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The onset and proliferation of cancer stems from dynamic changes that result from a series of changes 
in cellular interactions governing a complex network1–3. Inspired by the previous work of Teschendorff4, 
examining properties of such networks at various states may aid in the understanding of certain cellular 
processes leading to tumorigenesis. One key property is the notion of robustness, or the ability of a system 
to adapt to dynamic changes and perturbations while still maintaining functionality. From this perspec-
tive, a fundamental hurdle to cancer therapy is acquired tumor robustness5. On the other hand, quan-
tification of robustness and in particular, that of cancer networks, has remained elusive. Understanding 
and exploiting such network properties from a biological perspective provides an alternative framework 
to viewing underlying mechanisms. In turn, this may guide and uncover new drug targets.

In this work, we demonstrate the role of curvature as system-level characteristic of certain cancer 
networks and its relationship to network functionality in terms of a notion of robustness6,7 , specifically 
at the local interaction level. Curvature, in the broad sense, is a measure by which a geometrical object 
deviates from being flat and is defined in varying manners given the context8. Our reference to curva-
ture will be restricted to Ricci curvature and its contraction, scalar curvature. Similarly, “robustness” 
can be formally defined in terms of the rate function from the theory of large deviations by appealing to 
the Fluctuation Theorem6,7. Roughly speaking, robustness relates to the rate at which a given dynamical 
system returns to its original (normal) state following a perturbation or external disturbance. The key 
ingredient that intimately links curvature and robustness is the concept of entropy. Indeed, through a 
suitable characterization on the lower bound of Ricci curvature9, one can show that entropy and cur-
vature are positively correlated, a fact that we express as ∆ S ×  ∆ Ric ≥  0 and where ∆ S and ∆ Ric are 
the changes in entropy and Ricci curvature, respectively (see Methods)10. Now, if we consider random 
perturbations to the network, the Fluctuation Theorem asserts that ∆ S ×  ∆ R ≥  0 where ∆ R is a relative 
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change in robustness and hence, the relationship ∆ Ric ×  ∆ R ≥  0 holds. As we will argue in this work, 
this tacit relationship to robustness will allow curvature to serve as an alternative, yet powerful proxy 
(Fig. 1). This seems especially true for cancer networks.

Our work here differs from previous approaches of characterizing network robustness4,6,7,11 in several 
important aspects. To the best our knowledge, it is the first to express general network functional robust-
ness through curvature and to point out that this may provide an intrinsic cancer characteristic. With 
regards to entropy, our utilization of curvature holds the following key advantages: (I) Ricci curvature 
provides pairwise information over all possible pathways as opposed to network entropy, which is defined 
as a nodal measure7. This is particularly significant due to the fact that we are interested in specific 
gene-to-gene interactions contributing to the resilience of cancer (including those “hidden” interactions 
not necessarily defined by the underlying topology). In short, previous work of network entropy exhibits 
a “loss of information” with regards to the robustness of the interactions themselves4,7. (II) Ricci curva-
ture can be formulated as a simple linear program and is well-behaved as compared to network entropy12. 
(III) Scalar curvature, in a similar manner to network entropy, is defined as a nodal measure in which 
interactions are not explicitly described.

In the present work, we compare gene co-expression networks from cancer and adjacent-normal 
tissue samples using network curvature. Motivated by previous entropic studies4, we fix the underlying 
topology of the networks using prior data on known physical interactions between gene products allow-
ing only the weights to evolve between normal and tumor networks. Then, by treating each network as 
a random walk, we attempt to exploit the underlying dynamics of specific gene-to-gene interactions.

Finally, we should note that the methods explicated in the present work are applicable not only to can-
cer networks, but may also assist in unifying several phenomena in molecular biology for which notions 
of robustness (via entropy and curvature) seem to be increasingly important5,13–15. For example, recent 
work has demonstrated that local signaling entropy may serve as a novel indicator of drug sensitivity13 
while at the same time, may operate as a proxy for the height or elevation in Waddington’s differenti-
ation landscape14. Furthermore, it has been argued that feedback loops are essential to the function of 
biological mechanisms and systems that arise from deliberate Darwinian-like principles5,15. In what fol-
lows, one can view Ricci curvature as a new feedback measure, i.e., the number of triangles in a network 

Figure 1. This work focuses on analyzing robustness with respect to pairwise interactions. Systems 
equipped with multiple signaling pathways can be framed in the context of robustness. Whereas previous 
work has shown dynamic entropy as a cancer “hallmark” through a nodal characterization, we expound 
upon this by providing a framework to analyzing gene-to-gene interaction robustness. In doing so, we will 
show that the method herein presents no “loss of information” and may be aptly suited to uncover particular 
pathways contributing to the robustness of cancer systems.



www.nature.com/scientificreports/

3Scientific RepoRts | 5:12323 | DOi: 10.1038/srep12323

(redundant pathways) can be characterized by a lower bound of Ricci curvature5,16,17. This fascinating 
interplay between feedback, robustness, entropy, and now Ricci curvature is at the core of this work.

The remainder of this paper is outlined as follows. We first provide results to demonstrate that Ricci 
curvature, more precisely Ollivier-Ricci curvature18,19, is a proxy for robustness as well as an apparent 
cancer characteristic. In particular, we discuss the importance (and previously unresolved) ability of 
quantifying robustness at the interaction level. We then show that several analogous nodal curvature 
measures, defined through varying contractions of Ricci curvature, achieve similar results to that of net-
work entropy, which by construction, is a nodal attribute. We conclude with a discussion of the results 
with a primary focus on information loss from previous entropic methods, examination of robustness 
for specific gene-to-gene interactions in context of cancer biology, and analytic advantages of employing 
Ricci curvature as opposed to entropy. From this, we then offer a possible path forward that relates the 
well-known Ricci flow to the effect (and design thereof) of specific drug targets that can possibly mitigate 
the robust nature of cancer.

