quasi-electron Quasi-hole

• 112 million-atom reactive molecular dynamics (RMD) simulation on 786,432 IBM Blue Gene/Q cores reveals a simple synthetic pathway to fractal graphene

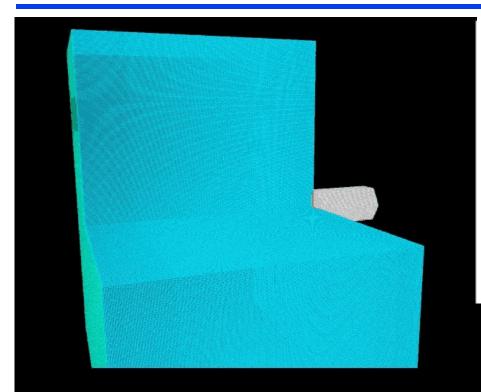
Sci. Rep. 6, 24109 ('16)

Percolation Transition



Movie made by J. Insley (Argonne)

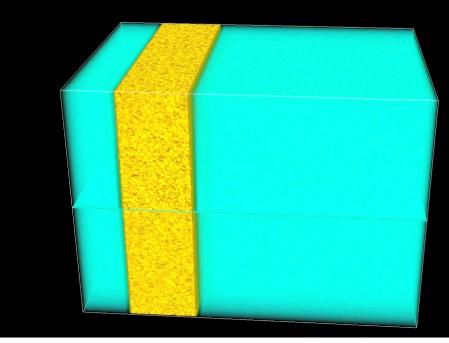
Billion-Atom Molecular Dynamics



• Hypervelocity impact on AlN

P. S. Branicio *et al.*, *Phys. Rev. Lett.* **96**, 065502 ('06)

- Shock-induced nanobubble collapse in water near silica surface (67 million core-hours of computing on 163,840 Blue Gene/P cores)
- A. Shekhar et al., Phys. Rev. Lett. 111, 184503 ('13)



Conclusion

- **1.** An order-invariant real-number summation method has been proposed for reproducible parallel computing
- 2. The proposed method achieves higher computing speed than the previous state-of-the-art for million+ summands on various parallel systems (MPI, OpenMP, CUDA, Xeon Phi)

Thank You

Research supported by DOE Grant DE-SC0014607

