Center for Turbulence Research 97
Annual Research Briefs 2005

A python approach to multi-code simulations:
CHIMPS

By J. U. Schliiter, X. Wu, E. v. d. Weide, S. Hahn,
M. Herrmann, J. J. Alonso AND H. Pitsch

1. Introduction

Simulations of real world engineering applications require that a large variety of phys-
ical phenomena be modeled. The areas of application for numerical simulations have
been extended significantly in recent years due to the steady increase of computational
resources. However, the integration of new models into existing solvers is often problem-
atic.

Consider the example of fluid-structure interactions. In the past, flow solvers have been
developed and optimized to simulate a variety of flows. Solvers for structural analysis
have been developed to simulate stresses and deformations in solid bodies. So far, in
order to simulate fluid-structure interactions, both approaches have to be integrated into
a single solver. In the process, it usually had to be accepted that one of the models was
not as accurate, optimized, or flexible as in the original solver.

Another example is that of LES-RANS hybrids. Here, a variety of flow solvers have
been written for either the RANS (Reynolds-Averaged Navier-Stokes) approach or for
LES (Large-Eddy Simulations). While previous LES-RANS hybrid approaches, such as
Detached-Eddy Simulations (DES) (Spalart, 2000) and Limited-Numerical Scales (LNS)
(Batten et al. 2002) combine LES and RANS in a single flow solver, the approach of cou-
pling two existing flow solvers has the distinct advantage of building upon the experience
and validation that has been put into the individual codes during their development.
Also, simulations can be run in different domains at different time-steps. Both LES and
RANS require a distinct set of numerical algorithms and models to work efficiently and
accurately. The integration of both approaches into a single solver is often tiresome.

Here we present a different approach to address this problem: we keep the solvers
separate. They run simultaneously and exchange only the necessary information at the
interfaces. This allows each solver to use the best and most accurate methods for the
solution of its problem, while the interaction with other solvers allows for an approach
to very complex engineering applications.

In the example of fluid-structure interaction, we can execute one flow solver and one
structural solver simultaneously. At the surface of the body, the structural solver receives
the loads from the flow solver, and the flow solver receives the displacement of the body
from the structural solver.

For the example of LES-RANS hybrids, the coupling approach allows for the use of
the most appropriate approach for each zone in a domain. For example, one part can be
computed using a compressible structured multi-block RANS solver and the other by a
low-Mach number unstructured LES solver. This approach has been successfully applied
to a variety of flow phenomena (Schliiter et al. 2005b), including complex real-world
engineering applications (Schliiter et al. 2005¢) (Fig. 1).

While the actual coupling between LES and RANS requires a framework that allows
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FiGURE 1. Coupled LES-RANS computation of the compressor-combustor interface of a gas
turbine engine (Schliiter et al. 2005¢). The compressor is computed with a RANS solver, the
combustor with an LES solver. Isocontours of the axial velocity at the 50% plane in the com-
pressor and diffuser. Isosurfaces of axial velocity in the combustor. A 20° segment is computed.

for conversion from the LES representation of turbulence to the RANS representation
and vice versa, we will refer to previous work (Schliiter et al. 2004, Schliiter et al. 2005a,
Schliiter and Pitsch, 2005d) on the details, and the reminder of the paper will concentrate
on the coupling approach itself.

2. Python approach to coupling

Previous approaches to couple solvers were based on a pure MPI approach (Shankaran
et al. 2001, Schliiter et al. 2003a, Schliiter et al. 2003b, Schliiter et al. 2005b) (Fig. 2). In
this approach, MPT is used to establish a direct communication between the solvers. This
requires that in each of the solvers, algorithms have to be implemented that perform the
tasks associated with the coupling.

The coupling is performed in several steps. In a handshake routine, the solvers exchange
the location of the nodes that are on the interface of their own domain. Each solver
determines where the interface nodes are within its own domain and how to interpolate
the data from its own mesh to the location of the interface nodes requested by other
solvers.

During the actual computation, the solvers exchange interface data directly. After each
time-step, the solvers interpolate their own solution on the interface nodes of the other
solver and send the information to their peers.

The disadvantage of this approach is that the implementation of the communication
algorithms into a new solver takes some effort. Since each MPI command in one solver
requires a corresponding MPI command in the other solver, the implementation may be
tedious and prone to errors. Furthermore, the search and interpolation routines must be
implemented in each solver separately.

