
SYCL for
Heterogeneous Architectures

Aiichiro Nakano
Collaboratory for Advanced Computing & Simulations

Department of Computer Science
Department of Physics & Astronomy

Department of Quantitative & Computational Biology
 University of Southern California

Email: anakano@usc.edu

Goal: Unified low-level programming of both CPU & various
accelerators including GPU

Open Programming Models
• OpenCL (Open Computing Language)
 Open standard for programming heterogeneous devices
 https://www.khronos.org/opencl/

• SYCL
 High-level programming standard (or abstraction layer) for

single-source C++ based language on heterogeneous computer
architectures

 https://www.khronos.org/sycl/

• Data parallel C++ (DPC++)
 Extension of C++ programming language, incorporating SYCL

& other features, initially created by Intel; an open-source
compiler is available on GitHub

 https://intel.github.io/llvm-docs/index.html

See SYCL 101 (Intel, 2023)

https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://intel.github.io/llvm-docs/index.html
https://aiichironakano.github.io/cs596/SYCL101.pdf

Platform Model
• DPC++ unifies programming of central processing unit (CPU, scalar

computation), graphics processing unit (GPU, vector computation),
artificial-intelligence accelerator (AI, matrix or tensor) and field-
programmable gate array (FPGA, spatial computation)

Data Parallel C++, B. Ashbaugh et al. (Apress, 2021);
sample codes at https://github.com/Apress/data-parallel-CPP

https://aiichironakano.github.io/cs596/DPC++21.pdf
https://github.com/Apress/data-parallel-CPP

Host & Device Codes
• Various accelerators (e.g., GPU & FPGA) are referred to as devices
• DPC++ program can be a single source, i.e., the same file contains both the

host code to run on CPU and device kernels that run on devices

C++ in a nutshell
• Class: User-defined data type that contains both member variables &

member functions to work on them
• Object: Instance of a class

Many C++ tutorials like: http://www.cplusplus.com/doc/tutorial

http://www.cplusplus.com/doc/tutorial

Queue
• Queue: Abstraction to which work is submitted for execution on a single device

(defined in SYCL as sycl::queue class)
• A queue is bound to a device upon construction of the queue object
• Selection of a device is achieved using sycl::device_selector class

Built-in selectors:
cpu_selector CPU as device (useful for debugging)
gpu_selector GPU
Intel::fpga_selector FPGA

• Device selector has been deprecated — use callable instead, e.g.,
 sycl::gpu_selector_v

Binding a Queue to a Device

#include <CL/sycl.hpp> Header that defines sycl constructs

#include <iostream> C++ I/O stream (i.e., sequence of data elements for I/O)

using namespace sycl; Allows the use of sycl-defined constructs w/o sycl:: prefix

int main() {

 queue q(gpu_selector_v); Construct a queue object on GPU

 std::cout << "Device: "

 << q.get_device().get_info<info::device::name>()

 << std::endl;

 return 0;

}

get_device.cpp

Compile & run on Intel platform
$ icpx -fsycl -o get_device get_device.cpp
$./get_device
Device: Intel(R) Data Center GPU Max 1100

get_info() returns information of the device object,
which in turn was returned by get_device()
function of the queue

newline character
in standard
namespace

Host & Device Memory
• Host & device have separate memories

• Data needed by a device kernel must be transferred from host memory to
device memory prior to kernel execution, and results of kernel computation
must be transferred back from device memory to host memory upon
termination of kernel execution

cf. cudaMemcpy()
 omp target map

Data Management: Buffer

#define NTRD 512 # of threads to be spawned on GPU

std::array<float, NTRD> sum; Array of NTRD float elements

for (int i=0; i<NTRD; ++i) sum[i] = 0.0f;

range<1> sizeBuf{NTRD}; 1-dim. range object initialized to NTRD

buffer<float, 1> sumBuf(sum.data(), sizeBuf);

• Buffer class: Abstraction of data object (not specific memory addresses)
• A buffer object can be created from existing data on the host; data is copied

during buffer construction from the existing host allocation into the buffer
object

• Range class: Represents one-, two- or three-dimensional range

Construct a 1-dim. float buffer
object named sumBuf

Copy host data: data() returns
the address of the first element
of an array object

of elements

Data Management: Accessor

auto sumAccessor =
 sumBuf.get_access<access::mode::read_write>(h);

• Accessor class: Abstraction of reading & writing operations on buffer
objects; usually created by get_access() method in the buffer class

Access mode Description
read Read-only access by device code
write Device code will write into it
read_write Read & write access

Type is automatically deduced from the initializer

get_access() method of a buffer object creates an
accessor object, with which the buffer can be
accessed with a specified access mode

Command-group handler (see next slide)
that will access the buffer

Device Code

queue q(gpu_selector_v);

q.submit([&](handler &h){ Command group });

• Device code (cf. CUDA kernel) is submitted to a queue using
submit() function of a queue object

• Argument to submit() is a command group function object in
the form of lambda expression (i.e., function with no name):

 [access mode to caller’s variables](argument list) {function body}

• The argument of the passed function is a handler to access the
command group, which will be created by a runtime system
and passed to the user through the argument

Access by address

Parallelization Construct

#define NTRD 512

range<1> sizeBuf{NTRD};

h.parallel_for(sizeBuf, [=](id<1> index) { Code for each index });

• Device code can be parallelized using parallel_for() function, which
takes a range of a loop index and a function as arguments

• Argument of the function is a loop index, which is of id class (index in a
one-, two or three-dimensional range)

• Loop indices are distributed among multiple threads on device for parallel
execution

Access by value

Index in one-dim. range

cf. omp parallel for

Example: Computing the Value of 𝝅
• Numerical integration

 ∫!
" #
"$%!