�������
We focus our investigation primarily on transcription networks composed of metabolic and cancer 
specific genes20,21. For each data set, gene co-expression networks were generated by calculating the 
non-parametric (Spearman) correlation between all pairs of genes. That is, for a given gene pair, cor-
relation was computed across all samples within a given phenotype (normal or cancerous tissue). The 
metabolic data set consists of approximately 1600 metabolic genes (derived from the Recon2 human 
metabolic reconstruction22) of six different tumor types: breast cancer (BRCAM), head and neck squa-
mous cell carcinoma (HNSCM), kidney papillary carcinoma (KIRPM), liver cancer (LIHCM), lung ade-
nocarcinoma (LUADM), and thyroid cancer (THCAM). We further supplemented the above study with 
corresponding networks that contain approximately 500 cancer-related genes derived from the Cosmic 
Cancer Gene Census21 (denoted by T, e.g., BRCAT). With regards to the topology, the networks analyzing 
metabolic genes possess a total of 33843 edges, average degree of 43, and a median degree of 34. For 
the networks composed of known cancer-related genes, the total number of edges, average degree, and 
median degree are 8162, 37, and 22 respectively (see Methods).


���Ǧ��Ǧ
��������������ǣ���������Ǧ���������������Ǥ� We employ a neat notion of a Ricci curva-
ture19 inspired through coarse geometry (Fig. 2). In particular, if we let (X, d) be a metric space equipped 
with a family of probability measures {µx:x ∈  X}, we define the Ollivier-Ricci curvature κ(x, y) along the 
geodesic connecting nodes x and y via

µ µ κ( , ) = ( − ( , )) ( , ), ( )W x y d x y1 1x y1

where W1 denotes the Earth Mover’s Distance (Wasserstein 1-metric)23,24, and d is the geodesic distance 
on the graph. For the case of weighted graphs, we set
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Figure 2. Positive Ricci curvature is reflected by the characteristic that for two very close points x and 
y with a tangent vector v connecting xy as well as tangent vectors w (at x) and w′ (at y), in which w′ is 
obtained by parallel transport of w, that the two corresponding geodesics will get closer. This can be 
compared to the traditional flat geometry of a Euclidean space where such distances are unaffected during 
the parallel transport. Equivalently, this may be formulated by the fact that the transportation distance 
between two small (geodesic balls) is less than the distance of their centers. Ricci curvature along the 
direction xy quantifies this, averaged on all directions w at x.
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where dx is the sum taken over all neighbors of node x and where wxy denotes the weight of an edge 
connecting node x and node y (wxy =  0 if d(x, y) ≥  2). The measure µx may be regarded as the distribution 
of a one-step random walk starting from x, with the weight wxy quantifying the strength of interaction 
between nodal components or the diffusivity across the corresponding link (edge). To motivate this 
definition and highlight the role of curvature as a proxy for robustness, we compute the Ollivier-Ricci 
curvature for two Ornstein-Uhlenbeck19 processes generated in an identical manner except with two 
different “mean-reversion” rates (see Methods). An Ornstein-Uhlenbeck process describes velocity of 
a Brownian particle (with mass) under the influence of friction, and is regarded as more realistic than 
simple Brownian motion. In particular, this illustrative example (Fig. 3) shows that the signal with higher 
curvature (red) is more capable of returning towards zero (equilibrium) in the face of the same noise 
(perturbations), illuminating its robustness and as argued previously via the Fluctuation Theorem. One 
may also consider, for motivational purposes, Ollivier-Ricci curvature on several networks with differing 
geometries and topologies, and their functionality with respect to robustness (Fig. 4, Fig. S1). Nevertheless, 
the positive correlation between the rate of return to equilibrium in the Ornstein-Uhlenbeck sense and 

Figure 3. We generated two Ornstein-Uhlenbeck processes with the same parameter set except for 
different α and in turn, exhibits different Ollivier-Ricci curvatures: κ(x, y) =  0.6321 (red) with α =  1.0 
and κ(x, y) =  0.0952 with α =  0.1 For both signals, Ornstein-Uhlenbeck process parameters were initialized 
with x(0) =  1 with σ =  1. One can see that ∆ κ ×  ∆ α ≥  0 for this broad set of stochastic processes.

Figure 4. We computed the average Ollivier-Ricci curvature for three different networks shown above as 
well as network entropy. To ensure a fair comparison, each of the networks is composed of 200 nodes with 
400 (unweighted) edges - the only difference in the underlying structure. Although Ricci curvature is a local 
property, it nevertheless shows that, on average, Ricci curvature is higher for networks that exhibit higher 
entropy.
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Ollivier-Ricci curvature, holds for higher dimensions and provides a simple yet informative example 
linking curvature to robustness.

We then compute the Ollivier-Ricci curvature on tumor and normal tissue networks for all the stud-
ied cancer types. We begin with a characterization of the distributions for all networks composed of met-
abolic genes (≈ 1.25 M possible pairs) as well as our supplemental corresponding networks for which we 
examine only known cancer related genes (≈ 100 K possible pairs). In particular, we provide an analysis 
in terms of average curvature, the difference in expected value on upper/lower 5% tails of distribution 
along with the p-value result of a paired one-tailed Wilcoxon signed-rank test25 (Table 1, Table S1). This 
analysis is done, in part, to characterize the shift of distribution with respect to (cancer-normal) changes 
in Ollivier-Ricci curvature. As such, one can see that the difference between cancer and normal tissue 
distributions is “positive” with a low p-value signifying robustness. Further, one can consider the left 
tail of the distribution (at a given 0.1% 0.5%, 1%, 3%) as the lower bound of Ollivier-Ricci curvature as 
opposed to simply taking minimum value which is sensitive to topological errors. Then, it can be seen 
that this increase in lower bound points precisely to an increase in entropy9 (Table S2, Table S3). In all 
cases of examining the left tail (12 cases at 5 given lengths), the lower bound for a particular cancer 
network was larger than its normal counterpart. The trend also became more apparent as we decreased 
the tail length. The largest tail length of 5% was chosen as this was in line with the Wilcoxon signed-rank 
test. We also note that while we do not restrict our computation to node degree or path length, i.e., cur-
vature is assigned to every gene pair, the average statistic was taken over those interactions with d(x, y) =  1. 
Revisiting equation (1), one can see curvature (and changes in curvature) for interactions “far” from the 
underlying topology will decay due to the term d(x, y). We should note that since a graph is a 1-geodesic 
space, if κ(x, y) ≥  k for d(x, y) =  1, then κ(x, y) ≥  k " x, y18. Thus, computing statistics (i.e., averages) for 
adjacent vertices will suffice and results are still valid (in the sense of robustness) for d(x, y) ≥  2, e.g., 
non-adjacent pairs in general will contribute negligibly and can be treated as scaling such statistics.

