

Extending the generality of molecular dynamics

simulations on a special-purpose machine

Daniele P. Scarpazza, Douglas J. Ierardi, Adam K. Lerer, Kenneth M. Mackenzie,

Albert C. Pan, Joseph A. Bank, Edmond Chow,* Ron O. Dror, J.P. Grossman, Daniel Killebrew,

Mark A. Moraes, Cristian Predescu, John K. Salmon, David E. Shaw†

D. E. Shaw Research, New York, NY 10036, USA

Abstract—Special-purpose computing hardware can provide
significantly better performance and power efficiency for cer-
tain applications than general-purpose processors. Even within
a single application area, however, a special-purpose machine
can be far more valuable if it is capable of efficiently support-
ing a number of different computational methods that, taken
together, expand the machine’s functionality and range of ap-
plicability. We have previously described a massively parallel
special-purpose supercomputer, called Anton, and have shown
that it executes traditional molecular dynamics simulations
orders of magnitude faster than the previous state of the art.
Here, we describe how we extended Anton’s software to sup-
port a more diverse set of methods, allowing scientists to simu-
late a broader class of biological phenomena at extremely high
speeds. Key elements of our approach, which exploits Anton’s
tightly integrated hardwired pipelines and programmable
cores, are applicable to the hardware and software design of
various other specialized or heterogeneous parallel computing
platforms.

I. INTRODUCTION

Specialization of computing hardware to a particular ap-
plication can be a powerful approach for accelerating certain
computations on both high-performance and embedded sys-
tems [1–15]. Many application areas, however, benefit from
the utilization of a variety of computational methods, and
supporting diverse methods efficiently in a specialized hard-
ware system has historically proven challenging.

We have previously described a massively parallel spe-
cial-purpose machine, called Anton, and have shown that it
performs traditional molecular dynamics (MD) simulations
of biomolecular systems nearly two orders of magnitude
faster than was previously possible on any existing hardware
platform1 [17, 18]. An Anton machine performs the entire
MD computation on a large number of identical application-
specific integrated circuits (ASICs), each of which includes
hardwired pipelines for fast particle–particle and particle–
gridpoint interactions [19], programmable cores with instruc-
tions tailored to MD simulations [20], fast on-chip static

1 In addition to providing much higher performance than general-purpose

supercomputers and commodity clusters, Anton consumes dramatically less

power: a 512-node Anton machine consumes 52 kW, which includes the

power required for the built-in cooling units. While low power was not a

primary goal in the design, it is a valuable side effect of hardware speciali-

zation that is likely to become increasingly important as supercomputing

designs hit the “power wall” [16].

memory, and a specialized interconnect that allows both the
hardwired and programmable components to send short mes-
sages efficiently [21].

Our previous publications have focused on the imple-
mentation and performance of traditional, “plain vanilla”
MD simulations on Anton. In this paper, we discuss the
software implementation of a much more diverse set of
methods on Anton, substantially expanding Anton’s func-
tionality and range of applicability. Despite the fact that An-
ton is a specialized machine, we were able to accommodate
the great majority of these methods while maintaining simu-
lation performance orders of magnitude greater than that
achievable on other hardware platforms. In particular, most
such methods achieve performance exceeding 90% of An-
ton’s peak benchmark performance.

The diverse methods implemented on Anton, which in-
volve a wide variety of computational routines and data
structures, fall into several categories:

� Techniques for incorporating various physical inter-
actions and effects within the physical model, re-
ferred to as a force field, that is used in an MD simu-
lation to calculate the forces acting on all atoms in
the simulated biological system. Examples include
methods for supporting applied electric fields, elec-
trostatic polarizability, cross terms, “virtual” atomic
sites, free energy perturbation calculations, and the
special-case treatment of forces between certain
pairs of atoms that are not covalently bonded to each
other.

� More complex integration methods, which are used
to calculate where atoms move in response to these
forces. Such methods include several schemes for
controlling the simulated pressure and temperature
of the molecular system being simulated.

� Enhanced sampling techniques employed to facili-
tate the efficient exploration of the set of distinct
three-dimensional configurations that can be as-
sumed by a given biomolecule, and to efficiently
capture important but infrequent structural changes

* Edmond Chow is currently with the School of Computational Science

and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332.
† David E. Shaw is also with the Center for Computational Biology and

Bioinformatics, Columbia University, New York, NY 10032. E-mail

correspondence: David.Shaw@DEShawResearch.com.

2013 IEEE 27th International Symposium on Parallel & Distributed Processing

1530-2075/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPS.2013.93

933

in biomolecular systems. These methods include
temperature-accelerated molecular dynamics, simu-
lated tempering, and the application of several types
of non-physical biasing forces.

Anton simulations employing various combinations of
these methods have helped characterize processes including
the binding of drug molecules to their protein targets [22–
24], the folding of proteins into their characteristic three-
dimensional structures [25, 26], and key structural changes
underlying the function of important classes of protein mole-
cules, including ion channels [27, 28], kinases [29], and G
protein–coupled receptors [30, 31].

As for other massively parallel specialized or hetero-
geneous machines, the main challenge of mapping additional
functionality to Anton reflects Amdahl’s law: calculations
that are not accelerated using Anton’s hardware may become
a performance bottleneck even if they represent only a small
fraction of total runtime on more conventional machines.
Several features of Anton’s hardware and software architec-
ture proved critical in addressing this challenge. Our soft-
ware implementation of various methods heavily exploited
the fact that Anton provides general-purpose compute capac-
ity that is tightly integrated with the more specialized com-
ponents of each ASIC: Anton’s programmable cores can
manipulate the inputs and outputs of its hardwired pipelines
at very fine granularity (i.e., at the word level), and commu-
nication operations can be performed with very low latency
between computational subunits within an ASIC or on dif-
ferent ASICs. We also architected our software to allow us-
ers to specify different execution frequencies for each of a
wide variety of operations involved in these methods,
providing opportunities to reduce performance penalties with
little or no loss of accuracy. While Anton is specialized for
molecular dynamics, a similar combination of hardware and
software design strategies may be useful in accommodating a
diverse set of methods on machines designed for other appli-
cations.

II. BACKGROUND

This section provides a brief introduction to traditional
MD simulation and to Anton’s hardware architecture, with

an emphasis on details relevant to the implementation of the
extended MD methods that are described in the rest of this
paper. More details about Anton’s architecture are available
in our previous work [17–21].

A molecular dynamics simulation consists of a sequence
of iterations, each covering a time step of fixed duration, for
example of length 2 fs. In its most basic form, each “MD
iteration” consists of the calculation of the forces acting on
all atoms, followed by an integration phase that updates the
positions and momenta of the atoms according to the classi-
cal laws of motion, as depicted in Figure 1. The forces are
calculated as a function of particle positions using a physical
model known as a force field, which traditionally includes
bonded, van der Waals, and electrostatic forces. Bonded
forces involve interactions between small groups of atoms
connected by one or more covalent bonds, whereas van der
Waals and electrostatic forces (non-bonded forces), involve
all pairs of atoms in the system. On Anton, non-bonded forc-
es are expressed as the sum of range-limited interactions and
long-range interactions. Range-limited interactions, which
consist of van der Waals interactions and a contribution from
electrostatic interactions, decay quickly with distance and are
computed explicitly between all pairs of atoms separated by
less than a specified cutoff radius. Long-range interactions,
which comprise the remaining electrostatic contributions,
decay slowly but smoothly; they are efficiently computed on
Anton using a grid-based method [32].

Anton is a special-purpose machine designed to acceler-
ate the MD computations described above. An Anton ma-
chine consists of nodes connected in a toroidal topology; for
example, a 512-node configuration uses an 8 × 8 × 8 topolo-
gy, corresponding to an 8 × 8 × 8 spatial partitioning of the
biological system with periodic boundary conditions. The
partitioning maps each atom to a “home node,” which is re-
sponsible for its force accumulation and integration.