In order to improve the interoperability of the solvers, we decided to approach the
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FI1GURE 2. Direct coupling approach: solvers communicate the location of their interface points
and the other solver determines how to provide data at these locations.
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Ficure 3. CHIMPS approach: solvers communicate location of their interface points and their
mesh and solution to the coupler. The coupler determines how to provide information to the
solver at the interface nodes.

coupling in a different manner. Instead of implementing all coupling routines (communi-
cation, search, and interpolation) in all solvers separately, we have developed a separate
software module that performs these tasks and facilitates the coupling process. The idea
is to remove the workload, especially the search, interpolation, and communication rou-
tines, from the solvers. The solvers communicate only with the coupler software (Figure
3). The coupler performs all searches and interpolations. In order to perform these tasks,
the coupler requires knowledge of the meshes and of the solutions of the solvers.

The coupling software module that we have developed is called Coupler for High-
Performance Integrated Multi-Physics Simulations (CHIMPS). It is based on the script
language Python. This script language, together with its parallel version pyMPI, allows
for the simplification of the communication between the solvers and CHIMPS. Instead
of defining MPI calls, python functions are defined allowing for more freedom in the
implementation. The communication is then handled like a function call with arguments,
with the data being passed in the argument list.
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3. Terminology

First, we want to define some terms that we will use to specify CHIMPS:

e An API (Application Programming Interface) is a detailed specification of the inter-
face routines, including arguments and their types, which can be used to interact with a
software Module. APIs are intended to be composed of a number (possibly large) of sim-
ple, elemental functions that can be combined in multiple ways to perform complicated
operations with the module.

e A Solver is a set of functions and/or subroutines that carry out the solution of a
problem described by a set of governing equations and boundary conditions. In our work
this normally means a flow solver, but the definition can be extended to any other type
of solver (NASTRAN, for example).

e A Module is a set of functions and/or subroutines that have been compiled into a
shared object (dynamically loaded library, *.so or *.dll) and that have been appropriately
wrapped so that they are accessible through the Python interpreter.

4. Requirements on the coupler software

The following requirements must be satisfied by CHIMPS:

e Stand-alone: The CHIMPS software must be an independent module that does not
require particular knowledge of the nature of the solvers that it is coupling to perform
its functions.

e Parallel: CHIMPS must execute in parallel with close attention paid to the parallel
performance, efficiency, and scalability (CPU and memory) of all its functions. CHIMPS
must also work properly and transparently in a single-processor environment.

e Multi solver: CHIMPS must allow for the coupling of an arbitrary number of solvers.

e High-performance: CHIMPS should accommodate a variety of different search rou-
tines as they become available and must establish communication patterns whose per-
formance is as close to direct, point-to-point MPI communication.

e Communication: All communication/exchange of information of the solvers with
CHIMPS occurs via the Python interpreter. MPI is never to be used to communicate
from the solvers to CHIMPS directly.

e Minimum memory impact: CHIMPS should be able to clean up the memory allo-
cated for all of its operations if it is requested to do so, with zero net impact. The func-
tion chimps.deallocate() should free up all of the overhecad memory that was required
to perform its pre-processing functions. While CHIMPS is operating, it is expected to
minimize the memory impact on running the solver applications, although concessions
may be made to simplify the interface with the codes.

e Two main responsibilities: CHIMPS functions should be divided into those that
belong in a pre-processing step, which may be repeated multiple times as needed if
the relative positions of the mesh change in time, and those that participate in the
interpolation/communication step.

e CHIMPS is responsible for all searches (both volume and surface/distance) and all
interpolations. The solvers that are coupled simply provide information (in the form of
standardized representations of both the mesh and the solution) to CHIMPS.

e Diagnostics routines: Information must be given back to the user regarding the
success of the interface operations. This includes both information on whether a suitable
donor cell/face was found or not, as well as whether the other solvers can provide data
about the fields that are requested.
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e All CHIMPS operations must be accessible from Python, and Python is the preferred
method of communication.

e Component API functions may be combined either directly or via variable argument
lists to simplify the interface with the solvers and to simplify the interface on the whole.
However, a large number of API functions may be developed to address future uses of
the interface in situations not foreseen by the development team.

e Clear standardization of mesh and solution formats for various different types of
mesh.

e Flexibility to support different types of coupling to ensure accuracy and stability.

5. Mesh format

The communication of the mesh and the solution from the solver to CHIMPS requires
a mesh standard. For the time being we assume a node based mesh and solution. We
currently use several cell centered solvers with CHIMPS, and the solvers interpolate their
solution to the nodes.

The mesh is provided to CHIMPS in an unstructured format. The nodes are provided
in zyz-coordinates to CHIMPS, and the connectivity of the nodes follows a set of specified
order. The solution is provided to CHIMPS based on the node list handed to CHIMPS
in the mesh format.