We note that the primary advantage of employing Ollivier-Ricci curvature is its ability to characterize 
robustness at the interaction level (as opposed to genes where entropic measures are just defined at the 
nodal level). In particular, we first report the top and bottom ten interactions with respect to changes in 
Ollivier-Ricci curvature for the case of BRCAT (Table 2, Table 3). The investigation of this network is par-
ticularly compelling as we sought to find a subset of interactions that contribute to the network resilience 

Ricci 
Curvature BRCAM HNSCM KIRPM LIHCM LUADM THCAM

∆  Average 0.0195 0.0186 0.0229 0.0035 0.0075 0.0117

p-Value < 1e-25 < 1e-25 < 1e-25 < 1e-25 < 1e-25 < 1e-25

∆  5% Left Tail 0.0059 0.0077 0.0077 0.0016 0.0022 0.0013

∆  5% Right 
Tail 0.0059 0.0057 0.0059 0.0005 0.0017 0.0010

Table 1.  A distribution analysis for changes in Ollivier-Ricci average curvature between cancer and 
normal tissue for all metabolic case studies. These statistics show that there exists a positive shift in the 
distribution signifying robustness. We also include the one tailed pair Wilcoxon signed rank test p-values to 
support the above statistics.

Gene 
Ranking

∆ Ricci 
Curvature 
(Cancer-
Normal)

Differential 
Co-

Expression
Gene X 

(Symbol)
Gene Y 

(Symbol)

1 0.3504 2.7316 RNF43 RSPO3

2 0.3444 2.2061 RNF43 RSPO2

3 0.3012 11.6989 ERG ETV1

4 0.3001 1.1143 GPC3 PTCH1

5 0.2901 6.6544 GPC3 SDC4

6 0.2796 5.3742 POT1 SBDS

7 0.2538 5.1751 FGFR2 KDR

8 0.2509 − 1.1166 ETV1 FEV

9 0.2460 5.2252 ERG FOXA1

10 0.2410 3.0769 EXT1 SDC4

Table 2.  Top 10 pairs with respect to changes in Ollivier-Ricci curvature in BRCAT.
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(and/or fragility) amongst a set of known cancer related genes. We observe the gene RNF43 exhib-
its several robust and fragile pathways: RNF43-RSOP3, RNF43-RSOP2, RNF43-TP53, RNF43-NONO, 
RNF43-POT1. This is a surprising result given that RNF43 physically interacts with very few gene prod-
ucts and in general, is associated as a tumor suppressor in ovarian cancer26. On the other hand, RNF43 
dominates the largest changes with respect to interaction robustness with several “hidden” non-adjacent 
pairs. We also computed the differential co-expression (see Methods) for case of breast cancer (both 
BRCAM and BRCAT) and refer the readers to previous work for computational details20. In particular, 
we observed the ranking of interactions of differential co-expression to that of differential Ollivier-Ricci 
curvature vastly differ (Fig. S2), i.e., we are uncovering hidden information of the underlying system. 
Similar observations were gleaned from the remaining sets; however, we focus on breast cancer for the 
sake of brevity.

To this end, we also applied our method to analyze metabolic genes for the case of breast cancer, i.e., 
BRCAM (Table S4). While the data did not include various associated cancer genes (i.e., TP53, KRAS, 
BRAF), we were able to uncover several lesser known targets. In particular, we observed at the top of our 
list, the gene LPO which has been known to contribute to the initiation of breast cancer27, SOD3 has been 
considered an important gene in the defense against oxidative stress and prevention of estrogen-mediated 
breast cancer28, GOT2 has been noted to significantly affect cell growth29, and over-expression of LRAT 
has lead to a poor prognoses in colorectal cancer30. While a complete analysis in the context of cancer 
biology will be a subject of future work, the above results should be placed in the context “lost infor-
mation” due to the resolution limitations of network entropy (see Discussion). In short, we now have a 
proxy for robustness at the local interaction level.


��������������ǣ�����������������Ǥ� Until now, we have considered Ricci curvature (in the Ollivier 
sense), which is defined between any two vertices on a graph. This is the main focus of the present work. 
However, in order to compare the curvature based approach with that of network entropy4, we now 
define several nodal measures based on the notion of “scalar curvature.”

In standard geometry, scalar curvature represents the amount by which the volume of a geodesic 
ball in a curved Riemannian manifold deviates from that of the standard ball in Euclidean space8. On a 
weighted graph, it may be defined in an analogous manner as:

∑κ µ( ) = ( , ) ( ),
( )

S x x y y:
4y

x

where we contract Ollivier-Ricci curvature with respect to measure µx(y). Analyzing this contraction, 
we note that the measure µx(y) serves as a normalization factor that attempts to remove biasing with 
regards to topology (i.e., node degree). We can analogously define the unnormalized scalar curvature by 
contracting with respect to the hop metric, i.e.,

∑κ( ) = ( , )
( )

Ŝ x x y:
5y

where the summation runs over all y such that d(x, y) =  1.
One may also consider measures where nodal curvature at x in its adjacent neighborhood can be 

defined as its minimum (maximum) Ollivier-Ricci curvature. Given that lower bounds of Ricci curvature 
are connected to entropy9, attaching this bound as a measure yields yet another characterization of nodal 

Gene 
Ranking

∆ Ricci 
Curvature 
(Cancer-
Normal)

Differential 
Co-

Expression
Gene X 

(Symbol)
Gene Y 

(Symbol)

