SYCL for
Heterogeneous Architectures

Alichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Goal: Unified low-level programming of both CPU & various

C% accelerators including GPU

Open Programming Models

 OpenCL (Open Computing Language)
Open standard for programming heterogeneous devices
https://www.khronos.org/opencl/

* SYCL

High-level programming standard (or abstraction layer) for
single-source C++ based language on heterogeneous computer
architectures

https://www.khronos.org/sycl/
See SYCL 101 (Intel, 2023)

* Data parallel C++ (DPC++)

Extension of C++ programming language, incorporating SYCL
& other features, initially created by Intel; an open-source
compiler is available on GitHub

https://intel.github.io/llvm-docs/index.html

https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://intel.github.io/llvm-docs/index.html
https://aiichironakano.github.io/cs596/SYCL101.pdf

Platform Model

e DPC++ unifies programming of central processing unit (CPU, scalar

computation), graphics processing unit (GPU, vector computation),
artificial-intelligence accelerator (Al, matrix or tensor) and field-

programmable gate array (FPGA, spatial computation)

000C¢

Scalar Vector Matrix Spatial

e s

Data Parallel C++

Data Parallel C++, B. Ashbaugh et al. (Apress, 2021);
sample codes at https://github.com/Apress/data-parallel-CPP

https://aiichironakano.github.io/cs596/DPC++21.pdf
https://github.com/Apress/data-parallel-CPP

Host & Device Codes

e Various accelerators (e.g., GPU & FPGA) are referred to as devices

e DPC++ program can be a single source, i.e., the same file contains both the
host code to run on CPU and device kernels that run on devices

Regular Runs natively
Single CPUcode on CPU
source
code Device Submitted to SYCL devices
kernels sycl: :queue —p (.2, GPU,

FPGA, CPU)

C++ in a nutshell

* (Class: User-defined data type that contains both member variables &
member functions to work on them

* Object: Instance of a class

Many C++ tutorials like: http://www.cplusplus.com/doc/tutorial

http://www.cplusplus.com/doc/tutorial

Queue

* Queue: Abstraction to which work is submitted for execution on a single device
(defined in SYCL as sycl: :queue class)

* A queue is bound to a device upon construction of the queue object
e Selection of a device is achieved using sycl::device selector class

bﬂi —
GPUl

.(@)FPG
—m——

UL
wnufl

GPU 2

Built-in selectors:

cpu_selector CPU as device (useful for debugging)
gpu_selector GPU
Intel::fpga selector FPGA

* Device selector has been deprecated — use callable instead, e.g.,
sycl::gpu_selector v

Binding a Queue to a Device

get_device.cpp

#include <CL/sycl.hpp> Header that defines sycl constructs
#include <iostream> C++1/0O stream (i.e., sequence of data elements for I/O)

using namespace sycl; Allows the use of sycl-defined constructs w/o sycl:: prefix

int main() {

queue g(gpu_selector _v); Construct a queue object on GPU

std: :cout << "Device: "

<< g.get_device().get_info<info::device: :name>()
\)
J
wF g cendlly get info() returns information of the device object,

newline character which in turn was returned by get device()

in standard function of the queue
} namespace

return 0;

Compile & run on Intel platform
S icpx -fsycl -o get device get device.cpp
$./get_device
Device: Intel(R) Data Center GPU Max 1100

Host & Device Memory

 Host & device have separate memories

Device 1 Device N

* Data needed by a device kernel must be transferred from host memory to

device memory prior to kernel execution, and results of kernel computation
must be transferred back from device memory to host memory upon
termination of kernel execution

cf. cudaMemcpy()
omp target map

Host Execution

Data Management: Buffer

e Buffer class: Abstraction of data object (not specific memory addresses)

* A buffer object can be created from existing data on the host; data is copied

during buffer construction from the existing host allocation into the buffer
object

* Range class: Represents one-, two- or three-dimensional range

#define NTRD 512 # of threads to be spawned on GPU
std: :array<float, NTRD> sum; Array of NTRD float elements
for (int i=0; i<NTRD; ++i) sum[i] = 0.0f;

range<l> sizeBuf{NTRD}; 1-dim. range object initialized to NTRD
buffer<float, 1> sumBuf(sum.data(), sizeBuf);

\)
I
Construct a 1-dim. float buffer / /
object named sumBuf

Copy host data: data() returns # of elements
the address of the first element
of an array object

Data Management: Accessor

e Accessor class: Abstraction of reading & writing operations on buffer
objects; usually created by get access() method in the buffer class

/ Type 1s automatically deduced from the initializer

auto sumAccessor =
sumBuf.get access<access::mode::read write>(h);

get access() method of a buffer object creates an
accessor object, with which the buffer can be
accessed with a specified access mode

Command-group handler (see next slide)
that will access the buffer

Access mode Description

read Read-only access by device code

write Device code will write into it

read write Read & write access

Device Code

e Device code (cf. CUDA Kkernel) is submitted to a queue using
submit () function of a queue object

 Argument to submit () is a command group function object in
the form of lambda expression (i.e., function with no name):
[access mode to caller s variables | (argument list) {function body }