Each Anton node includes an application-specific inte-
grated circuit (ASIC) containing two major computational
subsystems: the high-throughput interaction subsystem
(HTIS) [18] and the flexible subsystem [19]. Figure 2 sum-
marizes Anton’s hardware organization in three views: a
machine-level view, a node-level view, and an overview of
the flexible subsystem. The HTIS contains parallel hard-
wired pipelines called pairwise point interaction pipelines
(PPIPs) and is controlled by a specialized programmable
core called the interaction control block processor (ICB).
The flexible subsystem contains four general-purpose pro-
grammable cores, which are responsible for the overall data
flow of the MD computation, and eight programmable ge-
ometry cores (GCs) with a specialized instruction set de-
signed to accelerate MD computations. The flexible subsys-
tem also contains four asynchronous data transfer engines
and a correction pipeline (CP)—a single instance of the pipe-
line contained in the HTIS—which selectively reverses a few
of the interactions computed by the HTIS. Finally, the ASIC
also contains DRAM controllers, an intra-chip ring network,
communication channels to neighboring ASICs, and a host
interface.

The node’s hardware units, both hardwired and pro-
grammable, are tightly integrated so that they can operate

Figure 1. Data flow diagram of a basic MD iteration.

Positions and velocities

Bonded

interactions

Range-limited

interactions

Long-range

interactions

Forces

Update positions

and velocities

Force phase

Integration phase

934

efficiently on fine-grained data. This tight integration is
made possible by communication primitives for fine-grained,
low-latency data transfer [21], and smart DRAM controllers
that are accessible to both programmable and hardwired
units and are equipped with independent arithmetic units
(e.g., for force, charge, and potential accumulation) and size-
able caches.

Anton has a highly customized memory hierarchy of
caches and software-managed scratchpad memories without
hardware cache coherence across cores. Cache memories are
sized to contain the code and data associated with an MD
simulation, and are smaller than those typically found in
commodity systems; for example, each GC has a 4K-
instruction I-cache and a 16 KB data cache. Cores implement
simple branch predictors (general-purpose cores) or no
branch predictors at all (GCs). The simplicity of branch pre-
diction, absence of cache coherence, and small size of cache
contribute to significant area and power savings, but create
additional software design challenges.

III. HARDWARE AND SOFTWARE DESIGN STRATEGIES TO

SUPPORT EXTENSIBILITY

Several aspects of Anton’s hardware and software archi-
tecture allowed us to implement the broad range of methods
discussed in this paper with only a modest slowdown, de-
spite the high degree of hardware specialization in Anton's
design.

First, many of these implemented methods take ad-

vantage of Anton’s fine-grained, low-latency communica-

tion mechanisms. In a plain vanilla simulation, the general-

purpose cores of the flexible subsystem primarily calculate

bonded forces and perform integration. These calculations

require massive gathers and scatters of position and force

data. Anton’s communication networks were designed to

facilitate these operations by supporting primitives that act

at a very fine granularity (a single force or position), both

within a node and across the entire machine. Bonded force

computation and integration have often served as the para-

digms for the implementation of the enhancements dis-

cussed later in this paper, but even for methods that do not

strictly follow this communication pattern, like the confor-

mation restraints in Section V-A, Anton’s support for fine-

grained, low-latency communication allows us to distribute

and balance computations effectively across flexible re-

sources throughout the entire machine.

Second, Anton’s software architecture allows users to

specify different application frequencies for each of a wide

variety of force calculations and integration operators. Many

of the extended methods described in this paper can be ap-

plied infrequently with no significant reduction in overall

simulation accuracy, and such infrequent application sub-

stantially decreases their impact on performance. Because

each simulation uses a different combination of methods,

and because the optimal frequencies for applying a given

method may vary from one simulation to the next, each

simulation requires a different schedule for the execution of

various operations. To minimize code complexity without

sacrificing efficiency, we use a software “sequencer” ab-

straction to implement these schedules. The sequencer is

analogous to the hardware sequencer in micro-programmed

CPUs [33], but generalized for parallel software on a heter-

ogeneous machine with many programmable cores and

hardwired pipelines. In our implementation, each general-

purpose core runs an independent replica of the same soft-

ware sequencer, and issues commands to a subset of the GC

cores and hardwired pipelines. Anton’s fine-grained, low-

latency communication between the general-purpose cores

and hardwired pipelines supports an efficient implementa-

tion of this scheduler. (The sequencer will be discussed fur-

ther in Section IV.)
Finally, to support some classes of methods, Anton’s

hardware pipelines were designed with a limited degree of
programmability. For example, the PPIP functions include a
tabulated piecewise polynomial subexpression that admits a
variety of functional forms. Moreover, the PPIP’s parameters
and tables can be efficiently reloaded on the fly at a time-

Figure 2. Hardware architecture of Anton at the machine level, node-level, and flexible-subsystem level.

Accumulation

slices

Processingsubsystem
Flexible

memory 0

Accumulation

memory 1

Z− link

Z+ link

Y− linkY+ link X− link

X+ link

HTIS

ICB

(a) machine-level top (b) one ASIC node (c) flexible subsystem

Intra-chip Ring Network

GP
Core 0

GP
Core 1

GP
Core 2

GP
Core 3

GC
0

GC
1

GC
2

GC
3

GC
4

GC
5

GC
6

GC
7

Ring Interface Unit

Correction
Pipeline

Racetrack Network

programmable core

hard-wired pipeline

000 001 007

100

700

101

701

107

707

017010 011

077070 071

117

717

177

777

935

step granularity. Thus the HTIS may be quickly switched
from computing forces to computing potential energy or
pressure, and these alternative quantities can be computed in
the same amount of time as a comparable force calculation.
The frequent computation of such quantities, like energy and
pressure, is crucial to the implementation of several im-
portant integrators and enhanced sampling methods dis-
cussed below.

In the following sections we describe the implementation
of several of these more general MD methods on Anton.
Figure 3 illustrates how these methods fit into the traditional
data flow introduced in Figure 1 and how they interact with
each other. In this diagram, each new method is represented
as a block. The computations associated with the blocks may
take place in parallel on multiple programmable and/or
hardwired units. The arrows in the figure denote data de-
pendencies between computational blocks, which impose
temporal constraints between communicating blocks. Data
transfers implicitly enforce these dependencies through the
counted remote write mechanism described in previous pub-
lications [21].

IV. TEMPERATURE- AND PRESSURE-CONTROLLED

SIMULATIONS

The basic integration phase described in the Background
section simulates a biological system in which the number of
particles (N), the volume (V), and the total energy of the sys-
tem (E) are constant. In MD parlance, such a basic MD
simulation samples the “NVE ensemble.” Yet most biologi-
cal processes occur in an environment where temperature
and pressure are fixed. As a consequence, users frequently
wish to maintain constant temperature (“NVT ensemble”), or
both temperature and pressure (“NPT ensemble”).

The algorithms that keep the temperature and the pres-
sure constant in a simulation are called “thermostats” and
“barostats,” respectively. Thermostats operate by coupling
the atoms in the simulation with a virtual heat bath, while
barostats operate by adjusting the volume and the aspect
ratio of the simulation box in response to pressure fluctua-
tions.

The thermostat selection offered by Anton includes No-
sé-Hoover chains and the Berendsen, Andersen, and Lange-
vin thermostats [34]. Some of these thermostats operate in a
closed loop and require a measurement of the current sys-
tem’s total kinetic energy (which is directly related to the
system’s temperature) as an input at every invocation. Others
operate in an open loop and use a source of randomness to
model the influence of the heat bath; for example, the
Langevin thermostat adds a small random noise to the ve-
locities of atoms and imposes a frictional force on each atom
directly proportional to its velocity. The initial design of the
parallel random number generator presented in [35] was mo-
tivated by these applications.

Barostats operate in a closed loop, taking as input the in-
stantaneous pressure, which is computed and globally re-
duced across the machine at every barostat invocation. Com-
puting the pressure requires the calculation of the virial, la-
beled “virial phase” in Figure 3. Anton implements the Ber-

endsen barostat [34] and the Martyna, Tuckerman and Klein
(MTK) barostat [36].