6. Code execution

We now want to demonstrate how CHIMPS and the solvers are used within a python
script. This is the main script, which launches the solvers and the coupler software. The
script conrols the execution of the solvers. A launch of the pyMPI and the coupler script
chimps.py could look like this:

mpirun -np 8 pyMPI coupler.py

The following is a simplified script. We will discuss the meaning of the function calls
in detail following the example script.

#! /usr/bin/env python

# File: chimps.py

sk sk o ok sk sk ok o ok sk sk ok ek sk sk sk ok ki ok s ok sk sk ok e sk sk sk ke sk sk ok s ok ok sk sk e ok sk sk sk ek sk ok sk ok sk ok
This is a sample script coupling Solver A and Solver B.
skt ok sk ok sk ok sk sk ok sk ok sk sk sk ok sk sksk sk ok skskosk ok sk sk ok ok sksk sk ok sk sk sk ok sk sk ok sk ok ok
Standard Python modules

import sys # ... etc.

#
#
#
#

# Extension modules
import Numeric
import mpi

# Import CHIMPS
import chimps
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# Import solvers
if (solver A):

import solver_a as a
else

import solver_b as b

# coupler: initialize
cpl_inputfile=’coupler.inp’
chimps.initialize(cpl_inputfile)

# solver: initialize
if (solver A):

a.init
else:
b.init ()
... # Exchange of interface information

# get/set interface xyzs
if (solver A):

[xyzs,ids] = a.get_interface_xyzs(nxyzs)
else:

[xyzs,ids] = b.get_interface_xyzs(nxyzs)

chimps.set_xyzs(xyzs,ids, solver)

# get local mesh
if (solver A):
[tetra_conn,pyra_conn,prisms_conn,hexa_conn,node_coor] =
a.get_local_domain(n_tetra,n_pyra,n_prism,n_hexa,n_nodes)
else:
[tetra_conn, pyra_conn, prisms_conn, hexa_conn, node_coor] =
b.get_local_domain(n_tetra, n_pyra, n_prism, n_hexa, n_nodes)

chimps.set_local_domain(node_coor, tetra_conn, pyra_conn, prisms_conn, hexa_conn, solver)

# coupler: find donor cells
chimps.find_donors()

# determine which solution fields are needed

... # Exchange of information what variables are requested
# and what variables are needed from the local mesh
# so that all interfaces receive the necessary data

# get the solution
if (solver A):
solution = a.get_local_solution(nFields, n_nodes)
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else:
solution = b.get_local_solution(nFields, n_nodes)

chimps.set_local_solution(solution, mysolver)

# interpolate data to requested xyzs
chimps.interpolate()

# Provide interpolated xyzs to python
xyz_solution = chimps.get_interpolated_xyzs(nFieldsMax, nxyzs, mysolver)

if (solver A):

a.set_interface_data(nFields, nxyzs, xyz_solution)
else:

b.set_interface_data(nFields, nxyzs, xyz_solution)

# Iteration loop
for i in range(n_TimeSteps):
if (solver A):
a.RunIterations()
solution = a.get_local_solution(nFields, n_nodes)
else:
b.run(1)
solution = b.get_local_solution(nFields, n_nodes)
#
# set solution
chimps.set_local_solution(aSolution, mysolver)
#
# interpolate
chimps.interpolate()
#
# Provide interpolated data to python
xyz_solution = chimps.get_interpolated_xyzs(nFieldsMax, nxyzs, mysolver)
#
# Provide interpolated data to solvers
if (solver A):
a.set_interface_data(nFields, nxyzs, xyz_solution)
else:
b.set_interface_data(nFields, nxyzs, xyz_solution)

# shutdown solvers and coupler
if (solver A):

a.finalize()
else:

b.finalize()

chimps.deallocate_all()
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print " ALL DONE!"

First, some standard python modules are imported into python. These are necessary
for some of the basic python operations. Then the coupler and the solvers are imported,
which means that they are ready to be used.

The first operations are performed with the initialization of the code modules. The
coupler initialization reads a parameter file that contains information about the codes
and the interfaces. The solver initialization routine groups together all operations of the
solver together that are performed prior to the actual computation.

The next step is the communication of the location of the interface nodes from the
solvers to CHIMPS. The communication pattern here is an example of how the commu-
nication between solvers and CHIMPS takes place. Generally, functions with the prefix
‘‘get’’ provide data from the modules to the python script, whereas functions with
the prefix ¢ ‘set’’ provide data from the python script to the modules. Here, data is
transferred from the solvers to CHIMPS. First, the solver routines get_interface xyz
are called. The coordinates of the interface nodes are returned in the argument list. The
data is then provided to the coupler with the function set _xyzs using the argument list.
Note that in parallel execution, only interface nodes that are on the local processor are
provided.