99226 − 0.2203 − 6.2393 POT1 RNF43

99227 − 0.2214 1.8210 ELF4 FEV

99228 − 0.2304 − 7.0964 MUC1 RNF43

99229 − 0.2489 − 3.5280 DH1 SBDS

99230 − 0.2496 − 5.7021 ERCC2 RNF43

99231 − 0.2839 − 3.6199 PRDM1 RNF43

99232 − 0.2851 − 2.3147 CCND3 ETV1

99233 − 0.3632 − 6.8679 RNF43 SFPQ

99234 − 0.3636 − 8.0784 NONO RNF43

99235 − 0.3651 − 8.6880 RNF43 TP53

Table 3.  Bottom 10 pairs with respect to changes in Ollivier-Ricci curvature in BRCAT.
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robustness. We should note that contracting with respect to the measure µx(y) is in the spirit of local 
normalized entropy defined in previous cancer studies to be µ µ( ) = − ∑ ( ) ( ( ))ˆS x y y: loge d y x x

1
log x

4. 
Similarly, contracting with respect to hop metric above is very much in line with the unnormalized 
entropy, i.e., µ µ( ) = −∑ ( ) ( ( ))Ŝ x y y: loge y x x

7.
After evaluating the above measures on all cancer networks for which we had data, we found that 

the results are consistent and comparable in the sense of cancer network differentiation and present an 
average nodal measure for each cancer study along with the p-value of a one-tailed paired Wilcoxon 
signed-rank test (Table 4, Table S5, Table S6). We see that there exists a positive shift in the distribution 
for both entropy and curvature with the exception of only one case where the p-value for ∆ S in HNSCT 
was insufficient (Table S6). Given that our primary focus of this work is on the interaction level, we 
present the top and bottom ten pairs in the BRCAT network with respect to normalized scalar curvature 
(Table  5, Table S7). This is done, in part, to illustrate the unavoidable “information loss” of any nodal 
measure chosen. For example, we observe that although the some genes (i.e., RNF43, ETV1) possess the 
strongest robust interactions, they are listed in the bottom list with respect to scalar curvature. As we will 
argue in the next section, emphasis should be placed on interactions when analyzing network robustness.

����������
In this work, we have presented a framework to quantify interaction gene-to-gene robustness through the 
notion of Ollivier-Ricci curvature with an application to cancer networks. This was motivated through 
the intrinsic connection between entropy and Ricci curvature, and in turn, robustness via the Fluctuation 
Theorem. From this, we demonstrated that cancer tissue exhibits a higher curvature at the interaction 
and gene level on all the networks tested. While these two measures may provide important biological 
information4, it is important to first discuss the differences in the context of our findings and in general, 
cancer biology. As the eventual goal is to uncover “knock-down” targets (and the effect thereof), we must 
also explore how one can alter network properties with respect to robustness including changes to the 
network geometry and topology.

Measure BRCAM HNSCM KIRPM LIHCM LUADM THCAM

∆  S 0.0119 0.8311 0.0139 0.0036 0.0036 0.0026

p-Value < 1e-25 < 1e-25 < 1e-25 < 7e-14 < 4e-21 2e-7

∆  Ŝ 0.8311 0.7925 0.9737 0.1483 0.3205 0.1365

p-Value < 1e-25 < 1e-25 < 1e-25 < 1e-25 < 1e-25 < 1e-25

∆  Se 0.0116 0.0113 0.0144 0.0025 0.0047 0.0027

p-Value < 1e-25 < 1e-25 < 1e-25 < 1e-25 < 1e-25 < 1e-25

∆  Ŝe 0.0373 0.0353 0.0474 0.0070 0.0147 0.0077

p-Value < 1e-25 < 1e-25 < 1e-25 < 1e-25 < 1e-25 < 1e-25

Table 4.  Comparison of different nodal measures for curvature and entropy on all networks composed 
of metabolic genes.

Gene 
Ranking

∆ Scalar 
Curvature 
(Cancer-
Normal)

Differential 
Expression

Gene 
(Symbol)

457 − 0.0761 − 8.5248 SDHD

458 − 0.0792 1.8463 SBDS

459 − 0.0797 − 18.6966 RNF43

460 − 0.0841 1.4997 FLI1

461 − 0.0884 − 3.5989 MYCN

462 − 0.1213 6.2235 ETV1

463 − 0.1268 2.7942 SDC4

464 − 0.1313 4.2820 TFEB

465 − 0.1478 1.0500 ELN

466 − 0.1870 10.0541 FEV

Table 5.  Bottom 10 genes in BRCAT ranked with respect to scalar curvature.
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We begin by revisiting the top and bottom gene-to-gene interactions of breast cancer in the studied 
network composed of known cancer-related genes. At the interaction level, changes in robustness need 
not be restricted to simply a negative/positive change–genes will tend to interact in a wide ranging man-
ner and may contain seemingly important interactions not explicitly defined by the underlying geometry 
and topology. From equation  (4), we clearly see that through the contraction, we “lose” information 
through a (weighted) average in two distinct manners. Firstly, RNF43 possesses two of the strongest 
and weakest pairs–averaging these together will cancel out their relative significance. Secondly, nodal 
measures take an average over an adjacent neighborhood thereby ignoring those interactions that are 
non-adjacent. As we can see, several important interacting pathways (e.g., RNF43-POT1) should not 
be ignored as these gene-to-gene interactions exhibit larger changes than many interactions that are 
adjacent. The same arguments hold for network entropy. Further, previous work on network entropy 
discusses the significance and careful attention one must have with respect to the topology biasing. 
Hence, normalization factors are often adopted to provide insight into the nodal robustness4,7. No such 
normalization is required when employing Ollivier-Ricci curvature.