Thermostats and barostats, as well as the integration
phase from the basic MD iteration, can be construed formal-
ly as “state operators,” that is, functions �� ���� ��� 	�
 ������ ���� 	��
 that map positions �� , momenta ��, and extended
variables 	� (e.g., internal thermostat or barostat state) to new
values. The formalism of state operators has the useful prop-
erty that the composition of state operators is itself a state
operator; we use this property to describe an entire simula-
tion as a nested composition of primitive state operators.
State operators can be composed with arbitrary intervals in
theoretically rigorous ways to maintain desirable integration
properties such as symplecticity and time reversibility. Fur-
thermore, if operators for infrequent temperature or pressure
control are constructed correctly, they provably converge to
the same distribution produced by frequent temperature or
pressure control in the limit of long timescales. An extensive
treatment of this topic will appear in a separate work [37].
The main advantage of this approach is that users can apply
operators infrequently, thus amortizing the cost of their com-
putation over several basic MD iterations, without degrading

Figure 3. Data flow diagram of an MD iteration that includes the extended

methods presented in Sections IV, V, and VI. The new data flow conserves

a division of methods between the force and integration phases, as in the

basic MD data flow illustrated in Figure 1. Two new phases are present to

compute the potential energy and the virial. The new phases are composed

of the same feature blocks as in the force phase, but blocks are executed in

special modes, leading them to compute potential energy or virial terms

instead of force terms.

Force phase

Integration phase

Bonded force

computation

Range-limited

interactions

Long-range

interactions

Forces (on real and virtual particles)

Positions and velocities
Key: Basic

Feature
Extended

Feature

Virtual sites

(Update positions)

Non-standard

interactions

Advanced

funct’l forms

CMAP

terms

TAMD

Distance and

conformation

restraints

Potential energy phase

Virial phase

Force phase

Virtual sites

(Tranfer forces)

Potential energy terms

Virial

terms

Virial Potential

energy
Forces

(on real particles)

Positions and velocities

Positions

and

velocities

Virial
Positions

and

velocities

Update positions and

velocities

Simulated

Tempering

Target

Temperature

Thermostat Barostat

936

accuracy.
To implement such schedules, the software sequencer

running on each general-purpose core iterates over an “MD
program.” An MD program is a predetermined sequence of
“MD instructions,” where each MD instruction corresponds
to one iteration of the simulation, and specifies the set of
blocks (in Figure 3) enabled during that iteration. The pres-
sure-controlled simulation includes an MD instruction that
enables the virial computation phase and the barostat block,
but not the integration block. The corresponding step in the
MD program computes the system’s pressure and adjusts the
simulation box’s dimensions, but does not integrate atom
positions.

To hide the latency of inter-unit command communica-
tion, we perform software pipelining on the sequencer loop
running on the general-purpose cores, which results in com-
putation blocks being pipelined across the entire machine.
All the sequencers proceed independently, issuing multiple
commands for each MD instruction; as a result, several
commands may be outstanding at any time. Correctness does
not require additional synchronization beyond that which is
implicit in the data flow; for example, the force phase begins
on the arrival of new atom positions, and integration begins
when all force components (which are counted by the
DRAM controllers) have been accumulated. Thus, the se-
quencer abstraction provides an efficient way to schedule
computation at a fine grain without the need for synchroniz-
ing control state explicitly.

Finally, to maintain performance comparable to tradi-
tional MD simulation on Anton, we ensure that the code and
data used by simulation capabilities that are applied frequent-
ly fit in on-chip cache or SRAM. Anton’s general-purpose
and geometry cores have instruction and data caches, but
they are single-level and backed by DRAM, with typical
DRAM-latency penalties: a fill from DRAM costs about 100
ns, which can cause a 1% slowdown in a basic MD iteration.
To avoid these penalties, we explicitly control the layout of
our object code and data, so that all frequently used code and
data are placed in a single cache image that can be accessed
at run time without cache conflicts. To accomplish this, we
rebuild our MD software for the specific needs of each user
simulation, allowing the compiler to eliminate blocks of code
that are not needed by that simulation, and the linker to
achieve an optimized layout. In addition to reducing foot-
print (and thus cache misses), this “specialized build” pro-
duces code that benefits from reduced branching (cores have
limited or no branch prediction) and call-stack depth (a shal-
low call stack makes more efficient use of the register win-
dow–based stack cache of the general-purpose cores). As a
result, a given simulation only pays a performance penalty
(in terms of cache usage and branching) for the methods it
employs. On the GCs, even a specialized build exceeds the
size of the instruction cache, so the code is further organized
into overlays by capability and frequency of use, so that
cache misses are incurred only for the most infrequently ap-
plied methods.

V. ENHANCED SAMPLING

While Anton provides the ability to simulate biological
processes that occur over millisecond timescales, many pro-
cesses occur over timescales that are orders of magnitude
larger and are currently inaccessible to traditional MD simu-
lations. Enhanced sampling refers to a group of methods that
attempt to bridge this timescale gap [38]. When used careful-
ly, these methods can often provide a qualitative, and some-
times quantitative, view of long-timescale events using a
fraction of the simulation time required to observe the events
directly with traditional MD. Most enhanced sampling meth-
ods involve introducing biasing forces and other modifica-
tions to traditional MD to increase the likelihood of observ-
ing events of interest. In the next two sections, we will dis-
cuss the modifications to traditional MD that have been im-
plemented on Anton and some of the enhanced sampling
methods that are made possible by these new features.

A. Restraints
Distance and conformation restraints are examples of

techniques commonly used in enhanced sampling. A dis-
tance restraint is an interaction between the centers of mass
of two groups of particles. Such a restraint allows users to
bias a simulation by keeping two molecules—a drug mole-
cule and a protein receptor, for example—or two portions of
molecules, at a particular distance from one another. A con-
formation restraint generates forces that tend to hold a group
of particles in a desired conformation. This allows a user to
bias a simulation by holding part or all of a molecule—the
binding pocket of a protein, for example—in a particular
conformation. Distance and conformation restraints play a
role in many of the MD simulations that scientists run on a
day-to-day basis, not only in the context of enhanced sam-
pling simulations.

The “target value” for a restraint—that is, the desired dis-
tance between two molecules, or the desired distance of a
molecule from a model conformation—is often a constant
value, particularly in enhanced sampling methods like um-
brella sampling [38]. Alternatively, target values and force
constants can vary over the course of a simulation allowing
for steered molecular dynamics (SMD) [40, 41] and tempera-
ture-accelerated molecular dynamics (TAMD) [42]. In SMD,
target values change according to a predefined schedule,
whereas in TAMD they change dynamically in response to
fluctuations of the system and a high-temperature external
Brownian thermostat.

We now present the algorithm and implementation of
conformation restraints as an example of how enhanced
sampling methods can map to Anton. Forces in a confor-
mation restraint cause a selected molecule to assume a con-
formation that is close to a desired “model” that the user
specifies. Not only does the user specify the model, but also
the desired distance between the actual and the model con-
formations, which we call the target value of the restraint.
Distances between the actual and model conformations are
measured as a root-mean-square deviation (RMSD) of the
restrained atoms relative to the model. More formally, if �
�

937

and �
� are the positions of the �th atom in the actual and mod-
el conformation, respectively, then:

���� � ���� ����� ���
� !��
�
�"#
�$%

where � is a rigid-body transformation (rotations and transla-
tions) applied to the model, and N is the number of atoms
restrained. By construction, the RMSD is invariant to rota-
tions or translations of the model or of the actual confor-
mations.