* The argument of the passed function is a handler to access the
command group, which will be created by a runtime system
and passed to the user through the argument

queue g(gpu selector v);

qg.submit ([&] (handler &h){ Command group }) ;

Access by address

Parallelization Construct

cf. omp parallel for
e Device code can be parallelized using parallel for () function, which
takes a range of a loop index and a function as arguments

e Argument of the function is a loop index, which is of id class (index in a
one-, two or three-dimensional range)

* Loop indices are distributed among multiple threads on device for parallel
execution

#define NTRD 512
range<l> sizeBuf{NTRD}; / Access by value

h.parallel for(sizeBuf, [=](id<1> index) { Code for each index }) ;

N

Index in one-dim. range

Example: Computing the Value of

Area under the curve = sum of

* Numerical integration N rectangular areas

fl 4 dx = 1T A
0 1+x2
* Discretization: \'\
&
A=1/N: step = 1/NBIN 3¢
x'=(i+0 S)A (i=0,ooo,N-1) +
—
ZN 14 A= =7
1=0 1+x o <|I|-
—
X
g
| ¥
#define NBIN 1000000
float sum = 0.0f;
float step = 1.0f/NBIN;
for (int i=0; i<NBIN; i++) { -
float x = (1i+0.5f)*step;
sum += 4.0f/(1.0f+x*x); O 1 2 3 X

}
float pi = sum*step; Step

Multithreading & Data Privatization

e Multithreading: Interleaved assignment of bins i among NTHRD threads,
where thread ID tid € [0, NTHRD — 1]

e Data privatization: Provide each thread a dedicated accumulator to avoid a
race condition (i.e., nondeterministic result depending on the timing of read
& write operations on a shared variable by multiple threads)

for (int i=tid; i<NBIN; i+=NTHRD) { tid=0
float x = (i+0.5)*step; ,~ tid=1
sum[tid] += 4.0/ (1.0+x*x); ,/

}

e Interthread reduction: After all partial
summations have been executed by multiple
threads, the total sum must be computed by a
single thread

0/1/0/1/0
0 12 3 4=NBIN-1

float pi = 0.0f

for (int i=0; i<NTHRD; i++)
pi += sum[i];

Pi *= step;

Computing T on a Device

From pi.cpp

g.submit([&] (handler &h){
auto sumAccessor =
sumBuf.get access<access::mode::read write>(h);
h.parallel for(sizeBuf, [=](1d<1> tid) {
for (int i=tid; i<NBIN; i+=NTRD) {
float x = (1i+0.5f)*step;
sumAccessor[tid] += 4.0f/(1.0f+x*x);

}
}); // End parallel for

4

}); // End queue submit

Compile & run on Intel platform

S icpx -fsycl -o pi pi.cpp

$./pi

Running on: Intel(R) Data Center GPU Max 1100
Pi = 3.14159

Synchronization

e Synchronization between host & device can be achieved by buffer destruction

std::array<float, NTRD> sum;
— { Buffer is created in a separate scope
queue g(gpu_selector v);
range<l> sizeBuf{NTRD};
buffer<float,1> sumBuf (sum.data(),sizeBuf); Buffer now takes
g.submit ([&] (handler &h){ ownership of sum array
auto sumAccessor =
sumBuf.get access<access::mode::read write>(h);
- h.parallel for(sizeBuf, [=](1id<1> tid) {
for (int i=tid; i<NBIN; i+=NTRD) {
float x = (1i+0.5f)*step;
sumAccessor[tid] += 4.0f/(1.0f+x*x);

}
}); // End parallel for
Buffer relinquishes the

})i // End queue submit ownership of data &
— } Buffer destructor is invoked when exiting from the scope —» copies itspcontents back

float pi=0.0f; to host memory
for (int i=0; i<NTRD; i++)
pi += sum[i];
pli *= step;
std::cout << "Pi = " << pi << std::endl;

SYCL Program Pattern

#include <CL/sycl.hpp>
#include <iostream>
#include <array>
using namespace cl::sycl;
#define NBIN 1000000 // # of bins for quadrature
#define NTRD 512 // # of threads
int main() {
float step = 1.0f/NBIN;
std::array<float, NTRD> sum;

for (int i=0; i<NTRD; ++i) sum[i] = 0.0f;
{

queue g(gpu_selector v);

std::cout << "Running on: " <<

g.get device().get info<info::device::name>() << std::endl;
range<l> sizeBuf {NTRD}; -
buffer<float, 1> sumBuf(sum.data(), sizeBuf);
g.submit([&] (handler &h){

auto sumAccessor = (

sumBuf.get access<access::mode::read write>(h); L

h.parallel for(sizeBuf, [=](id<1> tid) {
for (int i=tid; i<NBIN; i+=NTRD) { -————____——{
float x = (i+0.5f)*step;
sumAccessor[tid] += 4.0f/(1l.0f+x*x);

\.

}
}); // End parallel for

}); // End queue submit 4{

}
float pi=0.0f;
for (int i=0; i<NTRD; i++) // Thread reduction

pi += sum[i];
pi *= step; // Multiply bin width to complete integration
std::cout << "Pi = " << pi << std::endl;
return 0;

} See key-concept definitions on p. 11 of SYCL 101

https://aiichironakano.github.io/cs596/SYCL101.pdf