Further, the development of a systematic approach to altering network properties to uncover potential 
drug targets is key. In particular, certain targets may not be directly “druggable” thereby requiring one 
to alter a set of genes/interactions that provide similar impact. That is, simply choosing a “knock-down” 
gene on nodal robustness may prove to be insufficient. To this end, one may consider the corresponding 
Ricci flow:

κ( , ) = − ( , ) ( , ). ( )
d
dt

d x y x y d x y 6

Not much is known about this flow, but the idea would be, while keeping the same topology, one 
would change the graph weights, or the network of links among the nodes, in such a way as to uniformize 
the curvature κ. In the engineering literature31, this has been offered as an approach, in the case of cer-
tain wireless networks, to have the effect of removing some of the overloaded queues, and thus should 
have important implications for cancer networks. Understanding discrete analogues of Ricci flow in this 
connection will be considered as a future research topic in this connection.

Next, we would like to mention some very interesting work32 that describes a metric geometry on 
the space of trees in connection with phylogenetics. It turns out that their space is a moduli space 
(universal parameter space) and has non-positive curvature. From previous results33, this allows one 
to do statistics on this space since between any two points there is a unique geodesic. This has had a 
number of intriguing applications in cancer research34. It would be very interesting to generalize this to 
more general network structures, and instead of just looking at the geometric (curvature) property of an 
individual network to devise quantitative statistical methods based on the metric geometry comparing 
families of networks.

Finally, the work of Rabadan34 has been largely motivated by the problem of cancer cell heteroge-
neity. Indeed, cancer progression is believed to follow Darwinian evolutionary pattern: fitter subtypes 
replace other less fit cells, which leads to disease. In combination with high-throughput genomics one 
can construct trees to study this process. This is an example of a deep relationship between the concepts 
of Darwinian evolution and Boltzmann thermodynamics6. The idea is that macroscopic entropy increases 
under microscopic molecular collisions, while macroscopic evolution can be (partially) explained via 
the concept of the increase of entropy. This reasoning is very much in line with the overall thrust of the 
present paper in which we are trying to use curvature (positively correlated with robustness) to quantify 
network robustness. The macroscopic theory is very much in line with Boltzmann thermodynamics. 
Evolutionary changes and network adaptability are key topics to be considered in future research.

�������
����Ǥ All TCGA expression data were accessed using the Broad Institute Firehose on November 4, 
2014.

Two distinct approaches were used to determine adjacency matrices for the networks under study. For 
our study of networks of cancer-related genes from Cosmic21, we used the simple interaction data pro-
vided by Pathway Commons project (v6 - accessed in February, 2015 from http://www.pathwaycommons.
org/pc2/downloads). To do this, we first downloaded the binary relationships between pairs of genes in 
Simple Interaction Format. We then filtered the data only for interaction type “neighborhood-of ” that 
represents any type of pathway-based interaction between a pair of genes. We next filtered out all inter-
actions in which either of the interacting genes was not in our cancer gene set, and therefore not of 
interest to us.

To identify adjacent edges in the metabolic gene data set, we used the Recon2 human metabolic 
reconstruction22 to identify pairs of genes whose enzymatic products shared a common substrate or 
product. To do so, we pruned the stoichiometric matrix (S) for cofactors (ATP, ADP, NADH, NAD, 
NADPH, NADP, etc.) and other highly-connected metabolites which might adversely affect the adja-
cency calculations (e.g. water, hydrogen ions, metal cofactors). We then used this pruned stoichiomet-
ric matrix SP, and the reaction-to-gene matrix (R) to generate a matrix encoding which metabolites 
and genes participated in common reactions (MG =  S ×  R). Finally, to generate an adjacency matrix (A) 

http://www.pathwaycommons.org/pc2/downloads
http://www.pathwaycommons.org/pc2/downloads
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indicating which genes participated in reactions sharing a common metabolite, we multipled the trans-
pose of MG by itself: A =  MGT ×  MG. The matrix A is square, with the length of each dimension equal 
to the number of genes in the model. The curvature analysis was also repeated after removing highly 
connected reactions (i.e. with greater than 4 distinct metabolite substrates/products, after pruning for 
highly connected metabolites) from S with qualitatively similar results.

For each data set, gene co-expression networks were generated by calculating the non-parametric 
(Spearman) correlation between all pairs of genes. Note that since we are working with correlation data 
for which values can be less than zero, the analysis was conducted with respect to the transformed cor-
relation coefficient: ( )= . ⋅ +c c0 5 1xy xy  in order to construct the random walk over the network4. We 
should also note, that one could examine and compute weights through an interesting mass action 
approach13,14 as opposed to a more general computation of correlation values given above. The advantage 
of the mass action method is that from an statistical standpoint, it allows for the analysis to be carried 
out in a more sample specific manner. Moreover, given that biological networks involve both negative 
and positive weights representing specific activating and inhibiting interactions, a subject of future 
research will entail directly extending the current approach to more general directed graph case following 
related work35.

������������������������Ǥ� We begin by recording the basic definition of the Lp-Wasserstein dis-
tance from optimal transport theory that we will need below. Roughly speaking, on a metric measure 
space, one gets a natural distance on “small” balls around points or the “fuzzified” points. For full details 
about the Monge-Kantorovich (optimal mass transport) problem and the associated Wasserstein dis-
tance, we refer the reader to several works on this topic23,24,36–38.

More precisely, let X be a metric measure space, equipped with distance d. Let µi, i =  1, 2, be two 
measures with the same total mass and finite p-th moment. A coupling between µ1 and µ2 is a measure 
µ on X ×  X such that

∫ ∫µ µ µ µ( , ) = ( ), ( , ) = ( ) ( )d x y d x d x y d y 7y x1 2

In other words, the marginals of µ are µ1 and µ2. Let Π (µ1, µ2) be the set of couplings between µ1 
and µ2. We then define the Lp Wasserstein distance as

∫ ∫µ µ µ( , ) =
⎛

⎝
⎜⎜⎜

( , ) ( , )
⎞

⎠
⎟⎟⎟⎟ ( )µ Π µ µ∈ ( , )

/

W d x y d x y: inf
8p

p
p

1 2

1

1 2

In this paper, we only consider the cases p =  1, 2. For p =  1, the Wasserstein distance is sometimes 
called the “Kantorovich-Rubinstein distance” or the Earth Mover’s distance (EMD) and can be formu-
lated as linear program12. In particular, let X denote a discrete metric measure space with n points 
denoted {x1,…,xn}. Let µ1 and µ2 be two distributions, and let d(x, y) denote the distance between x, y ∈  X 
(for the case of graphs, this is simply taken to be the hop distance). We assume that µ1 and µ2 have the 
same total mass. Then, W1(µ1, µ2) may be defined as follows:

∑µ µ µ( , ) = ( , ) ( , )
( )µ , =

W d x x x xmin
9i j

n

i j i j1 1 2
1

where µ ( , )x y  is a coupling (or flow) subject to the following constraints:

µ ( , ) ≥ ∀ , ∈ ( )x y x y X0 10

∑µ µ( , ) = ( ) ∀ ∈
( )=

x x x x X
11i

n

i
1

1

∑µ µ( , ) = ( ) ∀ ∈ .
( )=

x y y y X
12i

n

i
1

2

The cost above finds the optimal coupling of moving a set of mass from distributions µ1 to µ2 with 
minimal “work”.

������������������������Ǥ� There have been a number of approaches19,39–41 to extending the notion 
of Ricci curvature to more general metric measure spaces. At this point, the exact relationship of one 
approach as compared to another is unclear. Roughly, the techniques fall into two categories: the first 
generalizing the weak k-convexity of the entropy functional on the Wasserstein space of probability meas-
ures as in9,39,42, and the second directly working with Markov chains to define the generalization19,40,41 
on networks. There is also a notion of “hyperbolicity” due to Gromov43 based on the “thinness” or 
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“fatness” of triangles compared to the Euclidean case, and more generally a certain four-point criterion. 
Depending upon the application, each approach seems to be useful. In particular, we follow19,39, because 
of connections to notions of metric entropy.

We first define the precise notion of “robustness” to which the Fluctuation Theorem6,44, is applicable. 
One considers random fluctuations (perturbations) of a given network that result in deviations of some 
observable. Let Pε(t) denote the probability that the mean deviates by more than ε from the original 
(unperturbed) value at time t. Since Pε(t)→ 0, we want to measure its relative rate, that is, we set

= ⎛
⎝
⎜⎜− ( )⎞

⎠
⎟⎟⎟. ( )ε

→∞
R

t
P t: lim 1 log 13t

Therefore, large R means not much deviation and small R large deviations. In thermodynamics, it is 
well-known that entropy and rate functions from large deviations are very closely related.

Next we describe the relationship of curvature and entropy given in Lott and Villani9. Let (X, d, m) 
denote a geodesic space, and set

∫µ µ( , , ) = ≥ = , ( ){ }P X d m dm: 0: 1 14X

∫µ µ µ( , , ) =
⎧
⎨
⎪⎪
⎩⎪⎪
∈ ( , , ) < ∞

⎫
⎬
⎪⎪
⎭⎪⎪
.

( )ε µ ε≥

⁎P X d m P X d m dm: : lim log
150

We define

∫µ µ µ µ( ) = , ∈ ( , , ),
( )ε µ ε≥

⁎H dm P X d m: lim log for 160

which is the negative of the Boltzmann entropy Se(µ): =  − H(µ); note that the concavity of Se is equivalent 
to the convexity of H. Then we say that X has Ricci curvature bounded from below by k if for every µ0, 
µ1 ∈  P(X) there exists a constant speed geodesic µt with respect to the Wasserstein 2-metric connecting 
µ0 and µ1 such that

µ µ µ µ µ( ) ≥ ( ) + ( − ) ( ) +
( − )

( , ) , ≤ ≤ . ( )S tS t S
kt t

W t1
1
2

0 1 17e t e e0 1 0 1
2

This indicates that entropy and curvature are positively correlated that we will express as

∆ × ∆ ≥ . ( )S Ric 0 18e

We note here that changes in robustness, i.e., the ability of a system to functionally adapt to changes 
in the environment (denoted as ∆ R) is also positively correlated with entropy via the Fluctuation 
Theorem6,44, and thus with network curvature:

∆ × ∆ ≥ . ( )R Ric 0 19

Since the curvature is very easy to compute for a network, this may be used as an alternative way of 
expressing functional robustness. This being said, we adopt the recent notion of Ollivier-Ricci curvature 
motivated from coarse geometry18,19.

��������Ǧ���������� �������Ǥ� It is very informative to consider the relationship of the the 
Ollivier-Ricci curvature and robustness via a simple example18,19. We consider the Ornstein-Uhlenbeck 
process. The latter is a modification of the Wiener process (random walk), in which there is a tendency 
to converge to a central location.

More precisely, consider the stochastic differential equation

α σ= − + , ( ) = , ( )d X X dt dW X x0 20t t t 0

where W is Brownian motion (Wiener process), and we take x0 to be deterministic. We treat the 
1-dimensional case for simplicity. Everything goes through in higher dimensions as well. The corre-
sponding Fokker-Planck equation is

α σ∂
∂
=
∂
∂
+

∂
∂
,

( )
p
t

xp
x

p
x2 21

2 2

2

where p =  p(x, t|x0, 0) is the transition probability of the underlying Markov process. One may show that 
p(x, t|x0, 0) is a Gaussian process with mean and variance given by45:
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σ
α

〈 ( )〉 = , ( ) = ( − ). ( )
α α− −X t x e X t evar

2
1 22

t t
0

2
2

We see that we get transition probabilities of mean x0e−αt and variance independent of x0. Since all the 
transitions p(x, t|x0, 0) have the same variance (and are Gaussian) the 1-Wasserstein distance46

δ( ( , , ), ( , , )) = − . ( )α α− −W p x t x p x t x x e x e0 0 23t t
1 0 1 0 1

Finally,

κ ( , ) = −
( ( , , ), ( , , ))

−
= − .

( )
α−x x

W p x t x p x t x
x x

e1
0 0

1
24

t
0 1

1 0 1

0 1

Equation (24) illustrates the connection of fluctuation in a very simple explicit manner. Larger α cor-
responds to larger curvature κ and this corresponds to how quickly the systems returns to equilibrium, 
that is to the mean going to 0.