We now describe the algorithm used to compute confor-
mation restraint forces. We represent the actual conformation
X and the model conformation Y as two N × 3 matrices, each
containing all the �
� as rows and all the �
� as rows, respec-
tively. The algorithm proceeds as follows:

1. For each conformation X and Y, center it at the
origin by subtracting its center of mass from each
atom’s coordinates, thus obtaining &'�(�)�*' , re-
spectively;

+, Compute the covariance matrix -� � &'.*�;�
/, Compute matrix 0, the rotation matrix that aligns &'(�)�*' optimally, using Kabsch’s algorithm [42,

43];�
4. Compute the RMSD distance

1 ������� ���
�� 0�
���"#
�$%

5. Compute the restraint force �233
 � 4�567689:��;
<'70=3
<'
#�6 on each atom � >?��+� @ � �A , where B�denotes the spring constant
and 1CD denotes the target distance.

Now we present our parallel implementation. It statically
assigns each restrained atom i to a distinct “worker core”�E�.
This assignment has two benefits: first, it achieves a better
load balancing than the “natural” assignment of each re-
strained atom to its home core; in fact, atoms involved in a
conformation restraint tend to be spatially close to each oth-
er, and thus clustered on a small number of home cores. The
natural assignment will distribute all the load of a confor-
mation restraint to the few home cores interested, and leave
all other cores idle. Second, model positions for each atom
can reside permanently on each worker rather than having to
migrate with each atom. At each application of the restraint,
each core where a restrained atom i resides (i.e., its home
core) transfers the atom’s coordinates to worker core E� .
Each worker E� receives the coordinates of atom i and coop-
erates with the other workers, performing both computations
specific to atom i and computations associated to the entire
restraint. At the end, each worker returns forces for its atom

to the atom’s home for accumulation. The specific parallel-
ization proceeds as follows:

1. Each restrained atom’s home core sends atom posi-
tion �
� to core E� , which owns the model coordi-
nates �
��

2. E� computes atom i's contribution to covariance

matrix R, which is FG � �
�H�
��
3. Workers perform one global reduction that yields

(-�I J�
K
 � LM1NOM P�FG�I � %# �
�Q
4. Workers compute their centered atoms’ coordinates �
�� � �
� J�
K
5. Workers perform identical computations of 0, by

applying Kabsch’s algorithm to -

6. Each worker E��computes atom i's contribution to
the mean-squared deviation

�R� � �� ��
�� 0�
���"

7. All workers perform a global reduction R � LM1NOM�R�
� and compute the RMSD as 1 �S�R I
8. Each worker calculates the restraint force TG and

sends it to atom i's home core for accumulation.

The parallelized algorithm takes advantage of an optimi-
zation to combine the global reduction of R and J�
K into a
single step (Step 3 in the parallel algorithm). First, we com-
pute *' offline; then, thanks to the mathematical property -� � &'.*' � �&.*� , we compute FG using the uncentered
conformation X without the need for J�
K. We can thus delay
the computation of J�
K, and compute it, together with R, in
one global reduction rather than two, which reduces latency.
Step 5 in the parallel algorithm is replicated across cores: all
cores compute the same value at the same time; this choice
leads to lower latencies than computing U on a single core
and broadcasting the result.

The parallel portion of the computation of conformation
restraints benefits from the tight integration among cores
made possible by the low-latency interconnect and by the
smart DRAM controllers on Anton, especially to accelerate
the coordinate distribution of Step 1, the force accumulation
of Step 8 and the global reductions in Steps 3 and 7. Some
additional challenges are involved in optimizing the serial
portion of the computation, primarily Step 5, whose relative
latency after parallelization is significant. To mitigate its
performance impact, we adopt a selection of the strategies
presented before in Section III. We allow users to apply con-
formation restraints infrequently by packaging them in the
form of an extended state operator. In addition to that, Kab-
sch’s algorithm of Step 5 is amenable to an optimization that
preconditions its arguments and postconditions its results
using the values of arguments and results of the previous
iteration, thus rendering its cost even lower. To make the
general-purpose cores most able to participate at a fine grain
in the MD computation by accumulating forces on individual

938

atoms, we used mixed arithmetic, performing only Steps 5
and 6 in floating point, and all other steps in the same fixed-
point format used to represent and process forces and coor-
dinates across Anton.

Thanks to these optimizations, Anton supports con-
formation restraints at a small performance cost, as reported
in Section VII. In addition, Anton supports variants of con-
formation restraints that use different atom weights, multiple
models, time-varying parameters and composite flat-bottom
harmonic potentials.

B. Simulated Tempering
The “conformation space” of a system is the set of all the

spatial conformations that the system’s molecules can as-
sume. Simulated tempering attempts to speed up the sam-
pling of conformation space by periodically modifying the
temperature of the system [45]. At lower temperatures, mol-
ecules may not have sufficient thermal energy to overcome
barriers in their energy landscape frequently, while at higher
temperatures they overcome these barriers more frequently,
resulting in better sampling. By periodically raising and low-
ering the temperature along a discrete “ladder of tempera-
tures,” simulated tempering facilitates conformational explo-
ration.

Transitions occur only between target temperatures that
are consecutive along the ladder, up or down one rung, in a
Monte Carlo process. At each interval, the system either
transitions or not according to the following Metropolis ac-
ceptance criterion:

U�V� WX Y WZ
 � ��� [M7\�]
^_` a\�]
^_b ac`7cb�� ,

where A is the probability of accepting a transition from
temperature Ta to temperature Tb (where Tb is selected with
equal probability to be either one rung above or below Ta),
given the state of the system V. d�V
 is the energy of state V, k is Boltzmann’s constant, W� is the temperature of ladder

rung�� , and e� is a weight chosen for W� to promote equal
sampling time at each temperature. Note that the system’s
potential energy must be computed before each putative
transition to calculate the acceptance probability. Figure 4
shows temperature changes produced by simulated temper-
ing in a short simulation of dialanine on Anton.

On commodity hardware, a related enhanced sampling
algorithm, replica exchange, is often preferred over simulat-
ed tempering [46]. Replica exchange performs concurrent
simulations of multiple “replicas” of the system, running at
different temperatures, and swaps configurations between
replicas in a Monte Carlo process. Replica exchange has the
advantage that it allows for parallelization over the replicas
being simulated, and it guarantees equal simulation time at
each temperature without having to choose weights.

Anton’s architecture, however, favors simulated temper-
ing over replica exchange. Anton’s limited SRAM size per
node puts a lower bound on the number of ASICs required to
simulate a single replica efficiently, so the parallelizability of
replica exchange is limited by the number of ASICs availa-
ble. On the other hand, Anton’s architecture allows for effi-
cient use of many ASICs in parallel for a single simulation.
Furthermore, replica exchange imposes additional in-
put/output costs on Anton, either to communicate between
machines running parallel replicas or to swap state from
DRAM between time-multiplexed replicas running on the
same machine. These costs are considerable, since an ex-
change interval of a few picoseconds corresponds to only
tens of milliseconds of wall-clock time on Anton. As for the
preliminary simulations required to calculate weights for
simulated tempering, they can be run very quickly on Anton,
as they typically require hundreds of nanoseconds of simula-
tion time.

An Anton simulation that employs simulated tempering
typically attempts a Monte Carlo exchange every 1,000 to
10,000 time steps. This procedure consists of a potential en-
ergy computation, a transition attempt, and—if successful—
a modification to the thermostat temperature.

2
The data flow of a potential energy computation on An-

ton is very similar to that of a force computation, but each of
the force computation kernels—bonded, range-limited, long-
range, etc.—is replaced by a related but distinct potential
energy computation kernel, as represented in Figure 3. The
force polynomial tables in the HTIS and CP must therefore
be swapped for energy tables, and modified bond calcula-
tions must be performed to compute energies instead of forc-
es. All of these changes are controlled by the sequencers
running on general-purpose cores, which send commands to
the GCs, HTIS, and CP, indicating that an energy computa-
tion is to be performed.

Since potential energy computation is performed so in-
frequently, the energy computation code is not included in

2 Anton also supports generalized simulated tempering, in which compo-

nents of the Hamiltonian are modified. In that case, the simulated temper-

ing algorithm must perform two potential energy calculations (one for each

Hamiltonian), and must modify the Hamiltonian in addition to thermostat

state. This two-energy computation program is managed by the sequencer,

with no changes required to the code on the GC or ICB units.