𝑑𝑥 = 𝜋

• Discretization:
 D = 1/N: step = 1/NBIN
 xi = (i+0.5)D (i = 0,…,N-1)
 ∑&'!()" #

"$%"
! ∆≅ 𝜋

#define NBIN 1000000

float sum = 0.0f;
float step = 1.0f/NBIN;
for (int i=0; i<NBIN; i++) {
 float x = (i+0.5f)*step;
 sum += 4.0f/(1.0f+x*x);
}
float pi = sum*step;

Area under the curve ≅ sum of
N rectangular areas

Multithreading & Data Privatization

for (int i=tid; i<NBIN; i+=NTHRD) {
 float x = (i+0.5)*step;
 sum[tid] += 4.0/(1.0+x*x);
}

• Multithreading: Interleaved assignment of bins i among NTHRD threads,
where thread ID 𝒕𝒊𝒅 ∈ 𝟎, 𝑵𝑻𝑯𝑹𝑫 − 𝟏

• Data privatization: Provide each thread a dedicated accumulator to avoid a
race condition (i.e., nondeterministic result depending on the timing of read
& write operations on a shared variable by multiple threads)

• Interthread reduction: After all partial
summations have been executed by multiple
threads, the total sum must be computed by a
single thread

float pi = 0.0f
for (int i=0; i<NTHRD; i++)
 pi += sum[i];
Pi *= step;

Computing 𝝅 on a Device

q.submit([&](handler &h){
 auto sumAccessor =
 sumBuf.get_access<access::mode::read_write>(h);
 h.parallel_for(sizeBuf, [=](id<1> tid) {
 for (int i=tid; i<NBIN; i+=NTRD) {
 float x = (i+0.5f)*step;
 sumAccessor[tid] += 4.0f/(1.0f+x*x);
 }
 }); // End parallel_for
}); // End queue submit

Compile & run on Intel platform

From pi.cpp

$ icpx -fsycl -o pi pi.cpp
$./pi
Running on: Intel(R) Data Center GPU Max 1100
Pi = 3.14159

Synchronization

std::array<float, NTRD> sum;
{ Buffer is created in a separate scope
 queue q(gpu_selector_v);
 range<1> sizeBuf{NTRD};
 buffer<float,1> sumBuf(sum.data(),sizeBuf);
 q.submit([&](handler &h){
 auto sumAccessor =
 sumBuf.get_access<access::mode::read_write>(h);
 h.parallel_for(sizeBuf, [=](id<1> tid) {
 for (int i=tid; i<NBIN; i+=NTRD) {
 float x = (i+0.5f)*step;
 sumAccessor[tid] += 4.0f/(1.0f+x*x);
 }
 }); // End parallel for
 }); // End queue submit
} Buffer destructor is invoked when exiting from the scope
float pi=0.0f;
for (int i=0; i<NTRD; i++)
 pi += sum[i];
pi *= step;
std::cout << "Pi = " << pi << std::endl;

• Synchronization between host & device can be achieved by buffer destruction

Buffer now takes
ownership of sum array

Buffer relinquishes the
ownership of data &
copies its contents back
to host memory

SYCL Program Pattern
#include <CL/sycl.hpp>
#include <iostream>
#include <array>
using namespace cl::sycl;
#define NBIN 1000000 // # of bins for quadrature
#define NTRD 512 // # of threads
int main() {
 float step = 1.0f/NBIN;
 std::array<float, NTRD> sum;
 for (int i=0; i<NTRD; ++i) sum[i] = 0.0f;
 {
 queue q(gpu_selector_v);
 std::cout << "Running on: " <<
 q.get_device().get_info<info::device::name>() << std::endl;
 range<1> sizeBuf{NTRD};
 buffer<float, 1> sumBuf(sum.data(), sizeBuf);
 q.submit([&](handler &h){
 auto sumAccessor =
 sumBuf.get_access<access::mode::read_write>(h);
 h.parallel_for(sizeBuf, [=](id<1> tid) {
 for (int i=tid; i<NBIN; i+=NTRD) {
 float x = (i+0.5f)*step;
 sumAccessor[tid] += 4.0f/(1.0f+x*x);
 }
 }); // End parallel for
 }); // End queue submit
 }
 float pi=0.0f;
 for (int i=0; i<NTRD; i++) // Thread reduction
 pi += sum[i];
 pi *= step; // Multiply bin width to complete integration
 std::cout << "Pi = " << pi << std::endl;
 return 0;
}

Create Buffer

Copy to Device

Execute Kernel

Copy Back to Host

See key-concept definitions on p. 11 of SYCL 101

https://aiichironakano.github.io/cs596/SYCL101.pdf