In the next step, the mesh is transferred from the solvers to CHIMPS. Essentially the
same procedure is used using the functions get_local_domain and set_local_domain.
Note again that in parallel execution, only the local meshes on the local processor are
transferred.

In find donors, parallel Alternating Digital Tree (ADT) search routines determine
where the local interface nodes can be found in the other solvers’ domain. The parallel
searches determine on which processor and in which element of the mesh each interface
node can be found. It also provides information about interpolation weights.

The following step is not explicitly shown in the example script because it consists of a
number of calls following the same pattern as above. Here, the solvers provide the number
and names of the requested variables of each of their local interfaces. The names follow
the CEFD General Notation System (CGNS) (Legensky et al. 2002) for data identifiers.
CHIMPS then determines the local subset of unique variables that are needed on the
local mesh. For example, if on a local mesh nodes from two interfaces are found and
the interfaces request [p, u, v, w] and [u, v, w, T] respectively, the local unique subset
would be [p, u, v, w, T]. If no interface nodes are on the local mesh, no variables will be
requested from the solvers.

All previous steps are preprocessing steps that define the handshake routine for static
meshes. If moving meshes are used, these steps can be repeated as needed after the
location of the interface nodes or the local meshes have changed.

The next task is that of the communication of solution variables. In the sample
script, one such communication step is used prior to the actual iteration loop. The
data exchange is done in three steps. First, the requested local solution variables from
the solvers are communicated from the solvers to CHIMPS (get_local_solution and
set_local_solution). Then the coupler performs all interpolation steps and sends the
data to the requesting processors (interpolate). As a last step, the data is transferred
from CHIMPS to the solvers (get_interpolated xyzs and set_interface data).

Following the handshake and the initial data exchange is the iteration loop. In this
loop, the solvers advance their solution (e.g RunIterations()) for either a predetermined
number of iterations (for steady state simulations) or for a predetermined time-step (for
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F1GURE 4. Coupled RANS-RANS computation of annular channel flow using CHIMPS:
Domain decomposition.

unsteady simulations). This is followed by an exchange of interface data as described
above.

Once the iteration loop is terminated, the solvers and CHIMPS call finalizing routines
(finalize and deallocate_all) that ensure that the solvers and CHIMPS shut down

properly.

7. Solver adaptation

Here, necessary steps for the adaptation of a solver to use with CHIMPS are described.
The first step is the most complex part. The solver has to be 'pythonized’. In order to do
this, the code has to be subdivided into three parts. The first part calls all initialization
routines until the iteration routine. The second part is that of the actual iteration routine,
and the third part is that of finalizing the solver, which includes all functions that are
called after the iteration loop until the termination of the program. Assuming that the
solvers are written in a well structured manner, the main program of the solver should
already have this structure. Hence, all that remains is the wrapping of the lower level
functions into python, which can be done with utilities such as f2py for Fortran and
SWIG for C/C++. Only functions called from python need to be pythonized.

In the next step, all communication routines must be written. These are relatively
simple routines that exchange information with the python script through the argument
list. These functions can be seen as subroutines that exchange information with a main
program. All that needs to be done is to either receive data in the argument list following
the CHIMPS API and store it in appropriate form for the solver or to prepare data from
the solver and bring it into the form of the CHIMPS API. The pythonization of these
functions is once again performed with the appropriate tools.

Once the interface data is received from CHIMPS, it is the solver’s responsibility to use
the data in an appropriate way as a boundary condition in its own domain. For example,
in the context of LES-RANS, coupling boundary conditions have been developed that
allow for the use of RANS data in LES and vice versa (Schliiter et al. 2004, Kim et al.
2004, Schliter et al. 2005a, Schliiter and Pitsch, 2005d).
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F1GURE 5. Coupled RANS-RANS computation of annular channel flow using CHIMPS.
Momentum profiles at the interface.

8. CHIMPS verification

In the following we want to demonstrate the verification the data exchange on simple
test cases.

8.1. Predefined solution

In the first verification case, we exchange a predefined solution and determine the interpo-
lation error. The test case is that of two boxes with an overlapping interface. The coupled
codes are the unstructured LES solver CDP (Moin & Apte, 2004) and the structured
multi-block solver SUmb (Yao et al. 2000).

The solution field is defined as u = x, v = y, and w = z, where u, v, w are the flow
velocities in the three coordinate directions and z,y, z are the coordinates. The solvers
are requesting u, v, w from one of their interfaces. Once the exchange has been performed,
the data received from the other solver can be compared with the value at the originally
requested node location and the interpolation error can be estimated.