Figure 4. Temperature of dialanine in a simulated tempering simulation

with ladder rungs at 300 K, 310 K, and 320 K. The red line is the thermo-

stat temperature imposed by simulated tempering; the blue line is the

instantaneous system temperature.�

 280

 290

 300

 310

 320

 330

 340

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
em

p
er

at
u
re

 (
K

)

Time (ps)

Temperature Control in a Simulated Tempering Simulation

Instantaneous System Temperature
Simulated Tempering Rung Temperature

939

the general-purpose cores’ specialized build (mentioned in
Section III) but instead lives in a separate code section in
DRAM. The normal force computation thus pays no branch
or instruction cache penalty for potential energy computa-
tion, even when simulated tempering is enabled.

Simulated tempering transition attempts and state updates
are executed on each node in parallel, with no need for
communication between nodes. On each node, only the core
responsible for the thermostat executes the update routine
and stores the simulated tempering data and state, saving
space on other cores.

VI. FORCE FIELD SUPPORT AND NEW FORCE TERMS

Biomolecular force fields are continuously improved by
the computational chemistry research community, and An-
ton’s software has been extended to support many force field
features needed by the researchers using Anton. These fea-
tures include virtual sites, which have been introduced in
more accurate models of electrostatics; uniform electric
fields used, for example, to model transmembrane potentials;
Drude particles that model polarization; and soft-core poten-
tials, employed in certain free-energy perturbation tech-
niques that compute differences in free energy between two
states of a system (for example, ligand-binding free ener-
gies). Our strategies for handling these features are diverse.
Here we discuss in detail two of these features, nonstandard
interactions and CMAP terms, to illustrate some of the tech-
niques we used to implement such diverse features on a spe-
cialized platform.

One example involves adding support for nonstandard
van der Waals interactions. Force fields generally specify the
energy terms corresponding to the interaction between a pair
of non-bonded particles in diverse forms that can all be rep-
resented by f � g h i�B h L"
, where f is a suitable function,
r is the distance between the two particles, and a and k are
each computed as either the arithmetic or the geometric
mean of parameters associated with the two particles. This is
the functional form hardwired into the pipelines of Anton’s
HTIS. Buckingham’s form of the van der Waals interaction
[47] does not directly fit this model, although it does decom-
pose as a sum of terms that are supported directly by the
HTIS. In this case, we accelerate evaluation of the force term
by executing two passes through the HTIS—essentially run-
ning two force phases back-to-back. In other cases, a force
field may override the values of a and k for specific pairs of
atom types (e.g., selected ion–protein interactions). When
there are few of these exceptional cases, we make use of the
CP to correct the calculation. First, the CP repeats the same
computation that takes place on the HTIS with the sign re-
versed. This effectively removes the undesired force contri-
bution produced by the HTIS, which has treated the interac-
tion as if it were standard. Then, we compute the forces due
to the nonstandard interaction by loading into the CP the
variant a and k parameters.

A second example involves CMAP terms, which appear
in the CHARMM family of force fields, starting with variant
CHARMM22/CMAP. CMAP is a cross term that adds a
correction for each pair of neighboring �- and �-dihedral
angles along a protein’s backbone. The energy of each term

is computed by first calculating the angles (�, �), and then
interpolating the energy from one of four two-dimensional
tables (each containing 24 × 24 discrete points) by bicubic
interpolation. There are generally few instances of these
terms in a simulation—roughly one for each amino acid in a
protein.

CMAP terms can be viewed as a new kind of bond term.
Yet, in contrast to other bond terms, CMAP terms are rela-
tively complex, both in computation and in code and data
size. We store precomputed CMAP interpolation functions in
DRAM. The GC data caches, though, can only accommodate
a small window of that table, centered around the most re-
cently used entry of each term; since the changes to these
dihedrals are generally small, table lookups are almost al-
ways serviced from the cached windows. After each force or
energy phase, a GC may explicitly request updates to these
windows; these requests are queued and handled by a gen-
eral-purpose core, off the critical path.

As noted earlier, we often assign specialized roles to var-
ious cores. In general, we do this either to parallelize a task
on a small scale, or to reduce miss rates in the core’s instruc-
tion or data caches. Since the code for CMAP terms is rela-
tively large—more than a quarter of the available instruction
cache—our implementation uses core specialization for the
latter purpose. Anton’s bond-program generator, which as-
signs bond terms to GCs and balances their load across the
machine, is modified to reserve a set of GCs for CMAP
computation. CMAPs are assigned only to these cores. We
also compile the CMAP-only code and non-CMAP code in
separate segments of the GCs’ code image; we deliberately
align these segments so that they occupy overlapping regions
in cache, forming overlays. The result is that each GC either
has a CMAP-only role or a non-CMAP role during the calcu-
lation of bond terms. Either way, the footprint of the code
run by each GC during an MD iteration will not exceed the
capacity of core’s instruction cache.

VII. PERFORMANCE

In this section, we measure Anton’s performance on the
extended set of methods presented in the previous sections,
using six representative biological systems, listed at the top
of Table 1, which range in size from 13,543 to 229,983 at-
oms.

First, we present Anton’s baseline performance using
traditional, plain vanilla MD (i.e., without the use of extend-
ed MD techniques), measured on a representative set of bio-
logical systems under conditions identical to those used in
our previously reported benchmarks [18]: a time step dura-
tion of 2.5 fs and a RESPA integrator that computes long-
range electrostatics every 5 fs with the k-space Gaussian split
Ewald (GSE) method [32]. Performance values are ex-
pressed in microseconds of simulated biological time per day
of wall-clock time.

Then, we measure the performance with each extended
method described in this paper enabled individually, and
report the slowdown relative to the baseline. The results are
in Table 1.

Among the biological systems considered, DHFR and
ApoA1 are widely used benchmark systems; we have previ-

940

ously reported baseline performance for these systems on
both Anton and commodity hardware [18, 48]. BPTI was the
subject of Anton’s first millisecond-scale simulation [18].
DHFR and BPTI consist of proteins and ions solvated in
water; ApoA1 also includes a lipid membrane. The other
three systems (GPCR, K+ channel 1, and K+ channel 2) have
been studied on Anton using methods presented in this pa-
per. The GPCR system was used to study the escape pathway
of a drug from its binding site in a G protein–coupled recep-
tor [24], represented in Figure 5. The two K+ channel sys-
tems were used to model the behavior of a voltage-gated ion
channel (represented in Figure 6), a protein embedded in a
cell’s membrane that regulates the flow of ions in and out of
the cell in response to changes in the transmembrane voltage
[27]. The GPCR and K+ channel simulations contain proteins
embedded in a lipid membrane, as well as ions, water, and—
in the case of GPCR—a drug molecule.

In order to obtain baseline performance measurements
for the BPTI, GPCR, and K+ channel systems, we disabled
all extended methods utilized in the published simulations.
We performed all simulations on 512-node Anton machines,
except for K+ channel 2, which we simulated on a 1024-node
machine. In order to obtain stable performance measure-
ments, we simulated each system for 100 ns of biological
time.

We chose for each method parameters typical of those

that scientists use in Anton simulations. To simulate NVT
and NPT ensembles, we employed a Nosé-Hoover thermo-
stat applied every 24 time steps and an MTK barostat applied
every 480 time steps. For the application of distance and
conformation restraints, we chose an interval of 12 time
steps. Conformation restraints were applied to a subset of
atoms in the protein backbones. We applied TAMD on the
target value of distance restraints. For simulated tempering,
the transition attempt interval was 10 ps.

CMAP terms were added by parameterizing systems with
the CHARMM27 force field [50]. To add virtual sites, we
adopted the TIP4P model [51] for all water molecules. The
TIP4P model uses, in addition to the three real atoms, one
virtual particle for each water molecule.3 To add nonstandard
interactions, we selected, for all systems, parameters con-

3 The implementation of TIP4P water on Anton takes advantage of the fact

that all atoms in a water molecule are located on the same node to perform

virtual site calculations locally. “Generalized virtual sites,” in which the

atoms determining a virtual site’s position may be located on more than

one node, are currently only used for force field experimentation, and their

performance is not measured here.