������������ ��� ���������� ������������Ǥ� One can also see that relationship of robustness to the 
Ollivier-Ricci curvature in the following manner18 dealing with Markov chains. The basic idea is that 
larger Ollivier-Ricci curvature indicates greater robustness via rate of convergence to the invariant (equi-
librium) distribution. Specifically, suppose κ(x, y) ≥  k >  0. Then there exists a unique invariant probabil-
ity measure v. Moreover, for any x,

µ ν
δ µ

( , ) ≤
( , )

( − ) . ( )
⁎W

W
k

k1 25x
t x x t

1
1

Here,

∑µ µ µ µ µ( ) = ( ), = .
( )∈

( − )⁎ ⁎ ⁎y y: :
26x

t

z X
x

t
z x x

1 1

Note that W1(δx, µx) represents the jump of the random walk at x. On a connected graph X with 
diameter D (defined as the longest graph geodesic), this yields the following estimate for the mixing time:

∑ µ ( ) − ( ) ≤ ( − ) .
( )∈

⁎ y v y D k1
2

1
27y X

x
t t

This example combined with the previous one provides further support that Ollivier-Ricci curva-
ture can be employed as a natural proxy for robustness with the the distinct advantage of being easily 
computable.

��ơ���������ȋ��ǦȌ����������Ǥ� We conclude with a simple computation of differential co-expression. 
Following previous work20, differential co-expression was computed using the (non-transformed) sample 
correlation coefficient cxy by first applying the Fisher z-transformation in order to stabilize variances due 
to population size:

=
⎛

⎝
⎜⎜⎜⎜

+

−

⎞

⎠
⎟⎟⎟⎟⎟
.

( )
z

c
c

1
2

log
1
1 28

xy
xy

xy

If we let zxy
T  and zxy

N denote the z-transformation for cancer and normal gene pairs, respectively, one 
can then compute the differential co-expression as

∆ =
−

+ ( )− −

z
z z

29
xy

xy
T

xy
N

N N
1

3
1

3T N

where NT and NN is the number of tumor and normal samples respectively. For differential expression 
values, we summed those co-differential values for a given gene’s interaction defined by the underlying 
adjacency matrix. This was done in order to provide a fair comparison to the values computed by scalar 
curvature. We again note that complete information regarding this method and data can be found in 
previous work20.

����������
1. Albert, R. & Barabási, A. Statistical mechanics of complex networks. Reviews of Modern Physics. 74, 47 (2002).
2. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall, 2006).



www.nature.com/scientificreports/

1 2Scientific RepoRts | 5:12323 | DOi: 10.1038/srep12323

3. Barabasi, A. The network takeover. Nature Physics. 8, 14–16 (2012).
4. West, J., Bianconi, G., Severini, S. & Teschendorff, A. Differential network entropy reveals cancer system hallmarks. Scientific 

Reports. 2, (2012). doi: 10.1038/srep00802
5. Kitano, H. Cancer as a robust system: implications for anticancer therapy. Nature Reviews Cancer. 4, 227–235 (2004).
6. Demetrius, L. Boltzmann, Darwin and directionality theory. Physics Reports. 530, 1–85 (2013).
7. Demetrius, L. & Manke, T. Robustness and network evolution - an entropic principle. Physica A. 346, 682–696 (2005).
8. DoCarmo, M. Riemannian Geometry (Birkhauser, 1992).
9. Lott, J. & Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics. 169, 903–991 

(2009).
10. Tannenbaum, A. et al. Ricci curvature and robustness of cancer networks. http://arxiv.org/abs/1502.04512. (2015).
11. Teschendorff, A. & Severini, S. Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Systems 

Biology. 4, 104 (2010).
12. Rubner, Y., Tomasi, C. & Guibas, L. The earth mover’s distance as a metric for image retrieval. International Journal of Computer 

Vision. 42, 99–121 (2000).
13. Teschendorff, A., Sollich, P. & Kuehn, R. Signalling entropy: A novel network-theoretical framework for systems analysis and 

interpretation of functional comic data. Methods 67, 282–293 (2014).
14. Banerji, C. et al. Cellular network entropy as the energy potential in Waddington’s differentiation landscape. Scientific Reports 3, 

(2013). doi: 10.1038/srep03039
15. Csete, M. & Doyle, J. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).
16. Bauer, F., Jost, J. & Liu, S. Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. http://arxiv.org/

abs/1105.3803 (2011).
17. Klartag, B., Kozma, G., Ralli, P. & Tetali, P. Discrete curvature and abelian groups. http://arxiv.org/abs/1501.00516 (2015).
18. Ollivier, Y. Ricci curvature of Markov chains on metric spaces. Journal of Functional Analysis. 256, 810–864 (2009).
19. Ollivier, Y. Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris. 345, 643–646 (2007).
20. Reznik, E. & Sander, C. Extensive decoupling of metabolic genes in cancer. bioRxiv. 008946, (2014).
21. Forbes, S. et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids 

Research. (2010). doi: 10.1093/nar/gkq929
22. Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nature Biotechnology. 31, 419–425 (2013).
23. Villani, C. Optimal Transport, Old and New. (Springer-Verlag, 2008).
24. Villani, C. Topics in Optimal Transportation. (American Mathematical Society Publications, 2003).
25. Dekking, F., Kraaikamp, C., Lopuhaa, H. & Meester, L. A Modern Introduction to Probability and Statistics: Understanding Why 

and How (Springer Science & Business Media, 2005).
26. Ryland, G. L. et al. RNF43 is a tumour suppressor gene mutated in mucinous tumours of the ovary. The Journal of Pathology. 

469–476 (2013). doi: 10.1002/path.4134
27. Ghibaudi, E. et al. Can estrogenic radicals, generated by lactoperoxidase, be involved in the molecular mechanism of breast 

carcinogenesis. Redox Report. 5, 229–235 (2000).
28. Singh, B. & Bhat, H. K. Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage and is associated 

with inhibition of estrogen-induced breast cancer. Carcinogenesis. (2012). doi: 10.1093/carcin/bgs300
29. Son, J. et al. Glutamine supports pancreatic cancer growth through a Kras-regulated metabolic pathway. Nature. 496, 101–105 

(2013).
30. Brown, G. et al. The expression and prognostic significance of retinoic acid metabolising enzymes in colorectal cancer. PloS one. 