With different resolutions and different levels of parallelization the relative error was
consistently below 107° using single precision. Several unstructured meshes have been
tested with the RANS interface intersecting a number of different element types with the
same result.

8.2. RANS-RANS coupling

As the first flow computation with CHIMPS, we chose an annular channel flow. The
pipe is 2.5 diameter D long with an outer radius of Rp = 0.5D and an inner radius of
R; =0.25D. The Reynolds number is Re = 1000. The inflow is defined as a plug flow.

The domain is split into two subdomains (Fig. 4), each computed by a different instance
of the RANS flow solver SUmb. The axial extend of the first subdomain is 0 < x < 1.5D,
and for the second domain 1D < z < 1.5D. Hence there is an overlap between both
domains. Both meshes are identical, which means that the meshes at the interface match
in radial and azimuthal direction but not in axial direction.
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FI1GURE 6. Coupled LES-RANS computation of channel flow using CHIMPS: Domain
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FIGURE 7. Coupled LES-RANS computation of channel flow using CHIMPS. Momentum
profiles at the interface.

Figure 5 shows the momentum profiles at the interface (z = 1) in the upstream and
in the downstream domain. It can be seen that they match perfectly. The error is within

1%.

8.3. LES-RANS coupling

In the next step, an LES solver is coupled with a RANS solver. Here, only the laminar
case is computed in order to exclude effects of the different turbulence models in both
domains.

The test case is that of a plane channel with a channel height H = 1 (Fig. 6). The
upstream domain is the LES domain ranging from 0 < z < 1.5H. The second domain
is the RANS domain ranging from 1H < z < 2.5H. A parabolic flow is used as LES
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FIGURE 8. Setup for coupled RANS-RANS computation of a wing tip vortex (Geometry
corresponding to (Dacles-Mariani et al. 1995).

inflow conditions in the LES domain upstream. Both meshes are non-matching with
interpolations taking place in all three directions.

Figure 7 shows the velocity profiles at the interface (z = 1) in the upstream and in
the downstream domain. Again, it can be seen that they match perfectly. The error is
within 0.5%.

9. Applications

The CHIMPS approach for multi-code simulations is currently in use for a variety of
applications.

In the DARPA helicopter quieting program at Stanford, a compressible RANS solver
and an incompressible RANS solver are coupled for the prediction of the wing tip vortex
of a helicopter. The prediction of the propagation of such a vortex is difficult, since
the simulation of the flow around the wing requires a compressible approach. However,
the numerical dissipation of a compressible RANS solver dissipates the vortex quickly.
Therefore, the far field is computed with an incompressible RANS solver using a low-
dissipation algorithm. Figure 8 shows the application of this concept in the prediction
of the wing vortex of a wind tunnel experiment. The near field of the wing is computed
with the compressible solver SUmb and the far field with the incompressible solver CDP.
The communication between the solvers is handled by CHIMPS.

Another area of application is that of gas turbine engines. Here, the turbomachinery
components — the compressor and the turbine — are computed with a compressible RANS
solver and the combustor with a low-Mach-number LES solver. The computation of a
Pratt & Whitney high-spool (high-pressure compressor, combustor, and high-pressure
turbine) has been initiated using the CHIMPS approach for communication (Fig. 9).

A different kind of application has evolved in the form of multi-phase flows. Here we
use an LES solver to compute the flow field of a domain and a level set solver for the
determination of the location of the fluid surface. The interesting approach here is that
both solvers compute the same physical domain, but they both compute different physical
phenomena. The level set solver computes only the evolution of the level set equation
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FIGURE 9. Full engine simulation: turbomachinery components are computed with RANS,
combustor with LES. The communication between the solvers is handled by CHIMPS.

based on the flow variables from the LES solver. Since the level set equation needs to
be solved only in the vicinity of an interface and the solver can use structured grids,
the level set mesh can have a much higher resolution. It then returns density weights to
the LES solver. This application shows that the coupling approach can be used not only
to decompose domains but also to decompose physical phenomena. Here, the coupling
approach can be used for the implementation of models into an existing solver.

10. Conclusions

We have developed a software module that allows for the coupling of multiple solvers.
The advantage of the module is that it is written in a general fashion and solvers can
be adapted easily to communicate with other solvers. The software module performs
many of the required coupling tasks such as searches, interpolations, and process-to-
process communication. The adaptation of solvers to the coupling module is facilitated
compared with previous approaches.

The verification and the accuracy of the approach have been demonstrated. In addition,
some of the current applications of this software have been presented.
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