Figure 5: A simulation of a drug unbinding from a G protein–coupled

receptor using one of the extended capabilities of Anton. GPCRs represent

the largest class of drug targets, and one-third of all drugs act by binding to

them. Here, the target value of the harmonic distance restraint between the

protein and the ligand is varied as a function of time to gently push the

drug, tiotropium, out of the binding pocket of the M3 muscarinic receptor

[24]. Simulations suggest that, as the ligand exits the pocket, it pauses in the

extracellular vestibule in the region outlined with a dashed circle. Spheres

represent positions of tiotropium’s C3 tropane atom at successive points in

time from early (red) to late (blue). The direction of motion is indicated by

the arrow. (Figure adapted from [24].)

Time (μs) 10

TMTMTMTMTMTMMTMTMTMTMTMTMTT 3333333333

TM5

TM6

TM7

TMMM4M4MMMMMMMM4MMMMMMMMMMMMM

Figure 6: A simulation snapshot of a voltage-gated potassium channel (K+

channel 2). The figure shows the active, ion-conducting state of this protein

as a (cross-sectional) yellow surface with three ions (pink) interspersed with

water molecules (blue) permeating the ion-selective filter (SF) of the chan-

nel. Water molecules occupying the pore cavity and the lipid membrane

(orange and green) are also shown (for clarity, water molecules and ions

hydrating the membrane and the extra-membrane part of the protein are not

shown). A transition between the open, conducting and the closed, non-

conducting states of the channel occurs as the transmembrane voltage

switches from a positive to negative value, which is part of how nerve sig-

nals propagate. Thanks to Anton’s support for extended MD methods, sci-

entists could study this transition [27] with the voltage imposed with the use

of a uniform electric field [28], to reveal the mechanism of ion permeation

at the level of a single ion and assess how accurately, given the limitations

of current force fields, MD simulations can reproduce conduction through

the channel with and without nonstandard interactions between the potassi-

um ions and the SF [49].

941

sistent with the originally published simulations of K+ chan-
nel 1. This corresponded to adding nonstandard interactions
between 24 protein oxygen atoms and potassium ions added
at a concentration of 500 mM, which produced between 672
(BPTI) and 12,312 (K+ channel 2) nonstandard interactions.

As a point of comparison, the fastest reported non-Anton
simulation performance of the DHFR and ApoA1 bench-
marks of which we are aware of is 0.471 and 0.289 μs/day,
respectively [48], obtained using Desmond, a software pack-
age for MD simulation on commodity clusters [52]. This
performance was achieved on a cluster consisting of 512
nodes, each with two 2.66-GHz Intel Xeon E5430 proces-
sors, connected by a DDR InfiniBand network. DHFR used
only two of the eight cores on each node in order to increase
network bandwidth per core.

In addition to the performance results presented above,
we also analyze the performance of simulations that utilize
multiple extended methods at the same time. In particular,
we consider the sets of methods used in the published simu-
lations on the GPCR and K+ channel systems. The K+ chan-
nel systems employ an NPT ensemble, a uniform electric
field, and the CHARMM27 protein force field, which in-
cludes CMAP terms. Although the simulations published on
this system [27] used a Berendsen thermostat and a barostat
applied at every time step, in our simulations we use the
same Nosé-Hoover/MTK barostat combination described

above for consistency. Additionally, K+ channel 1 uses non-
standard interactions [53], while K+ channel 2 uses a con-
formation restraint. The GPCR system used a TAMD-
controlled distance restraint, an NPT ensemble, and the
CHARMM27 force field with CMAP terms. Our measure-
ments are reported in Table 2. We find that the sum of the
individual percentage slowdowns associated with each
method is usually a good predictor of the slowdown meas-
ured when all the methods in a set are used; the slowdowns
in the Table are within 5% of the sum of the individual per-
centage slowdowns reported in Table 1.

In Section III, we discussed the infrequent application of
an MD method as a means to mitigate its performance im-
pact. Figure 7 demonstrates how the choice of interval im-
pacts the performance of a simulation. The performance of
simulations for three biological systems (DHFR, ApoA1, and
GPCR) are plotted as a function of the application interval of
three extended MD operations (NVT thermostat, NPT baro-
stat, and conformation restraints).

The plot of conformation restraint interval contains four
data series. In the first data series, we used a traditional form
of Kabsch’s algorithm (discussed in Section V). In the other
three data series, we used the incremental version of Kab-
sch’s algorithm that accelerates convergence by reusing re-
sults from its previous run. We report performance as the
incremental Kabsch algorithm is reset via a traditional run

Figure 7: Performance of simulations with extended techniques applied at different intervals, for three biological systems (DHFR, GPCR and APOA1). On

the left, performance of simulations of NVT and NPT ensembles are plotted as a function of the thermostat/barostat application interval. On the right, per-

formance of simulations with conformation restraints are plotted as a function of restraint application interval; different data series compare the traditional

and the incremental version of Kabsch’s algorithm (discussed in Section V).

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 7

 8

 9

 10

 11

 12

 14

 17

 20

 4 8 16 32 64 128 256 512

P
er

fo
rm

an
ce

 (
μ

s b
io

lo
g
ic

al
 t

im
e/

d
ay

)

Thermostat/barostat application interval (time steps)

DHFR

GPCR

ApoA1

DHFR performance baseline

GPCR performance baseline

ApoA1 performance baseline

NVT (thermostat interval)
NPT (barostat interval)

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 7

 8

 9

 10

 11

 12

 14

 17

 20

 4 8 16 32 64 128 256 512

Conformation restraint application interval (time steps)

DHFR

GPCR

ApoA1

DHFR performance baseline

GPCR performance baseline

ApoA1 performance baseline

No Incremental Kabsch
Incremental Kabsch, period 5
Incremental Kabsch, period 10
Incremental Kabsch, period 15

P
er

fo
rm

an
ce

 (
μ

s b
io

lo
g
ic

al
 t

im
e/

d
ay

)

942

every 5, 10, or 15 iterations. Note that, because of the paral-
lelization approach, the performance of conformation re-
straints is approximately invariant over the number of atoms
restrained.

Unsurprisingly, slowdowns are approximately inversely
proportional to the application interval of MD methods. At
long intervals, the performance asymptotically approaches a
value near the baseline simulation performance. The asymp-
totic performance for NPT is not as high as the baseline per-
formance because of the specialized builds described in Sec-
tion III: the specialized build of the baseline simulation does
not require code for the barostat and virial computation, and
can thus reduce branching and instruction cache usage, lead-
ing to higher performance.

The plot of NPT performance in Figure 5 illustrates a
trade-off inherent in the barostat of [37], in that it permits
application intervals of roughly 480 time steps, but requires
several consecutive iterations of force and virial calculations
for each barostat invocation. An alternative, such as the Ber-
endsen or classic MTK barostat, would require less work per
invocation but more frequent application.

VI. CONCLUSIONS

Extending Anton’s software to support diverse methods
in molecular dynamics has allowed biochemistry researchers

to use Anton for a broad set of simulations while maintaining
performance dramatically superior to that of general-purpose
supercomputers. This performance was achieved using soft-
ware approaches that exploited Anton’s low-latency com-
munication mechanisms and tight, fine-grained coupling
between programmable cores and hard-wired pipelines, in
order to effectively parallelize computation in the face of
Amdahl’s law. As a result, the extended methods discussed
in this paper incur only a modest slowdown, allowing simu-
lations using combinations of complex methods to run at a
substantial fraction of peak performance. We believe that
extending the repertoire of MD methods on Anton, combined
with the performance advantage of special-purpose hard-
ware, will enable the study of biological processes that are
currently considered outside the reach of traditional MD
methods.