9, e907776 (2014).
31. Wang, C., Jonckheere, E. & Banirazi, R. Wireless network capacity versus Ollivier-Ricci curvature under Heat Diffusion (HD) 

protocol. Paper presented at IEEE American Control Conference. Portland, OR. June 04-06. 3536–3541 (2014). doi: 10.1109/
ACC.2014.6858912

32. Billera, L., Holmes, S. & Vogtmann, K. Geometry of the space of phylogenetic trees. Advances in Applied Mathematics. 27, 
733–767 (2001).

33. Sturm, K. Probability measures on metric spaces of nonpositive curvature. Contemporary Mathematics. 338, 1–34 (2003).
34. Zairis, S., Khiabanian, H., Blumberg, A. & Rabadan, R. Moduli spaces of phylogenetic trees describing tumor evolutionary 

patterns. Lecture Notes in Computer Science (LNCS). 8609, 528–539 (2014).
35. Bauer, F. Normalized graph Laplacians for directed graphs. Linear Algebra and its Applications. 436, 4193–4222 (2012).
36. Evans, L. C. Partial differential equations and Monge–Kantorovich mass transfer. Current Developments in Mathematics. 65–126 

(1999).
37. Rachev, S. & Rüschendorf, L. Mass Transportation Problems, Vol. I and II. (Springer-Verlag, 1998).
38. Tannenbaum, E., Georgiou, T. & Tannenbaum, A. Signals and control aspects of optimal mass transport and the Boltzmann 

entropy. Paper presented at IEEE Conference on Decision and Control. Atlanta, GA. December 15-17. 1885–1890 (2010).  
doi: 10.1109/CDC.2010.5717821

39. Bonciocat, A. & Sturm, K. Mass transportation and rough curvature bounds for discrete spaces. Journal of Functional Analysis. 
256, 2944–2966 (2009).

40. Maas, J. Gradient flows of the entropy for finite Markov chains. Journal of Functional Analysis. 261, 2250–2292 (2011).
41. Chow, S., Huang, W., Li, Y. & Zhou, H. Fokker-Planck equations for a free energy functional or Markov process on a graph. 

Archive for Rational Mechanics and Analysis. 203, 969–1008 (2012).
42. McCann, R. A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997).
43. Gromov, M. Hyperbolic groups. Essays in Group Theory in Math. Sci. Res. Inst. Publ. 8, 75–263 (1987).
44. Demetrius, L., Gundlach, V. & Ochs, G. Complexity and demographic stability in population models. Theoret. Population Biol. 

65, 211–225 (2004).
45. Gardiner, C. Handbook of Stochastic Methods, Third Edition. (Springer, 2004).
46. Givens, C. & Shortt, R. A class of Wasserstein metrics for probability distributions. Michigan Mathematical Journal. 31, 231–240 

(1984).

����������������
This project was supported by in part by grants from the National Center for Research Resources (P41- 
RR-013218) and the National Institute of Biomedical Imaging and Bioengineering (P41-EB-015902) 
of the National Institutes of Health. This work was also supported by NIH grants R01 MH82918 and 
1U24CA18092401A1 as well as AFOSR grants FA9550-12-1-0319 and FA9550-15-1-0045. We would also 
like to thank Chris Sander for very helpful and useful discussions regarding this work.

http://arxiv.org/abs/1502.04512
http://arxiv.org/abs/1105.3803
http://arxiv.org/abs/1105.3803
http://arxiv.org/abs/1501.00516


www.nature.com/scientificreports/

13Scientific RepoRts | 5:12323 | DOi: 10.1038/srep12323

��������������������
R.S. analyzed the data, developed computer code for computing curvature and statistics, and contributed 
to the theory. T.G. helped in the formulation of the graph curvature approach. E.R. provided and analyzed 
data, and contributed in writing the biological analysis of the results. L.Z. and I.K. developed the code 
for the computation of graph curvature. Y.S. provided network data used in the study. A.T. developed 
the mathematical framework used in the present work, and oversaw the overall formulation and writing 
of the paper.

����������������������
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Sandhu, R. et al. Graph Curvature for Differentiating Cancer Networks. Sci. 
Rep. 5, 12323; doi: 10.1038/srep12323 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Graph Curvature for Differentiating Cancer Networks
	Results
	Gene-to-Gene Robustness: Ollivier-Ricci Curvature. 
	Gene Robustness: Scalar Curvature. 

	Discussion
	Methods
	Data. 
	The Wasserstein Distance. 
	Curvature and Robustness. 
	Ornstein-Uhlenbeck Process. 
	Convergence to Invariant Distribution. 
	Differential (Co-)Expression. 

	Acknowledgements
	Author Contributions
	Figure 1.  This work focuses on analyzing robustness with respect to pairwise interactions.
	Figure 2.  Positive Ricci curvature is reflected by the characteristic that for two very close points x and y with a tangent vector v connecting xy as well as tangent vectors w (at x) and w′ (at y), in which w′ is obtained by parallel transport of w
	Figure 3.  We generated two Ornstein-Uhlenbeck processes with the same parameter set except for different α and in turn, exhibits different Ollivier-Ricci curvatures: κ(x, y) = 0.
	Figure 4.  We computed the average Ollivier-Ricci curvature for three different networks shown above as well as network entropy.
	Table 1.   A distribution analysis for changes in Ollivier-Ricci average curvature between cancer and normal tissue for all metabolic case studies.
	Table 2.   Top 10 pairs with respect to changes in Ollivier-Ricci curvature in BRCAT.
	Table 3.   Bottom 10 pairs with respect to changes in Ollivier-Ricci curvature in BRCAT.
	Table 4.   Comparison of different nodal measures for curvature and entropy on all networks composed of metabolic genes.
	Table 5.   Bottom 10 genes in BRCAT ranked with respect to scalar curvature.