More broadly, our experience has shown that specialized
machines can support a diverse set of methods while main-
taining a substantial performance advantage over general-
purpose machines. Future specialized machines may benefit
from some of the hardware features we exploited in imple-
menting these methods on Anton, including support for fine-
grained operations and low-latency communication within
and between chips. Likewise, the features of Anton’s soft-
ware architecture that facilitated efficient implementation of
these methods, including our approach to enabling variable-
frequency execution of a wide variety of methods, may
prove applicable on other high-performance computing plat-
forms and in other application domains.

ACKNOWLEDGMENTS

We thank Daniel Arlow, Morten Jensen, Kresten Lin-
dorff-Larsen, and Stefano Piana for their help in specifying
and testing the MD methods described, as well as for provid-
ing biochemical systems for our performance measurements;
Michael Eastwood, John Jumper, and John Klepeis for help-
ful discussions; Liming Zhao for the workflow system that
we used for measurements; Peter Bogart-Johnson, Anissa
Harper, Eric Radman, Chris Snyder, and Linda Stefanutti for
their ongoing care and feeding of all our Anton machines;
and Mollie Kirk for editorial assistance.

� GPCR K+ channel 1 K+ channel 2

System size (# of atoms) 53,005 107,117 229,983

Machine size (# of nodes) 512 512 1024
Baseline performance
(μs/day) 9.10 5.22 5.13

Performance (μs/day) 7.62 4.23 3.65

Slowdown 1.19 1.23 1.41

Table 2: Aggregate slowdown measured for MD simulations when mul-

tiple extended capabilities are employed at the same, relative to the base-

line MD performance. The combinations of systems and features meas-

ured replicate those presented in biochemical research published by our

group [24, 27, 28].

 BPTI DHFR GPCR ApoA1 K+ channel 1 K+ channel 2

System size (# of atoms) 13,543 23,558 53,005 92,224 107,117 229,983
Machine size (# of nodes) 512 512 512 512 512 1024
Baseline performance (μs/day) 18.1 17.4 9.10 5.69 5.22 5.13
NVT ensemble 1.02 0.99 0.98 1.01 1.01 1.00
NPT ensemble 1.05 1.03 1.09 1.15 1.15 1.18
Distance Restraints 1.05 1.05 0.99 1.02 1.01 1.01
Distance Restraints + TAMD 1.07 1.07 1.00 1.01 1.01 1.02
Conformation Restraints 1.19 1.18 1.06 1.05 1.05 1.06
Simulated Tempering 1.07 1.04 1.00 1.02 1.02 1.01
Uniform E Field 1.16 1.22 1.01 1.10 1.07 1.09
CMAP 1.30 1.38 1.05 1.03 1.03 1.07
Virtual Sites 1.05 1.15 1.54 1.10 1.10 1.15
Nonstandard Interactions 1.07 1.37 1.17 1.13 1.04 1.05

Table 1. Slowdowns caused by each of the extended methods discussed in this paper, relative to baseline performance with all extended methods disabled. We

evaluate the performance across six biological systems, presented in order of increasing number of atoms. Two systems (DHFR, and ApoA1) are common bench-

mark systems; the other four (BPTI, GPCR, K+ channel 1, and K+ channel 2) come from recent biochemical studies [24, 25, 27].

943

REFERENCES

[1] R. D. Fine, G. Dimmler, and C. Levinthal, “FASTRUN: A special
purpose, hardwired computer for molecular simulation,” Proteins,
vol. 11, pp. 242–253, 1991.

[2] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada,
and A. Kanagaya, “Protein Explorer: a petaflops special purpose
computer system for molecular dynamics simulations,” Proc.
ACM/IEEE Conf. on Supercomputing (SC03), New York, NY, 2003.
ACM.

[3] S. Toyoda, H. Miyagawa, K. Kitamura, T. Amisaki, E. Hashimoto, H.
Ikeda, and N. Miyakawa, “Development of MD Engine: high-speed
accelerator with parallel processor design for molecular dynamics
simulations,” J. Comput. Chem., vol. 20, pp. 185–199, 1999.

[4] S. Habata, K. Umezawa, M. Yokokawa, and S. Kitawaki, “Hardware
system of the Earth Simulator.” Parallel. Comput., vol. 30, pp. 1287–
1313, 2004.

[5] J. Makino, E. Kokubo, and T. Fukushige, “Performance evaluation
and tuning of GRAPE-6—towards 40 ‘real’ Tflops,” Proc.
ACM/IEEE Conf. on Supercomputing (SC03), New York, NY, 2003.
ACM.

[6] R. Perley, P. Napier, J. Jackson, B. Butler, B. Carlson, D. Fort, et al.,
“The expanded Very Large Array,” Proc. IEEE, vol. 97, 1448–1462,
2009.

[7] M. Awad, “FPGA supercomputing platforms: a survey,” Proc. Intl.
Conf. on Field Programmable Logic and Applications (FPL 2009),
New York, NY, 2009. IEEE.

[8] P. A. Boyle, D. Chen, N. H. Christ, M. A. Clark, S. D. Cohen, C.
Cristian, et al., “Overview of the QCDSP and QCDOC computers,”
IBM J. Res. Dev., vol. 49, pp. 351–365, 2005.

[9] J. D. Bakos, “High-performance heterogeneous computing with the
Convey HC-1,” Comput. Sci. Eng., vol. 12, pp. 80–87, 2010.

[10] V. Heuveline and J.-P. Weiß, “Lattice Boltzmann methods on the
ClearSpeed Advance™ accelerator board,” Euro. Phys. J. Special
Topics, vol. 171, pp. 31–36, 2009.

[11] H. Baier, H. Boettiger, M. Drochner, N. Eicker, U. Fischer, Z. Fodor,
et al., “QPACE: power-efficient parallel architecture based on IBM
PowerXCell 8i,” Comput. Sci. Res. Dev., vol. 25, pp. 149–154, 2010.

[12] G. Goldrian, T. Huth, B. Krill, J. Lauritsen, H. Schick, I. Ouda, et al.,
“QPACE: quantum chromodynamics parallel computing on the Cell
Broadband Engine,” Comput. Sci. Eng. vol. 10, 46–54, 2008.

[13] F. Belletti, M. Cotallo, A. Cruz, L. A. Fernández, A. Gordillo, M.
Guidetti, et al., “JANUS: an FPGA-based system for high
performance scientific computing,” Comput. Sci. Eng. vol. 11, 48–58,
2009.

[14] F. Belletti, M. Cotallo, A. Cruz, L. A. Fernández, A. Gordillo, A.
Maiorano, et al., “IANUS: scientific computing on an FPGA-based
architecture,” in Parallel Computing: Architectures, Algorithms and
Applications, vol. 38, C. Bischof, M. Bücker, P. Gibbon, G.R.
Joubert, T. Lippert, B. Mohr, and F. Peters, Eds., Jülich: John von
Neumann Institute for Computing, pp. 553–560, 2007.

[15] F. Belletti, S. F. Schifano, R. Tripiccione, F. Bodin, P. Boucaud, J.
Micheli, et al., “Computing for LQCD: apeNEXT,” Comput. Sci.
Eng. vol. 8, pp. 18–29, 2006.

[16] P. Kogge, “The tops in flops,” IEEE Spectrum, vol. 48, pp. 48–54,
2011.

[17] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson,
J. K. Salmon, et al., “Anton: a special-purpose machine for molecular
dynamics simulation,” Proc. 34th Annual Intl. Symp. on Computer
Architecture (ISCA ’07), New York, NY, 2007. ACM.

[18] D. E. Shaw, R. O. Dror, J. K. Salmon, J.P. Grossman, K. M.
Mackenzie, J. A. Bank, et al., “Millisecond-scale molecular dynamics
simulations on Anton,” Proc. Intl. Conf. for High Performance
Computing, Networking, Storage and Analysis (SC09), New York,
NY, 2009. ACM.

[19] R. H. Larson, J. K. Salmon, R. O. Dror, M. M. Deneroff, C. Young,
J.P. Grossman, et al., “High-throughput pairwise point interactions in

Anton, a specialized machine for molecular dynamics simulation,”
Proc. 14th Annual Intl. Symp. on High-Performance Computer
Architecture (HPCA ’08), New York, NY, 2008. IEEE.

[20] J. S. Kuskin, C. Young, J.P. Grossman, B. Batson, M. M. Deneroff,
R. O. Dror, and D. E. Shaw, “Incorporating flexibility in Anton, a
specialized machine for molecular dynamics simulation,” Proc. 14th
Annual Intl. Symp. on High-Performance Computer Architecture
(HPCA ’08), New York, NY, 2008. IEEE.

[21] R. O. Dror, J.P. Grossman, K. M. Mackenzie, B. Towles, E. Chow, J.
K. Salmon, et al., “Exploiting 162-nanosecond end-to-end
communication latency on Anton,” Proc. Intl. Conf. for High
Performance Computing, Networking, Storage and Analysis (SC10),
Washington, D.C., 2010. IEEE.

[22] R. O. Dror, A. C. Pan, D. H. Arlow, D. W. Borhani, P. Maragakis, Y.
Shan, et al., “Pathway and mechanism of drug binding to G-protein-
coupled receptors,” Proc. Natl. Acad. Sci. USA, vol. 108, pp. 13118–
13123, 2011.

[23] Y. Shan, E. T. Kim, M. P. Eastwood, R. O. Dror, M. A. Seeliger, and
D. E. Shaw, “How does a drug molecule find its target binding site?”
J. Am. Chem. Soc., vol. 133, pp. 9181–9183, 2011.

[24] A. C. Kruse, J. Hu, A. C. Pan, D. H. Arlow, D. M. Rosenbaum, E.
Rosemond, et al., “Structure and dynamics of the M3 muscarinic
acetylcholine receptor,” Nature, vol. 482, pp. 552–556, 2012.

[25] D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror,
M. P. Eastwood, et al., “Atomic-level characterization of the
structural dynamics of proteins,” Science, vol. 330, pp. 341–346,
2010.

[26] K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw, “How fast-
folding proteins fold,” Science, vol. 334, pp. 517–520, 2011.

[27] M. Ø. Jensen, V. Jogini, D. W. Borhani, A. E. Leffler, R. O. Dror,
and D. E. Shaw, “Mechanism of voltage gating in potassium
channels,” Science, vol. 336, pp. 229–233, 2012.

[28] M. Ø. Jensen, V. Jogini, M. P. Eastwood, D. E. Shaw, “Atomic-level
simulation of current–voltage relationships in single-file ion
channels,” J. Gen. Phys., in press.

[29] Y. Shan, M. P. Eastwood, X. Zhang, E. T. Kim, A. Arkhipov, R. O.
Dror, et al., “Oncogenic mutations counteract intrinsic disorder in the
EGFR kinase and promote receptor dimerization,” Cell, vol. 149, pp.
860–870, 2012.

[30] R. O. Dror, D. H. Arlow, P. Maragakis, T. J. Mildorf, A. C. Pan, H.
Xu, et al., “Activation mechanism of the �2-adrenergic receptor,”
Proc. Natl. Acad. Sci. USA, vol. 108, pp. 18684–18689, 2011.

[31] D. M. Rosenbaum, C. Zhang, J. A. Lyons, R. Holl, D. Aragao, D. H.
Arlow, et al., “Structure and function of an irreversible agonist-�2
adrenoceptor complex,” Nature, vol. 469, pp. 236–240, 2011.

[32] Y. Shan, J. L. Klepeis, M. P. Eastwood, R. O. Dror, and D. E. Shaw,
“Gaussian split Ewald: a fast Ewald mesh method for molecular
simulation,” J. Chem. Phys., vol. 122, pp. 054101:1–13, 2005.

[33] M. Wilkes, “The best way to design an automatic computing
machine,” Report of Manchester University Computer Inaugural
Conference, pp. 182–184, 1951.

[34] P. H. Hunenberger, “Thermostat algorithms for molecular dynamics
simulations,” Adv. Polym. Sci., vol. 173, pp. 105–149, 2005.

[35] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel
random numbers: as easy as 1, 2, 3,” Proc. Intl. Conf. for High
Performance Computing, Networking, Storage and Analysis (SC11),
New York, NY, 2011. ACM.

[36] G. J. Martyna, M. L. Klein, and M. Tuckerman, “Nosé-Hoover
chains: the canonical ensemble via continuous dynamics,” J. Chem.
Phys., vol. 97, pp. 2635–2643, 1992.

[37] R. A. Lippert, C. Predescu, D. Ierardi, M. P. Eastwood, Ron O. Dror,
and D. E. Shaw, “Multi-phased integrator for constant temperature
and pressure molecular dynamics simulations,” under review.

[38] D. M. Zuckerman, “Equilibrium sampling in biomolecular
simulations,” Annu. Rev. Biophys., vol. 40, pp. 41–62, 2011.

944

[39] G. M. Torrie and J. P. Valleau, “Nonphysical sampling distributions
in Monte Carlo free energy estimation: umbrella sampling,” J.
Comput. Phys., vol. 23, pp. 187–199, 1977.

[40] H. Grubmüller, B. Heymann, and P. Tavan, “Ligand binding:
molecular mechanics calculation of the streptavidin-biotin rupture
force,” Science, vol. 271, pp. 997–999, 1996.

[41] S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten,
“Molecular dynamics study of unbinding of the avidin-biotin
complex,” Biophys J., vol. 72, pp. 1568–1581, 1997.

[42] L. Maragliano and E. Vanden-Eijnden, “A temperature accelerated
method for sampling free energy and determining reaction pathways
in rare events simulations,” Chem. Phys. Lett., vol. 426, pp. 168–175,
2006.

[43] W. Kabsch, “A solution of the best rotation to relate two sets of
vectors,” Acta Crystallogr., vol. A32, pp. 922–923, 1976.

[44] W. Kabsch, “A discussion of the solution for the best rotation to
relate two sets of vectors,” Acta Crystallogr., vol. A34, pp. 827–828,
1978.

[45] E. Marinari and G. Parisi, “Simulated tempering: a new Monte Carlo
scheme,” Europhys. Lett., vol. 19, pp. 451–458, 1992.

[46] Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics
method for protein folding,” Chem. Phys. Lett., vol. 314, 1–2, 1999.

[47] P. Atkins and J. de Paula, Atkins' Physical Chemistry, 8th ed.,
Oxford: Oxford UP, pp. 637.

[48] E. Chow, C. A. Rendleman, K. J. Bowers, R. O. Dror, D. H. Hughes,
J. Gullingsrud, F. D. Sacerdoti, and D. E. Shaw, “Desmond
performance on a cluster of multicore processors.” D. E. Shaw
Research Technical Report DESRES/TR—2008-01.
http://deshawresearch.com. 2008.

[49] B. Roux, The membrane potential and its representation by a constant
electric field in computer simulations. Biophys. J. vol. 95, pp. 4205–
4216, 2008.

[50] A. D. MacKerell Jr., M. Feig, and C. L. Brooks III, “Extending the
treatment of backbone energetics in protein force fields: limitations of
gas-phase quantum mechanics in reproducing protein conformational
distributions in molecular dynamics simulations,” J. Comput. Chem.,
vol. 25, pp. 1400–1415, 2004.

[51] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and
M. L. Klein, “Comparison of simple potential functions for
simulating liquid water,” J. Chem. Phys., vol. 79, pp. 926–935, 1983.

[52] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A.
Gregersen, et al., “Scalable algorithms for molecular dynamics
simulations on commodity clusters,” Proc. of the ACM/IEEE Conf.
on Supercomputing (SC06), New York, NY, 2006. IEEE.

[53] S. Berneche and B. Roux, “Energetics of ion conduction through the
K+ channel,” Nature, vol. 414, pp. 73–77, 2001.

945

